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Abstract

Multilingual language models enable zero-shot
cross-lingual transfer (ZS-XLT): fine-tuned on
sizable source-language task data, they perform
the task in target languages without labeled in-
stances. The effectiveness of ZS-XLT hinges
on the linguistic proximity between languages
and the amount of pretraining data for a lan-
guage. Because of this, model selection based
on source-language validation is unreliable: it
picks model snapshots with suboptimal target-
language performance. As a remedy, some
work optimizes ZS-XLT by extensively tuning
hyperparameters: the follow-up work then rou-
tinely struggles to replicate the original results.
Other work searches over narrower hyperpa-
rameter grids, reporting substantially lower per-
formance. In this work, we therefore propose
an unsupervised evaluation protocol for ZS-XLT
that decouples performance maximization from
hyperparameter tuning. As a robust and more
transparent alternative to extensive hyperparam-
eter tuning, we propose to accumulatively aver-
age snapshots from different runs into a single
model. We run broad ZS-XLT experiments on
both higher-level semantic tasks (NLI, extrac-
tive QA) and a lower-level token classification
task (NER) and find that conventional model
selection based on source-language validation
quickly plateaus to suboptimal ZS-XLT perfor-
mance. On the other hand, our accumulative
run-by-run averaging of models trained with
different hyperparameters boosts ZS-XLT per-
formance and closely correlates with “oracle”
ZS-XLT, i.e., model selection based on target-
language validation performance.

1 Introduction and Motivation

Massively multilingual transformers (MMTs) like
XLM-{R,V} (Conneau et al., 2020; Liang et al.,
2023) or mT5 (Xue et al., 2021) are pretrained
via language modeling on vast corpora encompass-
ing 100+ languages. MMT fine-tuned on labeled
task data in a source language can transfer cross-

lingually zero-shot, i.e. without further annota-
tions, to target languages (Hu et al., 2020; Lauscher
et al., 2020). However, pretraining corpora size
and linguistic distance between the source and tar-
get language dictate the quality of XLT (Lauscher
et al., 2020). This is why model selection based on
source-language validation data unreliably corre-
lates with ZS-XLT and selects checkpoints that yield
suboptimal target-language performance (Keung
et al., 2020). Worse yet, there is no “best practice”
for replicating ZS-XLT results of prior work. Some
works, as our results suggest (cf. §4), (1) exhaust
extraordinarily large hyperparameter grids and (2)
monitor target-language performance for the best
transfer (i.e., violating “true” ZS-XLT) to outper-
form baselines (Conneau et al., 2020; Wei et al.,
2021). Other works rerun baselines with little to
no hyperparameter tuning (Hu et al., 2020; Wu and
Dredze, 2020): the re-evaluation then often trails
original results by non-negligible margins.! As a
remedy, Keung et al. (2020) propose to evaluate ZS-
XLT on the snapshot that generalizes best to valida-
tion data in the target language (“‘oracle” ZS-XLT):
as such, oracle zS-XLT stabilizes evaluation and
denotes ideal transfer performance. Nonetheless,
oracle ZS-XLT overstates the performance of true
ZS-XLT, for which no target-language instances are
available (Schmidt et al., 2023). If they are, target-
language annotations are always better levered for
training than for validation (Schmidt et al., 2022).

This calls for an evaluation protocol that (1) max-
imizes “true” ZS-XLT results and (2) makes them
easily reproducible, regardless of the extent of hy-
perparameter tuning. In this work, we find that
model averaging fulfills both criteria. Weights av-
eraging has proven effective in, e.g., MT (Vaswani
et al., 2017) and recently NLU (Wang et al., 2022;
Schmidt et al., 2023). Schmidt et al. (2023) enable

'For instance, when evaluating XLM-V, Liang et al.
(2023) have been unable to reproduce the original results of
XLM-Rpase on the XNLI benchmark (Conneau et al., 2020).



model averaging for sizable gains in XLT. They
first fine-tune an MMT on labeled source-language
data and then re-train models (i.e., more runs) by
copying and freezing the task head of the initially
fine-tuned model: this aligns snapshots and enables
weight averaging across runs.”

Contributions. In this work, we propose an evalu-
ation protocol that decouples maximizing ZS-XLT
performance from hyperparameter tuning. The key
idea is to accumulatively average snapshots of runs
with different hyperparameters: this improves per-
formance over model selection based on source-
language validation performance. We run exhaus-
tive experiments on higher-level (NLI, extractive
QA) and lower-level (NER) NLU tasks on a broad
grid of hyperparameters and show, examining the
cross-section of all runs, that model selection based
on source-language validation almost exclusively
picks snapshots suboptimal for ZS-XLT. We also
confirm that conventional hyperparameter tuning
on source-language validation prematurely settles
for models that maximize source-language perfor-
mance at the expense of ZS-XLT. Crucially, we
show that accumulative model averaging performs
on par or better than the best snapshot picked by
source-language validation already from the sec-
ond (i.e. first averaged-in) run and then consistently
improves ZS-XLT with more runs. We addition-
ally show that this accumulative model averaging
closely correlates with oracle ZS-XLT without re-
quiring any source- or target-language validation
data to maximize transfer performance.

2  Accumulative Run Averaging

Prior work conducts model selection for ZzS-
XLT by extensive hyperparameter tuning using
either source- or target-language validation data.
Whereas the latter violates true ZS-XLT (Schmidt
et al., 2022), the former overfits to source-language
performance (Keung et al., 2020). The recent suc-
cess of snapshot averaging in XLT (Schmidt et al.,
2023) motivates our research question: can (accu-
mulative) averaging of models trained during hyper-
parameter search outperform — with fewer overall
training runs — the ZS-XLT performance of the “op-
timal” model selected based on source-language
validation performance?

We benchmark model selection based on source-

%Fine-tuning models with different randomly initialized

task heads otherwise yields sets of incompatible weights, hin-
dering meaningful model averaging.

language validation against accumulative model
averaging as follows. We iteratively sample mod-
els (i.e., runs) {{01,...,6,} | 1 < r < 10}
with different hyperparameters (i.e., pairs of learn-
ing rates and batch sizes) from the pool of runs
containing N runs per hyperparameter configu-
ration (cf. Appendix §A.2). We repeat this pro-
cedure 10 times and report mean ZS-XLT perfor-
mance. Standard model selection picks the model
{arg max; Val(6;) | 1 <14 < r} at run r that max-
imizes source- (target-) language validation, cap-
turing the “true” (“oracle”) ZS-XLT performance.
“Accumulative averaging”, in contrast, naively av-
erages (i.e. without any supervision) all models of
r runs to a single model ;- >77_, 0; = 0,.

3 Experimental Setup

Tasks and Languages. We select for our evalua-
tion two higher-level semantic tasks (NLI and and
extractive QA) and one lower-level structured pre-
diction task (NER). For each task, we fine-tune the
MMT on the provided English training splits.’

Natural Language Inference (NLI). We evaluate
NLI on XNLI (Conneau et al., 2018) and In-
dicXNLI (Aggarwal et al., 2022) which together
cover 25 typologically diverse languages.
Extractive QA (TyDiQA-GoldP). TyDiQA-GoldP
comprises questions that are answered by a span
of text in the provided gold passage and covers 9
diverse languages (Clark et al., 2020).

Named Entity Recognition (NER). We evaluate
NER on 25 languages from WikiANN (Pan et al.,
2017), 10 languages from MasakhaNER (Adelani
et al., 2021), and 9 languages from MasakhaNER
2.0 (Adelani et al., 2022).

Training Details. We train  XLM-Rjyee
(Conneau et al., 2020) for 10 epochs with
AdamW (Loshchilov and Hutter, 2019), weight
decay of 0.01, gradient norm clipping to 1.0, and a
LR schedule of 10% linear warm-up and decay.*
We save 10 snapshots per model, one at every 10%
of total training steps. The maximum sequence
length is 128 tokens for NLI and NER and 384
with a stride of 128 for TyDiQA-GoldP.

Hyperparameter Grids. We simulate conven-
tional hyperparameter grid search over a broad set

3Train portion of MNLI (Williams et al., 2018), the en-
closed 3,696 English training instances of TyDiQA-GoldP for
QA, and the English training portion of WikiANN for NER.

*The training data of TyDiQA-GoldP consists of merely
3,696 instances; we thus fine-tune longer, for 40 epochs.



of 21 configurations, pairing seven learning rates
1 €{0.1,0.5,1,1.5,2,2.5,3}¢° with three batch
sizes b € {16, 32,64}. The grid is deliberately kept
wide and same for all tasks to not reflect any prior
knowledge on task-specific “good values”.> We
retrain MMT for each pair (I, b) three times with
different random seeds to account for variances
over individual runs.

Model Variants. We evaluate four model vari-
ants: v € {LAST, SRC-DEV, CA, TRG-DEV}.
LAST is simply the final snapshot of a training run.
SRC-DEV is the snapshot that maximizes source-
language validation performance (Hu et al., 2020).
CA averages all snapshots of a run to a single model
and, according to Schmidt et al. (2023), outper-
forms LAST and SRC-DEV. TRG-DEV breaches
“true” ZS-XLT and picks the snapshot that performs
best on the target-language validation data (Keung
et al., 2020): as such, it generally represents an
upper-bound of single-run ZS-XLT performance.®

4 Results and Discussion

Single-Run Performance. The full ZS-XLT re-
sults by hyperparameters are presented in Appendix
§A.2 (cf. Table 3). We observe that optimal ZS-XLT
of single runs depends on all axes of analysis: task,
hyperparameters, and model variant. While LAST
and SRC-DEV generally perform well, their ZS-XLT
performance fluctuates substantially across hyper-
parameter configurations, in line with (Keung et al.,
2020; Schmidt et al., 2023). CA is a strong and ro-
bust baseline that often outperforms LAST and SRC-
DEV by notable margins on TyDiQA and NER. In
the context of a single run, CA performs especially
well with suboptimal hyperparameters, even some-
times outperforming TRG-DEV. We also confirm
that CA remedies variation in ZS-XLT both within
and across hyperparameters (Schmidt et al., 2023).
Table 3 (cf. Appendix §A.2) further highlights
the notable gap in ZS-XLT performance between
the best-performing hyperparameter configurations
and those selected based on source-language vali-
dation. Only the “oracle” model selection based on
target-language validation reliably correlates with
the actual best (test) ZS-XLT performance.

Run-by-Run Analysis. Table 1 compares ZS-
3Qur full results in Table 3 indicate that for each task we
obtain maximal (oracle) ZS-XLT performance with a different,
task-specific hyperparameter configurations.
®Trrespective of tasks and language, labeled instances in
the target-language bring larger gains if used for training rather
than for model selection (Schmidt et al., 2022).

XLT performance run-for-run of all variants for
model selection based on source-language valida-
tion (Max. SRC-DEV) against our accumulative av-
eraging of randomly sampled runs with different
hyperparameters (cf. §2). On NLI, picking a sin-
gle model on source-language validation only im-
proves ZS-XLT when moving from having one to
having two models (i.e., between first two rows of
Table 1) and stagnates when having more models
to choose from. With more runs, source-language
validation may even prefer models that are worse
at ZS-XLT on TyDiQA and NER. Conventional
model selection thus maximizes source-language
performance at the expense of ZS-XLT. Across
the board, accumulative averaging already matches
or surpasses Max. SRC-DEV (with any number of
models) using merely two or three runs. Moreover,
accumulative averaging consistently outperforms
the overall best single-run model chosen from 3+
runs (highlighted in green), irrespective of the task.
On all tasks, accumulative averaging stabilizes ZS-
XLT and reduces performance variance vis-a-vis
Max. SRC-DEV counterparts.

Accumulatively averaging within-run snapshots
(cA) outperforms LAST and SRC-DEV slightly on
NLI and materially on NER. For NER, zS-XLT
from WikiANN to MasakhaNER (2.0) also repre-
sents a domain transfer (from Wiki to news), in
which CA yields tremendous gains. In-domain (i.e.,
test on WikiANN), CA generally performs on par
with LAST and SRC-DEV. The same is not true
for QA, where CA performs slightly worse: we as-
cribe this to averaging of “unconverged” snapshots,
owing to the small TyDiQA training set (merely
3,696 instances), especially from runs with smaller
learning rates and larger batches (cf. Table 3).

Table 2 extends the run-

l

Further Analyses.
by-run analysis to TRG-DEV and “model soups’
(SOUP) to illustrate why accumulative model aver-
aging outperforms model selection based on source-
language validation. Rather than selecting a single
snapshot, SOUP averages the five snapshots (among
all available runs) with best source-language vali-
dation performance (Wortsman et al., 2022).

Compared to (oracle) TRG-DEV, accumulatively
averaging runs performs on par on NLI, slightly bet-
ter on TyDiQA, and somewhat worse on NER. TRG-
DEV selects language-specific snapshots, thereby
tailoring ZS-XLT to each target language and rem-
edying for the varying performance of Max. SRC-
DEV in ZS-XLT to many target languages. Such



NLI

TyDiQA-GoldP

NER

Max. SRC-DEV

Accumulative Averaging

Max. SRC-DEV  Accumulative Averaging

Max. SRC-DEV  Accumulative Averaging

LAST S-DEV CA ' LAST S-DEV CA

LAST S-DEV CA ' LAST S-DEV CA

LAST S-DEV CA ' LAST S-DEV CA

76.50.6 76.50.8 77.30,4;76.59,6 76.50.8 77.30.4
77.20.3 77.50.4 77.60_2:77.60_3 77.80.4 78.00.2
77.20.3 77.50.4 77.60.2177.80.3 77.90.4 78.10.2
77.20.4 77.50.4 77.50,2:77.70,3 77.90.4 78.10.3
77303 77.60_3 77.50_2 ‘77.90_2 78-00.2 78.10_1
77.30.3 77.60.1 77.50,2:77.90,1 78.00.2 78.10.1
77.30.3 77.60.1 77.50_2:77.90,2 78.10.2 78.20.2
77.30.3 77.60.2 77.50.2178.00.278.20.1 78.30.2
77.40.277.60.2 77.60.2 :78.00,1 78.10.1 78.30.2
77.30_2 77.60_2 77.60_2\78.00_1 78.20_1 78.30_1
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71.90.4 71.90.7 73.61,9;71.90,4 71.90.7 73.61.9
71.90.6 71.60.6 73.32.0:73.41_2 73.31.1 72.928
72.10.8 T1.80.8 T4.11.0174.10.7 74.20.7 73.81.2
72.50.5 72.00.0 73.90.6 | T4.50.6 T4.10.4 T4.10.0
72.60.8 72.00.9 73.80.8T4.T0.774.406 74.208
72.60.8 72.00.9 74.20,5174.70(7 T4.405 74.20.7
72.30.0 71.70.7 74.303174.60,7 74.30.6 T4.20.5
72.10.9 7T1.70.7 T4.20.5174.60.7 74.30.5 7T4.30.5
72.01.1 T1.70.7 T4.20.5|T4.60.5 T440.4 T4.20.4
72.00.1 T1.70.7 T4.20.5174.60.6 74.40.4 T4.206

40.82.741.15.1 44.62.140.80.7 41.15.0 44621
39.32.1 39.32.1 43.51.1,43.22.2 43.222 45615
30.31.2 39.51.7 44.01.1145.01.7 45.11.5 47.31.3
40.22.0 40.82.2 44.51.545.01.7 45.31.5 47.21.4
40.32.041.22.343.91.9'45.31.7 45.51.7 47.51.4
40.32.0 41.255 43.91.0145.71.4 45.91.4 47.912
40.02.1 40623 44.12.0'46.01.3 46.11.3 48.114
40.02.1 40.62.3 44.61.7146.01.1 46.11.2 48.21¢
39.62.3 39.92.4 44.31.546.00.6 46.10.7 48.30.7
39.62.3 39.92.4 44.4; 7146.10.546.20 6 48.40.5

Table 1: {{0,,..

.,0,} ] 1 <r <10} models sampled for variants v € {LAST, SRC-DEV, CA} from Table 3 (cf. §3).

“Max. SRC-DEV” picks the run {arg max; SrcVal(67) | 1 <4 < r}. “Accumulative averaging” simply averages all
runs % 22:1 07. Metrics: accuracy for NLI, span-F} for TyDiQA and token-level I} for NER. Subscripts denote

std. deviation. Colored averaging outperforms +0.2 or more or performs £0.1 of the best Max. SRC-DEV model.

NLI

Max. DEV Acc. Avg.

TyDiQA-GoldP NER
Max. Dev Acc. Avg. Max. DEV Acc. Avg.

SRC TRG;
DEV DEV! CA SOUP

77.3 T7.0177.3 76.8
775 I 781 776
77.6 77.9178.1 77.6
77.6 78.2178.2 T7.8
10|77.6 78.4\78.3 7.7

SRC TRG;
DEV DEV! CA SOUP

71.9 72.8173.6 73.7
718 73.5173.8 T3.8
72.0 73.4174.2 T4.3
717 73.7174.2 73.9
71.7 73.9/74.2 T3.8

SRC TRG;
DEV DEV! CA

41.1 46.5144.6
30.5 49.2147.3
41.2 49.7147.5
40.6 49.948.1
39.9 49.948.4

soup
42.3
42.1
42.8
42.8
42.8

<N W — |3

Table 2: “Max. TRG-DEV” selects the run
AValp(6;) | 1 < i < r}, where T

{arg max; 7
is the set of target languages. @ SOUP averages

the five checkpoints (from all available runs) that
“Max. SRC-DEV”. For other details, see Table 1.

a variation has been shown to be particularly pro-
nounced in ZS-XLT on token-level tasks like NER
or POS (Schmidt et al., 2023). On TyDiQA, we
believe that accumulative averaging (slightly) bet-
ter stabilizes the transfer from a small training set
(3.7K instances). SOUPs however perform notably
worse than both TRG-DEV and accumulative aver-
aging on NLI and NER. sOUPs lack the beneficial
diversity of different runs, as the best snapshots
often come from the same “good” run.” Anecdotal
evidence further exemplifies why source-language
validation is inapt for ZS-XLT. One of 63 SRC-DEV
models replicates XNLI results of Conneau et al.
(2020), vastly exceeding all other runs (c.A+1.0).
This “miraculous” run though merely ranks 3rd
according to source-language validation perfor-
mance.

The above suggests that even the more so-
phisticated hyperparameter tuning strategies (e.g.,
Bayesian optimization) are unlikely to improve ZS-

"Extending SOUP to average the top-10 best snapshots
does not improve performance.

XLT without target-language validation. On the
other hand, accumulative averaging improves ZS-
XLT threefold: (1) Unlike model selection, it does
not plateau in ZS-XLT on suboptimal single runs
that maximize source-language performance; (2)
TRG-DEV showcases that accumulative averaging
ingests further runs with snapshots that perform
well on ZS-XLT; (3) Model averaging irons out
idiosyncratic noise of individual runs, leading to
better performance. This renders accumulative av-
eraging a robust (i.e., replicable results) and fair (i.e.
true zero-shot) evaluation protocol for ZS-XLT.

5 Conclusion

Inconsistent hyperparameter tuning and model se-
lection protocols exacerbate replicating previous
results on ZS-XLT. In this focused study, we de-
vise a ZS-XLT evaluation protocol that addresses
previous shortcomings and feeds two birds with
one scone. We show that accumulatively averaging
snapshots — rather than selecting models based on
source-language validation performance — both im-
proves and stabilizes ZS-XLT. Conventional model
selection strategies prematurely settle for models
that maximize source-language validation perfor-
mance and discard runs that generalize better in
ZS-XLT. Accumulative model averaging both in-
corporates snapshots that transfer well and irons
out models that perform badly. We find that model
averaging correlates closely with “oracle” ZS-XLT,
which assumes models selection on target-language
validation instances. We hope future work adopts
model averaging to promote fair and reproducible
ZS-XLT that puts models on equal footing.



Limitations

Additional factors must be taken into consideration,
even though we aspire to evaluate ZS-XLT on all
levels of transparency (i.e., variants and strategies)
across a varied set of downstream tasks on broad
hyperparameter grids. Neither model selection on
source-language validation data nor accumulative
averaging may benefit ZS-XLT on certain tasks, as
Schmidt et al. (2023), e.g., do not find that any
variant other than TRG-DEV yields gain over LAST
on part-of-speech tagging. The underlying cause
remains unclear. For instance, the gains on ZS-XLT
stemming from model selection or accumulative
averaging likely depend on the type of distribu-
tional shift from the source-language training data
and the target-language instances to transfer to (cf.
§4; e.g. dynamics of variants in ZS-XLT for NER).
accumulative averaging nevertheless remains a ro-
bust evaluation protocol, as ZS-XLT performance
is not expected to deteriorate via-a-vis other “fair”
strategies (e.g., max. SRC-DEV). In addition, there
may exist a subset of pairs of learning rates and
batch sizes that jointly maximize source- and target-
language performance. However, as our results sug-
gest (§4), runs on such hyperparameters likely are
indistinguishable from those that exclusively per-
form just as well on the source-language validation
set.
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A Appendix

A.1 Reproduction Details

Code. Our code is available at: https://github.
com/fdschmidt93/ofa-x1t

Model architectures. All models use the
AutoModelFor{SequenceClassification,
TokenClassification, QuestionAnswering}
of xIm-roberta-large for the corresponding task
from the transformers library (Wolf et al., 2020).

Compute Requirements. We execute all experi-
ments on a single V100 with 32GB VRAM. We es-
timate that we require total compute time of c.1,050
hours over all fine-tuning iterations and evaluations.
We arrive at this budget as follows. We on aver-
age train models on NLI for about 11.5 hours, on
TyDiQA-GoldP for roughly 1.5 hours, and on NER
for an estimated 3 hours. We therefore execute
63 training runs (21 hyperparameter configurations
ran on for 3 seeds, cf. §3) for 16 hours for a total of
¢.1K GPU hours. We loosely estimate that accumu-
lative averaging adds another 50 hours of runtime
for evaluation.

Model Averaging. We follow Schmidt et al. (2023)
to enabling accumulative averaging of checkpoints
for NLI and TyDiQA-GoldP. For these tasks, we
initially fine-tune XLM-R e With a batch size of
32 and a learning rate of 2¢~°. For NER, we find
that merely randomly initializing the tasks heads
across all runs with the same head slightly improves
performance ( A 4 1.0) of all variants in single-run
and accumulative averaging. We suspect that the
original language modelling weights better align
with NER as a token-level classification task and
do not diverge to incompatible sets of parameters
in fine-tuning (cf. §3 of Schmidt et al. (2023)).

A.2 Full Results By Hyperparameter
Configuration


https://github.com/fdschmidt93/ofa-xlt
https://github.com/fdschmidt93/ofa-xlt

7S-XLT Performance

Hyperparameters NLI TyDiQA-GoldP NER

Leaming Rate Batch Size LAST SRC-DEV CA TRG-DEV LAST SRC-DEV CA TRG-DEV LAST SRC-DEV CA TRG-DEV
16 77201 77.50.3 77.60.2 779095 | 71.30.3 71.39.1 68.49.8 71.409.3 |45.90.3 45.909.3 46.509.3 47.80.1
1e=6 32  |77.40.1 77.50.2 T7.70.2 78.1g.1 | T1.20.2 71.30.4 63.20.3 71.60.2 | 45.30.2 45.30.2 44.7g.3 45.80.3
64 77.60.1 77.69.3 77.49.1 77.80.1 | 70.99.4 70.99.4 49.80.2 70.90.1 | 45.39.2 45.30.2 42.6g9.3 45.509.2
16 76.70.2 76.99.2 7T7.50.3 7T77.71.1 | 71.60.2 71.99.7 72.20.1 72.00.4 | 44.00.9 44.90.0 47.4p0.3 49.80.3
5¢~6 32 76.80.0 T77.60.4 7T7.60.1 78.30.5 | 71.60.1 71.50.1 T1.6p.1 72.30.4 | 42.80.3 42.909.2 45.80.6 47.71.0
64 77.002 78.1lg.¢6 77.89.2 78.30.3| 71.00.9 70.99.¢ 69.00.7 71.79.1 | 43.81.6 43.81.¢ 46.273 49.09.4
16 76.60.2 76.6g9.2 T77.50.2 77.1g.2 | 73.00.4 72.50.4 73.509.5 73.79.6 | 40.609.1 40.71.8 43.97.4 48.02 5
1e~5 32 76.80.2 T77.1g.4 77.60.1 7T77.202 | 72.190.4 72.6g.5 73.00.3 73.29.3 | 40.17 8 40.11 8 42.81.5 46.03.1
64 76.80.3 T77.20.5 T7.59.2 77.T9.2 | 72.09.8 71.79.8 71.79.2 73.00.3 | 43.11. 9 43.49.3 46.61 2 49.79.7
16 75.60.1 75.60.2 76.80.3 76.50.4 | 73.70.5 73.30.3 74.40¢ T4.1g94| 41.03.7 42.02 ¢ 45.32 9 50.01.1
1.5¢~° 32 76.60.1 76.509.1 7TT7.409.2 77.00.1 | 73.00.7 73.19.9 74.00.1 73.70.6 | 39.91.1 40.61.3 43.3p9.2 46.27 9
64 76.80.1 T77.1g.5 T77.60.3 77.T0.6 | 72.90.5 72.60.7 73.30.4 73.59.3 | 40.62 1 41.12 9 42.817 5 46.01 1
16 T4.1g.3 T74.19.3 76.1g.2 74.80.2 | 72.990.5 72.79.2 74.1g.2 73.5092 | 38.61.2 38.61 2 43.81.4 46.23¢
2¢° 32 75.90.3 T76.19g.4 7T7.190.1 76.409.5 | 73.10.1 72.30.9 74.19.2 73.30.4 | 39.30.7 39.01.17 42.315 44.325
64 76.60.5 77.00.4 77.40.1 T77.70.2 | 71.90.4 71.71.1 73.30.5 72.80.4 | 39.51.2 39.713 42.311 46.20.4
16 71.509.2 71.39.4 75.00.2 73.1g.1 |73.20.4 72.49.9 74.70.1 73.40.5 | 39.31.0 39.31.0 44.31.7 47.1p.6
2.5¢7° 32 74.80.2 T74.809.2 76.30.1 76.19.¢ | 72.30.2 T71.71.0 74.80.3 73.40.3 | 39.41.5 39.415 42.50.6 44.50.7
64 76.7Tg.2 76.T9.0 77.59.1 77.30.5 | 72.60.6 72.39.7 74.29.1 73.31.0 39910 39910 43.515 47.72.3
16 67.90.6 67.70.2 73.00.3 70.80.9 | 72.39.2 71.79.4 7T4.40.4 72.49.5 | 37.41.5 37.31.1 43.00.8 46.32.5
3e° 32 73.30.1 73.30.4 75.80.2 7T4.40.1 | 7T1.79.4 T71.6g9.7 T75.19.1 73.60.8 | 37.91.6 38.01.8 43.71.¢ 47.29.7
64 75.60.1  75.49.3 76.80.3 76.30.7 | 72.00.2 71.80.4 74.1g.5 73.29.4 | 39.01.9 39.41.4 4217 2 44.01.2

A 0.0 0.6 0.3 0.0 2.0 2.0 1.0 0.0 4.9 5.2 2.6 0.2

Table 3: ZS-XLT averaged over all target languages by task, model variant, and hyperparameters (cf. §3). For each
column, best ZS-XLT emphasized in bold and max. validation performance (cf. Table 4) shaded in green . A is

the difference of best ZS-XLT and ZS-XLT on models that maximize validation performance. Metrics: accuracy
for NLI, span-F; for TyDiQA and token-level F} for NER. Subscripts denote std. deviation.

Validation Set Performance

Hyperparameters NLI TyDiQA-GoldP NER
Learning Rate Batch Size LAST SRC-DEV CA TRG-DEV LAST SRC-DEV CA TRG-DEV LAST SRC-DEV CA TRG-DEV
16 90.29.2 90.509.2 90.1g.2 79.2¢9.3 | 76.49.2 76.79.5 75.19.3 67.00.2 | 81.99.1 81.99.1 79.50.2 49.99.1
1e=6 32 90.29 2 90.3p9.1 90.00.0 79.209.1 |77.00.5 77.90.8 73.50.4 66.99.1 | 80.49.1 80.49.1 76.509.3 48.30.3
64 90.1p.1 90.2p9.1 89.6g.1 78.99.0 | 76.00.6 76.30.4 64.49.2 66.509.2 | 78.00.1 78.00.1 71l.49.4 47.79.2
16 89.30.4 89.79.2 90.1p.2 78.90p.6 | 73.80.9 76.00.5 75.90.8 68.70.1 | 85.19.3 85.3p0.4 84.8p.1 52.109.4
5e 6 32 89.50.4 89.99.2 90.1g.0 79.409.4 | 7T4.50.5 75.80.7 76.20.8 68.20.2 | 84.79.1 84.79.1 84.0g.2 50.01.2
64 89.6p.1 90.20.3 90.00.1 79.40.3| 75.19.7 76.20.5 75.50.4 67.80.2 | 84.20.2 84.292 83.00.3 51.20.4
16 88.90.3 89.19.2 89.6g.1 78.20.1 | 74.50.4 75.70.1 75.80.6 69.409.3 | 85.60.1 85.7p.1 85.8p.2 50.32.2
1e~® 32 89.19.1 89.3p9.2 89.6p.1 78.60.3 | 74.40.6 75.90.6 75.71.0 69.29.1 | 85.49.1 85.59.2 85.30.2 48.43.1
64 89.70.4 89.90.0 90.1g.1 79.19.3 | 74.812 76.19g.90 76.79.4 69.00.2 | 85.09.1 85.00.1 84.509.1 52.0¢0.8
16 88.409.3 88.509.2 89.1g.2 77.509.2 | 74.80.7 76.30.3 76.509.7 69.709.2|86.09.1 86.19.1 86.29.1 52.01.3
1.5¢7° 32 89.00.5 89.00.5 89.6p0.1 78.2p9.2 | 75.19.7 76.50.4 76.50.3 69.50.4 | 85.409.2 85.50.2 85.80.1 48.31.¢
64 89.00.3 89.49.3 89.50.2 78.79.3 | 75.50.9 76.20.3 76.390.8 69.39.2 | 85.19.2 85.29.1 85.29.3 48.31.1
16 87.70.6 87.909.3 88.99.4 75.80.2 | 74.60.7 76.50.8 76.809.7 69.39.1 [ 85.909.2 85.99.2 86.09.2 48.231
2¢° 32 88.70.2 88.80.1 89.3p0.4 77.60.3 | 76.515 77.110 78.1g.5 69.49.5 | 85.49.2 85.49.2 85.79.2 46.82.5
64 89.30.2 89.49.1 89.8p.1 78.79.2 | 73.990.7 76.30.3 76.99.5 69.29.1 | 85.29.0 85.49.3 85.609.3 48.4¢0.6
16 87.50.3 87.Tp.1 88.60.3 74.00.3 | 75.80.9 76.49.2 77.20.5 69.30.3 | 85.50.2 85.50.2 86.00.3 49.50.5
2.5e7° 32 88.60.1 88.69.1 89.00.2 76.99.4 | 74.790.6 76.00.3 77.00.6 69.1g9.1 | 85.79.2 85.79.2 86.0g9.1 46.90.¢
64 88.80.3 88.9p.2 89.4p9o2 78404 | 75.11.8 T6.1g7 76.99.8 69.204 | 85.40.0 85.40.0 85.79.3 49.82.3
16 86.70.2 86.80.2 87.79.1 71.70.7 | 74.190.¢ 75.61.5 76.19.8 68.509.2 | 85.50.1 85.609.1 86.29.0 48.52.4
3e™® 32 87.80.3 88.09.5 89.00.3 75.30.3 | 73.81.3 76.21.90 76.509.8 69.1p9.2 | 85.49.1 85.49.1 86.00.1 49.43 ¢
64 88.40.2 88.509.1 89.492 T77.409.7 | 7T4.80.6 76.30.2 77.70.4 69.19g.2 | 85.49.1 85.409.1 85.809.1 46.21 5

Table 4: Validation performance by task, model variant, and hyperparameters (cf. §3). LAST, SRC-DEV, and CA
validate on source-language validation splits; TRG-DEV denotes performance averaged over individual snapshots of
a run that perform best by target-language validation set. For each column, best validation performance in bold.
Metrics: accuracy for NLI, span-F; for TyDiQA and token-level F; for NER. Subscripts denote std. deviation.



