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Abstract

Retrieval-Augmented Code Generation utilizes
relevant code examples as auxiliary context to
improve model performance in code generation
tasks. To gradually refine the generated code,
an iterative strategy can be used, in which the
code generated in the last iteration is utilized
to retrieve relevant code examples. However,
the effectiveness of this strategy diminishes af-
ter the second iteration, as the retrieved code
examples remain the same and the generated
code becomes similar. To address this issue,
we propose an Inference-time Masking strat-
egy for Retrieval-Augmented Code Generation
(IM-RACG), where the retrieved code exam-
ples are masked before being used as auxiliary
context. By masking parts of the examples, the
diversity of the auxiliary context is increased
and the context length is reduced effectively.
Given the low information density of code, the
remaining context still contains valuable infor-
mation. As aresult, this strategy encourages the
model to generate more diverse code, leading
performance to scale with the number of itera-
tions. Experimental results on MBPP and Hu-
manEval datasets demonstrate that IM-RACG
significantly enhances all tested model’s per-
formance across, with an average improvement
of approximately 4.5% in pass rate compared
to the original iterative RACG. Additionally,
IM-RACG shows the greatest enhancement on
MBPP using Llama-8b, with an increasement
of the pass rate from 76.2% to 83.4%.

1 Introduction

Large language models (LLMs) (Radford, 2018;
Brown et al., 2020; Touvron et al., 2023) have
demonstrated impressive capabilities across var-
ious tasks (Fatemi et al., 2024), including code
generation (Chen et al., 2021). However, LLMs
struggle with factual errors due to the limitations in
their training data and a potential lack of real-time
or domain-specific knowledge (Mallen et al., 2023;
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Figure 1: Comparison of pass rates between Iter-RACG
and IM-RACG on code generated using Llama-8b on
the MBPP dataset. "w/o-gt" indicates that the ground
truth answer for the current question cannot be retrieved.

Min et al., 2023). Retrieval-Augmented Genera-
tion (RAG) (Lewis et al., 2020; Guu et al., 2020)
addresses this issue by retrieving from extensive
sources and construct an auxiliary context using
the retrieved content. This approach enables LLMs
to access external information, hence improve the
relevance, coherence and factual accuracy of the
generated content (Gao et al., 2023).

Although RAG has been extensively studied for
natural language processing (NLP) tasks (Lewis
et al., 2020), its application to code generation re-
mains in the early stages of exploration. Exist-
ing retrieval-augmented code generation (RACG)
works (Zhang et al., 2023; Wang et al., 2024) di-
rectly use the whole retrieved content as the aux-
iliary context as that in the NLP, neglecting the
difference in information density between natu-
ral language and programming language. Specifi-
cally, compared to natural language, code exhibits
a lower information density as it contains more



repetitive patterns. This characteristic arises from
the design of programming languages, which pri-
oritize high re-usability to mitigate the cognitive
challenges involved in reading and understanding
(Casalnuovo et al., 2019). This means that some
components are essential for the functionality of
code, but carry limited semantic information inde-
pendently, such as variable names or keywords. For
instance, some return statement is not meaning-
ful without other statements in the function body.
Another example of low information density data
is image (He et al., 2022), where large amount of
background pixels are often similar and repetitive,
such as grass or sky. While background pixels
provide contextual information, they can also in-
troduce noise that interferes with object detection
(Xiao et al., 2021). Likewise, code with similar
repetitive patterns are retrieved and used as a con-
textual information for RACG. Neglecting the sub-
tle differences in their implementation logic can
introduce noise, potentially leading to a decline in
generation quality.

To improve the effectiveness of RACG, it is rea-
sonable to retrieve more examples or examples with
higher relevance (Du et al., 2024). However, includ-
ing more examples increases the risk of introducing
more potential noise and raises the computational
cost (Wu et al., 2024). Additionally, retrieving ex-
amples with higher relevance requires additional
data processing and are typically applicable only
to specific scenarios (Liu et al., 2024a). Another
approach to enhancing the effectiveness of RACG
is to use an iterative strategy to retrieve more rele-
vant examples and gradually refine the generated
code (Zhang et al., 2023). However, as the number
of iterations increases, the effectiveness of itera-
tive strategy diminishes after the second iteration.
As illustrated in Figure 1, the pass rate achieved
by Iter-RACG stabilizes after the second iteration,
while the pass rate achieved by IM-RACG (our
method) surpasses that of Iter-RACG starting from
the third iteration. Furthermore, as the number of
iterations increases, the performance gap between
Iter-RACG and IM-RACG continues to widen.

Based on our observation that code has lower in-
formation density, we conjecture that only a portion
of the code in the retrieved relevant examples con-
tributes to the improvement of current code genera-
tion. However, given the same retrieved document,
different LLMs may generate varying code outputs.
It is challenging to predict in advance which parts
of the retrieved code will be most beneficial for the

model in practical use.

To address the challenges in iterative RACG,
we leverage the low information density of code
to propose the Inference-time Masking strategy
for Retrieval-Augmented Code Generation (IM-
RACG), which contains two key strategies: (1) an
inference-time masking strategy to randomly re-
move portions of the retrieved code, and (2) an
iterative retrieval-augmented strategy for code gen-
eration. These two strategies mutually reinforce
each other. By randomly masking portions of the
retrieved code, we increase the diversity of the aux-
iliary context and eliminates the need to identify
which specific segment of the code is most benefi-
cial. Furthermore, the iterative strategy can effec-
tively addresses scenarios where the most benefi-
cial segment may be masked in certain iterations.
By combining the masking strategy, the perfor-
mance improves steadily as the number of itera-
tions increases.

Our paper presents three main contributions:

1. To the best of our knowledge, this paper is the
first to explore how to use the low information
density of code in designing RACG strategies.

2. We propose the IM-RACG, which combines
the inference-time masking strategy and itera-
tive retrieval-augmented strategy, significantly
reduces context length and improves model
performance.

3. Experimental results on five code LLMs and
two datasets demonstrate that our method sig-
nificantly improves the pass rate for generat-
ing code from natural language descriptions.

2 Related Work

2.1 Information Density

Information density (Pinsker, 1964) is used to quan-
tify the amount of information about the underlying
probability distribution given a specific outcome of
a random variable. It differs between different data
distributions. For example, the information den-
sity of natural language differs from that of images
(He et al., 2022). This means that infilling miss-
ing words within natural language requires sophis-
ticated linguistic understanding ability, whereas
missing patches in an image can be more easily
reconstructed based on neighboring patches. This
can be reflected by masking rate, He et al. (2022)
shows that a masking rate of 75% achieves the op-
timal result for pre-training an image encoder. In



contrast, pre-training a text encoder requires an
optimal masking rate of 15% (Devlin et al., 2019).
Compared to natural language, code contains
more repetitive patterns and has lower information
density (Casalnuovo et al., 2019). Existing RACG
methods neglect this difference (Zhang et al., 2023;
Du et al., 2024), resulting in redundant or even
detrimental segments in the retrieved code exam-
ples, which introduce potential risks for code gener-
ation. Hence, we propose an inference-time mask-
ing strategy to make the generation model leverage
incomplete code as the auxiliary context. We de-
termine the mask ratio by relevance, as more rele-
vant code is likely to contain more useful segments.
This approach enables the model to balance its in-
herent knowledge and the retrieved information.

2.2 Retrieval-Augmented Code Generation

Retrieval-augmented generation (RAG) is an
emerging strategy designed to address the lim-
itations of relying solely on parametric knowl-
edge during generation. By integrating a retrieval
and a generation module, RAG strategy not only
can generate fluent texts but also ground their
outputs in real-world and up-to-date data. This
approach has been applied to code generation
task, named retrieval-augmented code generation
(RACG) (Parvez et al., 2021), primarily to address
the discrepancy between training and test data, such
as the model’s inability to update its internal knowl-
edge with real-time code repositories (Zhou et al.,
2023), or the exclusion of private code-bases from
its training data (Zhang et al., 2023).

However, research suggests that most retrieved
content provides little benefit for code generation
(Wu et al., 2024). Even when the retrieved con-
text includes the correct code for the question, it
does not guarantee accurate code generation (Wang
et al., 2024). In addition, to further improve the per-
formance of RACG, Zhang et al. (2023) introduces
an iterative strategy. However, their experiments
show that the effectiveness of this strategy dimin-
ishes as the iteration exceeds two. Based on these
observations and the low information density of
code, we propose to integrate a masking strategy to
further enhance iterative RACG.

3 Methodology

3.1 Problem Formulation

Our method addresses the problem of generating
code based on a natural language instruction or

description by leveraging the strengths of LLMs
and RACG. Given a natural language description
S = {s1,82,...,8,}, the goal is to generate an
executable code C' = {cj,cg,...,cn} that accu-
rately matches the intent described in the natural
language and passes all the corresponding tests.
The code is generated auto-regressively by a large
language model, written as ¢; = LLM(S, c<;).
RACG enhances the generation process by leverag-
ing relevant context retrieved from a database.

In order to retrieve relevant examples, we con-
struct a query Q = {S; C'}, by concatenating the
natural language description S and the generated
code C. This query is used to retrieve k rele-
vant examples R = {R(1), R®) .. ,R(k)} from
the database. Each example R = {S(®); C()}
contains a natural language description .S (@) and
the corresponding code C9. Given the re-
trieved examples, an auxiliary context A =
{RW R®) . R¥ S} is obtained by combin-
ing the retrieved examples with the original de-
scription. This context provides rich information
for the LLM, leading the generation process to
¢; = LLM(A, c<;). To facilitate this process, we
utilize an instruction tuned version of code LLMs,
which exhibits strong instruction following capabil-
ities and can leverage additional context effectively.

3.2 IM-RACG

We propose an iterative retrieval-augmented strat-
egy for code generation and refine the auxiliary con-
text after each retrieval using a masking strategy,
named IM-RACG (Inference-time Masking strat-
egy for Retrieval-Augmented Code Generation).
By integrating the iterative retrieval strategy with
the masking strategy, the auxiliary context is more
diverse and compact, leading to the improvement
of effectiveness in code generation.

IM-RACG comprises three main steps as de-
picted in Figure 2: (1) generating code using a
zero-shot approach based on the system prompt
and the natural language description; (2) if the
zero-shot generation fails, the RACG mode begins.
We retrieve relevant examples using a database
query, which is a concatenation of the current prob-
lem description and the generated code in the first
step. These retrieved examples are then randomly
masked and used to construct a new auxiliary con-
text. (3) if the RACG fails, the iterative RACG
begins. During each iteration, we use the current
problem description and the code generated in the
last iteration as a database query to retrieve relevant
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Figure 2: The overall workflow of IM-RACG.

examples. Then the auxiliary context is updated us-
ing a masked version of these examples. Notably,
the generated code is tested against a set of test
cases. Once the code passes all the tests, the itera-
tive process is terminated. This strategy aligns with
the principles of Test-Driven Development (TDD)
where test code is written prior to the production
code (Mikinen and Miinch, 2014). The maximum
number of iterations is a hyperparameter, which
will be discussed in detail in Section 5.1.

In the following, we introduces three key aspects
of our approach: (1) the methodology for retrieving
relevant examples from a database; (2) the deter-
mination of the mask ratio; (3) the approach for
utilizing an LLM to generate code.

Retrieve Relevant Examples IM-RACG uses a
dense retriever, which retrieves relevant code based
on vector similarity. Specifically, given a retrieval
dataset D = {d1,ds, ..., d;} containing .J entries,
we encode each entry into a vector hg4, using a pre-
trained sequence encoder. Given a query (), we
use the same encoder to encode it, yielding the rep-
resentation hg. The similarity between the query
and the data in the retrieval database is calculated
as following:

_ hg-dj
2l - |7, ]|

Mask Ratio Determination After retrieving the
relevant examples, masking is applied to the code
in these examples. The mask ratio is determined
based on the similarity between the retrieved exam-
ple and the query. For example, the masking ratio
for an example is calculated by:

stim(Q, d;) €))

MR(i) = Mbase * (1 - SZm(R(l)a Q)) (2)

where R(® is the i-th retrieved example, Mp,se
is the base mask ratio which is a hyperparameter
and My € [0,1]. According to Equation 2, a
higher similarity between a retrieved example and
the query corresponds to a lower masking ratio.
This adjustment facilitates the retention of greater
amounts of information from examples that are
more similar to the query.

Code Generation After masking is applied, the
retrieved examples contains a masked version
of code, R® = {S@:CW}. These examples
are used to construct an auxiliary context A =
{RW R® . R¥ S to facilitate code genera-
tion. The probability of generating a code sequence
is given by:

T
P(C) =] Polctl A, c<r) 3)

t=1

where 0 is the parameters of a code generation
model and 7' is the length of the code sequence.

4 Experiments

Section 4.1 details the experimental setups, includ-
ing datasets, evaluation metrics, models, and tools.
Sections 4.2 and 4.3 demonstrate the effectiveness
of IM-RACG in scenarios where the ground truth
can or cannot be retrieved, respectively.

4.1 Experimental Setup

We use the widely used MBPP (Austin et al., 2021)
and HumanEval (Chen et al., 2021) datasets to val-
idate the effectiveness of IM-RACG. MBPP in-
cludes 974 samples, of which 500 are test samples.
HumanEval only has a test set which contains 164



samples. Each sample contains a natural language
description, a corresponding code, and several test
cases. Pass rate is used as the evaluation metric.
Since we use an iterative approach to generate code,
if the generated code passes all the test cases in
any of the iteration, the sample is considered as a
"pass". All the samples in MBPP and HumanEval
are used to construct the retrieval database and the
evaluation is conducted on the test set.

For each sample in the dataset, we concatenate
the natural language description with the code and
use Bge-base! to encode it into a vector. As a re-
sult, we get a total of 1,138 records in our vector
database. We use Faiss” as our database construc-
tion and querying tool. Instruction tuning version
of LLMs is used for code generation, as they can
utilize retrieved context more effectively.

To study the effectiveness of IM-RACG, we
conduct experiments on LLMs with parameter
scales ranging from 3B to 12B, including Phi-3.5-
mini-instruct (Phi-3B) (Abdin et al., 2024), Llama-
3.2-3B-Instruct (Llama-3B) (Liu et al., 2024b),
deepseek-coder-7b-instruct-vl.5 (DeepSeek-7B)
(Guo et al., 2024), Liama-3.1-8B-Instruct (Llama-
8B) (Liu et al., 2024b), and Mistral-Nemo-Instruct-
2407 (Mistral-12B) 3.

All experiments were conducted on an NVIDIA
RTX A6000. All the models used in the experi-
ments are publicly available and the specific URLs
for each model can be found in Appendix A. The
default number of retrieval candidate is three and
greedy decoding strategy is used for code genera-
tion for reproducibility.

4.2 Effectiveness of IM-RACG

The main results are shown in Table 1. We con-
clude that, IM-RACG consistently improves the
code generation pass rate across all baseline mod-
els. On MBPP dataset, Llama-8B shows the
strongest performance across all configurations,
achieving a pass rate of 80.6% with IM-RACG. On
HumanEval dataset, Phi-3B achieves the highest
pass rate of 76.2% with IM-RACG. It can be notice
that all RACG-based methods outperform the Zero-
Shot approach significantly. This improvement is
partially due to the inclusion of test set samples in
the database, ensuring that the ground truth answer
is often present in the auxiliary context. However,
it is important to note that, even when the ground

1https ://huggingface.co/BAAI/bge-base-en-v1.5
2https ://github.com/facebookresearch/faiss
Shttps://mistral.ai/news/mistral-nemo/

Model Method MBPP HumanEval
Phi-3B Zero-Shot  45.4% 68.3%
Phi-3B RACG 62.8% 70.1%
Phi-3B Iter-RACG  67.4% 70.1%
Phi-3B IM-RACG 72.6% 76.2%
Llama-3B Zero-Shot  36.6% 50.0%
Llama-3B RACG 69.8% 57.3%
Llama-3B Iter-RACG  71.4% 59.2%
Llama-3B IM-RACG 74.8% 62.2%
DeepSeek-7B  Zero-Shot ~ 56.4% 42.1%
DeepSeek-7B RACG 73.6% 51.8%
DeepSeek-7B  Iter-RACG  76.0% 53.7%
DeepSeek-7B  IM-RACG  78.8% 62.2%
Llama-8B Zero-Shot  53.2% 56.1%
Llama-8B RACG 74.2% 62.2%
Llama-8B Iter-RACG  76.2% 62.8%
Llama-8B IM-RACG 80.6% 69.5%
Mistral-12B Zero-Shot  38.2% 48.8%
Mistral-12B RACG 64.4% 58.5%
Mistral-12B Iterr-RACG  65.4% 59.8%
Mistral-12B IM-RACG 67.0% 63.4%

Table 1: Comparison of different methods for code gen-
eration. Zero-Shot means code generation without RAG
context. Both RACG and Iter-RACG use the entire
retrieved code as the context. In Iter-RACG and IM-
RACG, the maximum number of iterations is set to 5.
The base mask ratio for IM-RACG is 0.5. The high-
lighted rows represent the optimal methods for each
model and bold represent the best result on each dataset.

truth is included, RACG-based methods still gen-
erate incorrect results in some cases. Compared to
Iter-RACG which does not apply masking strategy,
IM-RACG shows consistent improvements across
all models with a maximum iteration of five*, high-
lighting the effectiveness of our strategy.

It can be observed that the model performance
varies significantly under the Zero-Shot setting and
the pass rate does not increase monotonically with
parameter scale. Llama-3B performs poorly in the
Zero-Shot setting, but shows strong capability in
leveraging the auxiliary context. On the other hand,
although Mistral-12B contains a greater number of
parameters compared to other models, its perfor-
mance in the Zero-Shot setting is only comparable
with Llama-3B. A possible explanation for this
could be that Mistral-12B does not prioritize code
generation tasks as highly as other tasks.

4As the number of iterations increases, the performance ad-
vantage of IM-RACG over Iter-RACG becomes progressively
more pronounced.
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Figure 3: A comparison between IM-RACG and Iter-RACG as the maximum number of iteration increases on
MBPP dataset, with a base mask ratio of 0.5 for IM-RACG. In both settings, the number of retrieval examples is 3.

4.3 IM-RACG without Ground Truth

As the test examples are included in the vector
database, the ground truth question-answer pair is
usually the first retrieval candidate. This is an ideal
case for RACG (Wang et al., 2024), however, it is
more common to retrieve relevant but not identical
examples in practice. Therefore, we further verify
the effectiveness of IM-RACG when the ground
truth example cannot be retrieved.

As shown in Table 2, we evaluate the perfor-
mance of various RACG strategies across all base-
line models by excluding the ground truth example
from the retrieval candidates. Overall, the results
demonstrate that IM-RACG consistently outper-
forms RACG and Iter-RACG on MBPP and Hu-
manEval datasets. This indicates that IM-RACG
is effective scenarios where ground truth examples
are unavailable, positioning it as a reliable alterna-
tive compared to other RACG strategies.

5 Discussion

In this section, we discuss several factors that may
affect the effectiveness of IM-RACG.

5.1 Scaling the Iteration

To evaluate whether increasing the maximum num-
ber of iterations further improves performance, we
conducted experiments by increasing the iteration
limit to 10 on MBPP. As shown in Figure 3, IM-
RACG exhibits a consistent upward trend as the the
number of iteration increases. At the 10" iteration,
the pass rate achieved by IM-RACG outperforms
Iter-RACG across all the models we tested. No-
tably, the highest relative gain is obtained by Phi-
3B, which is 14.8% (from 67.4% to 77.4%). The
highest pass rate is achieved by Llama-8B, which
is 83.4% at the 10™ iteration with IM-RACG.
Compared to IM-RACG, Iter-RACG exhibits
a higher pass rate at the first iteration, however,
there is only a marginal improvement in the sec-
ond and third iterations, after which the pass rate

Model Method MBPP HumanEval
Phi-3B Zero-Shot  45.4% 68.3%
Phi-3B RACG 60.0% 70.1%
Phi-3B Iter-RACG  63.0% 70.1%
Phi-3B IM-RACG 67.2% 74.4%
Llama-3B Zero-Shot  36.6% 50.0%
Llama-3B RACG 56.4% 50.0%
Llama-3B Iter-RACG  60.0% 54.9%
Llama-3B IM-RACG 63.6% 57.3%
DeepSeek-7B  Zero-Shot  56.4% 42.1%
DeepSeek-7B RACG 63.4% 46.3%
DeepSeek-7B  Iter-RACG  67.0% 51.8%
DeepSeek-7B  IM-RACG  71.0% 61.0%
Llama-8B Zero-Shot  53.2% 56.1%
Llama-8B RACG 65.8% 61.6%
Llama-8B Iter-RACG  69.2% 62.8%
Llama-8B IM-RACG 71.2% 69.5%
Mistral-12B Zero-Shot  38.2% 48.8%
Mistral-12B RACG 56.4% 52.4%
Mistral-12B Iter-RACG  58.0% 53.6%
Mistral-12B IM-RACG 60.4% 59.2%

Table 2: Comparison of different methods when ground
truth candidate cannot be retrieved.

plateaus. These results suggest that the iterative
strategy alone cannot yield diverse auxiliary con-
texts, thereby limiting the model’s ability to pro-
duce varied outputs. Although IM-RACG performs
slightly worse in early iterations, it outperforms
Iter-RACG across all models by the fourth iter-
ation. Notably, on the best-performing baseline
model, Llama-8B, IM-RACG surpasses Iter-RACG
as early as the second iteration and the pass rate
increases steadily afterwards. This demonstrates
that the masking strategy in IM-RACG enhances its
compatibility with the iterative retrieval-augmented
strategy by introducing diversity.

5.2 Effect of Description for Retrieved Code

We investigate whether including a natural lan-
guage description in the retrieved examples en-
hances code generation quality or if the retrieved
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Model NL PR
Phi-3B w/o  52.0%
Phi-3B w/  67.4%
Llama-3B w/o  62.2%
Llama-3B w/ 72.0%
DeepSeek-7B w/o  72.6%
DeepSeek-7B w/  76.0%
Llama-8B w/o  71.2%
Llama-8B w/  76.2%
Mistral-12B w/o  60.6%
Mistral-12B w/  65.4%

Table 3: Evaluation of the effect of including natural
language (NL) description in the context across different
models on MBPP. The number of retrieved examples is
set to 3 and all the results are obtained using Iter-RACG.
PR represents Pass Rate. "w/o" and "w/" means without
and with natural language description, respectively.

code alone provides sufficient information. To eval-
uate this, we use MBPP to assess the impact of
descriptions on retrieved code. Specifically, we
construct a new vector database using only code.
When relevant code is retrieved, instead of append-
ing a description of its functionality, we add the
sentence, "This code snippet may be useful."

As presented in Table 3, including natural lan-
guage descriptions significantly improves the pass
rate, suggesting that code alone provides insuffi-
cient context. This finding implies that the util-
ity of code is enhanced when accompanied by
a description of its functionality. Notably, the
greatest performance improvement is observed in
DeepSeek-7B, suggesting that the model struggles
to utilize code without adequate contextual infor-
mation. This result is intuitive, as identifying rel-
evant components for a given problem becomes
more difficult without understanding of the broader
context in which the code is applied. This observa-
tion highlights the impact of low information den-
sity in code, particularly in the context of RACG.

Model MSS BMR PR

Phi-3B  Word-based 0.7 65.8%
Phi-3B  Line-based 0.7 70.8 %
Phi-3B  Node-based 0.7 59.0%

Table 4: Comparison of word-based, line-based and
node-based mask sampling strategies with a Base Mask
Ratio (BMR) of 0.7 on MBPP using Phi-3B. MSS rep-
resents mask sampling strategy.

5.3 Exploration of Mask Sampling Strategies

In order to find an optimal mask sampling strat-
egy, we investigate different strategies with a fixed
base mask ratio of 0.7, as shown in Figure 4.
These strategies include word-based, line-based,
and node-based masking strategy. For word-based
masking, we use whitespace characters to split
the retrieved code. For line-based masking, new-
line characters are used to split the retrieved code.
Lastly, for node-based masking, we utilize Tree-
sitter” to parse the retrieved code so that we get
a list of nodes from the parse tree. For instance,
Figure 4 shows that the condition expression in
the if statement can be masked by removing the
corresponding node.

Experimental results shown in Table 4, reveal
that the line-based masking strategy achieves the
highest pass rate. This can be intuitively explained
by the granularity of the different strategies. Word-
based and node-based masking strategies often in-
troduce overly fine-grained perturbations, disrupt-
ing reusable code snippets in the retrieved exam-
ples. In contrast, a line of code typically represents
a meaningful and self-contained statement, making
it a more suitable unit for perturbation. Given its
simplicity and effectiveness, the line-based mask-
ing strategy is selected as the default setting.

Shttps://tree-sitter.github.io/tree-sitter/
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Method MR PR AvgLen Avglter
Zero-Shot - 454% 0 1
Iter-RACG 0 67.4% 61657 191
IM-RACG 149% 72.6% 524.66 1.89
IM-RACG 35.7% 68.0% 396.69  2.08
IM-RACG 56.6% 66.8% 267.41 2.16
IM-RACG 782% 62.0% 13430 2.26

Table 5: Comparison of code length in the auxiliary con-
text at different Mask Ratios (MR) on MBPP. AvglLen
represents the average number of characters of code in
the auxiliary context. Avglter represents the average
number of iterations for answering each question.

5.4 The Role of Base Mask Ratio

As the base mask ratio increases, a larger portion
of the code is masked, leading to a reduction in
the amount of information available for models to
utilize. However, a higher base mask ratio also
increases the diversity of the auxiliary context, en-
abling the model to generate a broader range of
outputs. Therefore, the base mask ratio plays a
crucial role in balancing information availability
and context diversity. It is important to note that
a base mask ratio of 1.0 does not imply that the
entire code is masked, as the similarity score of the
retrieved example is also considered. Iter-RACG
can be interpreted as a special case of IM-RACG
with a base mask ratio of 0, and Zero-Shot can be
viewed as a case where the base mask ratio is oo.

Another advantage of IM-RACG is the reduction
in the length of the code used as auxiliary context,
achieved by masking tokens from the original code.
As shown in Table 5, at a base mask ratio of 0.5, the
average number of characters in the code decreases
by 14.93% and the average number of iterations
is decreased slightly, while the pass rate improves
by 7.72% relatively. Additionally, the pass rate
exhibits a non-monotonic trend as the base mask
ratio increases. This suggests that a moderate level
of masking can improve the performance of code
generation. As the base mask ratio continues to
rise, performance remains robust. For instance, at
a ratio of 2.0, where only an average of 134.3 char-
acters remains, the performance still significantly
surpasses that of the Zero-Shot setting.

5.5 Evaluating Mask Sampling Efficiency

Distribution annealing techniques, such as nucleus
sampling (Holtzman et al., 2019), can significantly
improve the performance of auto-regressive mod-
els. As the retrieved code examples are masked

Model Nucleus Mask
Phi-3B 73.8% 78.4%
Llama-3B 72.2% 74.6%
DeepSeek-7B  81.2% 81.0%
Llama-8B 78.6% 78.8%
Mistral-12B 70.4% 71.0%

Table 6: Compare the pass rate achieved by applying
nucleus sampling to that achieved by mask sampling on
MBPP dataset with a base mask ratio of 0.7.

randomly, our approach can be viewed as a form
of sampling strategy. The goal of the experiments
in this section is to compare the effectiveness of
nucleus sampling and mask sampling for retrieval-
augmented code generation. To verify the effective-
ness, we generate five code candidates under two
settings with a fixed mask rate. In the first setting,
we apply nucleus sampling to a masked version of
the retrieval code examples to generate five code
candidates. In the second setting, we perform mask
sampling five times to obtain five distinct masked
versions of the retrieval code examples and then
one code candidate is generated using nucleus sam-
pling for each masked version. As shown in Table
6, except for DeepSeek-7B, the pass rate achieved
through nucleus sampling is slightly lower than that
achieved by mask sampling, which demonstrates
the effectiveness of the mask sampling strategy.
Finally, as distribution annealing techniques are
performed on the output side and mask sampling
strategy operates on the input side, these two sam-
pling techniques can coexist, potentially leading to
further performance improvements.

6 Conclusion

In this work, we introduce IM-RACG, a novel
RACG strategy that combines iterative retrieval-
augmented generation with an inference-time mask-
ing strategy based on the relevance of the retrieved
examples to leverage the low information density
of code. Experimental results on various LLMs
demonstrate that IM-RACG significantly outper-
forms top-notch baseline methods in the code gen-
eration task, not only improving pass rates but also
reducing the length of the auxiliary context when
compared to traditional iterative RACG approaches.
Furthermore, the performance of IM-RACG con-
tinues to improve as the number of iterations in-
creases, highlighting its stability and potentiality
for handling more complex tasks.



7 Limitations

This study explores a scenario where a large lan-
guage model is required to generate code given a
natural language description. However, other sce-
narios such as repository-level code completion
(Shrivastava et al., 2023) and code repair (Lu et al.,
2021) may also be explored. In the current experi-
ments, the whole MBPP and HumanEval datasets
are used as the retrieval source and a relatively
small number of retrieval examples are utilized.
Future research could examine the application of
IM-RACG with a larger, more diverse database and
incorporate more retrieval examples.

Further investigation is needed to explore the
limits of IM-RACG’s effectiveness, particularly
in tasks with higher complexity(Hendrycks et al.,
2021). Additionally, predicting which portions of
code are the most beneficial for a model, given
the current question, presents an intriguing area of
study. Successful identification of the most relevant
code segments could significantly enhance perfor-
mance and potentially eliminate the need for iter-
ative retrieval, thereby improving both efficiency
and accuracy in code generation tasks.
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A Appendix

A.1 Implementation Details

We use Phi-3.5-mini-instruct (Phi-3B)®, Llama-
3.2-3B-Instruct (Llama-3B)’, deepseek-coder-
7b-instruct-vl.5 (DeepSeek-7B)® Llama-3.1-8B-
Instruct (Llama-8B) ° and Mistral-Nemo-Instruct-
2407 (Mistral-12B)'°.

®https://huggingface.co/microsoft/Phi-3.
5-mini-instruct
7https://huggingface.co/meta—llama/Llama—3.
2-3B-Instruct
8https://huggingface.co/deepseek-ai/
deepseek-coder-7b-instruct-v1.5
9https://huggingface.co/meta—llama/Llama—3.
1-8B-Instruct
10https://huggingface.co/mistr‘alai/
Mistral-Nemo-Instruct-2407
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