
Inference-Time Masking for Retrieval-Augmented Code Generation

Anonymous ACL submission

Abstract

Retrieval-Augmented Code Generation utilizes001
relevant code examples as auxiliary context to002
improve model performance in code generation003
tasks. To gradually refine the generated code,004
an iterative strategy can be used, in which the005
code generated in the last iteration is utilized006
to retrieve relevant code examples. However,007
the effectiveness of this strategy diminishes af-008
ter the second iteration, as the retrieved code009
examples remain the same and the generated010
code becomes similar. To address this issue,011
we propose an Inference-time Masking strat-012
egy for Retrieval-Augmented Code Generation013
(IM-RACG), where the retrieved code exam-014
ples are masked before being used as auxiliary015
context. By masking parts of the examples, the016
diversity of the auxiliary context is increased017
and the context length is reduced effectively.018
Given the low information density of code, the019
remaining context still contains valuable infor-020
mation. As a result, this strategy encourages the021
model to generate more diverse code, leading022
performance to scale with the number of itera-023
tions. Experimental results on MBPP and Hu-024
manEval datasets demonstrate that IM-RACG025
significantly enhances all tested model’s per-026
formance across, with an average improvement027
of approximately 4.5% in pass rate compared028
to the original iterative RACG. Additionally,029
IM-RACG shows the greatest enhancement on030
MBPP using Llama-8b, with an increasement031
of the pass rate from 76.2% to 83.4%.032

1 Introduction033

Large language models (LLMs) (Radford, 2018;034

Brown et al., 2020; Touvron et al., 2023) have035

demonstrated impressive capabilities across var-036

ious tasks (Fatemi et al., 2024), including code037

generation (Chen et al., 2021). However, LLMs038

struggle with factual errors due to the limitations in039

their training data and a potential lack of real-time040

or domain-specific knowledge (Mallen et al., 2023;041

1 2 3 4 5 10
Iteration

0.70

0.75

0.80

Pa
ss

 R
at

e

IM-RACG (ours)
Iter-RACG
IM-RACG (w/o-gt)
Iter-RACG (w/o-gt)
IM-RACG@iter10
Iter-RACG@iter10

Figure 1: Comparison of pass rates between Iter-RACG
and IM-RACG on code generated using Llama-8b on
the MBPP dataset. "w/o-gt" indicates that the ground
truth answer for the current question cannot be retrieved.

Min et al., 2023). Retrieval-Augmented Genera- 042

tion (RAG) (Lewis et al., 2020; Guu et al., 2020) 043

addresses this issue by retrieving from extensive 044

sources and construct an auxiliary context using 045

the retrieved content. This approach enables LLMs 046

to access external information, hence improve the 047

relevance, coherence and factual accuracy of the 048

generated content (Gao et al., 2023). 049

Although RAG has been extensively studied for 050

natural language processing (NLP) tasks (Lewis 051

et al., 2020), its application to code generation re- 052

mains in the early stages of exploration. Exist- 053

ing retrieval-augmented code generation (RACG) 054

works (Zhang et al., 2023; Wang et al., 2024) di- 055

rectly use the whole retrieved content as the aux- 056

iliary context as that in the NLP, neglecting the 057

difference in information density between natu- 058

ral language and programming language. Specifi- 059

cally, compared to natural language, code exhibits 060

a lower information density as it contains more 061

1

repetitive patterns. This characteristic arises from062

the design of programming languages, which pri-063

oritize high re-usability to mitigate the cognitive064

challenges involved in reading and understanding065

(Casalnuovo et al., 2019). This means that some066

components are essential for the functionality of067

code, but carry limited semantic information inde-068

pendently, such as variable names or keywords. For069

instance, some return statement is not meaning-070

ful without other statements in the function body.071

Another example of low information density data072

is image (He et al., 2022), where large amount of073

background pixels are often similar and repetitive,074

such as grass or sky. While background pixels075

provide contextual information, they can also in-076

troduce noise that interferes with object detection077

(Xiao et al., 2021). Likewise, code with similar078

repetitive patterns are retrieved and used as a con-079

textual information for RACG. Neglecting the sub-080

tle differences in their implementation logic can081

introduce noise, potentially leading to a decline in082

generation quality.083

To improve the effectiveness of RACG, it is rea-084

sonable to retrieve more examples or examples with085

higher relevance (Du et al., 2024). However, includ-086

ing more examples increases the risk of introducing087

more potential noise and raises the computational088

cost (Wu et al., 2024). Additionally, retrieving ex-089

amples with higher relevance requires additional090

data processing and are typically applicable only091

to specific scenarios (Liu et al., 2024a). Another092

approach to enhancing the effectiveness of RACG093

is to use an iterative strategy to retrieve more rele-094

vant examples and gradually refine the generated095

code (Zhang et al., 2023). However, as the number096

of iterations increases, the effectiveness of itera-097

tive strategy diminishes after the second iteration.098

As illustrated in Figure 1, the pass rate achieved099

by Iter-RACG stabilizes after the second iteration,100

while the pass rate achieved by IM-RACG (our101

method) surpasses that of Iter-RACG starting from102

the third iteration. Furthermore, as the number of103

iterations increases, the performance gap between104

Iter-RACG and IM-RACG continues to widen.105

Based on our observation that code has lower in-106

formation density, we conjecture that only a portion107

of the code in the retrieved relevant examples con-108

tributes to the improvement of current code genera-109

tion. However, given the same retrieved document,110

different LLMs may generate varying code outputs.111

It is challenging to predict in advance which parts112

of the retrieved code will be most beneficial for the113

model in practical use. 114

To address the challenges in iterative RACG, 115

we leverage the low information density of code 116

to propose the Inference-time Masking strategy 117

for Retrieval-Augmented Code Generation (IM- 118

RACG), which contains two key strategies: (1) an 119

inference-time masking strategy to randomly re- 120

move portions of the retrieved code, and (2) an 121

iterative retrieval-augmented strategy for code gen- 122

eration. These two strategies mutually reinforce 123

each other. By randomly masking portions of the 124

retrieved code, we increase the diversity of the aux- 125

iliary context and eliminates the need to identify 126

which specific segment of the code is most benefi- 127

cial. Furthermore, the iterative strategy can effec- 128

tively addresses scenarios where the most benefi- 129

cial segment may be masked in certain iterations. 130

By combining the masking strategy, the perfor- 131

mance improves steadily as the number of itera- 132

tions increases. 133

Our paper presents three main contributions: 134

1. To the best of our knowledge, this paper is the 135

first to explore how to use the low information 136

density of code in designing RACG strategies. 137

2. We propose the IM-RACG, which combines 138

the inference-time masking strategy and itera- 139

tive retrieval-augmented strategy, significantly 140

reduces context length and improves model 141

performance. 142

3. Experimental results on five code LLMs and 143

two datasets demonstrate that our method sig- 144

nificantly improves the pass rate for generat- 145

ing code from natural language descriptions. 146

2 Related Work 147

2.1 Information Density 148

Information density (Pinsker, 1964) is used to quan- 149

tify the amount of information about the underlying 150

probability distribution given a specific outcome of 151

a random variable. It differs between different data 152

distributions. For example, the information den- 153

sity of natural language differs from that of images 154

(He et al., 2022). This means that infilling miss- 155

ing words within natural language requires sophis- 156

ticated linguistic understanding ability, whereas 157

missing patches in an image can be more easily 158

reconstructed based on neighboring patches. This 159

can be reflected by masking rate, He et al. (2022) 160

shows that a masking rate of 75% achieves the op- 161

timal result for pre-training an image encoder. In 162

2

contrast, pre-training a text encoder requires an163

optimal masking rate of 15% (Devlin et al., 2019).164

Compared to natural language, code contains165

more repetitive patterns and has lower information166

density (Casalnuovo et al., 2019). Existing RACG167

methods neglect this difference (Zhang et al., 2023;168

Du et al., 2024), resulting in redundant or even169

detrimental segments in the retrieved code exam-170

ples, which introduce potential risks for code gener-171

ation. Hence, we propose an inference-time mask-172

ing strategy to make the generation model leverage173

incomplete code as the auxiliary context. We de-174

termine the mask ratio by relevance, as more rele-175

vant code is likely to contain more useful segments.176

This approach enables the model to balance its in-177

herent knowledge and the retrieved information.178

2.2 Retrieval-Augmented Code Generation179

Retrieval-augmented generation (RAG) is an180

emerging strategy designed to address the lim-181

itations of relying solely on parametric knowl-182

edge during generation. By integrating a retrieval183

and a generation module, RAG strategy not only184

can generate fluent texts but also ground their185

outputs in real-world and up-to-date data. This186

approach has been applied to code generation187

task, named retrieval-augmented code generation188

(RACG) (Parvez et al., 2021), primarily to address189

the discrepancy between training and test data, such190

as the model’s inability to update its internal knowl-191

edge with real-time code repositories (Zhou et al.,192

2023), or the exclusion of private code-bases from193

its training data (Zhang et al., 2023).194

However, research suggests that most retrieved195

content provides little benefit for code generation196

(Wu et al., 2024). Even when the retrieved con-197

text includes the correct code for the question, it198

does not guarantee accurate code generation (Wang199

et al., 2024). In addition, to further improve the per-200

formance of RACG, Zhang et al. (2023) introduces201

an iterative strategy. However, their experiments202

show that the effectiveness of this strategy dimin-203

ishes as the iteration exceeds two. Based on these204

observations and the low information density of205

code, we propose to integrate a masking strategy to206

further enhance iterative RACG.207

3 Methodology208

3.1 Problem Formulation209

Our method addresses the problem of generating210

code based on a natural language instruction or211

description by leveraging the strengths of LLMs 212

and RACG. Given a natural language description 213

S = {s1, s2, . . . , sn}, the goal is to generate an 214

executable code C = {c1, c2, . . . , cm} that accu- 215

rately matches the intent described in the natural 216

language and passes all the corresponding tests. 217

The code is generated auto-regressively by a large 218

language model, written as ci = LLM(S, c<i). 219

RACG enhances the generation process by leverag- 220

ing relevant context retrieved from a database. 221

In order to retrieve relevant examples, we con- 222

struct a query Q = {S;C}, by concatenating the 223

natural language description S and the generated 224

code C. This query is used to retrieve k rele- 225

vant examples R = {R(1), R(k), . . . , R(k)} from 226

the database. Each example R(i) = {S(i);C(i)} 227

contains a natural language description S(i) and 228

the corresponding code C(i). Given the re- 229

trieved examples, an auxiliary context A = 230

{R(1), R(k), . . . , R(k), S} is obtained by combin- 231

ing the retrieved examples with the original de- 232

scription. This context provides rich information 233

for the LLM, leading the generation process to 234

ci = LLM(A, c<i). To facilitate this process, we 235

utilize an instruction tuned version of code LLMs, 236

which exhibits strong instruction following capabil- 237

ities and can leverage additional context effectively. 238

3.2 IM-RACG 239

We propose an iterative retrieval-augmented strat- 240

egy for code generation and refine the auxiliary con- 241

text after each retrieval using a masking strategy, 242

named IM-RACG (Inference-time Masking strat- 243

egy for Retrieval-Augmented Code Generation). 244

By integrating the iterative retrieval strategy with 245

the masking strategy, the auxiliary context is more 246

diverse and compact, leading to the improvement 247

of effectiveness in code generation. 248

IM-RACG comprises three main steps as de- 249

picted in Figure 2: (1) generating code using a 250

zero-shot approach based on the system prompt 251

and the natural language description; (2) if the 252

zero-shot generation fails, the RACG mode begins. 253

We retrieve relevant examples using a database 254

query, which is a concatenation of the current prob- 255

lem description and the generated code in the first 256

step. These retrieved examples are then randomly 257

masked and used to construct a new auxiliary con- 258

text. (3) if the RACG fails, the iterative RACG 259

begins. During each iteration, we use the current 260

problem description and the code generated in the 261

last iteration as a database query to retrieve relevant 262

3

System Prompt:
You are a helpful coding assistant and output code only.
Description:
Write a function to find the number of positive integers in an array.

def positive_count(nums):
 count = 0
 for num in nums:
 if num > 0:
 count += 1
 result = count/len(nums)
 return result LLM

1

LLM LLMLLM

Auxiliary Context:
 System Prompt + Retived K Examples with Masks

Description: Write a function to find the
propotion of positive numbers in a sequence.
Code: def positive_percent(nums):

 n = len(nums)
 n1 = 0
 for x in nums:
 if x > 0:
 n1 += 1
 return round(n1/n,2)

+ Description

def positive_number(number_list):
 count = 0
 for i in number_list:
 if number_list[i] > 0:
 count += 1
 return count

Auxiliary Context:
 System Prompt + Retived K Examples with Masks

Description: Write a function to find the
propotion of positive numbers in a sequence.
Code: def positive_percent(nums):

 n = len(nums)
 n1 = 0
 for x in nums:
 if x > 0:
 n1 += 1
 return round(n1/n,2)

+ Description

def positive_number(number_list):
 count = 0
 for i in number_list:
 if i > 0:
 count += 1
 return count

2 3

......

Figure 2: The overall workflow of IM-RACG.

examples. Then the auxiliary context is updated us-263

ing a masked version of these examples. Notably,264

the generated code is tested against a set of test265

cases. Once the code passes all the tests, the itera-266

tive process is terminated. This strategy aligns with267

the principles of Test-Driven Development (TDD)268

where test code is written prior to the production269

code (Mäkinen and Münch, 2014). The maximum270

number of iterations is a hyperparameter, which271

will be discussed in detail in Section 5.1.272

In the following, we introduces three key aspects273

of our approach: (1) the methodology for retrieving274

relevant examples from a database; (2) the deter-275

mination of the mask ratio; (3) the approach for276

utilizing an LLM to generate code.277

Retrieve Relevant Examples IM-RACG uses a278

dense retriever, which retrieves relevant code based279

on vector similarity. Specifically, given a retrieval280

dataset D = {d1, d2, . . . , dj} containing J entries,281

we encode each entry into a vector hdi using a pre-282

trained sequence encoder. Given a query Q, we283

use the same encoder to encode it, yielding the rep-284

resentation hQ. The similarity between the query285

and the data in the retrieval database is calculated286

as following:287

sim(Q, dj) =
hQ · dj

||hQ|| · ||hdj ||
(1)288

Mask Ratio Determination After retrieving the289

relevant examples, masking is applied to the code290

in these examples. The mask ratio is determined291

based on the similarity between the retrieved exam-292

ple and the query. For example, the masking ratio293

for an example is calculated by:294

MR(i) = Mbase ∗ (1− sim(R(i), Q)) (2)295

where R(i) is the i-th retrieved example, Mbase 296

is the base mask ratio which is a hyperparameter 297

and MR(i) ∈ [0, 1]. According to Equation 2, a 298

higher similarity between a retrieved example and 299

the query corresponds to a lower masking ratio. 300

This adjustment facilitates the retention of greater 301

amounts of information from examples that are 302

more similar to the query. 303

Code Generation After masking is applied, the 304

retrieved examples contains a masked version 305

of code, R̃(i) = {S(i); C̃(i)}. These examples 306

are used to construct an auxiliary context Ã = 307

{R̃(1), R̃(k), . . . , R̃(k), S} to facilitate code genera- 308

tion. The probability of generating a code sequence 309

is given by: 310

P (C) =
T∏
t=1

Pθ(ct|Ã, c<t) (3) 311

where θ is the parameters of a code generation 312

model and T is the length of the code sequence. 313

4 Experiments 314

Section 4.1 details the experimental setups, includ- 315

ing datasets, evaluation metrics, models, and tools. 316

Sections 4.2 and 4.3 demonstrate the effectiveness 317

of IM-RACG in scenarios where the ground truth 318

can or cannot be retrieved, respectively. 319

4.1 Experimental Setup 320

We use the widely used MBPP (Austin et al., 2021) 321

and HumanEval (Chen et al., 2021) datasets to val- 322

idate the effectiveness of IM-RACG. MBPP in- 323

cludes 974 samples, of which 500 are test samples. 324

HumanEval only has a test set which contains 164 325

4

samples. Each sample contains a natural language326

description, a corresponding code, and several test327

cases. Pass rate is used as the evaluation metric.328

Since we use an iterative approach to generate code,329

if the generated code passes all the test cases in330

any of the iteration, the sample is considered as a331

"pass". All the samples in MBPP and HumanEval332

are used to construct the retrieval database and the333

evaluation is conducted on the test set.334

For each sample in the dataset, we concatenate335

the natural language description with the code and336

use Bge-base1 to encode it into a vector. As a re-337

sult, we get a total of 1,138 records in our vector338

database. We use Faiss2 as our database construc-339

tion and querying tool. Instruction tuning version340

of LLMs is used for code generation, as they can341

utilize retrieved context more effectively.342

To study the effectiveness of IM-RACG, we343

conduct experiments on LLMs with parameter344

scales ranging from 3B to 12B, including Phi-3.5-345

mini-instruct (Phi-3B) (Abdin et al., 2024), Llama-346

3.2-3B-Instruct (Llama-3B) (Liu et al., 2024b),347

deepseek-coder-7b-instruct-v1.5 (DeepSeek-7B)348

(Guo et al., 2024), Llama-3.1-8B-Instruct (Llama-349

8B) (Liu et al., 2024b), and Mistral-Nemo-Instruct-350

2407 (Mistral-12B) 3.351

All experiments were conducted on an NVIDIA352

RTX A6000. All the models used in the experi-353

ments are publicly available and the specific URLs354

for each model can be found in Appendix A. The355

default number of retrieval candidate is three and356

greedy decoding strategy is used for code genera-357

tion for reproducibility.358

4.2 Effectiveness of IM-RACG359

The main results are shown in Table 1. We con-360

clude that, IM-RACG consistently improves the361

code generation pass rate across all baseline mod-362

els. On MBPP dataset, Llama-8B shows the363

strongest performance across all configurations,364

achieving a pass rate of 80.6% with IM-RACG. On365

HumanEval dataset, Phi-3B achieves the highest366

pass rate of 76.2% with IM-RACG. It can be notice367

that all RACG-based methods outperform the Zero-368

Shot approach significantly. This improvement is369

partially due to the inclusion of test set samples in370

the database, ensuring that the ground truth answer371

is often present in the auxiliary context. However,372

it is important to note that, even when the ground373

1https://huggingface.co/BAAI/bge-base-en-v1.5
2https://github.com/facebookresearch/faiss
3https://mistral.ai/news/mistral-nemo/

Model Method MBPP HumanEval
Phi-3B Zero-Shot 45.4% 68.3%
Phi-3B RACG 62.8% 70.1%
Phi-3B Iter-RACG 67.4% 70.1%
Phi-3B IM-RACG 72.6% 76.2%
Llama-3B Zero-Shot 36.6% 50.0%
Llama-3B RACG 69.8% 57.3%
Llama-3B Iter-RACG 71.4% 59.2%
Llama-3B IM-RACG 74.8% 62.2%
DeepSeek-7B Zero-Shot 56.4% 42.1%
DeepSeek-7B RACG 73.6% 51.8%
DeepSeek-7B Iter-RACG 76.0% 53.7%
DeepSeek-7B IM-RACG 78.8% 62.2%
Llama-8B Zero-Shot 53.2% 56.1%
Llama-8B RACG 74.2% 62.2%
Llama-8B Iter-RACG 76.2% 62.8%
Llama-8B IM-RACG 80.6% 69.5%
Mistral-12B Zero-Shot 38.2% 48.8%
Mistral-12B RACG 64.4% 58.5%
Mistral-12B Iter-RACG 65.4% 59.8%
Mistral-12B IM-RACG 67.0% 63.4%

Table 1: Comparison of different methods for code gen-
eration. Zero-Shot means code generation without RAG
context. Both RACG and Iter-RACG use the entire
retrieved code as the context. In Iter-RACG and IM-
RACG, the maximum number of iterations is set to 5.
The base mask ratio for IM-RACG is 0.5. The high-
lighted rows represent the optimal methods for each
model and bold represent the best result on each dataset.

truth is included, RACG-based methods still gen- 374

erate incorrect results in some cases. Compared to 375

Iter-RACG which does not apply masking strategy, 376

IM-RACG shows consistent improvements across 377

all models with a maximum iteration of five4, high- 378

lighting the effectiveness of our strategy. 379

It can be observed that the model performance 380

varies significantly under the Zero-Shot setting and 381

the pass rate does not increase monotonically with 382

parameter scale. Llama-3B performs poorly in the 383

Zero-Shot setting, but shows strong capability in 384

leveraging the auxiliary context. On the other hand, 385

although Mistral-12B contains a greater number of 386

parameters compared to other models, its perfor- 387

mance in the Zero-Shot setting is only comparable 388

with Llama-3B. A possible explanation for this 389

could be that Mistral-12B does not prioritize code 390

generation tasks as highly as other tasks. 391

4As the number of iterations increases, the performance ad-
vantage of IM-RACG over Iter-RACG becomes progressively
more pronounced.

5

https://huggingface.co/BAAI/bge-base-en-v1.5
https://github.com/facebookresearch/faiss
https://mistral.ai/news/mistral-nemo/

1 2 3 4 5 6 7 8 9 10
Iteration

0.60

0.65

0.70

0.75

0.80

0.85
Pa

ss
 R

at
e

Phi-3b
IM-RACG
Iter-RACG

1 2 3 4 5 6 7 8 9 10
Iteration

Llama-3b
IM-RACG
Iter-RACG

1 2 3 4 5 6 7 8 9 10
Iteration

DeepSeek-7b
IM-RACG
Iter-RACG

1 2 3 4 5 6 7 8 9 10
Iteration

Llama-8b

IM-RACG
Iter-RACG

1 2 3 4 5 6 7 8 9 10
Iteration

Mistral-12b
IM-RACG
Iter-RACG

Figure 3: A comparison between IM-RACG and Iter-RACG as the maximum number of iteration increases on
MBPP dataset, with a base mask ratio of 0.5 for IM-RACG. In both settings, the number of retrieval examples is 3.

4.3 IM-RACG without Ground Truth392

As the test examples are included in the vector393

database, the ground truth question-answer pair is394

usually the first retrieval candidate. This is an ideal395

case for RACG (Wang et al., 2024), however, it is396

more common to retrieve relevant but not identical397

examples in practice. Therefore, we further verify398

the effectiveness of IM-RACG when the ground399

truth example cannot be retrieved.400

As shown in Table 2, we evaluate the perfor-401

mance of various RACG strategies across all base-402

line models by excluding the ground truth example403

from the retrieval candidates. Overall, the results404

demonstrate that IM-RACG consistently outper-405

forms RACG and Iter-RACG on MBPP and Hu-406

manEval datasets. This indicates that IM-RACG407

is effective scenarios where ground truth examples408

are unavailable, positioning it as a reliable alterna-409

tive compared to other RACG strategies.410

5 Discussion411

In this section, we discuss several factors that may412

affect the effectiveness of IM-RACG.413

5.1 Scaling the Iteration414

To evaluate whether increasing the maximum num-415

ber of iterations further improves performance, we416

conducted experiments by increasing the iteration417

limit to 10 on MBPP. As shown in Figure 3, IM-418

RACG exhibits a consistent upward trend as the the419

number of iteration increases. At the 10th iteration,420

the pass rate achieved by IM-RACG outperforms421

Iter-RACG across all the models we tested. No-422

tably, the highest relative gain is obtained by Phi-423

3B, which is 14.8% (from 67.4% to 77.4%). The424

highest pass rate is achieved by Llama-8B, which425

is 83.4% at the 10th iteration with IM-RACG.426

Compared to IM-RACG, Iter-RACG exhibits427

a higher pass rate at the first iteration, however,428

there is only a marginal improvement in the sec-429

ond and third iterations, after which the pass rate430

Model Method MBPP HumanEval
Phi-3B Zero-Shot 45.4% 68.3%
Phi-3B RACG 60.0% 70.1%
Phi-3B Iter-RACG 63.0% 70.1%
Phi-3B IM-RACG 67.2% 74.4%
Llama-3B Zero-Shot 36.6% 50.0%
Llama-3B RACG 56.4% 50.0%
Llama-3B Iter-RACG 60.0% 54.9%
Llama-3B IM-RACG 63.6% 57.3%
DeepSeek-7B Zero-Shot 56.4% 42.1%
DeepSeek-7B RACG 63.4% 46.3%
DeepSeek-7B Iter-RACG 67.0% 51.8%
DeepSeek-7B IM-RACG 71.0% 61.0%
Llama-8B Zero-Shot 53.2% 56.1%
Llama-8B RACG 65.8% 61.6%
Llama-8B Iter-RACG 69.2% 62.8%
Llama-8B IM-RACG 71.2% 69.5%
Mistral-12B Zero-Shot 38.2% 48.8%
Mistral-12B RACG 56.4% 52.4%
Mistral-12B Iter-RACG 58.0% 53.6%
Mistral-12B IM-RACG 60.4% 59.2%

Table 2: Comparison of different methods when ground
truth candidate cannot be retrieved.

plateaus. These results suggest that the iterative 431

strategy alone cannot yield diverse auxiliary con- 432

texts, thereby limiting the model’s ability to pro- 433

duce varied outputs. Although IM-RACG performs 434

slightly worse in early iterations, it outperforms 435

Iter-RACG across all models by the fourth iter- 436

ation. Notably, on the best-performing baseline 437

model, Llama-8B, IM-RACG surpasses Iter-RACG 438

as early as the second iteration and the pass rate 439

increases steadily afterwards. This demonstrates 440

that the masking strategy in IM-RACG enhances its 441

compatibility with the iterative retrieval-augmented 442

strategy by introducing diversity. 443

5.2 Effect of Description for Retrieved Code 444

We investigate whether including a natural lan- 445

guage description in the retrieved examples en- 446

hances code generation quality or if the retrieved 447

6

Node-based

def positive_count(number_list):
 length = len(number_list)
 count = 0
 for i in range(length):
 current = number_list[i]
 if current > 0:
 count += 1
 else:
 continue
 return count

Word-based

def positive_count(number_list):
 length = len(number_list)
 count = 0
 for i in range(length):
 current = number_list[i]
 if current > 0:
 count += 1
 else:
 continue
 return count

Line-based

def positive_count(number_list):
 length = len(number_list)
 count = 0
 for i in range(length):
 current = number_list[i]
 if current > 0:
 count += 1
 else:
 continue
 return count

(a) (b) (c)

Figure 4: Three mask sampling strategies.

Model NL PR
Phi-3B w/o 52.0%
Phi-3B w/ 67.4%
Llama-3B w/o 62.2%
Llama-3B w/ 72.0%
DeepSeek-7B w/o 72.6%
DeepSeek-7B w/ 76.0%
Llama-8B w/o 71.2%
Llama-8B w/ 76.2%
Mistral-12B w/o 60.6%
Mistral-12B w/ 65.4%

Table 3: Evaluation of the effect of including natural
language (NL) description in the context across different
models on MBPP. The number of retrieved examples is
set to 3 and all the results are obtained using Iter-RACG.
PR represents Pass Rate. "w/o" and "w/" means without
and with natural language description, respectively.

code alone provides sufficient information. To eval-448

uate this, we use MBPP to assess the impact of449

descriptions on retrieved code. Specifically, we450

construct a new vector database using only code.451

When relevant code is retrieved, instead of append-452

ing a description of its functionality, we add the453

sentence, "This code snippet may be useful."454

As presented in Table 3, including natural lan-455

guage descriptions significantly improves the pass456

rate, suggesting that code alone provides insuffi-457

cient context. This finding implies that the util-458

ity of code is enhanced when accompanied by459

a description of its functionality. Notably, the460

greatest performance improvement is observed in461

DeepSeek-7B, suggesting that the model struggles462

to utilize code without adequate contextual infor-463

mation. This result is intuitive, as identifying rel-464

evant components for a given problem becomes465

more difficult without understanding of the broader466

context in which the code is applied. This observa-467

tion highlights the impact of low information den-468

sity in code, particularly in the context of RACG.469

Model MSS BMR PR
Phi-3B Word-based 0.7 65.8%
Phi-3B Line-based 0.7 70.8%
Phi-3B Node-based 0.7 59.0%

Table 4: Comparison of word-based, line-based and
node-based mask sampling strategies with a Base Mask
Ratio (BMR) of 0.7 on MBPP using Phi-3B. MSS rep-
resents mask sampling strategy.

470

5.3 Exploration of Mask Sampling Strategies 471

In order to find an optimal mask sampling strat- 472

egy, we investigate different strategies with a fixed 473

base mask ratio of 0.7, as shown in Figure 4. 474

These strategies include word-based, line-based, 475

and node-based masking strategy. For word-based 476

masking, we use whitespace characters to split 477

the retrieved code. For line-based masking, new- 478

line characters are used to split the retrieved code. 479

Lastly, for node-based masking, we utilize Tree- 480

sitter5 to parse the retrieved code so that we get 481

a list of nodes from the parse tree. For instance, 482

Figure 4 shows that the condition expression in 483

the if statement can be masked by removing the 484

corresponding node. 485

Experimental results shown in Table 4, reveal 486

that the line-based masking strategy achieves the 487

highest pass rate. This can be intuitively explained 488

by the granularity of the different strategies. Word- 489

based and node-based masking strategies often in- 490

troduce overly fine-grained perturbations, disrupt- 491

ing reusable code snippets in the retrieved exam- 492

ples. In contrast, a line of code typically represents 493

a meaningful and self-contained statement, making 494

it a more suitable unit for perturbation. Given its 495

simplicity and effectiveness, the line-based mask- 496

ing strategy is selected as the default setting. 497

5https://tree-sitter.github.io/tree-sitter/

7

https://tree-sitter.github.io/tree-sitter/

Method MR PR AvgLen AvgIter
Zero-Shot - 45.4% 0 1
Iter-RACG 0 67.4% 616.57 1.91
IM-RACG 14.9% 72.6% 524.66 1.89
IM-RACG 35.7% 68.0% 396.69 2.08
IM-RACG 56.6% 66.8% 267.41 2.16
IM-RACG 78.2% 62.0% 134.30 2.26

Table 5: Comparison of code length in the auxiliary con-
text at different Mask Ratios (MR) on MBPP. AvgLen
represents the average number of characters of code in
the auxiliary context. AvgIter represents the average
number of iterations for answering each question.

5.4 The Role of Base Mask Ratio498

As the base mask ratio increases, a larger portion499

of the code is masked, leading to a reduction in500

the amount of information available for models to501

utilize. However, a higher base mask ratio also502

increases the diversity of the auxiliary context, en-503

abling the model to generate a broader range of504

outputs. Therefore, the base mask ratio plays a505

crucial role in balancing information availability506

and context diversity. It is important to note that507

a base mask ratio of 1.0 does not imply that the508

entire code is masked, as the similarity score of the509

retrieved example is also considered. Iter-RACG510

can be interpreted as a special case of IM-RACG511

with a base mask ratio of 0, and Zero-Shot can be512

viewed as a case where the base mask ratio is ∞.513

Another advantage of IM-RACG is the reduction514

in the length of the code used as auxiliary context,515

achieved by masking tokens from the original code.516

As shown in Table 5, at a base mask ratio of 0.5, the517

average number of characters in the code decreases518

by 14.93% and the average number of iterations519

is decreased slightly, while the pass rate improves520

by 7.72% relatively. Additionally, the pass rate521

exhibits a non-monotonic trend as the base mask522

ratio increases. This suggests that a moderate level523

of masking can improve the performance of code524

generation. As the base mask ratio continues to525

rise, performance remains robust. For instance, at526

a ratio of 2.0, where only an average of 134.3 char-527

acters remains, the performance still significantly528

surpasses that of the Zero-Shot setting.529

5.5 Evaluating Mask Sampling Efficiency530

Distribution annealing techniques, such as nucleus531

sampling (Holtzman et al., 2019), can significantly532

improve the performance of auto-regressive mod-533

els. As the retrieved code examples are masked534

Model Nucleus Mask
Phi-3B 73.8% 78.4%
Llama-3B 72.2% 74.6%
DeepSeek-7B 81.2% 81.0%
Llama-8B 78.6% 78.8%
Mistral-12B 70.4% 71.0%

Table 6: Compare the pass rate achieved by applying
nucleus sampling to that achieved by mask sampling on
MBPP dataset with a base mask ratio of 0.7.

randomly, our approach can be viewed as a form 535

of sampling strategy. The goal of the experiments 536

in this section is to compare the effectiveness of 537

nucleus sampling and mask sampling for retrieval- 538

augmented code generation. To verify the effective- 539

ness, we generate five code candidates under two 540

settings with a fixed mask rate. In the first setting, 541

we apply nucleus sampling to a masked version of 542

the retrieval code examples to generate five code 543

candidates. In the second setting, we perform mask 544

sampling five times to obtain five distinct masked 545

versions of the retrieval code examples and then 546

one code candidate is generated using nucleus sam- 547

pling for each masked version. As shown in Table 548

6, except for DeepSeek-7B, the pass rate achieved 549

through nucleus sampling is slightly lower than that 550

achieved by mask sampling, which demonstrates 551

the effectiveness of the mask sampling strategy. 552

Finally, as distribution annealing techniques are 553

performed on the output side and mask sampling 554

strategy operates on the input side, these two sam- 555

pling techniques can coexist, potentially leading to 556

further performance improvements. 557

6 Conclusion 558

In this work, we introduce IM-RACG, a novel 559

RACG strategy that combines iterative retrieval- 560

augmented generation with an inference-time mask- 561

ing strategy based on the relevance of the retrieved 562

examples to leverage the low information density 563

of code. Experimental results on various LLMs 564

demonstrate that IM-RACG significantly outper- 565

forms top-notch baseline methods in the code gen- 566

eration task, not only improving pass rates but also 567

reducing the length of the auxiliary context when 568

compared to traditional iterative RACG approaches. 569

Furthermore, the performance of IM-RACG con- 570

tinues to improve as the number of iterations in- 571

creases, highlighting its stability and potentiality 572

for handling more complex tasks. 573

8

7 Limitations574

This study explores a scenario where a large lan-575

guage model is required to generate code given a576

natural language description. However, other sce-577

narios such as repository-level code completion578

(Shrivastava et al., 2023) and code repair (Lu et al.,579

2021) may also be explored. In the current experi-580

ments, the whole MBPP and HumanEval datasets581

are used as the retrieval source and a relatively582

small number of retrieval examples are utilized.583

Future research could examine the application of584

IM-RACG with a larger, more diverse database and585

incorporate more retrieval examples.586

Further investigation is needed to explore the587

limits of IM-RACG’s effectiveness, particularly588

in tasks with higher complexity(Hendrycks et al.,589

2021). Additionally, predicting which portions of590

code are the most beneficial for a model, given591

the current question, presents an intriguing area of592

study. Successful identification of the most relevant593

code segments could significantly enhance perfor-594

mance and potentially eliminate the need for iter-595

ative retrieval, thereby improving both efficiency596

and accuracy in code generation tasks.597

References598

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed599
Awadallah, Ammar Ahmad Awan, Nguyen Bach,600
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat601
Behl, et al. 2024. Phi-3 technical report: A highly ca-602
pable language model locally on your phone. CoRR,603
abs/2404.14219.604

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten605
Bosma, Henryk Michalewski, David Dohan, Ellen606
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.607
Program synthesis with large language models. arXiv608
preprint arXiv:2108.07732.609

Tom Brown, Benjamin Mann, Nick Ryder, Melanie610
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind611
Neelakantan, Pranav Shyam, Girish Sastry, Amanda612
Askell, Sandhini Agarwal, Ariel Herbert-Voss, et al.613
2020. Language Models are Few-Shot Learners. In614
Advances in Neural Information Processing Systems,615
volume 33, pages 1877–1901. Curran Associates,616
Inc.617

Casey Casalnuovo, Kenji Sagae, and Prem Devanbu.618
2019. Studying the difference between natural and619
programming language corpora. Empirical Software620
Engineering, 24:1823–1868.621

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming622
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-623
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,624
Greg Brockman, et al. 2021. Evaluating large625

language models trained on code. arXiv preprint 626
arXiv:2107.03374. 627

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 628
Kristina Toutanova. 2019. BERT: pre-training of 629
deep bidirectional transformers for language under- 630
standing. In Proceedings of the 2019 Conference of 631
the North American Chapter of the Association for 632
Computational Linguistics: Human Language Tech- 633
nologies, NAACL-HLT 2019, Minneapolis, MN, USA, 634
June 2-7, 2019, Volume 1 (Long and Short Papers), 635
pages 4171–4186. Association for Computational 636
Linguistics. 637

Kounianhua Du, Renting Rui, Huacan Chai, Lingyue 638
Fu, Wei Xia, Yasheng Wang, Ruiming Tang, Yong 639
Yu, and Weinan Zhang. 2024. Codegrag: Ex- 640
tracting composed syntax graphs for retrieval aug- 641
mented cross-lingual code generation. arXiv preprint 642
arXiv:2405.02355. 643

Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. 644
2024. Talk like a graph: Encoding graphs for large 645
language models. In The Twelfth International Con- 646
ference on Learning Representations. 647

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, 648
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang, 649
and Haofen Wang. 2023. Retrieval-augmented gen- 650
eration for large language models: A survey. arXiv 651
preprint arXiv:2312.10997. 652

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 653
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 654
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen- 655
feng Liang. 2024. Deepseek-coder: When the large 656
language model meets programming – the rise of 657
code intelligence. Preprint, arXiv:2401.14196. 658

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, 659
and Mingwei Chang. 2020. Retrieval augmented 660
language model pre-training. In Proceedings of the 661
37th International Conference on Machine Learning, 662
volume 119 of Proceedings of Machine Learning 663
Research, pages 3929–3938. PMLR. 664

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Pi- 665
otr Dollár, and Ross Girshick. 2022. Masked autoen- 666
coders are scalable vision learners. In Proceedings 667
of the IEEE/CVF conference on computer vision and 668
pattern recognition, pages 16000–16009. 669

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 670
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 671
Samir Puranik, Horace He, Dawn Song, and Jacob 672
Steinhardt. 2021. Measuring coding challenge com- 673
petence with APPS. In Proceedings of the Neural 674
Information Processing Systems Track on Datasets 675
and Benchmarks 1, NeurIPS Datasets and Bench- 676
marks 2021, December 2021, virtual. 677

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin 678
Choi. 2019. The curious case of neural text degener- 679
ation. CoRR, abs/1904.09751. 680

9

https://doi.org/10.48550/ARXIV.2404.14219
https://doi.org/10.48550/ARXIV.2404.14219
https://doi.org/10.48550/ARXIV.2404.14219
https://papers.nips.cc/paper_files/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://openreview.net/forum?id=IuXR1CCrSi
https://openreview.net/forum?id=IuXR1CCrSi
https://openreview.net/forum?id=IuXR1CCrSi
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://proceedings.mlr.press/v119/guu20a.html
https://proceedings.mlr.press/v119/guu20a.html
https://proceedings.mlr.press/v119/guu20a.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/1904.09751

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio681
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-682
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-683
täschel, Sebastian Riedel, and Douwe Kiela. 2020.684
Retrieval-augmented generation for knowledge-685
intensive nlp tasks. In Advances in Neural Infor-686
mation Processing Systems, volume 33, pages 9459–687
9474. Curran Associates, Inc.688

Jiaheng Liu, Ken Deng, Congnan Liu, Jian Yang, Shukai689
Liu, He Zhu, Peng Zhao, Linzheng Chai, Yanan Wu,690
Ke Jin, et al. 2024a. M2rc-eval: Massively multi-691
lingual repository-level code completion evaluation.692
arXiv preprint arXiv:2410.21157.693

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge694
Soran, Dhruv Choudhary, Raghuraman Krishnamoor-695
thi, Vikas Chandra, Yuandong Tian, and Tijmen696
Blankevoort. 2024b. Spinquant: Llm quantization697
with learned rotations. Preprint, arXiv:2405.16406.698

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey699
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,700
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-701
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-702
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-703
daresan, Shao Kun Deng, Shengyu Fu, and Shujie704
Liu. 2021. Codexglue: A machine learning bench-705
mark dataset for code understanding and generation.706
In Proceedings of the Neural Information Process-707
ing Systems Track on Datasets and Benchmarks 1,708
NeurIPS Datasets and Benchmarks 2021, December709
2021, virtual.710

Simo Mäkinen and Jürgen Münch. 2014. Effects of711
test-driven development: A comparative analysis of712
empirical studies. In Software Quality. Model-Based713
Approaches for Advanced Software and Systems En-714
gineering, pages 155–169, Cham. Springer Interna-715
tional Publishing.716

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,717
Daniel Khashabi, and Hannaneh Hajishirzi. 2023.718
When not to trust language models: Investigating719
effectiveness of parametric and non-parametric mem-720
ories. In Proceedings of the 61st Annual Meeting of721
the Association for Computational Linguistics (Vol-722
ume 1: Long Papers), pages 9802–9822, Toronto,723
Canada. Association for Computational Linguistics.724

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis,725
Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettle-726
moyer, and Hannaneh Hajishirzi. 2023. FActScore:727
Fine-grained atomic evaluation of factual precision728
in long form text generation. In Proceedings of the729
2023 Conference on Empirical Methods in Natural730
Language Processing, pages 12076–12100, Singa-731
pore. Association for Computational Linguistics.732

Md Rizwan Parvez, Wasi Ahmad, Saikat Chakraborty,733
Baishakhi Ray, and Kai-Wei Chang. 2021. Retrieval734
augmented code generation and summarization. In735
Findings of the Association for Computational Lin-736
guistics: EMNLP 2021, pages 2719–2734.737

Mark S Pinsker. 1964. Information and information 738
stability of random variables and processes. Holden- 739
Day. 740

Alec Radford. 2018. Improving language understanding 741
by generative pre-training. 742

Disha Shrivastava, Hugo Larochelle, and Daniel Tar- 743
low. 2023. Repository-level prompt generation for 744
large language models of code. In International Con- 745
ference on Machine Learning, ICML 2023, 23-29 746
July 2023, Honolulu, Hawaii, USA, volume 202 of 747
Proceedings of Machine Learning Research, pages 748
31693–31715. PMLR. 749

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 750
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 751
Baptiste Rozière, Naman Goyal, Eric Hambro, 752
Faisal Azhar, et al. 2023. Llama: Open and effi- 753
cient foundation language models. arXiv preprint 754
arXiv:2302.13971. 755

Zora Zhiruo Wang, Akari Asai, Xinyan Velocity Yu, 756
Frank F Xu, Yiqing Xie, Graham Neubig, and Daniel 757
Fried. 2024. Coderag-bench: Can retrieval augment 758
code generation? arXiv preprint arXiv:2406.14497. 759

Di Wu, Wasi Uddin Ahmad, Dejiao Zhang, Murali Kr- 760
ishna Ramanathan, and Xiaofei Ma. 2024. Repo- 761
former: Selective retrieval for repository-level code 762
completion. In Forty-first International Conference 763
on Machine Learning, ICML 2024, Vienna, Austria, 764
July 21-27, 2024. OpenReview.net. 765

Kai Yuanqing Xiao, Logan Engstrom, Andrew Ilyas, 766
and Aleksander Madry. 2021. Noise or signal: The 767
role of image backgrounds in object recognition. In 768
International Conference on Learning Representa- 769
tions. 770

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin 771
Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and 772
Weizhu Chen. 2023. Repocoder: Repository-level 773
code completion through iterative retrieval and gen- 774
eration. In Proceedings of the 2023 Conference on 775
Empirical Methods in Natural Language Processing, 776
pages 2471–2484. 777

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang, 778
and Graham Neubig. 2023. Docprompting: Gener- 779
ating code by retrieving the docs. In The Eleventh 780
International Conference on Learning Representa- 781
tions. 782

10

https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://arxiv.org/abs/2405.16406
https://arxiv.org/abs/2405.16406
https://arxiv.org/abs/2405.16406
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c16a5320fa475530d9583c34fd356ef5-Abstract-round1.html
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.acl-long.546
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://proceedings.mlr.press/v202/shrivastava23a.html
https://proceedings.mlr.press/v202/shrivastava23a.html
https://proceedings.mlr.press/v202/shrivastava23a.html
https://openreview.net/forum?id=moyG54Okrj
https://openreview.net/forum?id=moyG54Okrj
https://openreview.net/forum?id=moyG54Okrj
https://openreview.net/forum?id=moyG54Okrj
https://openreview.net/forum?id=moyG54Okrj
https://openreview.net/forum?id=gl3D-xY7wLq
https://openreview.net/forum?id=gl3D-xY7wLq
https://openreview.net/forum?id=gl3D-xY7wLq
https://openreview.net/forum?id=ZTCxT2t2Ru
https://openreview.net/forum?id=ZTCxT2t2Ru
https://openreview.net/forum?id=ZTCxT2t2Ru

A Appendix783

A.1 Implementation Details784

We use Phi-3.5-mini-instruct (Phi-3B)6, Llama-785

3.2-3B-Instruct (Llama-3B)7, deepseek-coder-786

7b-instruct-v1.5 (DeepSeek-7B)8 Llama-3.1-8B-787

Instruct (Llama-8B) 9 and Mistral-Nemo-Instruct-788

2407 (Mistral-12B)10.789

6https://huggingface.co/microsoft/Phi-3.
5-mini-instruct

7https://huggingface.co/meta-llama/Llama-3.
2-3B-Instruct

8https://huggingface.co/deepseek-ai/
deepseek-coder-7b-instruct-v1.5

9https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

10https://huggingface.co/mistralai/
Mistral-Nemo-Instruct-2407

11

https://huggingface.co/microsoft/Phi-3.5-mini-instruct
https://huggingface.co/microsoft/Phi-3.5-mini-instruct
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5
https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407
https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407

	Introduction
	Related Work
	Information Density
	Retrieval-Augmented Code Generation

	Methodology
	Problem Formulation
	IM-RACG

	Experiments
	Experimental Setup
	Effectiveness of IM-RACG
	IM-RACG without Ground Truth

	Discussion
	Scaling the Iteration
	Effect of Description for Retrieved Code
	Exploration of Mask Sampling Strategies
	The Role of Base Mask Ratio
	Evaluating Mask Sampling Efficiency

	Conclusion
	Limitations
	Appendix
	Implementation Details

