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Fig. 1: We introduce an imitation learning-based in-hand manipulation system with a dexterous DeltaHand. We present a kinematic twin
teleoperation interface, TeleHand, to collect demonstrations on various dexterous manipulation tasks, such as shape insertion shown above.
By using vision-conditioned diffusion policies, the DeltaHand can autonomously complete the tasks.

Abstract—Dexterous robotic manipulation remains a
challenging domain due to its strict demands for precision and
robustness on both hardware and software. While dexterous
robotic hands have demonstrated remarkable capabilities in
complex tasks, efficiently learning adaptive control policies
for hands still presents a significant hurdle given the high
dimensionalities of hands and tasks. To bridge this gap, we
propose Tilde, an imitation learning-based in-hand manipulation
system on a dexterous DeltaHand. It leverages 1) a low-cost,
configurable, simple-to-control, soft dexterous robotic hand,
DeltaHand, 2) a user-friendly, precise, real-time teleoperation
interface, TeleHand, and 3) an efficient and generalizable
imitation learning approach with diffusion policies. Our
proposed TeleHand has a kinematic twin design to the
DeltaHand that enables precise one-to-one joint control of
the DeltaHand during teleoperation. This facilitates efficient
high-quality data collection of human demonstrations in the
real world. To evaluate the effectiveness of our system, we
demonstrate the fully autonomous closed-loop deployment of
diffusion policies learned from demonstrations across nine
dexterous manipulation tasks with an average 86% success rate.

I. INTRODUCTION

Dexterous manipulation is essential for a wide range of
real-world tasks such as inserting small components precisely
for manufacturing, administering medicine in hospitals, and
handling delicate ingredients while cooking. However, a
significant skill gap exists between human and robotic
proficiency due to the demands for precision, robustness, and
rapid adaptation to unstructured environments on both the

hardware and software. Thus, integrated systems are necessary
to address the challenges of dexterous manipulation and
advance the field.

Recent advances in imitation learning have shown great
advantages in utilizing diffusion models [4, 13, 18] for
efficient manipulation policy learning, as compared to deep
reinforcement learning [1, 2] which is computationally
expensive and data-hungry, or motion planning [3, 8, 11]
which relies on accurate modeling. However, imitation
learning methods require high-quality demonstrations, which
are challenging to collect quickly and reliably for dexterous
manipulations. To leverage imitation learning, we need
highly precise and easy-to-use teleoperation interfaces for
dexterous robotic hands that will allow us to collect diverse
demonstrations.

Although anthropomorphic hands [5, 12, 14, 15] have
already shown their ability to perform various manipulation
tasks through teleoperation, these hands are designed to be
general-purpose replacements for human hands which may
be unnecessarily complex for certain domains. By contrast,
non-anthropomorphic hands [9, 10, 16], with their lower
control complexity and higher design flexibility, can be
better tailored to tasks such as precise peg insertion or in-
hand manipulation. However, these designs present additional
challenges for imitation learning given the human-to-robot
hand correspondence problem. DELTAHANDS [16], as shown
in Fig. 1, are soft, compact, easy to customize, and possess
high degrees-of-freedom (3-DoF per finger) that are simple
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Fig. 3: (a) A DeltaHand with an in-hand RGB camera. A kinematic twin teleoperation interface including (b) a DeltaHand and (e) a TeleHand.
The TeleHand uses linear sliders with potentiometers to record the joint states of each finger. The DeltaHand will reproduce the motions of a
TeleHand by using the Telehand’s potentiometer readings as desired joint positions for its linear actuators. (c) The DeltaHand’s fingers have
3D-printed rigid-core embedded links and edged joints, which increase the stiffness of each finger and enable them to exert more force. (d)
The TeleHand’s fingers have 3D-printed soft links and curved joints, which induce more compliance in each finger. Therefore less force is
required for users to teleoperate the robot, which makes teleoperation easier. (f)-(i) In-hand camera images that capture the object and the
DeltaHand’s fingers.

to control, which makes them a great fit for dexterous in-
hand manipulation. However, we need an intuitive and precise
teleoperation interface to enable efficient imitation learning
for DELTAHANDS.

In this work, we present Tilde, a dexterous manipulation
learning system (Fig. 1) from three aspects: a dexterous
robotic hand adapted from DELTAHANDS, a kinematic twin
teleoperation interface, and imitation learning with diffusion
policies. We demonstrate key features of our system including
1) the high dexterity and precision of the DeltaHand, 2) the
low latency, ease-of-use, and precision of the teleoperation
interface, TeleHand, and 3) the efficiency and generalizability
of the policy learning for dexterous manipulation.

II. METHODOLOGY

A. Dexterous Hand Design

a) Finger Design: DELTAHANDS [16] is a configurable,
highly dexterous, low-cost robotic hand framework based on
Delta robots. The original DeltaHand’s fingers were configured
with 3D-printed soft TPU links (Fig. 3(d)) for compliant and
safe interactions. However, to benefit from the DeltaHand’s
compliance and extend its capabilities to manipulation tasks
that require more forces such as pushing the plunger of a
syringe, we modify the design of the Delta finger’s links and
joints as shown in Fig. 3(c). To improve the force profile
of the Delta finger, we 3D-print hybrid TPU and PLA links
where we embed rigid PLA material (red) inside a thin

outer shell of TPU (white). This strengthens the whole finger
structure and enables fingers to apply more force while still
preserving enough compliance to safely handle collisions.
To improve kinematic precision, we use edged joints with
smaller joint lengths instead of the original curved joints
to reduce undesired buckling and deformations during finger
motions. These modifications can be easily incorporated by
just swapping out the Delta fingers from the linear actuators,
showcasing the flexibility of the DELTAHANDS framework.

b) In-hand Camera: Sensors are key components for
closed-loop control by providing real-time feedback. In
particular, local visual sensing is crucial for dexterous
manipulation by capturing detailed geometric features [17].
Therefore, we integrate a mini Arducam camera module1 into
the hand for in-hand visual sensing as shown in Fig. 3(a). The
camera is located at the center of the hand and on the same
level as the Delta finger bases without taking extra space. It has
symmetric observations to provide useful inductive bias [7].
The DeltaHand’s kinematics permit a mostly unobstructed
view of the fingertips which benefits visual servoing.

c) Fingertip Design: To increase the contact friction and
enable soft contact for more secure grasps, we first 3D print
the "bone" of the fingertip with TPU material, and then cast an

1https://www.arducam.com/product/arducam-raspberry-pi-5mp-spy-
camera-b0066/
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additional layer of silicon rubber using Ecoflex 00-20 FAST2.
d) Hand Configurations: An overview picture of the

DeltaHand can be seen in Fig. 3(a). We arrange four 3-DoF
Delta fingers in a circular layout with a 40 mm radius from
the hand center to each Delta finger center. Each finger has a
40 mm link length and 20 mm base radius, and is individually
actuated by three linear motors with 20 mm stroke length. This
gives a total of 12 DoF and a 110 mm × 110 mm × 30 mm
workspace for the DeltaHand.

B. Teleoperation Interface

We develop a kinematic twin teleoperation system for the
DeltaHand to get precise and high-quality demonstrations.
The system includes a TeleHand (Fig. 3(e)) manipulated by a
human teleoperator, and a DeltaHand (Fig. 3(b)) to reproduce
the TeleHand’s finger motions in real-time.

The TeleHand has the same configurations including
the hand size, finger arrangement, and finger size, as the
DeltaHand to enable direct one-to-one joint position mapping.
The DeltaHand’s fingers are actuated by linear motors with
20 mm stroke length and each finger’s link bases move
prismatically. Similarly, the TeleHand consists of linear sliders
with a 20 mm motion range to create the same linear mobility
for each finger as the DeltaHand except they move passively.
Teleoperators can easily drag and move the finger end-
effectors of the TeleHand which will lead to joint position
changes in the sliders. The joint positions of TeleHand’s
fingers will be recorded by each sliders’ potentiometers and
then directly mapped to the DeltaHand as the linear motors’
desired positions. For the TeleHand, we use the original Delta
finger design (Fig. 3(d)) which is more compliant and easier
for humans to manipulate.

We use Robot Operating System (ROS) for real-time
communication. Both the TeleHand and the DeltaHand use
Arduino microcontrollers to directly publish and receive ROS
topics via a control PC. Our teleoperation system including
the DeltaHand and the TeleHand can be manufactured in a
day with off-the-shelf materials, 3D printing, and laser cutting,
and costs around $1000.

C. Learning with Diffusion Policies

We adapt the CNN-based Diffusion Policy [4] to our system
for dexterous in-hand manipulation policy learning with a
DeltaHand. We condition the diffusion policies on visual
observations from the in-hand camera and joint states of the
DeltaHand and predict action sequences. Both the joint states
and actions are represented as the 12-dimensional absolute
actuator joint positions.

We found that using various data augmentation techniques
on observations greatly improved task performance. We
leveraged 1) random image cropping and rotation to improve
the rotational and translational invariance of fingers’ visual
servoing to the objects, and 2) Gaussian noise to joint
state observations to guide the policy in learning funneling

2https://www.smooth-on.com/products/ecoflex-00-20-fast/

behaviors that can make the policy more robust when
encountering unseen joint states. Specifically, we randomly
cropped the images from their original size of (240, 320) to
(216, 288) and rotated the images within 30 degrees. We added
Gaussian noise with a standard deviation of 3.16 mm to each
joint state.

III. EXPERIMENTAL EVALUATION

We evaluate the system on five dexterous manipulation
tasks as shown in Fig. 4: Grasp, Block Slide, Block Lift,
Ball Roll, Cap Twist, and four challenging tasks: Shape
Insert, Syringe Push, and Finger Gait in the Air (Ball
Roll and Block Slide). Grasp is a fundamental skill for most
manipulation tasks. The second to fifth tasks focus on different
in-hand object repositioning skills: Block Slide corresponds to
horizontal XY translations, Block Lift corresponds to vertical
Z translations, Ball Roll corresponds to rotations around the X
and Y axes, and Cap Twist corresponds to rotations around the
Z axis. The above tasks mostly require repeated motions. The
Syringe Push requires fingers to precisely align the syringe
and forcefully push the plunger. The Shape Insert consists
of multi-modal action sequences which require the fingers to
translate, rotate, and transport the object to the final goal pose.
The Finger Gait in the Air has non-recoverable failure risks
which requires more robust policies.

A. Data Collection

We mount a DeltaHand on a Franka robot arm. For most
tasks, we keep the robot arm static while the DeltaHand uses
its in-hand capabilities to manipulate the objects. An external
RGB camera3 is placed in front of the experiment workspace.
For each task, we manually preset the height and the location
of the arm to approximately align the DeltaHand’s workspace
with the object. To collect demonstrations, we first define
the goal for each task which can be verified from the visual
observations. If we reach the goal, we end the demonstration,
or we run until we reach 5000 time steps which roughly
equates to 250 seconds (data collection runs at 20fps speed).

B. Experimental results

The number of demonstration data for all tasks can be seen
in the first rows of Table I. They vary depending on the task
difficulty and the number of objects we use. After the initial
policy training, we run 10 test trials on both the train and
additional test objects. The success rates are shown in the
second rows of Table. I. We use joint states and in-hand images
as observations for all tasks. We observe that for most tasks,
with less than 50 demonstrations, we can achieve a success
rate of over 60%, and even a 100% success rate on the Grasp,
Block Slide, Cap Twist, and Ball Roll tasks. On average, we
can achieve a 86% success rate over all tasks.

Most failures during the Shape Insert task are due to unseen
object poses, which we believe can be resolved with more
data. Most failure cases for Block Slide in the Air resulted
when one pair of fingers pinched too tightly and the other

3https://www.amazon.com/gp/product/B0C289GYVZ/
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Fig. 4: We evaluate our system on five dexterous manipulation tasks: (a) Grasp (b) Block Slide (c) Block Lift (d) Ball Roll (e) Cap Twist,
and three challenging tasks: (f) Shape Insert (g) Syringe Push (h) Finger Gait in the Air. The goals of tasks are indicated by blue arrows.
For tasks (a)-(d), we separate the training and additional unseen testing objects with white dashed lines. For experimental setup, we mount
a DeltaHand on a Franka robot arm. We pre-set the height and location of the Franka arm on top of the experiment workspace. An external
RGB camera is mounted in front of the experiment workspace.

Tasks Grasp Block Slide Block Lift Cap Twist Ball Roll Syringe Push Shape Insert Finger Gait in the Air

Ball Roll Block Slide
# demos 55 40 30 40 25 40 40 25 25
# Success / # tests 20/20 10/10 8/10 10/10 10/10 8/10 5/10 9/10 6/10

TABLE I: Experimental results on nine tasks. We show that with less than 60 demos, we can achieve success rates over 80% on first five
tasks. For challenging tasks, we can still achieve over 50% success rates on all of them.

pair could not move the block any further. This demonstrates
the importance of incorporating tactile sensors in the fingers
which we plan to explore in future work.

IV. CONCLUSIONS

We present Tilde, an imitation learning-based in-hand
manipulation system with a dexterous DeltaHand. We
introduce a kinematic twin teleoperation interface for low-
cost data collection of high-quality human demonstrations
and efficient end-to-end real-world policy learning by using
diffusion policies. We show that with our system, we can
perform a variety of dexterous manipulations and achieve
an average success rate of 86% across our evaluation tasks.
These tasks include grasping, in-hand object re-positioning and

re-orientation, and finger gaiting. Our experiments show the
capability of the system to learn robust vision-based dexterous
manipulation policies from demonstrations that were acquired
with our easy-to-use and precise teleoperation interface.

In the future, we would like to improve the generalizability
of our system for broader dexterous manipulation tasks in
unstructured environments. Therefore, we plan to augment
sensing modalities with tactile sensing by incorporating
fingertip tactile sensors for more delicate tasks, integrate arm
motions into our teleoperation system to achieve intrinsic
and extrinsic dexterity [6, 19], and explore object-centric
approaches to improve the policies’ robustness to unseen
scenarios.
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