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Abstract
We introduce a set of image transformations that
can be used as corruptions to evaluate the ro-
bustness of models. The primary distinction
of the proposed transformations is that, unlike
existing approaches such as Common Corrup-
tions (Hendrycks & Dietterich, 2019), the geome-
try of the scene is incorporated in the transforma-
tions – thus leading to corruptions that are more
likely to occur in the real world. We apply these
corruptions to the ImageNet validation set to cre-
ate 3D Common Corruptions (ImageNet-3DCC)
benchmark. The evaluations on recent ImageNet
models with robustness mechanisms show that
ImageNet-3DCC is a challenging benchmark for
object recognition task. Furthermore, it exposes
vulnerabilities that are not captured by Common
Corruptions, which can be informative during
model development.

1. Introduction
Computer vision models deployed in the real world will
encounter naturally occurring distribution shifts from their
training data. These shifts range from lower-level distor-
tions, such as motion blur and illumination changes, to se-
mantic ones, like object occlusion. Each of them represents
a possible failure mode of a model and has been frequently
shown to result in profoundly unreliable predictions (Dodge
& Karam, 2017; Hendrycks & Dietterich, 2019; Szegedy
et al., 2013; Jo & Bengio, 2017; Geirhos et al., 2020). Thus,
a systematic testing of vulnerabilities to these shifts is criti-
cal before deploying these models in the real world.

This work presents a set of distribution shifts in order to
test models’ robustness for object recognition task. To
achieve this, we leverage our recently proposed frame-
work in (Kar et al., 2022), denoted as 3D Common Cor-
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Figure 1. Using 3D information to generate real-world corrup-
tions. This is shown for image samples that are taken from dif-
ferent datasets (ImageNet (Deng et al., 2009), COCO (Lin et al.,
2014), Taskonomy (Zamir et al., 2018)). The top row shows sam-
ple 2D corruptions applied uniformly over the image, e.g. as in
Common Corruptions (Hendrycks & Dietterich, 2019), disregard-
ing 3D information. This leads to corruptions that are unlikely
to happen in the real world, e.g. having the same motion blur
over the entire image irrespective of the distance to camera (top
left). Middle row shows their 3D counterparts from our work on
3D Common Corruptions (3DCC) (Kar et al., 2022). The circled
regions highlight the effect of incorporating 3D information. More
specifically, in 3DCC, 1. motion blur has a motion parallax effect
where objects further away from the camera seem to move less, 2.
defocus blur has a depth of field effect, akin to a large aperture
effect in real cameras, where certain regions of the image can be
selected to be in focus, 3. lighting takes the scene geometry into
account when illuminating the scene, 4. fog gets denser further
away from the camera. We apply corruptions from 3DCC over Im-
ageNet validation images to create ImageNet-3DCC benchmark.

ruptions (3DCC). In contrast to previously proposed shifts
which perform uniform 2D modifications over the im-
age, such as Common Corruptions (2DCC, or equivalently,
ImageNet-2DCC) (Hendrycks & Dietterich, 2019), 3DCC
incorporates 3D information to generate corruptions that are
consistent with the scene geometry. This leads to shifts that
are more likely to occur in the real world.

Using the methods provided in (Kar et al., 2022), we apply
12 corruptions from 3DCC on ImageNet (Deng et al., 2009)

See the project page for code, data, models, and more results:
http://3dcommoncorruptions.epfl.ch/

http://3dcommoncorruptions.epfl.ch/


3D Common Corruptions for Object Recognition

Figure 2. ImageNet-3DCC benchmark. We propose a diverse set of new corruption operations ranging from defocusing (near/far focus)
to lighting changes. As ImageNet (Deng et al., 2009) dataset does not come with 3D labels, we leverage a state-of-the-art depth estimator
to obtain depth predictions, and then apply the methods from (Kar et al., 2022) using predicted depth to generate corruptions (See Sec. 2.1
for details). A subset of the corruptions marked in the last column are novel and commonly faced in the real world, but are not 3D based.
We include them in our benchmark.

validation set. We denote the resulting set as ImageNet-
3DCC (See Fig. 1 for examples). ImageNet-3DCC ad-
dresses several aspects of the real world, such as camera
motion, weather, depth of field, and lighting. Figure 2 pro-
vides an overview of all corruptions in ImageNet-3DCC.

We show that the performance of the methods aiming to
improve robustness of ImageNet models, including those
with diverse data augmentation, reduce drastically under
ImageNet-3DCC. Thus, it can serve as a challenging testbed
for real-world corruptions, especially those that depend on
scene geometry. It also exposes vulnerabilities that are not
captured by ImageNet-2DCC, hence it can be used to better
assess generalization of the existing models which may have
overfitted to ImageNet-2DCC, which can be informative for
development of better robustness mechanisms.

2. ImageNet-3DCC Benchmark
2.1. Corruption Types

Following (Kar et al., 2022), we define different corruption
types, namely depth of field, camera motion, lighting, video,
weather, and noise, resulting in 12 corruptions in ImageNet-
3DCC. Most of the corruptions require an RGB image and

scene depth, except the noise ones that can be generated
from RGB image directly. As ImageNet does not have depth
labels, we generate depth predictions using a state-of-the-art
depth estimator trained on Omnidata (Eftekhar et al., 2021)
dataset with 3D data augmentations (Kar et al., 2022) and
consistency constraints (Zamir et al., 2020). Note that the
corruptions generated using predicted depth from the state-
of-the-art models (Ranftl et al., 2021; Eftekhar et al., 2021)
are similar to those generated from ground truth depth, as
shown in (Kar et al., 2022) (Sec. 5.2.4). Furthermore, as
shown there, the 3D corruptions are also applicable to other
object recognition datasets without 3D labels as well, e.g.
COCO (Lin et al., 2014).

To generate the corruptions, we use the methods from (Kar
et al., 2022), as explained in more detail below. Note that
the semantic corruptions in (Kar et al., 2022) would require
a mesh with semantic annotations to generate. We dropped
them as ImageNet does not have those labels.

Depth of field corruptions create refocused images. They
keep a part of the image in focus while blurring the rest. We
consider a layered approach (Eftekhar et al., 2021; Barsky
& Kosloff, 2008) that splits the scene into multiple layers.
For each layer, the corresponding blur level is computed
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Figure 3. Visualizations of ImageNet-3DCC with increasing
shift intensities. Increasing the shift intensity results in larger
blur, more artifacts, and denser fog.

using the pinhole camera model. The blurred layers are then
composited with alpha blending. We generate near focus
and far focus corruptions by changing the focus region to
the near or far part of the scene.

Camera motion creates blurry images due to camera move-
ment during exposure. To generate this effect, we first
transform the input image into a point cloud using the depth
information. Then, we define a trajectory (camera motion)
and render novel views along this trajectory. As the point
cloud was generated from a single RGB image, it has incom-
plete information about the scene when the camera moves.
Thus, the rendered views will have disocclusion artifacts. To
alleviate this, we apply an inpainting method from (Niklaus
et al., 2019). The generated views are then combined to ob-
tain parallax-consistent motion blur. We define XY-motion
blur and Z-motion blur when the main camera motion is
along the image XY-plane or Z-axis, respectively.

Video corruptions arise during the processing and streaming
of videos. Using the scene 3D, we create a video using
multiple frames from a single image by defining a trajectory,
similar to motion blur. Inspired by (Yi et al., 2021), we
generate average bit rate (ABR) and constant rate factor
(CRF) as H.265 codec compression artifacts, and bit error to
capture corruptions induced by imperfect video transmission
channel. After applying the corruptions over the video, we
pick a single frame as the final corrupted image.

Weather corruptions degrade visibility by obscuring parts
of the scene due to disturbances in the medium. We define
a single corruption and denote it as fog 3D to differentiate
it from the fog corruption in 2DCC. We use the standard
optical model for fog (Fattal, 2008; Sakaridis et al., 2018;
Von Bernuth et al., 2019), similar to (Kar et al., 2022).

Lighting corruptions change scene illumination by modify-
ing the original illumination. As ImageNet does not have
full scene geometry information, it is not possible to per-
form ray-tracing. Thus, we only consider a flash corruption,
where illumination decreases with increasing depth.
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Figure 4. Robustness on ImageNet-3DCC and ImageNet-
2DCC. Errors on ImageNet validation images corrupted by 3DCC
and 2DCC are computed for the models in robustness leader-
boards (Hendrycks & Dietterich, 2019; Croce et al., 2020). Top:
mCEs are computed over all the corruptions. Bottom: mCEs are
computed for a subset of corruptions that exists in both benchmarks
(e.g. 2D defocus blur vs its 3D version). See the text (Sec. 3) for
details.

Noise corruptions arise from imperfect camera sensors. For
low-light noise, we decreased the pixel intensities and added
Poisson-Gaussian distributed noise to reflect the low-light
imaging setting (Foi et al., 2008). ISO noise also follows
a Poisson-Gaussian distribution, with a fixed photon noise
(modeled by a Poisson), and varying electronic noise (mod-
eled by a Gaussian). We also included color quantization
as another corruption that reduces the bit depth of the RGB
image. Only this subset of our corruptions is not based on
3D information.

2.2. Dataset and Evaluation Criteria

We applied the corruptions on 50k ImageNet validation im-
ages. For all the corruptions, we follow the protocol in
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Figure 5. Detailed breakdown of performance on ImageNet-
3DCC. The benchmark can expose models’ sensitivity to a wide
range of corruptions. We show this for a standard ResNet-50
model from PyTorch model zoo by averaging errors over five shift
intensities. The red line denotes the performance on clean data.

ImageNet-2DCC and define 5 shift intensities. We also cali-
brate the shift intensities so that the average SSIM (Wang
et al., 2004) values of images for an ImageNet-3DCC cor-
ruption is similar to its counterpart in 2DCC. For the corrup-
tions that do not have a counterpart in 2DCC, we adjust the
distortion parameters to increase shift intensity while stay-
ing in a similar SSIM range as the others. The dataset can
be accessed from the project page. Figure 3 shows example
corruptions with different shift intensities.

As evaluation criteria, we follow 2DCC for compatibility
and compute mean corruption error (mCE) by dividing the
models errors by AlexNet (Krizhevsky et al., 2012) errors
and averaging over corruptions.

3. Experiments
Models evaluated: We evaluate the robust ImageNet mod-
els (Geirhos et al., 2018; Rusak et al., 2020; Hendrycks et al.,
2019; 2021) from RobustBench (Croce et al., 2020) and
ImageNet-2DCC (Hendrycks & Dietterich, 2019) leader-
boards. We directly use the provided weights, i.e. no train-
ing or fine-tuning is performed.

As shown in Fig. 4 (top), the performance of models degrade
significantly, including those with diverse augmentations.
Thus, ImageNet-3DCC can serve as a challenging bench-
mark for object recognition task. As expected, the general
trends are similar between the two benchmarks as 2D and
3D corruptions are not completely disjoint. A similar ob-
servation was also made in (Mintun et al., 2021) even when
the corruptions are designed to be dissimilar to 2DCC. Still,

there are notable differences that can be informative during
model development by exposing trends and vulnerabilities
that are not captured by 2DCC. For example, ANT (Rusak
et al., 2020) has better mCE on 2DCC compared to Aug-
Mix (Hendrycks et al., 2019), while they perform similarly
on 3DCC. Likewise, combining DeepAugment (Hendrycks
et al., 2021) with AugMix improved the performance on
2DCC significantly more than 3DCC.

To further understand the differences, we consider a sub-
set of corruptions that exists in both benchmarks (e.g. 2D
defocus blur vs its 3D version), namely near focus, far fo-
cus, xy-motion blur, z-motion blur, fog 3d, and flash from
ImageNet-3DCC and defocus blur, motion blur, zoom blur,
fog and brightness from 2DCC. We then compute the mCEs
only on these subsets. The results shown in Fig. 4 (bottom)
further reflects the differences where 1. all models have
consistently higher normalized errors (mCEs) on 3D corrup-
tions compared to their 2DCC counterparts and 2. certain
models, e.g. AugMix and AugMix+DA, face a larger drop
in performance on 3DCC compared to the other models,
indicating that AugMix may be biased towards 2DCC.

Finally, in Fig. 5, we provide a detailed breakdown of perfor-
mance on ImageNet-3DCC for a standardly trained ResNet-
50 (He et al., 2016) from PyTorch (Paszke et al., 2019)
model zoo. The performance degrades significantly from
the performance on clean data, while some corruptions yield
more severe errors than the others, e.g. xy-motion blur vs
h265 crf. Examining this non-uniformity in performance
could be informative to design better robustness mecha-
nisms, e.g. targeted data augmentation, depending on the
practical setting of interest.

4. Conclusion
We introduce ImageNet-3DCC to test model robustness
against real-world distribution shifts, particularly those cen-
tered around 3D. Experiments demonstrate that ImageNet-
3DCC is a challenging benchmark that exposes model vul-
nerabilities under real-world plausible corruptions that are
not captured by 2D corruptions. We believe incorporating
3D information into benchmarking opens up a promising
direction for robustness research.
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