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Abstract. We propose a novel algorithm for monocular depth estima-
tion that decomposes a metric depth map into a normalized depth map
and scale features. The proposed network is composed of a shared en-
coder and three decoders, called G-Net, N-Net, and M-Net, which esti-
mate gradient maps, a normalized depth map, and a metric depth map,
respectively. M-Net learns to estimate metric depths more accurately us-
ing relative depth features extracted by G-Net and N-Net. The proposed
algorithm has the advantage that it can use datasets without metric
depth labels to improve the performance of metric depth estimation. Ex-
perimental results on various datasets demonstrate that the proposed
algorithm not only provides competitive performance to state-of-the-art
algorithms but also yields acceptable results even when only a small
amount of metric depth data is available for its training.

Keywords: Monocular depth estimation, relative depth estimation, depth
map decomposition

1 Introduction

Monocular depth estimation is a task to predict a pixel-wise depth map from
a single image to understand the 3D geometry of a scene. The distance from
a scene point to the camera provides essential information in various applica-
tions, including 2D-to-3D image/video conversion [52], augmented reality [35],
autonomous driving [8], surveillance [22], and 3D CAD model generation [20].
Since only a single camera is available in many applications, monocular depth
estimation, which infers the 3D information of a scene without additional equip-
ment, has become an important research topic.

Recently, learning-based monocular depth estimators using convolutional
neural networks (CNNs) have shown significant performance improvements, over-
coming the intrinsic ill-posedness of monocular depth estimation by exploiting a
huge amount of training data [1,3,6,7,14,25,28,54,56]. Existing learning-based
monocular depth estimators can be classified into two categories according to
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Fig. 1: Metric depth maps and their normalized depth maps.

the properties of estimated depth maps: relative depth estimation and metric
depth estimation. Relative depth estimation predicts the relative depth order
among pixels [2,34,51,58]. Metric depth estimation, on the other hand, predicts
the absolute distance of each scene point from the camera [3,6,14,25,54], which
is a pixel-wise regression problem.

To estimate a metric depth map, a network should learn both the 3D geom-
etry of the scene and the camera parameters. This implies that a metric depth
estimator should be trained with a dataset obtained by a specific camera. In
contrast, a relative depth estimator can be trained with heterogeneous datasets,
e.g., disparity maps from stereo image pairs or even manually labeled pixel pairs.
Thus, relative depth estimation is an easier task than metric depth estimation
is. Moreover, note that the geometry of a scene can be easily estimated when
extra cues are available. For example, depth completion [38, 39, 55], which re-
covers a dense depth map from sparse depth measurements, can be performed
more accurately and more reliably than monocular depth estimation is. Based
on these observations, metric depth estimation algorithms using relative depths
as extra cues have been developed via fitting [34,43] or fine-tuning [42].

In this paper, we propose a monocular metric depth estimator that decom-
poses a metric depth map into a normalized depth map and scale features. As
illustrated in Fig. 1, a normalized depth map contains relative depth informa-
tion, and it is less sensitive to scale variations or camera parameters than a
metric depth map is. The proposed algorithm consists of a single shared encoder
and three decoders, G-Net, N-Net, and M-Net, which estimate gradient maps,
a normalized depth map, and a metric depth map, respectively. M-Net learns
to estimate metric depth maps using relative depth features extracted by G-Net
and N-Net. To this end, we progressively transfer features from G-Net to N-Net
and then from N-Net to M-Net. In addition, we develop the mean depth residual
(MDR) block for M-Net to utilize N-Net features more effectively. Because the
proposed algorithm learns to estimate metric depths by exploiting gradient maps
and relative depths, additional datasets containing only relative depths can be
used to improve the metric depth estimation performance further. Experimental
results show that the proposed algorithm is competitive with state-of-the-art
metric depth estimators, even when it is trained with a smaller metric depth
dataset.



Depth Map Decomposition for Monocular Depth Estimation 3

This paper has the following contributions:

– We propose a novel monocular depth estimator, which decomposes a metric
depth map into a normalized depth map and relative depth features and
then exploits those relative features to improve the metric depth estimation
performance.

– The proposed algorithm can be adapted to a new camera efficiently since
it can be trained with a small metric depth dataset together with camera-
independent relative depth datasets.

– The proposed algorithm provides competitive performance to conventional
state-of-the-art metric depth estimators and can improve the performance
further through joint training using multiple datasets.

2 Related Work

2.1 Monocular Metric Depth Estimation

The objective of monocular metric depth estimation is to predict pixel-wise ab-
solute distances of a scene from a camera using a single image. Since different 3D
scenes can be projected onto the same 2D image, monocular depth estimation is
ill-posed. Nevertheless, active research has been conducted due to its practical
importance. To infer depths, early approaches made prior assumptions on scenes,
e.g. box blocks [9], planar regions [44], or particular layout of objects [10]. How-
ever, they may provide implausible results, especially in regions with ambiguous
colors or small objects.

With recent advances in deep learning, CNN techniques for monocular depth
estimation have been developed, yielding excellent performance. Many attempts
have been made to find better network architecture [3, 6, 14, 25, 54] or to design
more effective loss functions [2,5,16,25]. It has been also demonstrated that the
depth estimation performance can be improved by predicting quantized depths
through ordinal regression [7], by employing Fourier domain analysis [26], by
enforcing geometric constraints of virtual normals [56], or by reweighting mul-
tiple loss functions [28]. Recently, the vision transformer [4] was employed for
monocular depth estimation [1], improving the performance significantly.

2.2 Relative Depth Estimation

The objective of relative depth estimation is to learn the pairwise depth order [58]
or the rank of pixels [2, 51] in an image. Recently, listwise ranking, instead of
pairwise ranking, was considered for relative depth estimation [34]. Also, scale-
invariant loss [6] and its variants [32, 33, 43, 48] have been used to alleviate the
scale ambiguity of depths, thereby improving the performance of relative depth
estimation.

Unlike metric depths, relative depth information — or depth order informa-
tion — is invariant to camera parameters. Therefore, even though a training set
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is composed of images captured by different cameras, it does not affect the perfor-
mance of relative depth estimation adversely. Therefore, heterogeneous training
data, such as disparity maps from stereo image pairs [48, 50, 51] or videos [43],
structure-from-motion reconstruction [32, 33], and ordinal labels [2], have been
used to train relative depth estimators.

2.3 Relative vs. Metric Depths

A metric depth map contains relative depth information, whereas relative depth
information is not sufficient for reconstructing a metric depth map. However,
relative-to-metric depth conversion has been attempted by fitting relative depths
to metric depths [34, 43] or by fine-tuning a relative depth estimator for metric
depth estimation [42].

On the other hand, relative and metric depths can be jointly estimated to
exploit their correlation and to eventually improve the performance of metric
depth estimation. To this end, ordinal labels are used with a ranking loss in [2].
Also, in [27], relative and metric depth maps at various scales are first estimated
and then optimally combined to yield a final metric depth map.

The proposed algorithm also estimates relative depth information, in addi-
tion to metric depths, to improve the performance of metric depth estimation.
However, differently from [2,27], the proposed algorithm better exploits the cor-
relation between relative and metric depths by decomposing a metric depth map.
Furthermore, the proposed algorithm can provide promising results even with a
small metric depth dataset by exploiting a relative depth dataset additionally.

3 Proposed Algorithm

Fig. 2 is an overview of the proposed algorithm, which consists of a shared en-
coder and three decoders — G-Net, N-Net, and M-Net. The shared encoder
extracts common features that are fed into the three decoders. Then, G-Net
predicts horizontal and vertical gradients of depths, while N-Net and M-Net
estimate a normalized depth map and a metric depth map, respectively. Note
that features extracted by G-Net are fed into N-Net to convey edge information,
and those by N-Net are, in turn, fed into M-Net to provide relative depth fea-
tures. Finally, via the MDR block, M-Net exploits the relative depth features to
estimate a metric depth map more accurately.

3.1 Metric Depth Decomposition

Given an RGB image I ∈ Rh×w×3, the objective is to estimate a metric depth
mapM ∈ Rh×w. However, this is ill-posed because different scenes with different
metric depths can be projected onto the same image. Moreover, scale features
of depths are hard to estimate from the color information only since they also
depend on the camera parameters. To address this issue, we decompose a metric
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Fig. 2: (a) Overall network architecture of the proposed algorithm and (b) de-
tailed structure of decoders. The proposed algorithm consists of a shared encoder
and three decoders: G-Net, N-Net, and M-Net. G-Net predicts horizontal and
vertical gradient maps, while N-Net and M-Net estimate normalized and metric
depth maps, respectively. Note that G-Net features are fed into N-Net, and N-
Net features are fed into M-Net.

depth map M into a normalized depth map N and scale parameters. The nor-
malized depth map N contains relative depth information, so it is less sensitive
to scale variations or camera parameters than the metric depth map M is.

There are several design choices for normalizing a metric depth map, includ-
ing min-max normalization or ranking-based normalization [11]. However, the
min-max normalization is sensitive to outliers, and the ranking-based normal-
ization is unreliable in areas with homogeneous depths, such as walls and floors.
Instead, we normalize a metric depth map using the z-score normalization. Given
a metric depth map M , we obtain the normalized depth map N by

N =
M − µMU

σM
(1)

where µM and σM , respectively, denote the mean and standard deviation of
metric depths in M . Also, U is the unit matrix whose all elements are 1.

N-Net, denoted by fN , estimates this normalized depth map, and its estimate
is denoted by N̂ . When the scale parameters µM and σM are known, the metric
depth map M can be reconstructed by

M̂direct = σM N̂ + µMU. (2)

In practice, µM and σM are unknown. Conventional methods in [34,42,43] obtain
fixed σM and µM for all images based on the least-squares criterion. In such a
case, the accuracy of M̂direct in (2) greatly depends on the accuracy of σM
and µM . In this work, instead of the direct conversion in (2), we estimate the
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metric depth map by employing the features ψN (I), which are extracted by the
proposed M-Net, fN , during the estimation of N̂ . In other words, the proposed
M-Net, fM , estimates the metric depth map by

M̂ = fM (I, ψN (I)). (3)

For metric depth estimation, structural data (e.g. surface normals or segmen-
tation maps) have been adopted as additional cues [5,29,37,40], or relative depth
features have been used indirectly via loss functions (e.g. pairwise ranking loss [2]
or scale-invariant loss [1, 6, 30]). In contrast, we convert a metric depth map to
a normalized depth map. Then, the proposed N-Net estimates the normalized
depth map to extract the features ψN , containing relative depth information.
Then, the proposed M-Net uses ψN for effective metric depth estimation.

Similarly, we further decompose the normalized depth map N into more
elementary data: horizontal and vertical gradients. The horizontal gradient map
Gx is given by

Gx = ∇xN (4)

where ∇x is the partial derivative operator computing the differences between
horizontally adjacent pixels. The vertical gradient map Gy is obtained similarly.
The proposed G-Net is trained to estimate these gradient maps Gx and Gy.
Hence, G-Net learns edge information in a scene, and its features ψG are useful for
inferring the normalized depth map. Therefore, similar to (3), N-Net estimates
the normalized depth map via

N̂ = fN (I, ψG(I)) (5)

using the gradient features ψG(I).

3.2 Network Architecture

For the shared encoder in Fig. 2, we adopt EfficientNet-B5 [47] as the backbone
network. G-Net and N-Net have an identical structure, consisting of five upsam-
pling blocks. However, G-Net outputs two channels for two gradient maps Gx

and Gy, while N-Net yields a single channel for a normalized depth map N .
M-Net also has a similar structure, except for the MDR block, which will be
detailed in Section 3.3. MDR predicts the mean µM of M separately, which is
added back at the end of M-Net.

The encoder features are fed into the three decoders via skip-connections [13],
as shown in Fig. 2(a). To differentiate the encoder features for the different
decoders, we apply 1 × 1 convolution to the encoder features before feeding
them to each decoder. Also, we apply the channel attention [15] before each
skip-connection to each decoder.

We transfer features unidirectionally from G-Net to N-Net and also from
N-Net to M-Net to exploit low-level features for the estimation of high-level
data. To this end, we fuse features through element-wise addition before each
of the first four upsampling blocks in N-Net and M-Net, as shown in Fig. 2(b).
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Fig. 3: Detailed structure of the MDR block.

Specifically, let ψout
G and ψout

N denote the output features of G-Net and N-Net,
respectively. Then, the input feature ψin

N to the next layer of N-Net is given by

ψin
N = ωGψ

out
G + ωNψ

out
N (6)

where ωG and ωN are pre-defined weights for ψout
G and ψout

N to control the relative
contributions of the two features. For M-Net, the features from N-Net are added
similarly. In order to fuse features, we use addition, instead of multiplication or
concatenation, for computational efficiency.

3.3 MDR Block

We design the MDR block to utilize the features ψN of N-Net more effectively
for the metric depth estimation in M-Net. Fig. 3 shows the structure of the MDR
block, which applies patchwise attention to an input feature map and estimates
the mean µM of M separately using the transformer encoder [4]. Note that the
transformer architecture enables us to use one of the patchwise-attended feature
vectors to regress µM .

Specifically, MDR first processes input features using an 8 × 8 convolution
layer with a stride of 8 and a 3 × 3 convolution layer, respectively. The patch-
wise output of the 8 × 8 convolution is added to the positional encodings and
then input to the transformer encoder [4]. The positional encodings are learn-
able parameters, randomly initialized at training. Then, the transformer encoder
generates 192 patchwise-attended feature vectors of 128 dimensions. We adopt
the mini-ViT architecture [1] for the transformer encoder. The first vector is
fed to the regression module, composed of three fully-connected layers, to yield
µM . The rest 191 vectors form a matrix, which is multiplied with the output of
the 3× 3 convolution layer to generate 191× 96× 128 output features through
reshaping. Finally, those output features are fed to the next upsampling block of
M-Net. Also, the estimated µM is added back at the end of M-Net in Fig. 2(b),
which makes the remaining parts of M-Net focus on the estimation of the mean-
removed depth map M − µMU by exploiting the N-Net features ψN .

3.4 Loss Functions

Let us describe the loss functions for training the three decoders. For G-Net, we
use the ℓ1 loss

LG =
1

T

(
∥Ĝx −Gx∥1 + ∥Ĝy −Gy∥1

)
(7)



8 J. Jun et al.

where Ĝx and Ĝy are predictions of the ground-truth gradient maps Gx and Gy,
respectively. Also, T denotes the number of valid pixels in the ground-truth.

For N-Net, we use two loss terms: the ℓ1 loss and the gradient loss. The ℓ1
loss is defined as

LN =
1

T
∥N̂ −N∥1 (8)

where N̂ and N are predicted and ground-truth normalized depth maps. Note
that scale-invariant terms are often adopted to train monocular depth estimators
[1, 30, 42]. However, we do not use such scale-invariant losses since normalized
depth maps are already scale-invariant. Next, the gradient losses [16, 33, 51] for
N in the horizontal direction are defined as

LNx =
1

T · s2
∥∇xN̂s −∇xNs∥1 (9)

where N̂s and Ns are the bilinearly scaled N̂ and N with a scaling factor s. We
compute the gradient losses at various scales, as in [33, 51], by setting s to 0.5,
0.25, and 0.125. The losses LNy in the vertical direction are also used.

Similarly, for M-Net, we use the loss terms LM , LMx, and LMy. In addition,
we use two more loss terms. First, LµM

is defined to train the MDR block, which
is given by

LµM
= ∥µ(M̂)− µM∥1 (10)

where µ(M̂) denotes the mean of depth values in M̂ . Second, we define the
logarithmic ℓ1 loss,

LlogM =
1

T
∥ log M̂ − logM∥1. (11)

In this work, we adopt inverse depth representation of metric depths to match
the depth order with a relative depth dataset [51]. In this case, theoretically, a
metric depth can have a value in the range [0,∞). Thus, when a metric depth is
near zero, its inverted value becomes too large, which interferes with training. We
overcome this problem through a simple modification. Given an original metric
depth mo, its inverted metric depth m is defined as

m = 1/(mo + 1). (12)

In this way, inverted metric depth values are within the range of (0, 1] and also
are more evenly distributed.

However, using the ℓ1 loss LM on inverse depths has a disadvantage in learn-
ing distant depths. Suppose that χ̂ and χ are predicted and ground-truth metric
depth values for a pixel, respectively. Then, the ℓ1 error E is given by

E =

∣∣∣∣ 1χ̂ − 1

χ

∣∣∣∣. (13)

As χ gets larger, E becomes smaller for the same |χ̂− χ|. This means that the
network is trained less effectively for distant regions. This problem is alleviated
by employing LlogM in (11).
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4 Experimental Results

4.1 Datasets

We use four depth datasets: one for relative depths [51] and three for metric
depths [23, 45, 46]. When relative depth data are used in training, losses are
generated from the loss terms for N-Net and G-Net only because the loss terms
for M-Net cannot be computed.
HR-WSI [51]: It consists of 20,378 training and 400 test images. The ground-
truth disparity maps are generated by FlowNet 2.0 [19]. We use only the training
data of HR-WSI. We normalize the disparity maps by (1) and regard them as
normalized depth maps.
NYUv2 [45]: It contains 120K video frames for training and 654 frames for
test, together with the depth maps captured by a Kinect v1 camera. We use the
NYUv2 dataset for both training and evaluation. We construct three training
datasets of 51K, 17K, and 795 sizes. Specifically, we extract the 51K and 17K
images by sampling video frames uniformly. For the 795 images, we use the
official training split of NYUv2. We fill in missing depths using the colorization
scheme [31], as in [45].
DIML-Indoor [23]: It consists of 1,609 training images and 503 test images,
captured by a Kinect v2 camera.
SUN RGB-D [46]: It consists 5,285 training images and 5,050 test images,
obtained by four different cameras: Kinect v1, Kinect v2, RealSense, and Xtion.

4.2 Evaluation Metrics

Metric depths: We adopt the four evaluation metrics in [6], listed below. Here,

Mi and M̂i denote the ground-truth and predicted depths of pixel i, respectively.
| · | denotes the number of valid pixels in a depth map. For the NYUv2 dataset,
we adopt the center crop protocol [6].

RMSE :
1

|M |
(∑

i

(M̂i −Mi)
2)0.5

REL :
1

|M |
∑
i

|M̂i −Mi|/Mi

log 10 :
1

|M |
∑
i

| log10(M̂i)− log10(Mi)|

δk : % of Mi that satisfies max

(
M̂i

Mi
,
Mi

M̂i

)
< 1.25k, k ∈ {1, 2, 3}

Relative depths: we use two metrics for relative depths. First, WHDR (weighted
human disagreement rate) [2, 43, 51] measures the ordinal consistency between
point pairs. We follow the evaluation protocol of [51] to randomly sample 50,000
pairs in each depth map. However, WHDR is an unstable protocol, under which
the performance fluctuates with each measurement. We hence use Kendall’s
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Table 1: Comparison of depth estimation results on the NYUv2 dataset. ‘#’
is the number of training images, and † means that additional data is used for
training. The best results are boldfaced. Lower RMSE, REL, and log 10 indicate
better results, while higher δk values are better ones.

# Encoder backbone RMSE REL log 10 δ1 δ2 δ3

Eigen et al. [6] 120K - 0.641 0.158 - 0.769 0.950 0.988

Laina et al. [25] 12K ResNet-50 [13] 0.573 0.127 0.055 0.811 0.953 0.988

Hao et al. [12] 13K ResNet-101 [13] 0.555 0.127 0.053 0.841 0.966 0.991

Fu et al. [7] 120K ResNet-101 [13] 0.509 0.115 0.051 0.828 0.965 0.992

Hu et al. [16] 50K SENet-154 [15] 0.530 0.115 0.050 0.866 0.975 0.993

Chen et al. [3] 50K SENet-154 [15] 0.514 0.111 0.048 0.878 0.977 0.994

Yin et al. [56] 29K ResNeXt-101 [53] 0.416 0.108 0.048 0.875 0.976 0.994

Lee et al. [30] 24K DenseNet-161 [17] 0.392 0.110 0.047 0.885 0.978 0.994

Hyunh et al. [18] 50K DRN-D-22 [57] 0.412 0.108 - 0.882 0.980 0.996

Lee and Kim [28] 58K PNASNet-5 [36] 0.430 0.119 0.050 0.870 0.974 0.993

Bhat et al. [1] 50K EfficientNet-B5 [47] 0.364 0.103 0.044 0.903 0.984 0.997

Proposed 51K EfficientNet-B5 [47] 0.362 0.100 0.043 0.907 0.986 0.997

Wang et al. [49]† 200K - 0.745 0.220 0.094 0.605 0.890 0.970

Ramam. and Lepetit [41]† 400K ResNet-50 [13] 0.502 0.139 0.047 0.836 0.966 0.993

Ranftl et al. [42]† 1.4M ViT-Hybrid [4] 0.357 0.110 0.045 0.904 0.988 0.998

Proposed† 71K EfficientNet-B5 [47] 0.355 0.098 0.042 0.913 0.987 0.998

τ [21] additionally, which considers the ordering relations of all pixel pairs. Given
a ground-truth normalized depth map D and its prediction D̂, Kendall’s τ is de-
fined as

τ(D̂,D) =
α(D̂,D)− β(D̂,D)(|D|

2

) (14)

where α(D̂,D) and β(D̂,D) are the numbers of concordant pairs and discordant
pairs between D and D̂, respectively. Note that Kendall’s τ can measure the
quality of a metric depth map, as well as that of a relative one.

4.3 Implementation Details

Network architecture: We employ EfficientNet-B5 [47] as the encoder back-
bone. The encoder takes an 512 × 384 RGB image and generates a 16 × 12
feature with 2,048 channels. The output feature is used as the input to the three
decoders. G-Net and N-Net consist of 5 upsampling blocks, each of which is com-
posed of a bilinear interpolation layer and two 3× 3 convolution layers with the
ReLU activation. Also, in addition to the 5 upsampling blocks, M-Net includes
the MDR block, located between the fourth and fifth upsampling blocks. For
feature fusion in (6), ωG = ωN = 1.
Training: We train the proposed algorithm in two phases. First, we train the
network, after removing M-Net, for 20 epochs with an initial learning rate of
10−4. The learning rate is decreased by a factor of 0.1 at every fifth epoch.
Second, we train the entire network, including all three decoders, jointly for 15
epochs with an initial learning rate of 10−4, which is decreased by a factor of 0.1



Depth Map Decomposition for Monocular Depth Estimation 11

Eigen et al. Fu et al. ProposedRanftl et al.Bhat et al.Chen et al. Lee et al.Ground-truth

Fig. 4: Qualitative comparison of the proposed algorithm with the conventional
algorithms. For each depth map, the error map is also provided, in which brighter
pixels correspond to larger errors.

at every third epoch. We use the Adam optimizer [24] with a weight decay of
10−4. If a relative depth is used in the second phase, losses are calculated from
the loss terms for N-Net and G-Net only.

4.4 Performance Comparison

Table 1 compares the proposed algorithm with conventional ones on NYUv2
dataset. Some of the conventional algorithms use only NYUv2 training data
[1, 3, 6, 7, 12, 15, 18, 25, 28, 30, 56], while the others use extra data [41, 42, 49]. For
fair comparisons, we train the proposed algorithm in both ways: ‘Proposed’ uses
NYUv2 only, while ‘Proposed†’ uses both HR-WSI and NYUv2. The following
observations can be made from Table 1.

– ‘Proposed’ outperforms all conventional algorithms in all metrics with no
exception. For example, ‘Proposed’ provides a REL score of 0.100, which
is 0.003 better than that of the second-best algorithm, Bhat et al. [1]. Note
that both algorithms use the same encoder backbone of EfficientNet-B5 [47].
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Table 2: Comparison of depth estimation results on various datasets. ‘#’ is the
size of metric depth dataset, and †means that 20K HR-WSI data are additionally
used for training. A lower Kendall’s τ indicates a better result.

# Setting RMSE REL log 10 δ1 δ2 δ3 Kendall’s τ

NYUv2

795
Baseline 0.487 0.147 0.061 0.809 0.963 0.991 0.738

Proposed 0.468 0.142 0.059 0.824 0.969 0.992 0.762

Proposed† 0.417 0.122 0.052 0.868 0.977 0.995 0.800

17K
Baseline 0.400 0.113 0.048 0.880 0.981 0.996 0.803

Proposed 0.370 0.103 0.045 0.903 0.986 0.997 0.829

Proposed† 0.362 0.100 0.043 0.909 0.987 0.997 0.835

51K
Baseline 0.386 0.109 0.047 0.888 0.980 0.995 0.813

Proposed 0.362 0.100 0.043 0.907 0.986 0.997 0.837

Proposed† 0.355 0.098 0.042 0.913 0.987 0.998 0.840

DIML-Indoor 1.6K
Baseline 0.589 0.247 0.099 0.701 0.879 0.968 0.492

Proposed 0.537 0.180 0.075 0.719 0.943 0.986 0.696

Proposed† 0.517 0.171 0.072 0.742 0.949 0.989 0.742

SUN RGB-D 5.3K
Baseline 0.306 0.132 0.055 0.847 0.971 0.992 0.761

Proposed 0.303 0.129 0.055 0.850 0.973 0.993 0.776

Proposed† 0.301 0.127 0.054 0.853 0.973 0.992 0.784

795 NYUv2 DIML-Indoor SUN RGB-D
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Fig. 5: Qualitative comparison of the proposed algorithm with the baseline using
the NYUv2 (795), DIML-Indoor, and SUN RGB-D datasets.

– ‘Proposed†’ provides the best results in five out of six metrics. For δ2, the
proposed algorithm yields the second-best score after Ranftl et al. [42]. It is
worth pointing out that Ranftl et al. uses about 20 times more training data
than the proposed algorithm does.

Fig. 4 compares the proposed algorithm with the conventional algorithms [1,3,6,
7, 30, 42] qualitatively. We see that the proposed algorithm estimates the depth
maps more faithfully with smaller errors.

4.5 Various Datasets

Table 2 verifies the effectiveness of the proposed algorithm on various datasets.
The first two columns in Table 2 indicate the metric depth dataset and its size.
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Table 3: Ablation studies of the proposed algorithm using the NYUv2 (17K)
dataset.

M N G MDR∗ MDR † RMSE REL log 10 δ1 δ2 δ3 Kendall’s τ WHDR(%)

✓ - - - - - 0.400 0.113 0.048 0.880 0.981 0.996 0.803 14.95

✓ ✓ - - - - 0.389 0.111 0.047 0.888 0.982 0.996 0.814 14.19

✓ ✓ ✓ - - - 0.387 0.109 0.047 0.888 0.982 0.997 0.817 14.01

✓ ✓ ✓ ✓ - - 0.381 0.108 0.046 0.894 0.984 0.997 0.824 13.54

✓ ✓ ✓ - ✓ - 0.370 0.103 0.045 0.903 0.986 0.997 0.829 13.18

✓ ✓ ✓ - ✓ ✓ 0.362 0.100 0.043 0.909 0.987 0.997 0.835 12.72

‘Baseline’ is a bare encoder-decoder for monocular depth estimation. Specifi-
cally, we remove G-Net and N-Net, as well as the MDR block in M-Net, from
the proposed algorithm in Fig. 2 to construct ‘Baseline.’ For its training, only
three loss terms LM , LMx, and LMy are used. ‘Proposed’ means the proposed
algorithm without employing the 20K HR-WSI training data, while ‘Proposed†’
means using the HR-WSI data additionally. The following observations can be
made from Table 2.

– By comparing ‘Proposed’ with ‘Baseline,’ we see that G-Net and N-Net help
M-Net improve the performance of metric depth estimation by transferring
edge information and relative depth information. Also, ‘Proposed†’ mean-
ingfully outperforms ‘Proposed’ by leveraging relative depth training data
in HR-WSI, which contain no metric depth labels.

– Even when only the 795 NYUv2 images are used, the proposed algorithm
provides acceptable results. For example, the RMSE score of 0.417 is similar
to that of the Hyunh et al.’s estimator [18] in Table 1, which uses 50K
metric depth map data. In contrast, the proposed algorithm uses the 795
metric depth maps only.

– The proposed algorithm also exhibits similar trends in the DIML-Indoor
and SUN RGB-D datasets, which are collected using different cameras: the
proposed algorithm can be trained effectively even with a small number of
metric depth images. This is advantageous in practical applications in which
an algorithm should be adapted for various cameras.

Fig. 5 compares ‘Baseline’ and ‘Proposed†’ qualitatively using the 795 NYUv2,
DIML-Indoor, and SUN RGB-D datasets. For all datasets, ‘Proposed†’ provides
more accurate and more detailed depth maps, especially around chairs, tables,
and desks, than ‘Baseline’ does.

4.6 Analysis

Ablation studies: We conduct ablation studies that add the proposed com-
ponents one by one in Table 3. Here, the 17K images from NYUv2 are used
for training. M, N, and G denote the three decoders. MDR∗ is the MDR block
with µM deactivated. † indicates the use of relative depth data. We see that all
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Table 4: Effectiveness of the two-phase training scheme.

Setting RMSE REL log 10 δ1 δ2 δ3 Kendall’s τ WHDR(%)

Single-phase 0.386 0.107 0.046 0.892 0.984 0.997 0.820 13.74

Proposed 0.362 0.100 0.043 0.909 0.987 0.997 0.835 12.72

Table 5: Complexity comparison.

Ranftl et al. [42] Proposed

# Params 130M 102M

Speed (fps) 13.4 34.7

Table 6: Complexity of each component.

Encoder G N M MDR

# Params 55M 15M 15M 15M 1.7M

Speed (fps) 50.9 475 534 474 447

components lead to performance improvements, especially in terms of the two
relative depth metrics Kendall’s τ and WHDR.

Table 4 shows the effectiveness of the two-phase training scheme of the pro-
posed algorithm. The proposed algorithm, which trains G-Net and N-Net first,
shows better results than the single-phase scheme, which trains the entire net-
work at once.
Complexities and inference speeds: Table 5 compares the complexities of
the proposed algorithm and the Ranftl et al.’s algorithm [42]. The proposed
algorithm performs faster with a smaller number of parameters than the Ranftl
et al.’s algorithm [42] does. This indicates that the performance gain of the
proposed algorithm is not from the increase in complexity but from the effective
use of relative depth features. Table 6 lists the complexity of each component of
the proposed algorithm. The encoder spends most of the inference time, while
the three decoders are relatively fast.

5 Conclusions

We proposed a monocular depth estimator that decomposes a metric depth map
into a normalized depth map and scale features. The proposed algorithm is
composed of a shared encoder with three decoders, G-Net, N-Net, and M-Net,
which estimate gradient maps, a normalized depth map, and a metric depth map,
respectively. G-Net features are used in N-Net, and N-Net features are used in M-
Net. Moreover, we developed the MDR block for M-Net to utilize N-Net features
and improve the metric depth estimation performance. Extensive experiments
demonstrated that the proposed algorithm provides competitive performance
and yields acceptable results even with a small metric depth dataset.
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