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ABSTRACT

Recent advances in prompt-based medical image segmentation have enabled clin-
icians to identify tumors using simple input like bounding boxes or text prompts.
However, existing methods face challenges when doctors need to interact through
natural language or when position reasoning is required, which involves under-
standing the spatial relationships between anatomical structures and pathologies.
We present PRS-Med, a framework that integrates vision-language models with
segmentation capabilities to generate both accurate segmentation masks and corre-
sponding spatial reasoning outputs. Additionally, we introduce the Medical Posi-
tion Reasoning Segmentation (MedPos) dataset, which provides diverse, spatially-
grounded question-answer pairs to address the lack of position reasoning data in
medical imaging. PRS-Med demonstrates superior performance across six imag-
ing modalities (CT, MRI, X-ray, ultrasound, endoscopy, skin), significantly out-
performing state-of-the-art methods in both segmentation accuracy and position
reasoning. Our approach enables intuitive doctor-system interaction through nat-
ural language, facilitating more efficient diagnoses. Our dataset pipeline, model,
and codebase will be released to foster further research in spatially-aware mul-
timodal reasoning for medical applications. (github available after blind review
process).

1 INTRODUCTION

In the medical field in general and oncology in particular, doctors typically make diagnoses by
examining potential tumor locations and types to evaluate tissue conditions. This makes position
reasoning and segmentation visualization crucial for supporting early and accurate diagnoses. As
medical assistant agents become more common, models like LLaVA-Med Li et al. (2023), Med-
MoE Jiang et al. (2024), HuatuoGPT Chen et al. (2024b), and MedVLM-R1 Pan et al. (2025) have
been developed to help detect tumors in medical images and provide reasoning about them. While
these models show promise, a key challenge remains: doctors often need to identify unknown tumor
locations through implicit questions or conversational interactions. Additionally, during diagnosis,
doctors need to know the location of a tumor within an image, not just information about the tumor
itself. This is why position reasoning segmentation is important. It helps doctors recognize tumors,
which leads to more effective diagnosis and treatment. This technology can also help clinics create
automated screening systems, reducing manual costs.

In the natural image domain, several works such as LISA Lai et al. (2024), LLM-SEG Wang & Ke
(2024a), and SegLLM Wang et al. (2025) have addressed the challenge of reasoning for segmenta-
tion, achieving notable success in enhancing object reasoning, identifying object positions through
segmentation, and providing simple reasoning about objects. However, these Multimodal-LLMs are
not well-trained on medical imaging, making their application to this field difficult. This is due to the
complex nature of medical content and the difficulty of boundary learning in medical segmentation,
which out-of-domain models struggle with. For position reasoning segmentation, a VLM’s vision
model needs to be well-trained on medical images to effectively distinguish and localize tumors and
anatomies for reasoning.

We present PRS-Med, a framework for Position Reasoning Segmentation in medical imaging. This
is a unified method that uses a Multimodal-LLM to perform position-reasoning segmentation from
simple questions or commands. Our model outputs both a textual description and a segmenta-
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tion mask that highlights the tumor location. PRS-Med acts as an intelligent assistant, answering
a doctor’s questions and visually indicating the position of tumors or anatomical structures in an
interpretable way. Our contributions are four folds:

• To address the lack of datasets and evaluation tools for position reasoning in medical imag-
ing, we create and release the Medical Position Reasoning Segmentation (MedPos) dataset
pipeline. This pipeline can build a comprehensive position reasoning dataset designed to
generate diverse, spatially grounded question-answer pairs in the medical context.

• We present PRS-Med, a position reasoning model that integrates multimodal vision-
language learning with a lightweight TinySAM image encoder. It performs spatially-aware
tumor segmentation using implicit natural language prompts.

• We are open-sourcing the dataset pipeline, model, and codebase to help the community
develop spatially-aware multimodal LLMs in medical imaging.

• We conduct extensive experiments to show the ability of the PRS-Med in position reasoning
and understanding with the referring segmentation ability.

The rest of this paper is organized as follows: in Section 2, we briefly review existing methods
related to this research. Then, we introduce position reasoning and the segmentation dataset prepa-
ration pipeline in Section 3. Afterward, we introduce our proposed model, PRS-Med, in Section 4.
Experiment setups are in Section 5. Results of the model assessment is mentioned in Section 6.
Finally, we present the conclusion in Section 7.

2 RELATED WORK

Reasoning Image Segmentation: Recent advancements in reasoning segmentation have begun to
integrate high-level reasoning, particularly through the use of the Multimodal-LLMs. Notable works
in the domain include LISA Lai et al. (2024), LLM-Seg Wang & Ke (2024b), and SegLLM Wang
et al. (2024b), which include a special [SEG] token used to compact segmentation-specific embed-
dings from the model. However, applying this method to the medical position reasoning is chal-
lenging due to the more comprehensive context of the medical-specific vocabulary. To address this
limitation, in our design of PRS-Med, we design a unified model from the Multimodal-LLM with
the visual features of medical images, enabling effective position-aware segmentation.

Medical Image Segmentation: Traditional Medical image segmentation has long relied on fully
supervised CNN-based architectures like U-Net Ronneberger et al. (2015) and its variants, such as
ResUNet++ Jha et al. (2019), nnu-net Isensee et al. (2018), DoubleUNet Jha et al. (2020a), Tran-
sResUNet Tomar et al. (2022), and Swin-UNet Cao et al. (2022). More recently, several promptable
segmentations have emerged as a response to the growing demand for interactive and context-aware
medical AI. MedSAM Ma et al. (2024a), SAM-Med2D Cheng et al. (2023) adapts the Segment Any-
thing Model (SAM) Kirillov et al. (2023) to medical settings, supporting box- and point-prompted
segmentation. However, MedSAM and SAM-Med2D still lack semantic understanding of posi-
tional cues within free-form text. In contrast, BiomedParse Zhao et al. (2024b) directly uses text
prompts to infer object shapes and positions, learning implicit position priors. Despite its novelty,
BiomedParse does not couple segmentation with contextual reasoning, nor does it support implicit
or conversational prompts beyond class names. PRS-Med integrates position reasoning with seg-
mentation, enabling an interactive framework that responds to contextual questions and generates
both position reasoning outputs and corresponding segmentation masks.

Multimodal-LLM in Medical Imaging: Multimodal large language models (MLLMs) have re-
cently shown promising results in medical image reasoning tasks. Prominent methods such as
Med-Flamingo Moor et al. (2023), Med-MoE Moor et al. (2023), GSCo He et al. (2024), Hu-
atuoGPT Chen et al. (2024b), and MedVLM-R1 Pan et al. (2025) are built upon vision and Lan-
guage models like LLaVA Liu et al. (2023b), Qwen2-VL Wang et al. (2024a), and Multimodal
Llama Touvron et al. (2023) through the training technique via visual instruction tuning or reinforce-
ment learning methods. Despite their promising results, these models struggle with medical image
segmentation, which is a critical task for accurate disease diagnosis. Moreover, they also inherit
spatial reasoning limitations from their Multimodal-LLMs, which is observed in the prior works
such as SpatialVLM Chen et al. (2024a), Loc-VLM Ranasinghe et al. (2024), and Spatialrgpt Cheng
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Figure 1: Visualization of two stages of the
MedPos dataset pipeline.

Figure 2: Visualization of the segmentation
masks and question-answer pairs from the Med-
Pos dataset.

et al. (2024). To address these challenges, we propose PRS-Med and the MedPos dataset, which
help to extend the Multimodal-LLM capabilities by enabling accurate segmentation and enhancing
position reasoning for medical imaging applications.

3 MEDPOS DATASET

The research community has proposed several methods for constructing datasets to support multi-
modal reasoning, such as LAION Schuhmann et al. (2021), LLaVA Liu et al. (2023b), and Llava-
Med Li et al. (2023), which rely on either human annotators or large language models (LLMs) for
labeling. However, these approaches face significant challenges when applied to positional reason-
ing segmentation in the medical domain, due to the limited availability of high-quality datasets with
accurate position information along with the tumors or anatomy type. For this reason, we propose
the MedPos dataset, which is a Question Answering dataset that includes conversations between the
doctor with the assistant to get the position information, type of tumors, or anatomy with related
medical information about it.
Our dataset pipeline, as demonstrated in Figure 1, includes two stages: the first stage is the question-
answer template preparation, where we prepare the template for the question and answer (which
has the supported by doctors for validation the necessary of question and answer template), and
the second stage is the Position Information Extraction and mapping, where we do the mapping
information about the position, type of tumors/anatomy and related information about the tumor.

Question-Answer Templates Preparation: To begin, we leverage the GPT-4 model to generate 50
question-and-answer templates based on the mentioned question-answer pair for training and 5 for
testing. These templates are then validated by three doctors to ensure the correctness in the medical
context, and to ensure that when combined with the tumor name and positional information, the
resulting sentences are coherent and contextually appropriate to provide the necessary information
to the doctor.

Position Information Extraction and Mapping: We extract positional information from the seg-
mentation mask. Given a binary mask Xmask, we first derive the bounding box {x, y, w, h}, rep-
resenting the location of tumors within the image. From this, we calculate the center point of the
tumor as xcenter = {x+ w

2 , y+
h
2 }. Next, we divide the image into four quadrants—top left, top right,

bottom left, and bottom right—as illustrated in Figure 1. Based on the location of xcenter, we deter-
mine which quadrant the tumor lies in and assign it a corresponding label. In addition to handling
cases where tumors are located near the image center, we also compute the distance between xcenter
and the geometric center of the image. If this distance falls below a predefined threshold, we label
the tumor as being near the center. Finally, we integrate the extracted positional information along
with the tumor/anatomy type from the dataset with the question-and-answer templates to generate
the final dataset of spatially grounded tumor descriptions. The final samples are demonstrated in
Figure 2.

4 PRS-MED

Overall Architecture: The primary goal of PRS-Med is to perform position reasoning segmen-
tation, enabling the model to explain the location of tumors or anatomies in an image along with
relevant medical information. Additionally, the segmentation head allows the model to perform tu-
mor segmentation within the image using a single prompt. The overall architecture is illustrated in
Figure 3.
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Figure 3: The architecture of PRS-Med comprises three primary components: (1) the Tiny Vision
Backbone, (2) the Prompt Mask Decoder, and (3) the Multimodal-LLM. The framework accepts
two input modalities: an image and a text-based prompt (e.g., a question). The image is processed
through a vision encoder, while the prompt is embedded via a LoRA-adapted Multimodal-LLM. The
fused representations are used to produce two outputs: a segmentation mask for the tumor regions,
and a textual description specifying the tumor’s location.

This framework consists of four main modules. The first is the Vision-Language Model; in our case,
we use LLaVA-Med Li et al. (2023), as it is a well-trained Multimodal-LLM for the medical dataset,
which we can benefit from its domain of expertise. The second module is the Tiny SAM image
encoder, employed from TinySAM Shu et al. (2025), which is used to encode the input image.
The third module is the Prompt Mask Decoder, which includes our proposed fusion component
that combines image features from the SAM image encoder with the vision-language embeddings
from the Medical Vision-Language Model to generate the final segmentation mask. In addition, we
include a Language Model Head to perform the reasoning task.

During training, due to the challenges of fine-tuning the full LLaVA-Med model, we apply Low-
Rank Adaptation (LoRA) Hu et al. (2022) to enable the model to effectively learn position reasoning
information from our prepared dataset.

Vision Backbone: The primary objective of the vision backbone is to extract pixel-level features
from medical images to support conditional segmentation. For this purpose, we adopt the image en-
coder from TinySAM Shu et al. (2025), which is based on the lightweight TinyViT architecture Wu
et al. (2022). This design enables efficient image encoding while reducing computational resource
requirements.

Given a batch of b input images Ximage ∈ Rb×3×W×H , the images are processed through a tiny
vision transformer model Fvis, consisting of approximately four transformer layers, to produce an
image representation embedding zimage ∈ Rb×256×W

16×
H
16 . This encoder extracts dense visual fea-

tures zimage, which are used for the segmentation task. During training, the encoder is kept unfrozen
to allow it to adapt to the medical image domain, thereby improving segmentation performance. The
reason for the design choice of this TinyViT-based vision backbone is detailed in Section 5.

By leveraging pre-trained weights from the TinySAM image encoder, our model can better adapt
to the medical domain without initializing weights from scratch, which contributes to improved
segmentation outcomes.

Multimodal-LLM: Most current Multimodal-LLM backbones applied to the medical do-
main—such as Flamingo Alayrac et al. (2022), LLaVA Liu et al. (2023b), Qwen-VL Wang et al.
(2024a), and InternVL Chen et al. (2024c)—demonstrate strong reasoning capabilities. However,
they generally lack the ability to generate masks for visual recognition tasks and struggle to compre-
hend positional information, such as the position of objects within an image. Notably, embeddings
from the final layer of these Multimodal-LLMs have proven highly valuable in various applications
for semantic understanding, as demonstrated in works like TinyVLA Wen et al. (2025), RoboMamba
Liu et al. (2024b), and Groot-N1 Bjorck et al. (2025). Inspired by these insights, we propose a uni-
fied design, which leverages semantic embedding from Multimodal-LLM to serve both as a feature
extractor for conditioning the masked decoder and as a component for position reasoning. Different
from LISA Lai et al. (2024) (the reasoning segmentation approach in the natural image), when they
create a new token id for segmentation, in this work, we propose a unified method that leverages
directly the joint embedding from the Multimodal-LLM, which can take advantage of the semantics
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from the Multimodal-LLM embedding, which can enable the model to understand comprehensive
position context in the medical domain.

To generate the Multimodal-LLM embedding zemb ∈ Rb×l×4096 (where l is the token length), and
the reasoning output ztxt ∈ Rb×l from the input image Ximage ∈ Rb×3×w×h and input text Xtxt ∈
Rb×l×d (where d is the vocabulary size), we define Fmllm as a parametric function implemented
using LLaVA-Med Li et al. (2023). The complete process of the model can be described as follows:

zemb = Fmllm(Ximage, Xtxt), (1)

ztxt = p(ztxt|Ximage, Xtxt) =

l∏
i=1

pθ(z
i
txt|Ximage, X

i−1
txt ) with 1 < i < l. (2)

where θ is the trainable parameter. In our case, θ is from the parameter of the parametric function
Fmllm, which is the weight of the LLaVA-med model.

During training, due to the high computational cost associated with fully supervised fine-tuning of
the LLaVA-Med model, we employ the LoRA method Hu et al. (2022) as an adapter. This approach
allows the model to learn reasoning capabilities from our generated position medical reasoning
dataset while adapting to generate meaningful embeddings for the mask decoder. Selection and
reason for the LoRA hyperparameter are ablation in Section 6.3 and detailed in the Appendix.

Prompt Mask Decoder: The goal of this module is to predict the segmented mask from two in-
puts, including medical images representation feature zimage and the embedded image-text prompt
zemb from the Multimodal-LLM. This decoder module includes two parts: the fusion module and
the mask prediction module. This design allows dynamic alignment between image regions and
positional phrases, making better alignment between spatial features and medical vocabulary.

Fusion Module: Given the image representation from the vision encoder, denoted as zimage ∈
Rb×256×16×16, and the conditioning input from the Multimodal-LLM, denoted as zemb ∈ Rb×l×4096,
the overall fusion process is formalized in Equation 3 and Equation 4.

zfused = MHA(σ(
Fproj

θ1
(zimage)Fproj

θ2
(zemb)

T )
√
dk

)Fproj
θ2

(zemb)), (3)

zfused = zfused + zimage. (4)

where dk is the scaling value, MHA(.) is the Multi-head Attention layers, and σ(.) is the softmax
function.

First, the image representation zimage is reshaped to a new form zimage ∈ Rb×(16×16)×256 to enable
interaction with the embedding zemb ∈ Rb×l×4096 from the Multimodal-LLM. As shown in Equa-
tion 3, two projection layers, Fproj

θ1
and Fproj

θ2
, are applied to project both features into a shared latent

space of dimension 256. This alignment allows effective fusion through a cross-attention mecha-
nism, which integrates the image features with the Multimodal-LLM’s embeddings. The choice of
cross-attention is motivated by the dynamic length of the zemb sequences, making it a more flexible
and suitable alternative to simple addition or concatenation. Following the fusion, a self-attention
layer is employed to model the internal dependencies within the target sequence. The resulting fused
representation, zfused ∈ Rb×(16×16)×d, is then reshaped to Rb×256×16×16. Finally, as described in
Equation 4, a skip connection is introduced to preserve gradient flow and mitigate the vanishing
gradient problem during training.

Mask Prediction Module: The input zfused is passed through a stack of transposed 2D convolutional
layers, each followed by Batch Normalization and ReLU activation. This series of operations pro-
gressively upsamples zfused to produce the final segmentation output zmask ∈ Rb×1×1024×1024.

Objective Function: This model is trained end-to-end by using the segmentation loss (Lseg) and
text generation loss Ltext. The overall objective function is depicted in Equation 5.

L = λsegLseg + λtxtLtext. (5)

where λseg and λtxt shows the importance of each loss in the overall framework.
Regarding Lseg , we employ a combination of Binary Cross-Entropy and Dice loss Sudre et al.
(2017), which is a common choice in image segmentation tasks. For Ltxt, we use the Categorical
Cross-Entropy (CE) loss applied on the logit vectors of the tokens output. Let ŷmask denote the
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ground truth mask and zmask the predicted mask; similarly, let ŷtxt be the ground truth token index
sequence and ztxt the predicted text logits. Equations 6 and 7 illustrate the formulations of the
aforementioned loss functions Lseg , and Ltxt.

Lseg = LBCE(ŷmask, zmask) + Ldice(ŷmask, zmask), (6)
Ltext = LCE(ŷtxt, ztxt). (7)

By employing this objective function, PRS-Med can simultaneously learn position reasoning while
also learn to perform segmentation. Notably, during training, the decoder receives gradients not only
from segmentation losses but also from textual reasoning losses, creating a feedback loop where
segmentation informs reasoning and vice versa.

5 EXPERIMENTAL SETUP

Dataset: Our training dataset is constructed by combining several medical data sources images
with generated question-answer annotations for 6 different types of images are ultrasound, MRI,
RGB image, CT Image, X-ray, and endoscopy images as these are the popular image types, which
are mentioned by Biomedparse Zhao et al. (2024a). All of the datapoints are collected BUSI Al-
Dhabyani et al. (2020), BrainMRI Cheng et al. (2015; 2016), ISIC Codella et al. (2018), LungCT
Konya (2020), LungXray Chowdhury et al. (2020); Konya (2020), Kvasir-SEG Jha et al. (2020b),
and ClinicDB Bernal et al. (2015). For the train and test split, we follow the original split from the
dataset source to ensure fair comparisons. Furthermore, to increase the difficulty and better evaluate
generalization, particularly for polyp tissue segmentation, we augment the test set with additional
unseen data from CVC300 Vázquez et al. (2017), ETIS Silva et al. (2014), and ColonDB Tajbakhsh
et al. (2016), alongside the test splits from Kvasir-SEG and ClinicDB. This strategy allows for a
more rigorous assessment of our method’s generalization performance. More detail of the dataset is
discussed in the appendix.

Comparison Baseline: To compare our work with SOTA methods, we conduct three benchmarks,
including segmentation, position reasoning, and position understanding. For the Segmentation task,
we compare our methods with the Foundation Segmentation model of medical imaging, such as
SAM-Med 2D Zhu et al. (2024) (2024), and Biomedparse Zhao et al. (2024a) (2024) (finetuned
image encoder and decoder on our dataset), and the reasoning segmentation model, which is also
finetuned on our dataset, is LISA Lai et al. (2024) with two versions are 7B and 13 B. Regarding
the SAM model in medical imaging, there is a challenge that most medical segmentation model
is based on the box prompt. For this reason, we leverage the Grounding Dino Liu et al. (2024c)
as the text understanding model to extract the boxes coordinates for the segmentation task. In the
Reasoning and the Position Understanding benchmark, due to the lack of methods done reasoning
segmentation, we reproduce the fine-tuning process on our dataset for the Multimodal-LLM for
medical image, which includes LLaVA-Med Li et al. (2023) (2024), HuatuoGPT-Vision Chen et al.
(2024b) (2024), Med-MoE Jiang et al. (2024), and MedVLM-R1 Pan et al. (2025) (2025) to do the
reasoning benchmark. In all of the comparisons, we do the fine-tuning of these methods on our
MedPos dataset with the best-practice hyperparameter for each method for the fairest comparison.

Evaluation Metric: For the evaluation, we use the mDice, and mIoU to benchmark the segmenta-
tion results, as the standard of the medical segmentation task. To assess the fluency in the position
reasoning context task, we evaluate through two metrics in the question answering task are ROUGE
score and Meteor. In addition, to assess positional understanding accuracy, we use Qwen 2.5 Yang
et al. (2024) and Llama 3.1 Grattafiori et al. (2024) to evaluate whether the reasoning position gener-
ated by the benchmark models matches the ground truth. This benchmark uses the accuracy metric;
a match in positional information is counted as correct (score = 1), while a mismatch is counted as
incorrect (score = 0).

6 EVALUATION RESULTS

6.1 QUANTITATIVE RESULTS

Segmentation Task Results To evaluate the overall performance of PRS-Med in the segmentation
task, we compare our method with several prior works as aforementioned. Table 1 presents results
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on radiology images of six different images and tissues, including Breast Ultrasound, Brain MRI,
Lung CT-Scan, Lung X-ray, Polyp Endoscopy and Skin Image.

Method Breast Ultrasound Brain MRI Lung CT-Scan Lung X-ray Polyp Endoscopy Skin Image
mDice ↑ mIoU ↑ mDice ↑ mIoU ↑ mDice ↑ mIoU ↑ mDice ↑ mIoU ↑ mDice ↑ mIoU ↑ mDice ↑ mIoU ↑

G-Dino + SAM-Med2D Ma et al. (2024b) 0.515 0.441 0.667 0.625 0.540 0.392 0.401 0.300 0.488 0.418 0.237 0.171
Biomedparse Zhao et al. (2024a) 0.783 0.698 0.294 0.245 0.516 0.399 0.972 0.949 0.824 0.774 0.893 0.822
LISA-7B Lai et al. (2024) 0.299 0.246 0.478 0.402 0.478 0.402 0.397 0.263 0.241 0.202 0.464 0.368
LISA-13B Lai et al. (2024) 0.705 0.680 0.439 0.357 0.656 0.528 0.664 0.535 0.312 0.247 0.643 0.536

PRS-Med 0.817 0.729 0.803 0.757 0.968 0.943 0.973 0.952 0.843 0.791 0.901 0.833
vs previous works +0.034 +0.031 +0.136 +0.132 +0.312 +0.415 +0.001 +0.002 +0.019 +0.017 +0.008 +0.011

Table 1: Quantitative results of PRS-Med across six medical image types. The highest score in each
column is in bold; the second highest is underlined.

As shown in Table 1, PRS-Med achieves competitive performance compared with the state of the
art. Relative to the second-best method, the improvements (mDice, mIoU) are (+3.4%,+3.1%)
on Breast Ultrasound, (+13.6%,+13.2%) on Brain MRI, (+31.2%,+41.5%) on Lung CT-Scan,
(+0.1%,+0.2%) on Lung X-ray, (+1.9%,+1.7%) on Polyp Endoscopy, and (+0.8%,+1.1%) on
Skin Images. These results highlight the generalization and robustness of our method across diverse
imaging modalities, anatomical structures, and tumor types.

Position Reasoning Context Results To assess the performance of the PRS-Med, we do the evalu-
ation on the position reasoning accuracy with SOTA methods in the Multimodal-LLM for medical
images, which is depicted in Table 2.

Method Breast Ultrasound Brain MRI Lung CT-Scan Lung X-ray Polyp Skin Image
ROUGE ↑ METEOR ↑ ROUGE ↑ METEOR ↑ ROUGE ↑ METEOR ↑ ROUGE ↑ METEOR ↑ ROUGE ↑ METEOR ↑ ROUGE ↑ METEOR ↑

LlaVA-Med Li et al. (2023) 0.330 0.312 0.325 0.306 0.319 0.300 0.328 0.310 0.295 0.283 0.290 0.281
HuoGPT Chen et al. (2024b) 0.363 0.459 0.355 0.440 0.348 0.431 0.360 0.446 0.301 0.322 0.298 0.310
Med-MoE Jiang et al. (2024) 0.613 0.481 0.663 0.576 0.694 0.630 0.611 0.599 0.669 0.581 0.675 0.724
Med-VLMR1 Pan et al. (2025) 0.281 0.289 0.276 0.284 0.270 0.280 0.278 0.285 0.250 0.263 0.242 0.259

PRS-Med 0.638 0.635 0.672 0.654 0.709 0.709 0.638 0.636 0.711 0.681 0.759 0.767
vs previous works +0.025 +0.154 +0.009 +0.078 +0.015 +0.079 +0.027 +0.037 +0.042 +0.100 +0.084 +0.043

Table 2: Quantitative results of PRS-Med on the reasoning task across six medical image types. The
highest score in each column is in bold, the second highest is underlined.

As shown in Table 2, PRS-Med attains the highest ROUGE and METEOR on all six datasets.
Compared with the strongest prior baseline (Med-MoE), the absolute gains (ROUGE,METEOR)
are: Breast Ultrasound (+0.025,+0.154), Brain MRI (+0.009,+0.078), Lung CT-Scan
(+0.015,+0.079), Lung X-ray (+0.027,+0.037), Polyp (+0.042,+0.100), and Skin Image
(+0.084,+0.043). From these results, we observe that although PRS-Med and LlaVA-Med Li et al.
(2023) share the same multimodal-LLM pretraining with the LlaVA-Med, PRS-Med achieves supe-
rior performance on the position-reasoning task. The potential reason for this improvement is due to
the segmentation module, which is trained jointly with the Multimodal-LLM. This unified training
injects consistent localization signals throughout the framework and enables the LoRA adapters to
better adapt to the demands of position reasoning by updating their weights accordingly.

Position Reasoning Accuracy Results: To evaluate the accuracy of the model in positional rea-
soning, we adopt a correctness benchmark based on large language models (LLMs). Specifically,
Qwen2.5 Yang et al. (2024) and Llama 3.1 Grattafiori et al. (2024) are employed to assess whether
the positional information inferred by PRS-Med corresponds to the ground truth. These models are
selected as evaluators due to their strong reasoning capabilities and proven accuracy in language
comparison. In this evaluation protocol, each correctly inferred position is assigned a score of 1,
whereas incorrect inferences receive a score of 0.

Method Qwen Benchmark Llama 3.1 Benchmark Final result
LLaVA-Med Li et al. (2023) 42.6% (± 0.6) 41.2% (± 0.8) 41.9%

HuatuoGPT-Vision Chen et al. (2024b) 54.2% (± 0.1) 42.4% (± 0.3) 48.3%
Med-MoE Jiang et al. (2024) 70.4% (± 0.1) 58.5% (± 0.1) 64.5%

MedVLM-R1 Pan et al. (2025) 61.7% (± 0.3) 49.8% (± 0.7) 55.8%
PRS-Med 75.4% (± 0.1) 58.9% (± 0.2) 67.2%

vs previous works +5.0% +0.4% +2.7%

Table 3: Qualitative results of PRS-Med on position reasoning with SOTA multimodal LLMs. The
highest score in each column is in bold, the second highest is underlined.
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As shown in Table 3, PRS-Med achieves an overall improvement of +2.7% compared to the second-
best method. These competitive results demonstrate that PRS-Med is capable of accurately under-
standing positional information. This demonstrates that segmentation-informed reasoning improves
positional grounding, reducing hallucination in text-only reasoning models.
6.2 QUALITATIVE ANALYSIS

Comparison Visualization: In Figure 4, we present qualitative visualizations that highlight the
improvements achieved by PRS-Med. The results clearly show that PRS-Med can capture small le-
sions and anatomies that previous baselines miss, consistently generating completed masks with the
lowest loss. We attribute these improvements to the informative feature extraction of the lightweight
vision encoder and the effectiveness of the fusion module. Overall, the results provide strong evi-
dence for the promise of our approach. In addition, this visualization also highlights the ability of
the Multimodal-LLM, which can deal with both the reasoning task and the medical image segmenta-
tion task with high accuracy. However, through this visualization, we can observe that the boundary
problems are still the limitations of PRS-Med, and we are planning to improve in the future.

Figure 4: Comparison of PRS-Med with baseline models on polyp detection. PRS-Med produces
more accurate boundaries and captures small lesions missed by other methods.

Reasoning And Segmentation Results On Unseen Data: Figure 5 shows the reasoning results
along with the segmentation in the unseen question templates and in the unseen medical images.
In all of the samples, PRS-Med can handle and answer these unseen questions quite effectively al-
though these questions templates are not included in the training dataset. This indicates the position
understanding and effectiveness of PRS-Med in the diverse context of language.

Figure 5: Example of answers, and segmented masks from unseen data of PRS-Med.

6.3 ABLATION STUDY

To assess the choice and the effectiveness of the module in our framework, we conduct several
experiments to assess the performance and the limitations of each module. The experiments are
conducted in the same training and testing dataset with the benchmark. Regarding the metrics, we
calculate the average mDice and average mIoU for the segmentation results, and ROUGE, METEOR
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for reasoning results on different modalities in our test dataset to have the best assessment of the
robustness of each choice.

Vision Backbone Parameters mDice ↑ mIoU ↑
SAM-Med (Frozen) 21.52M 0.798 0.719

SAM-Med (Full) 292.60M 0.891 0.838
SAM-Med (LoRA) 47.84M 0.790 0.711

TinySAM (no pretrained) 31.49M 0.674 0.582
TinySAM (frozen) 21.73M 0.737 0.662
TinySAM (Full) 31.49M 0.884 0.834

MLLM mDice ↑ mIoU ↑ ROUGE ↑ METEOR ↑
q,v 0.573 0.483 0.478 0.436

q, k, v 0.714 0.621 0.585 0.578
q,k,v,o 0.879 0.827 0.654 0.599

Table 4: (Left): Comparison results of different vision encoder backbones. (Right): Ablation study
on LoRA target module (r=16) on Multimodal-LLM.

Design Choice Of Vision Encoder Backbone: As described in Section 4, we do the experiment
to emphasize our vision encoder choice with the results presented in Table 4 (Left). In our design,
we consider two published pre-trained models, SAM-Med Ye et al. (2023) and TinySAM Shu et al.
(2025), as our vision encoder. As demonstrated in Table 4, the TinySAM gets higher performance
than SAM-Med (LoRA) with similar trainable parameters in the overall framework, and get lower
results with the full supervised training version of SAM-Med. However, due to our target of an
efficient model, based on the trade-off between performance and the number of parameters, we
choose TinySAM as our vision encoder.

Initialization Of TinySAM Image Encoder: We observe that the initialization of TinySAM sig-
nificantly affects the overall results. For this reason, in Table 4 and experiment 5 and 6, we assess
the contribution of the TinySAM pretrained weight. Without the pretrained initialization, the overall
results drop substantially, which shows the importance of the pretrained initialization to the overall
framework.

Design Choice Of MLLM Backbone To evaluate the choice of MLLM backbone for PRS-Med, we
conducted experiments comparing three models are LLaVA-1.5 Liu et al. (2024a; 2023a), LLaVA-
1.6 Liu et al. (2024a; 2023a), and LLaVA-Med—using the same 7B backbone and fine-tuned via
the LoRA approach. The comparison focuses on two tasks: segmentation and position reasoning,
as shown in Table 5. The results indicate that the overall performance of the LLaVA-Med baseline
surpasses that of LLaVA-1.5 and LLaVA-1.6. This improvement can be attributed to LLaVA-Med’s
enhanced adaptation to the medical domain, which enables it to better handle tasks involving medical
data.

MLLM Parameters Avg-mDice ↑ Avg-mIoU ↑ ROUGE ↑ METEOR ↑
LLaVA-1.5 (LoRA) 34.63M 0.709 0.642 0.414 0.385
LLaVA-1.6 (LoRA) 31.49M 0.744 0.671 0.508 0.432

LLaVA-Med (LoRA) 31.49M 0.879 0.827 0.654 0.599

Table 5: Ablation study for design choice of the Multimodal-LLM.

LoRA Target Modules Choice: To assess the contribution of the target module from LoRA in
the overall framework, we do the ablation to evaluate our choice of target module from LoRA,
which is mentioned in Table 4 (Right). Our choice for the target modules (q,k,v,o) makes the over-
all framework achieve significant higher performances, which indicates that all of the projection
weights allow LoRA to more effectively align cross-modal representations for both the reasoning
and segmentation tasks.

7 CONCLUSION

In conclusion, we introduced PRS-Med, a novel framework that uses natural language prompts to
perform spatially-aware tumor segmentation and position-based reasoning in medical images. Our
approach integrates a lightweight image encoder with a vision-language model, enabling intuitive,
conversational interaction for medical analysis. To address the critical lack of positional reasoning
data, we also created and released the MedPos dataset. This dataset combines positional question-
answer pairs created from segmentation masks with tumor and anatomical annotations. Our compre-
hensive evaluation across six different imaging modalities and with state-of-the-art methods shows
that PRS-Med is effective in both segmentation and positioning tasks, and it is robust to unseen
data. By open-sourcing our dataset, pipeline, model, and codebase, we aim to accelerate research
in spatially-aware, multimodal reasoning for medical applications. PRS-Med has the potential to
enhance clinical workflows by improving diagnostic accuracy, reducing interpretation time, and en-
abling a more intuitive interaction between physicians and AI systems.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

In our implementation, experiments were conducted using two H100 80GB GPUs. The model was
trained for 20 epochs, requiring approximately 24 GPU hours with a batch size of 8 for each GPU.
We employed the AdamW Loshchilov & Hutter (2017) optimizer with a learning rate of 1× 10−4,
and the best checkpoint was selected at epoch 18 based on validation performance. For the LoRA
hyperparameters, we set the rank to 16, used the same value for alpha, and applied a dropout rate of
0.05. The LoRA weight is initialized following a uniform distribution.

A.2 BROADER IMPACT

The broader impact of PRS-Med lies in its capability for position reasoning segmentation. As an
intelligent assistant, it can support doctors in rapid screening and efficiently gather detailed infor-
mation about a patient’s disease status. This, in turn, helps reduce diagnosis and treatment time,
enabling more patients to receive care on the same day.

A.3 MORE DETAILS FOR EVALUATION BY LARGE LANGUAGE MODEL

In this section, we describe the benchmark progress via two LLMs are Qwen 2.5 Yang et al. (2024)
and Llama 3.1 Grattafiori et al. (2024). Each model will run three times on these different questions,
then for each model, we calculate the average and the standard deviation to get the benchmark results
for each agent. Then the final result is calculated by the results of the agents, which means that with
more agents, we can reduce the bias of the benchmark from the LLM.

As the LLM also has hallucinations, it can affect to the benchmark results. However, as our obser-
vation, the hallucination is minor, which create a tiny effect, not affecting considerably the judging
process for the overall performance of the models.

The following list shows the different templates of the benchmark prompts:

1. As a medical image specialist

Instruction: Answer the question related to the position content, return only yes or no
Prompt: Given the following question and answer with the ground truth, is the position in
the answer similar or same with the ground truth and match with the question. Sample -
Question: {question} — groundtruth: {groundtruth} — Prediction: {answer} Return
yes if they are similar. Return no if they are different.

2. As a doctor

Instruction: Answer the question related to the position content, return only yes or no
Prompt: Check if the location information provided in the prediction aligns with the po-
sition mentioned in the ground truth and is relevant to the question. Input — Question:
question — Ground Truth: groundtruth — Prediction: answer Respond with Yes if the
positions are similar. Respond with No if they are different.

3. As you are a doctor and you are looking to the medical
image:

Instruction: Answer the question related to the position content, return only yes or no
Prompt: Evaluate whether the predicted answer captures the same or similar posi-
tional context as the ground truth, based on the provided question. Question: question
Groundtruth: groundtruth Prediction: answer Answer with ”Yes” if the position is sim-
ilar, otherwise ”No”

For each ”yes” response, it is calculated as one correct answer; for each ”no” response, it is calcu-
lated as one incorrect answer. The accuracy is calculated by the sum of the correct answers over all
of the samples in the test set.
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A.4 EXPLANATION FOR THE POSITION IDENTIFICATION

In Section 3, we divide the image into 4 quadrants in order to identify the position of tumors in the
image, as the representation in Figure 6.

Figure 6: Examples of the position identification for dataset creation.

For images containing a single tumor, we identify the tumor’s position by selecting the region that
consists of the largest mask area. In the case of images with two tumors, we detect both regions and
combine their positional descriptions into a single sentence. Additionally, we compute the Euclidean
distance between the center of the image and the centroid of the mask to determine whether a tumor
is located near the center. In our pipeline, we set the distance threshold for being considered ”near
the center” at 20 unit.

For example, in the first image shown in Figure 6, the tumor is located in the top-left region and near
the center, while the second image contains two tumors identified in the bottom-left and bottom-
right regions, which both tumors are also near the center. The final output sentence describing the
tumor positions is as follows:

• There is a tumor in the top left region and near the center.

• A tumor is located in the bottom left quadrant, near the center, and another(or in other
words, in our prompt: ”, ” and, with) tumor is located in the bottom right quadrant, near
the center.

By using this logic-based approach, we can infer the position of the tumor and map it to the corre-
sponding position vocabulary in our dictionary. This mapped position can then be integrated into
a predefined template to generate the final question-answer pairs. The advantage of this method is
that it eliminates the need for manual labeling of question-answer pairs, thereby reducing annotation
costs and minimizing human error.

A.5 MORE DETAILS FOR DATASET INFORMATION

To create the MedPos dataset, we employ several different datasets from the open-source datasets, in-
cluding BUSI Al-Dhabyani et al. (2020) dataset, ISIC Codella et al. (2018); DiSanto (2023), Kvasir-
SEG Jha et al. (2020b), ClinicDB Bernal et al. (2015), ColonDB Tajbakhsh et al. (2016), CVC300
Vázquez et al. (2017), ETIS-Polyric Silva et al. (2014), LungCT Konya (2020), Lung Xray Chowd-
hury et al. (2020); Rahman et al. (2021), and Brain MRI dataset Cheng et al. (2015; 2016). These
datasets focus on six different types of images are ultrasound image, RGB image, endoscopy image,
CT-scan image, Lung Xray image, and MRI image. These are the common medical image types in
the real-world application, mentioned in BiomedParse Zhao et al. (2024a). In total, we have 28650
images and question-answer pairs for training, and 4647 images along with the question-answer
pairs for testing. Due to the limitations of the number of medical images, this dataset is reasonable
for the experiments in our paper, and the results show that our methods can adapt well in this dataset
setting.
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Image and specification type Number of train sample Number of test sample
Breast Ultrasound 599 113
Skin RBG Image 900 379
Polyp Endoscopy 1450 798

Lung CT 7959 1800
Lung Xray 16280 957
Brain MRI 1462 600

Table 6: Statistics for the number of training and test samples for each specification and type of
images.

Regarding the number of question-answer pairs, 50 templates are used for the training, and 5 unseen
templates for the testing.

A.6 QUESTION-ANSWER DATASET CREATION

Prompt to generate the question-answer pair: For the generation of the question-answer pair, we
leverage the Role Prompting technique. The prompt for the generation is mentioned as following.

1. As a doctor, you have to work with medical images everyday

2. Instruction: Given the Question and answer template as an example:
Q: Where is the tumor position in the <image type> medical image? A: There is a <tumor
type> <tumor name> in the <position>.

3. Prompt: Generate the informative question and answer pair that keep the template of the
provided template.

Template for question and answer pairs generated: For the training dataset, we generate 50
question-answer pair templates, as it is diverse for the language understanding. All of the training
questions and answers are mentioned as following:

1. Q: In the provided {image type} scan, where can the tumor be observed?
A: The {tumor type} tumor can be observed in the {position description} area
of the image.

2. Q: Specify the tumor’s location in this {image type} view.
A: The {tumor type} tumor is clearly seen in the {position description} re-
gion.

3. Q: Can you detect where the tumor is in this {image type}?
A: The {tumor type} tumor is present in the {position description} area.

4. Q: Which area of the {image type} shows a tumor?
A: The {tumor type} tumor is seen in the {position description}.

5. Q: From this {image type} scan, what is the tumor’s location?
A: The {tumor type} tumor is located in the {position description} part.

6. Q: Could you point out where the tumor is located in this {image type} scan?
A: The {tumor type} tumor can be observed in the {position description} area
of the {image type} scan.

7. Q: What part of the body does the tumor appear in this {image type} medical image?
A: In this {image type} image, the {tumor type} tumor is found in the
{position description} section.

8. Q: Identify the region in this {image type} image that shows the tumor.
A: The region showing the {tumor type} tumor in this {image type} image is the
{position description}.

9. Q: Can you specify the tumor’s location based on the {image type} image provided?
A: Based on the provided {image type} image, the {tumor type} tumor lies in the
{position description} region.
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10. Q: From this {image type} image, where would you say the tumor is located?
A: Judging from the {image type} image, the {tumor type} tumor is located at the
{position description}.

11. Q: Could you specify the tumor’s location in this {image type} scan?
A: The {tumor type} tumor is clearly located in the {position description}
area.

12. Q: What region of this {image type} shows the presence of a tumor?
A: The {tumor type} tumor is seen in the {position description} region.

13. Q: Where in the anatomical image ({image type}) is the tumor located?
A: The {tumor type} tumor is present in the {position description} portion of
the anatomy.

14. Q: Is there a visible tumor in the {image type} image, and where?
A: Yes, the {tumor type} tumor is found in the {position description} area.

15. Q: In which region of the {image type} can the tumor be found?
A: The {tumor type} tumor can be found in the {position description}.

16. Q: Pinpoint the tumor location in this {image type} scan.
A: The {tumor type} tumor is located in the {position description} region.

17. Q: Which part of the {image type} image contains the tumor?
A: The {tumor type} tumor is contained in the {position description} part.

18. Q: In this {image type} image, what is the tumor’s anatomical position?
A: The anatomical position of the {tumor type} tumor is
{position description}.

19. Q: Identify the segment of this {image type} that has a tumor.
A: The segment showing the {tumor type} tumor is {position description}.

20. Q: Where is the abnormal mass located in this {image type} scan?
A: The abnormal {tumor type} mass appears in the {position description}.

21. Q: Can you detect the tumor’s placement in the {image type} image?
A: The placement of the {tumor type} tumor is in the {position description}
zone.

22. Q: Is the tumor visible in this {image type}, and where is it found?
A: Yes, the {tumor type} tumor is located in the {position description} por-
tion.

23. Q: Which anatomical zone in the {image type} image shows a tumor?
A: The {tumor type} tumor is visible in the {position description} region.

24. Q: Where does the tumor appear in this {image type} scan?
A: The {tumor type} tumor appears in the {position description} region of
the scan.

25. Q: Indicate the region where the tumor is located in this {image type}.
A: The region of the {tumor type} tumor is the {position description}.

26. Q: In this scan of {image type}, where do you see the tumor?
A: The {tumor type} tumor is seen in the {position description} area.

27. Q: What area in the {image type} image reveals the tumor?
A: The area showing the {tumor type} tumor is {position description}.

28. Q: According to this {image type} image, where is the tumor found?
A: The {tumor type} tumor is found in the {position description}.

29. Q: What is the approximate tumor position in this {image type}?
A: Approximately, the {tumor type} tumor lies in the {position description}.

30. Q: Give the precise tumor location in this {image type} image.
A: The {tumor type} tumor is precisely located in the {position description}.

31. Q: Can the tumor be located in the upper or lower part of the {image type}?
A: The {tumor type} tumor is found in the {position description} section.
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32. Q: Which side of the {image type} contains the tumor?
A: The {tumor type} tumor is on the {position description} side.

33. Q: In this {image type} scan, which quadrant has the tumor?
A: The {position description} quadrant contains the {tumor type} tumor.

34. Q: What part of the {image type} is affected by the tumor?
A: The {position description} part is affected by the {tumor type} tumor.

35. Q: Where is the main tumor mass observed in this {image type}?
A: The main {tumor type} tumor mass is observed in the
{position description} region.

36. Q: Describe the tumor’s spatial location in this {image type} scan.
A: The spatial location of the {tumor type} tumor corresponds to the
{position description}.

37. Q: Where is the suspicious mass situated in this {image type}?
A: The suspicious {tumor type} mass is situated at the {position description}.

38. Q: Which image region shows the most tumor density in this {image type}?
A: The region with most density of the {tumor type} tumor is the
{position description}.

39. Q: Can you tell which section of the image highlights the tumor?
A: The highlighted {tumor type} tumor appears in the {position description}
section.

40. Q: In this {image type} medical scan, where can the tumor be localized?
A: The {tumor type} tumor can be localized in the {position description}
area.

41. Q: Where is the focal point of the tumor in this {image type}?
A: The focal point of the {tumor type} tumor is at the {position description}.

42. Q: Which directional area of the {image type} shows the tumor?
A: The {tumor type} tumor shows up in the {position description} direction.

43. Q: Can you indicate the approximate region where the tumor lies?
A: The {tumor type} tumor lies approximately in the {position description}.

44. Q: Where would you mark the tumor in this {image type}?
A: I would mark the {tumor type} tumor in the {position description}.

45. Q: In this view of the {image type}, what part contains the tumor?
A: The {tumor type} tumor is in the {position description} view.

46. Q: What’s the visible tumor location in the {image type} image?
A: Visibly, the {tumor type} tumor is in the {position description}.

47. Q: According to the image, where does the tumor appear?
A: The {tumor type} tumor appears in the {position description} area.

48. Q: From the given {image type}, where can we see the tumor?
A: The {tumor type} tumor is seen in the {position description} region.

49. Q: What is the rough location of the tumor in the image?
A: Roughly, the {tumor type} tumor is at the {position description}.

50. Q: Could you highlight the tumor’s location in this {image type} image?
A: The {tumor type} tumor is highlighted in the {position description} re-
gion.

For the test dataset, we use 5 following templates for testing the performance of the model:

1. Q: Can you identify the location of the {tumor type} tumor in this {image type}
medical image?
A: The {tumor type} tumor is located in the {position description} region of
the {image type} image.
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2. Q: Please describe the {tumor type} tumor’s position in this medical image of type
{image type}.
A: In this {image type} medical image, the {tumor type} tumor appears in the
{position description}.

3. Q: What is the anatomical location of the {tumor type} tumor in this {image type}
medical image?
A: The anatomical position of the {tumor type} tumor in this {image type} image
is {position description}.

4. Q: Based on this {image type} medical image, can you provide the location of the
{tumor type} tumor in this image?
A: From the {image type} image, the {tumor type} tumor is seen in the
{position description} area.

5. Q: Where is the {tumor type} tumor located in this {image type} medical image?
A: The {tumor type} tumor is situated in the {position description} part of
the {image type} image.
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