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Abstract

Large Language Models (LLMs) have demon-001
strated remarkable capabilities across a variety002
of tasks in different domains. However, they003
sometimes generate responses that are logically004
coherent but factually incorrect or misleading,005
which is known as LLM hallucinations. Data-006
driven supervised methods train hallucination007
detectors by leveraging the internal states of008
LLMs, but detectors trained on specific do-009
mains often struggle to generalize well to other010
domains. In this paper, we aim to enhance the011
cross-domain performance of supervised detec-012
tors with only in-domain data. We propose a013
novel framework, prompt-guided internal states014
for hallucination detection of LLMs, namely015
PRISM. By utilizing appropriate prompts to016
guide changes to the structure related to text017
truthfulness in LLMs’ internal states, we make018
this structure more salient and consistent across019
texts from different domains. We integrated020
our framework with existing hallucination de-021
tection methods and conducted experiments022
on datasets from different domains. The ex-023
perimental results indicate that our framework024
significantly enhances the cross-domain gen-025
eralization of existing hallucination detection026
methods1.027

1 Introduction028

In recent years, Large Language Models (LLMs)029

have demonstrated remarkable capabilities across030

a variety of tasks in different domains (Dinan031

et al., 2019; Brown et al., 2020; Zhang et al., 2022;032

Chowdhery et al., 2023; Touvron et al., 2023a).033

However, the hallucination problem in LLMs poses034

a potential threat to their practical application in035

many scenarios. LLM hallucinations refer to the036

cases where LLMs generate responses that are037

logically coherent but factually incorrect or mis-038

leading (Zhou et al., 2021; Ji et al., 2023; Su039

1We have open-sourced all the code and data in GitHub:
https://anonymous.4open.science/r/PRISM-7E2B

et al., 2024). These hallucinated responses may be 040

blindly accepted, leading users to learn incorrect 041

information or take inappropriate actions. There- 042

fore, detecting hallucinations in LLM-generated 043

content becomes particularly meaningful. By using 044

hallucination detectors to help identify incorrect 045

generated content, users can be alerted to verify 046

the accuracy of LLMs’ responses, thus preventing 047

potential issues. 048

The unsupervised paradigm focuses on assessing 049

the confidence of LLM-generated content and re- 050

jects the low-confidence outputs. For example, the 051

probability information of each token generated by 052

LLMs can serve as a measure of hallucination (Ka- 053

davath et al., 2022; Zhang et al., 2023; Quevedo 054

et al., 2024; Hou et al., 2024). Additionally, the 055

consistency among multiple responses generated 056

by LLMs to the same question can also be used 057

to evaluate their confidence (Manakul et al., 2023). 058

Furthermore, Chen et al. (2024) shifts the consis- 059

tency judgment from multiple responses to their 060

corresponding activation values in LLMs. How- 061

ever, these methods often struggle to achieve ideal 062

detection accuracy or require a significant amount 063

of additional response time (Su et al., 2024). 064

For this reason, researchers have begun explor- 065

ing the use of data-driven supervised methods for 066

hallucination detection. These methods are gener- 067

ally based on the assumption that LLMs can recog- 068

nize they have generated incorrect content, which is 069

reflected in specific patterns in their internal states. 070

Marks and Tegmark (2023) reveal that true and 071

false statements have discernible geometric struc- 072

tures in LLMs’ internal states, allowing us to build 073

classifiers by learning this structure. Marks and 074

Tegmark (2023) and CH-Wang et al. (2024) utilize 075

linear structures to distinguish between different 076

statements, while Azaria and Mitchell (2023) train 077

neural networks to act as hallucination detectors. 078

Supervised detectors trained on specific domains 079

often struggle to achieve good generalization per- 080
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formance in other domains. For example, Bürger081

et al. (2024) found that when distinguishing be-082

tween true and false statements, the structural dif-083

ferences in LLMs’ internal states are significantly084

different for affirmative and negated sentences. To085

address this issue, many studies focus on construct-086

ing diverse datasets or performing feature selection087

within LLMs’ internal states to achieve better gen-088

eralization performance (Chen et al., 2023; Bürger089

et al., 2024; Liu et al., 2024). However, these meth-090

ods require collecting additional training data from091

other domains, which is resource-intensive. In this092

paper, we aim to answer the following question:093

Can we enhance the cross-domain per-094

formance of supervised detectors with095

only in-domain data?096

Driven by this research question, we propose a097

novel framework called PRISM, which stands for098

prompt-guided internal states for hallucination de-099

tection of LLMs. By utilizing appropriate prompts100

to guide changes to the structure related to text101

truthfulness in LLMs’ internal states, we make this102

structure more salient and consistent across texts103

from different domains, which enables detectors104

trained in one domain to also perform well in others105

without additional data. Our approach is based on106

the insight that while LLMs’ internal states encode107

rich semantic information, they are primarily opti-108

mized during pre-training to predict the next token109

rather than for hallucination detection. As a result,110

the directly extracted internal states contain lots111

of domain-specific information that is not related112

to text truthfulness, leading to detectors that are113

specific to certain domains and unable to achieve114

good cross-domain generalization performance.115

Due to the powerful ability of LLMs to under-116

stand and follow instructions, we explore the use of117

prompt-guided methods to generate internal states118

more focused on text truthfulness. We employed119

various methods to investigate the effect of prompts120

from different perspectives. The findings indicate121

that the introduction of appropriate prompts can122

significantly improve the salience of the structure123

related to text truthfulness in LLMs’ internal states124

and make this structure more consistent across dif-125

ferent domain datasets. We also provide a simple126

and effective method to generate and select appro-127

priate prompts for hallucination detection tasks.128

By combining prompt templates with the text to129

be evaluated and inputting them into LLMs, we130

can obtain internal states that are better suited as131

features for hallucination detection tasks. Subse- 132

quently, we can integrate the prompt-guided in- 133

ternal states with existing hallucination detection 134

methods to construct more advanced detectors. 135

In summary, the contributions of this paper are as 136

follows: (1) We conduct an in-depth investigation 137

into how specific prompts guide the change to the 138

structure related to text truthfulness in LLMs’ inter- 139

nal states. (2) We propose PRISM, a novel frame- 140

work that utilizes prompt-guided internal states to 141

enhance hallucination detection of LLMs. (3) We 142

integrate PRISM with existing hallucination detec- 143

tion methodologies, demonstrating its ability to sig- 144

nificantly enhance the generalization performance 145

of detectors across different domains. 146

2 Preliminary 147

In our research, to study the cross-domain hallu- 148

cination detection problem, we utilized several 149

publicly available datasets that encompass data 150

from various domains. The first dataset we used 151

is the True-False dataset (Azaria and Mitchell, 152

2023), which consists of six sub-datasets: "ani- 153

mals," "cities," "companies," "elements," "facts," 154

and "inventions." These sub-datasets share similar 155

textual structures but contain content on different 156

topics. Each sub-dataset includes almost the same 157

number of true and false statements, such as: ’Meta 158

Platforms has headquarters in the United States’ 159

and ’Silver is used in catalytic converters and some 160

electronic components.’ More detailed information 161

about this dataset can be found in Appendix A. 162

Another dataset we used is from Bürger et al. 163

(2024) and consists of 24 sub-datasets with 6 differ- 164

ent topics: "animal_class," "cities," "inventors," "el- 165

ement_symb," "facts," and "sp_en_trans," as well 166

as 4 different grammatical structures: affirmative 167

statements, negated statements, logical conjunc- 168

tions, and logical disjunctions. Affirmative state- 169

ments were structured similarly to the examples in 170

the True-False dataset, while negated statements 171

were formed by negating the affirmative statements 172

using the word "not." The sentences in logical con- 173

junctions and logical disjunctions were constructed 174

by sampling sentences from the affirmative state- 175

ments and then connecting them with "and" or "or." 176

The number of true and false statements within 177

each grammatical structure is balanced. For clarity, 178

we refer to this dataset as LogicStruct throughout 179

this paper and present additional information about 180

it in Appendix A. 181
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Figure 1: Visualization of the LLaMA2-7B-Chat model’s internal states by using the 2-dimensional PCA on the
True-False dataset before and after the introduction of Prompt 1, where label 0 represents false statements and label
1 represents true statements. Additionally, a logistic regression model was fitted to distinguish between true and
false statements, with the decision boundary shown as a black dashed line.

3 Prompt-Guided Internal States182

Several previous studies have focused on leverag-183

ing LLMs’ internal states for hallucination detec-184

tion (Azaria and Mitchell, 2023; Liu et al., 2024;185

Su et al., 2024). They assume that LLMs can recog-186

nize they have generated incorrect content, which is187

reflected in specific patterns in their internal states.188

Therefore, these studies typically select contextual-189

ized embeddings corresponding to specific tokens190

in certain layers of LLMs, and then use them as191

features to train hallucination detectors. However,192

these embeddings were originally intended to guide193

text generation and they encode various informa-194

tion of the related text. As a result, the information195

related to text truthfulness becomes intertwined196

with domain-specific details, making it difficult for197

detectors to identify a consistent structure related198

to text truthfulness in LLMs’ internal states.199

Therefore, we hope to guide changes in LLMs’200

internal states such that the structure related to text201

truthfulness becomes more salient and consistent202

across texts from different domains. This would203

help detectors learn this structure and enhance their204

generalization performance. To achieve this goal,205

we experimented with a simple prompt:206

------------------------------------------------207
Prompt 1:208
Here is a statement: [statement]209
Is the above statement correct?210
------------------------------------------------211

This prompt directly asks LLMs the truthfulness of 212

specific statements. When we input it into LLMs, 213

the generation of new tokens will revolve around 214

this question, which will be reflected in LLMs’ 215

internal states. 216

In the following two subsections, we will use var- 217

ious methods to demonstrate the changes in LLMs’ 218

internal states before and after the introduction of 219

Prompt 1 and explain how these changes will effect 220

the hallucination detection task. Our analysis is 221

conducted on the six sub-datasets of the True-False 222

dataset. The feature vectors we used are the embed- 223

dings corresponding to the last token in the final 224

layer of LLaMA2-7B-Chat. 225

3.1 Effect of Prompt on Structural Salience 226

Some previous studies (Marks and Tegmark, 2023; 227

Bürger et al., 2024) have shown that, on certain 228

datasets, true and false statements have distinguish- 229

able geometric structures in LLMs’ internal states 230

and these structures can be directly observed after 231

applying Principal Component Analysis (PCA) to 232

reduce the dimensionality of relevant data. There- 233

fore, we utilized the PCA to observe the salience 234

of the structure related to text truthfulness before 235

and after the introduction of Prompt 1. 236

From Figure 1, we can clearly observe that in all 237

six datasets, the introduction of the prompt enables 238

the first two principal components to effectively 239
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Figure 2: Comparison of the variance ratios before and
after the introduction of Prompt 1 on each sub-dataset
of the True-False dataset.

distinguish true and false statements. Since the first240

two principal components represent the directions241

with the largest variance among the embeddings,242

this indicates that the introduction of the prompt243

makes the structure related to text truthfulness in244

the embeddings more salient.245

Moreover, to accurately describe the differences246

in structural salience, we performed a more detailed247

variance analysis. We believe that the proportion248

of the variance along a particular direction relative249

to the total variance can reflect the salience of the250

structure in that direction. Therefore, we subtracted251

the average embedding of false statements from the252

average embedding of true statements within each253

dataset, and referred to this direction as the ’truth-254

fulness direction’. This was first used by Marks255

and Tegmark (2023) and its formula is as follows:256

θ =
1

N+

N+∑
i=1

v+i − 1

N−

N−∑
i=1

v−i , (1)257

where θ represents the truthfulness direction in the258

dataset D, v+i and v−i denote the embeddings corre-259

sponding to true and false statements, respectively,260

and N+ and N− represent their counts.261

Then we performed variance analysis along this262

direction. Let vi represent the embedding corre-263

sponding to a specific statement within dataset D,264

and let N denote the total number of statements.265

By calculating266

v̂i = vi −
1

N

N∑
j=1

vj , (2)267

we can use the de-centered vectors v̂i to form a data268

matrix X = (v̂1, v̂2, . . . , v̂N )T , and then compute269

the covariance matrix corresponding to X:270

Σ =
1

N − 1
XTX. (3)271

In this way, we obtain the total variance among all 272

embeddings in dataset D: 273

VT = Trace(Σ) (4) 274

and the variance along the truthfulness direction: 275

Vθ =
θTΣθ

∥θ∥2
. (5) 276

Finally, we can use the ratio 277

R =
Vθ

VT
(6) 278

to represent the salience of the structure related 279

to text truthfulness in dataset D. We calculated 280

the corresponding variance ratios on the six sub- 281

datasets of the True-False dataset and presented the 282

results in Figure 2. 283

We can observe that after the introduction of 284

the prompt, this ratio shows a significant increase 285

for all sub-datasets, indicating that the differences 286

among the embeddings begin to concentrate more 287

along the truthfulness direction. This enhances the 288

salience of the structure related to text truthfulness 289

in LLMs’ internal states, making it easier for hallu- 290

cination detectors to learn. 291

3.2 Effect of Prompt on Structural 292

Consistency 293

When we aim to apply detectors trained in one do- 294

main to others, the consistency of this structure 295

becomes particularly important. A more consis- 296

tent structure will lead to better generalization per- 297

formance. Therefore, we continued to utilize the 298

’truthfulness direction’ defined by Equation (1) to 299

analyze the consistency of this structure across dif- 300

ferent datasets and use the cosine similarity to rep- 301

resent this consistency: 302

cij =
θi · θj

∥θi∥∥θj∥
, (7) 303

where cij represents the cosine of the angle be- 304

tween two truthfulness directions. 305

The calculation results for the six sub-datasets 306

of the True-False dataset are presented in Table 1. 307

We can see that the introduction of the prompt sig- 308

nificantly increases the cosine similarity between 309

the truthfulness directions across different datasets, 310

indicating that the structure related to text truthful- 311

ness between different datasets becomes more con- 312

sistent. This consistency will help improve the gen- 313

eralization performance of related detectors, which 314

use LLMs’ internal states as input features to deter- 315

mine the truthfulness of statements. 316
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Table 1: The cosine similarity between the truthfulness directions across different topics in the True-False dataset,
before and after Prompt 1 addition.

Cosine Similarity Between Truthfulness Directions Cosine Similarity After Prompt 1 Addition

Datasets Animals Cities Comp. Elements Facts Invent. Animals Cities Comp. Elements Facts Invent.
Animals 1.0000 0.4368 0.4668 0.5498 0.6950 0.3786 1.0000 0.8037 0.7589 0.7284 0.8345 0.8333
Cities 0.4368 1.0000 0.4122 0.3300 0.4707 0.2520 0.8037 1.0000 0.8349 0.7253 0.7274 0.8540
Comp. 0.4668 0.4122 1.0000 0.4302 0.5691 0.4102 0.7589 0.8349 1.0000 0.7717 0.7255 0.8210
Elements 0.5498 0.3300 0.4302 1.0000 0.6258 0.3301 0.7284 0.7253 0.7717 1.0000 0.8175 0.8071
Facts 0.6950 0.4707 0.5691 0.6258 1.0000 0.4757 0.8345 0.7274 0.7255 0.8175 1.0000 0.7950
Invent. 0.3786 0.2520 0.4102 0.3301 0.4757 1.0000 0.8333 0.8540 0.8210 0.8071 0.7950 1.0000

Average 0.5878 0.4836 0.5481 0.5443 0.6394 0.4744 0.8265 0.8242 0.8187 0.8083 0.8167 0.8517

4 Methodology317

The analyses in sections 3 indicate that the intro-318

duction of appropriate prompts can guide changes319

to the structure related to text truthfulness in LLMs’320

internal states, and these changes will facilitate our321

use of LLMs’ internal states as features to perform322

the hallucination detection task. Based on this in-323

sight, we propose a novel framework PRISM, i.e.,324

PRompt-guided Internal States for hallucination de-325

tection of Large Language Models. Our framework326

consists of two components: First,327

Our framework consists of two components:328

First, we generate a large number of candidate329

prompt templates and select the one that best fits the330

current task. We manually construct a prompt tem-331

plate P related to the hallucination detection task,332

and then we use the language model L to generate333

multiple candidate prompt templates {Pi}i=1,...,N334

that are similar in meaning but different in structure.335

For each Pi, we combine it with the text aj from336

the labeled dataset A to obtain the text Pi(aj), and337

then input it into L to obtain the corresponding fea-338

ture vector vij in the internal states. Subsequently,339

we use all feature vectors {vij}j=1,...,M to calcu-340

late the structure salience index Ri corresponding341

to Pi on A and select the prompt template with the342

highest index as our final prompt template Ps.343

Next, we integrate the prompt-guided internal344

states with existing hallucination detection methods345

to construct a more advanced detector. We train the346

hallucination detector D on the dataset A using all347

feature vectors {vsj}j=1,...,M and their labels. For348

new text T to be detected, we similarly combine349

it with the prompt template Ps to obtain the text350

Ps(T ) and input it into the language model L to351

obtain the corresponding feature vector v. Finally,352

we input v into the hallucination detector D to353

obtain its hallucination label H .354

In the following subsections, we will provide a355

more detailed explanation of some key steps.356

4.1 Prompt Generation 357

To obtain suitable candidate prompt templates for 358

the hallucination detection task, we can use LLMs 359

to assist in this process. First, we manually con- 360

struct a simple prompt, such as Prompt 1 in Sec- 361

tion 3. Next, we use this prompt to construct the 362

following one: 363

------------------------------------------------ 364
Prompt 2: 365
"Here is a statement: '[statement]' 366
Is the above statement correct?" 367
This is a universal prompt template. Please 368
generate templates with similar meanings but 369
diverse forms. The template should include the 370
embedding position of [statement]. 371
------------------------------------------------ 372

Finally, we input the above prompt into LLMs to 373

obtain a large number of prompt templates similar 374

to Prompt 1. For example, we used Prompt 2 to 375

query GPT-4o, resulting in 10 prompt templates 376

that have similar meanings but different formats. 377

The relevant content is provided in Appendix C. 378

4.2 Prompt Selection 379

Once we have a large number of suitable prompt 380

templates, we need to select the most appropriate 381

one among them to perform our hallucination de- 382

tection task. A simple and effective method is to 383

calculate the variance ratio corresponding to each 384

prompt template on the labeled dataset using Equa- 385

tion (6) and then leverage this ratio to guide our 386

prompt selection. A higher ratio indicates that the 387

prompt is more likely to achieve better results. 388

It is worth noting that this process relies on the 389

selection of feature vectors from the internal states 390

of LLMs. We selected the contextualized embed- 391

ding corresponding to the last token in the final 392

layer of LLaMA2-Chat-7B as the feature vector 393

and calculated the corresponding variance ratio for 394

each of the 10 prompt templates in Appendix C. We 395

computed the variance ratios for each prompt tem- 396

plate across the six sub-datasets of the True-False 397
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Table 2: Average variance ratios for the 10 candidate prompt templates along with their ranking.

Prompt I II III IV V VI VII VIII IX X Without

Ratio 0.1093 0.1312 0.1291 0.1407 0.0875 0.1165 0.1041 0.1265 0.1228 0.1513 0.0725
Ranking 8 3 4 2 10 7 9 5 6 1 11

dataset, averaged the results, and ranked them, as398

shown in Table 2.399

According to Table 2, the 10th prompt template400

achieved the highest variance ratio and we present401

its form below:402

------------------------------------------------403
Prompt 3:404
Does the statement '[statement]' accurately405
reflect the truth?406
------------------------------------------------407

We selected this prompt template for our frame-408

work in the experiments presented in Section 5. We409

also conducted the same analysis on this prompt410

as we did in Section 3 and presented the results in411

Appendix B.412

5 Experiment413

5.1 Datasets and Metric414

We evaluate our PRISM and other baselines on415

the True-False and LogicStruct datasets which are416

detailed in section 2. Since the ratio of the two417

classes of labels in these datasets is close to 1:1,418

classification accuracy is an appropriate metric.419

5.2 Baselines420

We choose the following methods as baselines:421

• LN-PP (Manakul et al., 2023) detects hallucina-422

tions based on the average probabilities of tokens423

generated by LLMs. We first determine a thresh-424

old, and then use it for label classification.425

• SAPLMA (Azaria and Mitchell, 2023) is an ef-426

fective supervised learning method. It uses acti-427

vation values in LLMs as feature vectors to train428

a Multilayer Perceptron (MLP) network as the429

hallucination detector.430

• MIND (Su et al., 2024) is an unsupervised learn-431

ing framework. It automatically generates la-432

beled datasets from Wikipedia articles for train-433

ing the hallucination detector. Other settings are434

consistent with the SAPLMA method.435

• MM(Marks and Tegmark, 2023) uses a simple436

mass-mean probe to distinguish between true and437

false statements. This method selects specific ac-438

tivation values as feature vectors and uses Equa-439

tion (1) to calculate the truthfulness direction on440

the labeled dataset. For the text to be detected, 441

it first projects the feature vector onto the truth- 442

fulness direction by taking the dot product, then 443

applies the sigmoid function, and finally rounds 444

the result to obtain the label. 445

• PRISM. Our framework selects Prompt 3 from 446

Section 4.2 as the prompt template, and integrates 447

with the SAPLMA and MM methods to obtain 448

the PRISM-SAPLMA and PRISM-MM methods. 449

5.3 Implementation Details 450

We conducted our experiments using LLaMA2- 451

7B-Chat and LLaMA2-13B-Chat (Touvron et al., 452

2023b). The activation values were selected from 453

the contextualized embeddings corresponding to 454

the last token in the final layer of the LLMs. In the 455

SAPLMA and MIND methods, the dimensions of 456

the detectors for each layer were 256, 128, 64, and 457

2, with a dropout rate of 20% applied in the first 458

layer. The activation function was ReLU, and the 459

optimizer was Adam. These settings are the same 460

as in the original paper (Su et al., 2024). 461

Our experiments focused on the generalization 462

performance of different methods across different 463

domains. For the SAPLMA method, we trained the 464

detector separately on each sub-dataset of the True- 465

False dataset and tested it on all other sub-datasets. 466

Thus, for a single sub-dataset, we obtained mul- 467

tiple test results from detectors trained on other 468

sub-datasets, and we averaged these results to ob- 469

tain the final classification accuracy for this sub- 470

dataset. In the LogicStruct dataset, we concentrated 471

on training with affirmative statements and testing 472

on other grammatical structures, as previous studies 473

have indicated that achieving good generalization 474

results in this scenario is challenging (Marks and 475

Tegmark, 2023; Bürger et al., 2024). Both the MM 476

and LN-PP methods employed the same evaluation 477

approach as the SAPLMA. The MIND method was 478

trained on its automatically generated dataset and 479

tested on each sub-dataset of the True-False and 480

LogicStruct datasets. The settings of the methods 481

under PRISM framework remain consistent with 482

those of the original methods. 483

For all detectors that required training, we split a 484

validation set from the training set at a 4:1 ratio and 485

6



Table 3: The experimental results on the True-False dataset using LLaMA2-7B-Chat.

Baselines Animals Cities Comp. Elements Facts Invent. Average

LN-PP 0.5496 0.5653 0.5357 0.5727 0.5948 0.5527 0.5618
MIND 0.4626 0.4664 0.4997 0.4850 0.5025 0.5023 0.4864
MM 0.5300 0.5688 0.5648 0.5581 0.6137 0.5075 0.5572
SAPLMA 0.6539 0.6700 0.6262 0.6057 0.7585 0.6233 0.6563

PRISM-MM 0.7004 0.9060 0.7908 0.6385 0.7031 0.7756 0.7524
PRISM-SAPLMA 0.7147 0.8936 0.8279 0.6705 0.7539 0.7804 0.7735

Table 4: The experimental results on the True-False dataset using LLaMA2-13B-Chat.

Baselines Animals Cities Comp. Elements Facts Invent. Average

LN-PP 0.5538 0.5564 0.5397 0.5800 0.5954 0.5612 0.5644
MIND 0.4957 0.4705 0.4372 0.5011 0.4986 0.4502 0.4756
MM 0.5330 0.5366 0.5438 0.5327 0.6196 0.5085 0.5457
SAPLMA 0.6584 0.7065 0.6721 0.6472 0.8054 0.6253 0.6858

PRISM-MM 0.7111 0.8837 0.8498 0.7092 0.7804 0.7993 0.7889
PRISM-SAPLMA 0.7405 0.8960 0.8435 0.6997 0.7918 0.8209 0.7987

selected the model parameters with the highest ac-486

curacy on the validation set over 10 training epochs487

as the test parameters. The final results presented488

are the averages obtained from training under three489

different random seeds.490

5.4 Experimental Results491

We can see from Table 3 and 4 that our framework492

significantly outperforms other baselines in terms493

of the classification accuracy on the True-False494

dataset. On almost every sub-dataset of differ-495

ent topics (5 out of 6 topics), our framework496

substantially improves the generalization per-497

formance of the original methods. Additionally,498

there is a significant difference in the performance499

of the original MM and SAPLMA methods, which500

may be due to the simpler structure of the detector501

used in the MM method compared to that in the502

SAPLMA method. However, after integrating both503

into our framework, these two methods achieve504

similar performance. According to Section 3.1,505

this may be because the introduction of the prompt506

makes the structure related to text truthfulness more507

salient in the LLMs’ internal states, making it eas-508

ier for detectors to capture this structure. On the509

Facts sub-dataset, the original SAPLMA method510

and our framework achieve nearly identical accu-511

racy. As shown in Figure 1, before the introduction512

of prompts, the true and false statements in the513

Facts sub-dataset already exhibit clear separability,514

so it is difficult to further enhance this structure by515

appropriate prompts.516

Table 5 presents the experimental results on the517

LogicStruct dataset. We can observe that, except518

for our framework, other baselines struggle to gen- 519

eralize the training results on affirmative statements 520

to other grammatical structures. According to the 521

observations made by Bürger et al. (2024), this is 522

because the structure related to text truthfulness 523

in affirmative statements is different from the cor- 524

responding structure in other grammatical struc- 525

tures. However, our framework achieves signif- 526

icant generalization performance across differ- 527

ent grammatical structures. This indicates that 528

the introduction of the prompt indeed makes the 529

structure related to text truthfulness more consis- 530

tent across different datasets, which aligns with the 531

observation in Section 3.2. 532

5.5 Ablation Studies 533

5.5.1 Impact of Prompt Selection 534

In this section, we focus on the impact of prompt 535

selection. We conducted experiments using the 536

PRISM-MM method on all 10 prompt templates 537

presented in Appendix C, with the results presented 538

in Table 6. We can observe that all the prompt 539

templates significantly improved the average ac- 540

curacy compared to the result of the original MM 541

method. This indicates that the impact of prompts 542

on improving the generalization performance of 543

hallucination detectors is general and stable. 544

In addition, by combining the ranking informa- 545

tion from Table 2 and Table 6, we can see that the 546

top 4 prompt templates selected based on the vari- 547

ance ratios all perform within the top 5 in actual ex- 548

periments, while the two worst-performing prompt 549

templates correspond to the two lowest variance 550

ratios. These results indicate that the variance ratio 551
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Table 5: The overall experimental results on the LogicStruct dataset.

LLaMA2-7B-Chat LLaMA2-13B-Chat

Baselines Neg. Conj. Disj. Average Neg. Conj. Disj. Average

LN-PP 0.4108 0.5278 0.5743 0.5043 0.4263 0.5243 0.5863 0.5123
MIND 0.5219 0.4318 0.4969 0.4835 0.4849 0.4873 0.5038 0.4920
MM 0.4948 0.4937 0.5013 0.4966 0.5071 0.4895 0.5020 0.4995
SAPLMA 0.4864 0.5196 0.5030 0.5030 0.5155 0.6788 0.5186 0.5710

PRISM-MM 0.5548 0.8087 0.5580 0.6405 0.5260 0.8734 0.6207 0.6734
PRISM-SAPLMA 0.7345 0.7529 0.5329 0.6734 0.7389 0.8112 0.5722 0.7074

Table 6: The experimental results of all 10 prompt templates on the True-False dataset using LLaMA2-7B-Chat.

Prompt I II III IV V VI VII VIII IX X Without

Acc. 0.7217 0.7678 0.7297 0.7398 0.6997 0.7749 0.6931 0.7162 0.7003 0.7524 0.5572
Ranking 6 2 5 4 9 1 10 7 8 3 11

can help us select prompt templates that achieve552

better generalization results in actual experiments553

while avoiding poorly performing ones.554

5.5.2 Impact of Layer Selection555

In addition to selecting the contextualized embed-556

dings corresponding to the last token in the final557

layer of LLMs as feature vectors, we also extracted558

the embeddings corresponding to the last token in559

the middle layer (16th) of LLaMA2-7B-Chat to560

evaluate our framework. We conducted the same561

experiments on the True-False dataset with our562

framework and the corresponding original meth-563

ods, as shown in the last four rows of Table 7.564

Compared to the results in Table 3, the perfor-565

mance of the original methods has worsened, while566

our framework has achieved better results. This in-567

dicates that our framework exhibits good stability568

with respect to different layer selections.569

5.5.3 Impact of Internal States570

After introducing the prompt, is it possible to as-571

sess the truthfulness of the text directly based on572

LLMs’ responses without relying on their internal573

states? To investigate this question, after inputting574

the prompt into LLaMA2-7B-Chat, we directly ex-575

Table 7: The experimental results on the True-False
datase using feature vectors from the middle layer of
LLaMA2-7B-Chat and the next token probabilities from
LLaMA2-7B-Chat.

Baselines Average Accuracy

Yes/No 0.6166

MM(middle) 0.5166
SAPLMA(middle) 0.5766

PRISM-MM(middle) 0.7924
PRISM-SAPLMA(middle) 0.7938

tracted the token probabilities for " Yes" and " No" 576

when the LLM was going to generate the next token 577

and calculated their ratio p[3869]/p[1939], where 578

p represents the vocabulary probabilities for gen- 579

erating the next token. We used whether the ratio 580

is greater than 1 to determine the label of the origi- 581

nal text. The average accuracy on the True-False 582

dataset is shown in the first row of Table 7. 583

We can observe a significant accuracy difference 584

between directly using the responses generated 585

by the LLM and training detectors based on the 586

prompt-guided internal states. This indicates that 587

the LLM’s internal states contain more information 588

related to text truthfulness, which is not observable 589

from the LLM’s responses but still plays a crucial 590

role in hallucination detection. 591

6 Conclusions 592

In this paper, we first investigated the effect of 593

specific prompts on the structure related to text 594

truthfulness in LLMs’ internal states. We found 595

that suitable prompts can make this structure more 596

salient and consistent across datasets from differ- 597

ent domains, facilitating hallucination detectors in 598

learning this structure and improving their gener- 599

alization performance. Based on this insight, we 600

introduced a novel framework, prompt-guided in- 601

ternal states for hallucination detection of large 602

language models, namely PRISM. This framework 603

integrates the prompt-guided internal states with 604

existing hallucination detection methods to obtain 605

more advanced detectors. Finally, we conducted ex- 606

periments across various baselines on datasets from 607

different domains, and the results demonstrated that 608

our framework can significantly enhance the gen- 609

eralization performance of existing hallucination 610

detection methods. 611
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7 Limitations612

We acknowledge that our research still has some613

limitations. When detecting hallucinations in the614

content generated by LLMs, we heavily rely on615

their internal states, which may be challenging to616

access in some cases, requiring us to use a proxy617

model. Additionally, our framework does not lever-618

age other information produced by LLMs during619

text generation, such as probability information620

and the generated text itself. In future research, we621

will explore fully utilizing various types of infor-622

mation produced by LLMs during text generation623

to achieve more effective hallucination detection.624

8 Ethics Statement625

The development and application of the PRISM626

framework for Large Language Models hallucina-627

tion detection are guided by the principle of assess-628

ing the reliability and credibility of AI-generated629

content. PRISM aims to reduce the risk of users630

being misled by AI-generated content, thereby con-631

tributing to safer and more trustworthy AI applica-632

tions. Additionally, the datasets used in this project633

are publicly available and do not involve personal634

or sensitive data, ensuring privacy and security. We635

need to recognize that our framework classifies text636

based on the model’s internal states, and thus may637

inherit biases from the language model on certain638

issues, potentially leading to incorrect judgments.639

Therefore, we encourage further research and col-640

laboration to develop ethical, fair, and trustworthy641

AI systems.642
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Table 8: The information of the True-False dataset, where
T=0 indicates that the sentence is annotated as false, and T=1
indicates true.

Topic #Sentence #T=0 #T=1

Animals 1008 504 504
Cities 1458 729 729

Companies 1200 600 600
Elements 930 465 465

Facts 613 307 306
Inventions 876 412 464

A Dataset Details766

The following are some examples of statements767

from the True-False dataset:768

• Animals: "The gazelle has distinctive orange769

and black stripes and is an apex predator."770

• Cities: "Oranjestad is a city in Aruba."771

• Companies: "Meta Platforms has headquar-772

ters in United States."773

• Elements: "Silver is used in catalytic convert-774

ers and some electronic components."775

• Facts: "The planet Jupiter has many moons."776

• Inventions: "Narinder Singh Kapany invented777

the programming language (theoretical)."778

We can observe that the displayed statements con-779

tain both true and false information, and the rele-780

vant details are shown in Table 8.781

Examples of sentences with different grammat-782

ical structures in the LogicStruct dataset are as783

follows:784

• Affirmative statements: "The Spanish word785

’dos’ means ’enemy’."786

• Negated statements: "The Spanish word ’dos’787

does not mean ’enemy’."788

• Logical conjunctions: It is the case both that789

[statement 1] and that [statement 2].790

• Logical disjunctions: It is the case either that791

[statement 1] or that [statement 2].792

In both Logical conjunctions and Logical disjunc-793

tions, statement 1 and statement 2 are derived from794

Affirmative statements and sampled in a way that795

ensures label balance across each dataset. Addi-796

tional information is presented in Table 9.797

Table 9: The information of the LogicStruct dataset, where
{Topic} in the Name refers to "animal_class," "cities," "in-
ventors," "element_symb," "facts," and "sp_en_trans," and
#Sentence represents the total number of data across all topics
for each grammatical structure.

Name Description #Sentence

{Topic} Affirmative statements 3167
{Topic}_neg Negated statements 3167
{Topic}_conj Logical conjunctions 3998
{Topic}_disj Logical disjunctions 3000

Table 10: The cosine similarity between the truthful-
ness directions across different topics in the True-False
dataset after Prompt 3 addition.

Datasets Animals Cities Comp. Elements Facts Invent.
Animals 1.0000 0.8370 0.8043 0.8144 0.8519 0.8811
Cities 0.8370 1.0000 0.8113 0.7835 0.8570 0.8613
Comp. 0.8043 0.8113 1.0000 0.8012 0.7927 0.8192
Elements 0.8144 0.7835 0.8012 1.0000 0.8327 0.8154
Facts 0.8519 0.8570 0.7927 0.8327 1.0000 0.8522
Invent. 0.8811 0.8613 0.8192 0.8154 0.8522 1.0000

Average 0.8265 0.8242 0.8187 0.8083 0.8167 0.8517

B Analysis of Prompt 3 798

Consistent with the analysis of Prompt 1 in Sec- 799

tion 3, we calculated the variance ratios of Prompt 3 800

on each sub-dataset of the True-False dataset. The 801

results before and after the introduction of Prompt 3 802

are presented in Figure 3. We also calculated the co- 803

sine similarity between the truthfulness directions 804

across these sub-datasets after the introduction of 805

Prompt 3, as shown in Table 10. 806

We can observe that Prompt 3 significantly en- 807

hances the salience and consistency of the structure 808

related to text truthfulness in the embeddings. This 809

is consistent with the conclusion in Section 3, in- 810

dicating that using prompts to guide changes in 811

LLMs’ internal states is generally effective. 812

Anim
als

Citie
s

Com
pa

nie
s

Elem
en

ts
Fac

ts

Inv
en

tio
ns

Ave
rag

e
0

0.05

0.1

0.15

0.2

0.25

0.3

V
ar

ia
nc

e
R

at
io

Before
After

Figure 3: Comparison of the variance ratios before and
after the introduction of Prompt 3 on each sub-dataset
of the True-False dataset.

11



C Generation of Prompt Templates813

Question:
"Here is a statement: ’[statement]’
Is the above statement correct?"
This is a universal prompt template. Please generate templates with similar meanings but diverse
forms. The template should include the embedding position of [statement].
GPT-4o:
Here are various templates with diverse forms that ask about the correctness or validity of a given
statement:
1. "Is it accurate to say that ’[statement]’?"
2. "Would you consider the statement ’[statement]’ to be correct?"
3. "Can we confirm that ’[statement]’ is true?"
4. "Does the statement ’[statement]’ hold true?"
5. "Is ’[statement]’ a valid statement?"
6. "Is there accuracy in the claim ’[statement]’?"
7. "Could ’[statement]’ be considered a factual statement?"
8. "Is it correct to assume that ’[statement]’ is true?"
9. "Would it be right to say ’[statement]’ is accurate?"
10. "Does the statement ’[statement]’ accurately reflect the truth?"
Each version maintains the focus on verifying the truth or accuracy of the statement in question.

814
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