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Abstract

This paper develops a conformal method to compute prediction intervals for non-
parametric regression that can automatically adapt to skewed data. Leveraging
black-box machine learning algorithms to estimate the conditional distribution of
the outcome using histograms, it translates their output into the shortest prediction
intervals with approximate conditional coverage. The resulting prediction intervals
provably have marginal coverage in finite samples, while asymptotically achiev-
ing conditional coverage and optimal length if the black-box model is consistent.
Numerical experiments with simulated and real data demonstrate improved perfor-
mance compared to state-of-the-art alternatives, including conformalized quantile
regression and other distributional conformal prediction approaches.

1 Introduction

1.1 Problem statement and motivation

We consider the problem of predicting with confidence a response variable Y ∈ R given p features
X ∈ Rp for a test point n+1, utilizing n pairs of observations {(X(i), Y (i))}ni=1 drawn exchangeably
(e.g., i.i.d.) from some unknown distribution, and leveraging any machine-learning algorithm.
Precisely, ∀α ∈ (0, 1), we seek a prediction interval Ĉn,α(Xn+1) ⊂ R for Yn+1 satisfying the
following three criteria. First, Ĉn,α should have finite-sample marginal coverage at level 1− α,

P
[
Yn+1 ∈ Ĉn,α(Xn+1)

]
≥ 1− α. (1)

Second, Ĉn,α should approximately have conditional coverage at level 1− α,

P
[
Yn+1 ∈ Ĉn,α(x) | Xn+1 = x

]
≥ 1− α, ∀x ∈ Rp, (2)

meaning it should approximate this objective in practice, and ideally achieve it asymptotically under
suitable conditions in the limit of large sample sizes. Third, Ĉn,α should be as narrow as possible.

We tackle this challenge with conformal inference [24, 35], which allows one to convert the output
of any black-box machine learning algorithm into prediction intervals with provable marginal cov-
erage (1). The key idea of this framework is to compute a conformity score for each observation,
measuring the discrepancy, according to some metric, between the true value of Y and that predicted
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by the black-box model. The model fitted on the training data is then applied to hold-out calibration
samples, producing a collection of conformity scores. As all data points are exchangeable, the
empirical distribution of the calibration scores can be leveraged to make predictive inferences about
the conformity score of a new test point. Finally, inverting the function defining the conformity
scores yields a prediction set for the test Y . This framework can accommodate almost any choice
of conformity scores, and in fact many different implementations have already been proposed to
address our problem. However, it remains unclear how to implement a concrete method from this
broad family that can lead to the most informative possible prediction intervals. Our contribution
here is to develop a practical solution, following the three criteria defined above, that performs better
compared to existing alternatives and is asymptotically optimal under certain assumptions.

It is worth emphasizing that constructing a short prediction interval with guaranteed coverage is a
reasonable approach to quantify and communicate predictive uncertainty in regression problems,
although it is of course not the only one. To name an alternative, one could compute a non-convex
prediction set with analogous coverage [20], which might be more appropriate in some situations,
but is also more easily confusing. For example, it could be informative for a physician to know
that the future blood pressure of a patient with certain characteristics is predicted to be within the
range [120,129] mmHg. However, it would not be more helpful to report instead the following
non-convex region: [120, 120.012]∪ [120.015, 120.05]∪ [121, 122.7]∪ [123.1, 127.2]∪ [127.8, 129]
mmHg. Indeed, in the second case it would not be clear (a) whether the multi-modal nature of that
prediction is significant or a spurious consequence of overfitting, and (b) how the physician would
act upon that prediction any differently than if it had been [120,129] mmHg. Therefore, we focus on
prediction intervals in this paper because they are generally easier to interpret than arbitrary regions,
and they are also less likely to convey a false sense of confidence.

1.2 Preview of conformal histogram regression

Imagine an oracle with access to PY |X , the distribution of Y conditional on X , which leverages such
information to construct optimal prediction intervals as follows. For simplicity, suppose PY |X has a
continuous density f(y | x) with respect to the Lebesgue measure, although this could be relaxed
with more involved notation. Then, the oracle interval for Yn+1 | Xn+1 = x would be:

Coracle
α (x) =

[
loracle1−α (x), uoracle

1−α (x)
]
, (3)

where, for any τ ∈ (0, 1], loracleτ (x) and uoracle
τ (x) are defined as:

[loracleτ (x), uoracle
τ (x)] := argmin

(l,u)∈R2 : l≤u

{
u− l :

∫ u

l

f(y | x)dy ≥ τ

}
. (4)

This is the shortest interval with conditional coverage (2). If the solution to (4) is not unique (e.g.,
if f(· | x) is piece-wise constant), the oracle picks any solution at random. Of course, this is not a
practical method because f is unknown. Therefore, we will approximate (4) by fitting a black-box
model on the training data, and then use conformal prediction to construct an interval accounting
for any possible estimation errors. Specifically, we replace f in (4) with a histogram approximation,
hence why we call our method conformal histogram regression, or CHR. The output interval is then

Ĉn,α(x) =
[
l̂τ̂ (x), ûτ̂ (x)

]
, (5)

where l̂τ̂ (x) and ûτ̂ (x) approximate the analogous oracle quantities in (4). The value of τ̂ in (5) will
be determined by suitable conformity scores evaluated on the hold-out data, and it may be larger than
1 − α if the model for f is not very accurate. However, if the fitted histogram is close to the true
PY |X , the interval in (5) will resemble that of the oracle (3).

Figure 1 previews an application to toy data, comparing CHR to conformalized quantile regression
(CQR) [30]; see Section 4.2 for more details. CHR finds the shortest interval such the corresponding
area under the histogram is above τ , for any τ ∈ (0, 1], and then calibrates τ to guarantee marginal
coverage above 1−α; this extracts more information from the model compared to CQR. For example,
CHR adapts automatically to the skewness of Y | X , returning intervals delimited by the 0%–90%
quantiles in this example, which are shorter than the symmetric ones (5%–95%) sought by CQR.
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Figure 1: CHR prediction intervals in an example with one variable, compared to those obtained with
CQR [30]. Both methods guarantee 90% marginal coverage and are based on the same deep quantile
model. (a) Histogram estimate of PY |X for a point with X ≈ 0.2. The CHR interval corresponds to
the shaded part of the histogram, whose area is approximately 0.9, as marked by the solid vertical
lines. The dashed lines denote the CQR interval. (b) Prediction bands for the two methods, as a
function of X . CHR: empirical marginal coverage 0.9, estimated conditional coverage 0.9, and
average length 3.2. The corresponding quantities for CQR are: 0.9, 0.9, and 5.2, respectively.

1.3 Related work

This work is inspired by the conformity scores introduced by [31] for multi-class classification,
the underlying idea of which can be repurposed here. Nonetheless, the extension to our problem
involves several innovations. This paper connects [31] to other conformal methods for continuous
responses [24, 25, 35], which sought objectives similar to ours by leveraging quantile regression [17,
23, 30, 32, 36] or non-parametric density estimation [10, 21], sometimes considering multi-modal
prediction sets instead of intervals [20]. Our approach also exploits black-box models for distributional
estimation; however, we introduce more efficient conformity scores.

We seek the shortest intervals with marginal coverage while approximating as well as possible
conditional coverage, although the latter is impossible to guarantee in finite samples [16, 34]. The
performances of prior approaches have been measured in terms of these criteria, yet others have not
sought them as directly. Indeed, if the black-box model is consistent for PY |X , our method becomes
asymptotically equivalent to the oracle (3)–(4), under some technical assumptions. This property
does not hold for other existing methods because they tend to produce symmetric intervals, with fixed
lower and upper miscoverage rates (the probabilities of the outcome being either below or above the
output interval, respectively), which may be sub-optimal if the data have unknown skewness.

2 Methods

The proposed method consists of four main components: the estimation and binning of a conditional
model for the outcome, the construction of a nested sequence of approximate oracle intervals based
on the above, the computation of suitable conformity scores, and their conformal calibration.

2.1 Estimating conditional histograms

We partition the domain of Y into m bins [bj−1, bj), for some sequence b0 < . . . < bm. With little
loss of generality, assume Y is bounded: −C = b0 < Y < bm = C, for some C > 0. Then, we
solve a discrete version of the problem stated in the introduction: we seek the smallest possible
contiguous subset of bins with 1− α predictive coverage. If m is large and the bins are narrow, this
problem is not very different from the original one, although it is more amenable to solution.

For simplicity, we present our method from a split-conformal perspective [24, 35]; extensions to other
hold-out approaches [7, 22, 35] will be intuitive. Let Dtrain,Dcal ⊂ {1, . . . , n} denote any partition
of the data into training and calibration subsets, respectively. Dtrain is used to train a black-box
model for the conditional probabilities that Y is within any of the above bins: ∀j ∈ {1, . . . ,m},

πj(x) := P[Y ∈ [bj−1, bj) | X = x]. (6)
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There exist many tools to approximate PY |X and obtain estimates π̂j(x) of πj(x), including quantile
regression [27, 28, 33], Bayesian additive regression trees [11], or any other non-parametric condi-
tional density estimator [14, 19, 26]. Our method can directly be applied with any of these models,
but we found multiple quantile regression to work particularly well [17, 23, 30, 32], and therefore we
will focus on it in this paper. Referring to Supplementary Section S1.1 for implementation details
and information about the computational cost of the learning algorithm (which is comparable to that
required by CQR [30]), we thus take these black-box estimates π̂j(x) as fixed henceforth.

Note that estimating conditional distributions is more challenging if the number of variables is larger.
However, this is a fundamental difficulty of high-dimensional regression, not a particular limitation
of the proposed CHR. Although our method utilizes conditional histograms learnt from the data, its
performance is not directly measured in terms of how closely these resemble the true PY |X . Instead,
as we shall see, CHR only needs to detect the possible skewness of Y | X and estimate reasonably
well some lower and upper quantiles of this conditional distribution. Therefore, its estimation task is
not much more difficult than that of CQR [30], as skewness is relatively easy to detect.

2.2 Constructing a nested sequence of approximate oracle intervals

For any partition B = (b0, . . . , bm) of the domain of Y , let π = (π1, . . . , πm) be a unit-sum sequence,
depending on x ∈ Rp; this may be seen as a histogram approximation of PY |X (6). For simplicity,
assume all histogram bins have equal width, although this is unnecessary. Then, define the following
bi-valued function S taking as input x ∈ Rp, π, τ ∈ (0, 1], and two intervals S−, S+ ⊆ {1, . . . ,m}:

S(x, π, S−, S+, τ) := argmin
(l,u)∈{1,...,m}2 : l≤u

|u− l| :
u∑

j=l

πj(x) ≥ τ, S− ⊆ [l, u] ⊆ S+

 . (7)

Above, it is implicitly understood we choose the value of (l, u) minimizing
∑u

j=l πj(x) among the
feasible ones with minimal |u− l|, if the optimal solution would not otherwise be unique. Therefore,
we can assume without loss of generality the solution to (7) is unique; if that is not the case, we
can break the ties at random by adding a little noise to π. The problem in (7) can be solved at
computational cost linear in the number of bins, and it is equivalent to the standard programming
challenge of finding the smallest positive subarray whose sum is above a given threshold. Note that
we will sometimes refer to intervals on the grid determined by B as either contiguous subsets of
{1, . . . ,m} (e.g., S−) or as pairs of lower and upper endpoints (e.g., [l, u]).

If S− = ∅ and S+ = {1, . . . ,m}, the expression in (7) computes the shortest possible interval with
total mass above τ according to π(x). Further, if πj is the mass in the j-th bin according to the
true PY |X , then S(x, π, ∅, {1, . . . ,m}, 1 − α) is the discretized version of the oracle interval (3)–
(4). In general, the optimization in (7) involves the additional nesting constraint that the output S
must satisfy S− ⊆ S ⊆ S+, which will be needed to guarantee our method has valid marginal
coverage [17]. Intuitively, it is helpful to work with a nested sequence because this ensures the
prediction intervals are monotone increasing in τ , essentially reducing the calibration problem to
that of selecting the appropriate value of τ that yields the desired marginal coverage. Note that the
inequality in (7) involving τ may not be binding at the optimal solution due to the discrete nature of
the optimization problem. However, the above oracle can be easily modified by introducing some
suitable randomization in order to obtain valid prediction intervals that are even tighter on average, as
explained in Supplementary Section S1.2.

As π̂ may be an inaccurate estimate of PY |X , we cannot simply plug it into the oracle in (7) and
expect valid coverage. However, for any approximate conditional histogram π̂, we can define a nested
sequence [17] of (randomized) sub-intervals of B, for different values of τ ranging from 0 to 1. Then,
we calibrate τ to obtain the desired 1− α marginal coverage. Precisely, consider an increasing scalar
sequence τt = t/T , for t ∈ {0, . . . , T} with some T ∈ N, and define a corresponding growing
sequence of subsets St ⊆ {1, . . . ,m} as follows. First, fix any starting point t̄ ∈ {0, . . . , T} and
define St̄ by applying (7) without the nesting constraints (with S− = ∅ and S+ = {1, . . . ,m}):

St̄ := S(x, π, ∅, {1, . . . ,m}, τt̄), (8)

Note the explicit dependence on x and π of the left-hand-side above is omitted for simplicity, although
it is important to keep in mind that St̄ does of course depend on these quantities. Figure 2 (second
row) visualizes the construction of St̄ in a toy example with τt̄ = 0.9.
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Figure 2: Schematics for the construction of a nested sequence of approximate oracle prediction
intervals (8)–(10). (a) Conditional histogram approximation of the distribution of Y | X , based on a
black-box model. The shaded areas delimited by the dashed vertical lines denote the shortest intervals
with the desired mass (τ ) under the histograms, subject to the nesting constraints. (b) Sequence
of prediction intervals. The initial interval St̄ is not subject to any nesting constraints. The wider
(above), or narrower (below), intervals must contain St̄ (above), or be contained in it (below).

Having computed the initial interval St for t = t̄, we recursively extend the definition to the wider
intervals indexed by t = t̄+ 1, . . . , T as follows:

St := S(x, π, St−1, {1, . . . ,m}, τt). (9)
See the top row of Figure 2 for a schematic of this step. Similarly, the narrower intervals St indexed
by t = t̄− 1, t̄− 2, . . . 0 are defined recursively as:

St := S(x, π, ∅, St+1, τt). (10)
See the bottom row of Figure 2 for a schematic of this step. As a result of this construction, the
sequence of intervals {St}Tt=0 is nested regardless of the starting point t̄ in (8), as previewed in
Figure 2. However, different choices of t̄ may lead to different sequences, any of which allows
us to obtain provable marginal coverage, as discussed next. As our goal is to approximate the
oracle in (3)–(4) accurately, the most intuitive choice is to pick t̄ such that τt̄ ≈ 1 − α. A more
involved randomized version of this construction, inspired by the more powerful randomized oracle,
is discussed in Supplementary Section S1.2. Note that the randomized version of the nested prediction
intervals will be the one applied throughout this paper and, with a slight overload of notation, we will
simply refer to it as {St}Tt=1. Note also that we will highlight the dependence of this sequence on x
and π by writing it as St(x, π). Further, as we work henceforth with the randomized versions of these
prediction intervals (described in Supplementary Section S1.2), we will refer to them as St(x, ε, π),
where ε is a uniform random variable in [0, 1], independent of everything else.

2.3 Computing conformity scores and calibrating prediction intervals

Given any sequence of nested sets St(x, ε, π), we define the following conformity score function E:
E(x, y, ε, π) := min {t ∈ {0, . . . , T} : y ∈ St(x, ε, π)} . (11)

In words, this computes the smallest index t such that St(x, ε, π) contains y, as in [17, 31]. Equiva-
lently, one can think of these scores as indicating the smallest value of the nominal coverage τ in (7)
necessary to ensure the observed Y is contained in the prediction interval. Our method evaluates (11)
on all calibration samples (Xi, Yi) using the π̂ learnt on the training data; for each i ∈ Dcal, we
generate εi ∼ Unif(0, 1) and store

Ei = E(Xi, Yi, εi, π̂).
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Then, we compute prediction intervals for Yn+1 by looking at the nested sequence in (8)–(10)
corresponding to the new Xn+1 and selecting the interval indexed by the 1− α quantile (roughly) of
{Ei}i∈Dcal . The procedure is outlined in Algorithm 1. Note that the only computationally expensive
component of this method is the estimation of the conditional histograms (see Supplementary
Section S1.1 for details); the construction of the nested prediction intervals and the evaluation of the
conformity scores have negligible cost because the optimization problem in (7) is an easy one.

It may be helpful to point out that, if π provides an accurate representation of the true conditional
distribution of Y | X , then the above conformity scores are uniformly distributed [31]. In that ideal
case, no calibration is needed and indeed our method simply reduces to applying (7) with τ = 0.9
to construct prediction intervals with 90% coverage. In practice, however, π can only be a possibly
inaccurate estimate of PY |X (hence why we will refer to it as π̂ from now on), which means that the
distribution of the conformity scores may not be uniform and the conformal calibration is necessary
to obtain valid coverage.

The next result states that the output of our method has valid marginal coverage, regardless of the
accuracy of π̂. The proof relies on the sequence St being nested; from there, coverage follows from
the results of [17, 31]; see Supplementary Section S1.1.

Algorithm 1: CHR with split-conformal calibration
1 Input: data {(Xi, Yi)}ni=1, Xn+1, partition B of the domain of Y into m equal-sized bins, level

α ∈ (0, 1), resolution T for the conformity scores, starting index t̄ for recursive definition of
conformity scores, black-box algorithm for estimating conditional distributions.

2 Randomly split the training data into two subsets, Dtrain,Dcal.
3 Sample εi ∼ Uniform(0, 1) for all i ∈ {1, . . . , n+ 1}, independently of everything else.
4 Using the data in Dtrain, train any estimate π̂ of the mass of Y | X for each bin in B (6); see

Supplementary Section S1.1 for a concrete approach based on quantile regression.
5 Compute Ei = E(Xi, Yi, εi, π̂) for each i ∈ Dcal, with the function E defined in (11).
6 Compute t̂ = Q̂1−α({Ei}i∈Dcal) as the ⌈(1− α)(1 + |Dcal|)⌉th smallest value in {Ei}i∈Dcal .
7 Select the t̂-th element from {St(Xn+1, εn+1, π̂)}Tt=0, defined in (8)–(10):

Ĉsc
n,α(Xn+1) = St̂(Xn+1, εn+1, π̂).

8 Output: A prediction interval Ĉsc
n,α(Xn+1) for Yn+1.

Theorem 1 (Marginal coverage). If (Xi, Yi), for i ∈ {1, . . . , n + 1}, are exchangeable, then the
output of Algorithm 1 satisfies:

P
[
Yn+1 ∈ Ĉsc

n,α(Xn+1)
]
≥ 1− α. (12)

Note that Theorem 1 provides only a lower bound; a nearly matching upper bound on the marginal
coverage can be generally established for split-conformal inference if the conformity scores are
almost-surely distinct [24, 30, 35]. Although the CHR scores (11) are discrete, our experiments will
show the coverage is tight as long as the resolution T is not too small.

3 Asymptotic analysis

We prove here that the prediction intervals computed by CHR (Algorithm 1) are asymptotically
equivalent, as n → ∞, to those of the oracle from (3)–(4), if the model π̂ is consistent for PY |X and
a few other technical conditions are met. In particular, we analyze a slightly modified version of
Algorithm 1 in which there is no randomization; this is theoretically more amenable and equivalent
in spirit, although it may yield wider intervals in finite samples. Our theory relies on the additional
Assumptions 1–5, explained below and stated formally in Supplementary Section S2.

1. The samples are i.i.d., which is stronger than exchangeability; this is the key to our concen-
tration results.

2. The black-box model estimates PY |X consistently, in a sense analogous to that in [24, 32].
This assumption is crucial and may be practically difficult to validate in practice, but it
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can be justified by existing consistency results available for some models under suitable
conditions, such as random forests [27]. Further, the resolution m of the partition of the Y
domain should grow with n at a certain rate, and the resolution T of the scores Ei in (11)
should grow as Tn = n.

3. The true PY |X is continuous and with bounded density within a finite domain. This
assumption is technical and could be relaxed with more work.

4. The true PY |X is unimodal. This assumption is also technical and could be relaxed with
more work.

5. The estimated conditional histogram π̂ preserves the boundedness and unimodality of PY |X ;
this assumption may be unnecessary but it is convenient and quite innocuous at this point
given Assumptions 2–4.

For simplicity, we assume the number of observations is 2n, the test point is (X2n+1, Y2n+1), and
Dtrain = Dcal = n, although different relative sample sizes would yield the same results.

Theorem 2 (Asymptotic conditional coverage and optimality). ∀α ∈ (0, 1], let Ĉsc
n,α(X2n+1) denote

the prediction interval for Y2n+1 computed by Algorithm 1 at level 1 − α without randomization.
Under Assumptions 1–5, Ĉsc

n,α(X2n+1) is asymptotically equivalent, as n → ∞, to Coracle
α (X2n+1),

the output of the oracle (3)–(4). In particular, the following two properties hold.

(i) Asymptotic oracle length. For some sequences γn → 0 and ξn → 0 as n → ∞,

P
[
|Ĉsc

n,α(X2n+1)| ≤ |Coracle
α (X2n+1)|+ γn

]
≥ 1− ξn.

(ii) Asymptotic conditional coverage. For some sequences ϵn → 0 and ζn → 0 as n → ∞,

P
[
P
[
Y ∈ Ĉsc

n,α(X2n+1) | X2n+1

]
≥ 1− α− ϵn

]
≥ 1− ζn.

Theorem 2 is similar to results in [24] and [32] about the efficiency of earlier approaches to conformal
regression, including CQR [32]. However, the increased flexibility of our method is reflected by
the oracle in Theorem 2, which is stronger than those in [24, 32]. In fact, the oracle in [24] does
not have conditional coverage, and that in [32] produces wider prediction intervals with constant
lower and upper miscoverage rates. Other conformal methods based on non-parametric density
estimation [10, 21] are not as efficient as CHR, in the sense that Theorem 2 does not hold for them.

4 Numerical experiments

4.1 Software implementation

A Python implementation of CHR is available online at https://github.com/msesia/chr, along
with code to reproduce the following numerical experiments. This software divides the domain of
Y into a desired number of bins with equal sizes, depending on the range of values observed in the
training data; we use 100 bins for the synthetic data and 1000 for the real data. Then, we estimate
the conditional histograms π̂ using different black-box quantile regression models [27, 33], with
a grid of quantiles ranging from 1% to 99%; see Supplementary Section S1.1. Our software also
supports Bayesian additive regression trees [11] and could easily accommodate other alternatives.
For simplicity, we apply CHR and other benchmark methods by assigning equal numbers of samples
to the training and calibration sets; this ensures all comparisons are fair, although different options
may lead to even shorter intervals [32]. See [8] for a rigorous discussion of how this choice affects
the variability of the coverage conditional on the calibration data, which is an issue we do not explore
here. See Supplementary Section S3 for details about how the models are trained, and information
about the necessary computational resources.

4.2 Synthetic data

We simulate a synthetic data set with a one-dimensional feature X and a continuous response Y , from
the same distribution previewed in Figure 1, which is similar to that utilized in [30] to present CQR.
Our method is applied to 2000 independent observations from this distribution, using the first 1000 of
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them for training a deep quantile regression model, and the remaining ones for calibration. Figure 1
visualizes the resulting prediction bands for independent test data, comparing them to the analogous
quantities output by CQR. Both methods are based on the same neural network and guarantee 90%
marginal coverage, but ours leads to narrower intervals. Indeed, the advantage of CHR is that it can
extract information from all conditional quantiles estimated by the base model and then automatically
adapt to the estimated data distribution. By contrast, CQR [30] can only leverage a pre-specified lower
and upper quantile (e.g., 5% and 95% in this example), and is therefore not adaptive to skewness.

Figure 3 (a) summarizes the performance of CHR over 100 experiments based on independent
data sets, as a function of the sample size. We evaluate the marginal coverage, approximate the
worst-slab conditional coverage [9] as in [31], and compute the average interval width. We consider
two benchmarks in addition to CQR [30]: distributional conformal prediction (DCP) [10] and
DistSplit [21]. To facilitate the comparisons, all methods have the same base model. (We also
applied DistSplit as implemented by [21], with a different base model, but the version presented
here performs better.) These results show CHR leads to the shortest prediction intervals, while
simultaneously achieving the highest conditional coverage. Compatibly with Theorem 2, the output
of CHR becomes roughly equivalent to that of the omniscient oracle as the sample size grows; the
latter can be implemented exactly here because we know the true data generating process.

Supplementary Figure S1 compares the performance of CHR in these experiments to that of naive
uncalibrated 90% prediction intervals based on the same deep neural network regression model,
and obtained by simply plugging π̂ into the oracle in (7), with τ = 0.9. Unsurprisingly, the naive
prediction intervals do not generally have the desired marginal coverage; in this case, they tend to be
too narrow if the sample size is small and too wide if the sample size is large. Although the lack of
coverage for the uncalibrated intervals is not very pronounced here because this black-box model
is relatively accurate even with n = 100, such naive approach can yield arbitrarily low coverage in
general, especially if the learning task is more difficult (e.g., for high-dimensional X), and is thus not
reliable.

(a)

(b)

Figure 3: Performance of our method (CHR) and benchmarks on synthetic data distributed as in
Figure 1. The dashed lines and curves correspond to an omniscient oracle. The vertical error bars span
two standard errors from the mean. (a) Performance vs. sample size. (b) Performance vs. average
skewness of the conditional distribution of the response, with a sample size of 1000. The maximum
skewness (near 3) matches that of the data in (a).

Figure 3 (b) shows analogous results from experiments in which we fix the sample size to 1000 and
vary instead the skewness of the data distribution. Precisely, we flip a biased coin for each data point
and transform Y into −Y if it lands heads, varying the coin bias as a control parameter. At one end
of this spectrum, we recover the same skewed data distribution as in Figure 3 (a); at the other end, we
have a symmetric PY |X . Our results are reported as a function of the expected skewness, defined
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as E[(Y − µ(X))3/σ3(X)], where µ(X) and σ(X) are the mean and standard deviation of Y | X ,
respectively. These experiments show all methods are equivalent in terms of interval length if PY |X
is symmetric (skewness close to 0), while CHR can be much more powerful if PY |X is skewed.

4.3 Real data

We apply CHR to the following seven public-domain data sets also considered in [30]: physicochem-
ical properties of protein tertiary structure (bio) [6], blog feedback (blog) [1], Facebook comment
volume [2], variants one (fb1) and two (fb2), from the UCI Machine Learning Repository [15]; and
medical expenditure panel survey number 19 (meps19) [3], number 20 (meps20) [4], and number 21
(meps21) [5], from [13]. We refer to [30] for more details about these data. As in the previous section,
we would like to compare CHR to CQR, DistSplit, and DCP. However, as DCP [10] is unstable on all
but one of these data sets, sometimes leading to very wide intervals, we replace it instead with a new
hybrid benchmark that we call DCP-CQR. This improves the stability of DCP by combining it with
CQR [30], as explained in Supplementary Section S1.3. This limitation of DCP may be explained
by noting the method needs to learn a reasonably accurate approximation of the full conditional
distribution of Y | X , and its performance is particularly sensitive to the estimation of the tails, which
is most difficult; see Supplementary Section S1.3 for more details. By contrast, CHR is robust because
it only needs to estimate a histogram with relatively few bins—a much easier statistical task—and
then it specifically focuses on finding the shortest intervals containing high probability mass. We
apply all methods, including our CHR, based on the same deep quantile regression model. Their
performances are evaluated as in the previous section, averaging over 100 independent experiments
per data set. In each experiment, 2000 samples are used for training, 2000 for calibration, and the
remaining ones for training. All features are standardized to have zero mean and unit variance. The
nominal coverage rate is 90%.

Figure 4: Performance of our method (CHR) and benchmarks on several real data sets, using a deep
neural network model. All methods provably have 90% marginal coverage. The box plots show the
distribution of results over 100 random test sets, each containing 2000 observations.

Figure 4 shows the distribution of the conditional coverage and interval width corresponding to
different methods, separately for each data set. To simplify the plots by using a shared vertical axis,
the widths of the prediction intervals are scaled, separately for each data set, so that the smallest
one is always equal to one. Marginal coverage is omitted here because all methods provably control
it; however, it can be found in Supplementary Table S1. All methods perform well in terms of
worst-slab conditional coverage. CHR outperforms the others in terms of statistical efficiency, as it
consistently leads to the shortest intervals. CQR and DistSplit are comparable to each other, while
DCP-CQR sometimes outputs wider intervals. Supplementary Figure S2 shows that analogous results
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are obtained if we utilized a random forest model instead of a deep neural network. Supplementary
Table S1 summarizes these results in more detail, including marginal coverage and the omitted
performance of the original DCP. Finally, Supplementary Figure S3 compares the performance of
CHR in these experiments with real data to that of naive uncalibrated 90% prediction intervals based
on the same deep neural network regression model, as in Figure S1. These results show that the naive
prediction intervals do not generally have the desired marginal coverage; in some cases they are too
narrow, and in others they are too wide.

5 Conclusions

This paper developed CHR, a non-parametric regression method based on novel conformity scores
leading to shorter prediction intervals with coverage, and enjoying stronger asymptotic efficiency,
compared to the state-of-the-art alternatives. Of course, real data are finite and our theory relies on
assumptions which may be difficult to validate; nonetheless, it is a sanity check and it provides an
informative comparison. Further, the experiments confirm CHR performs well in practice.

The ability of CHR to automatically adapt to unknown skewness may prove useful in practice, as
empirical data often follow distributions with power-law tails [12]. Indeed, the data sets analyzed
in Section 4.3 tend to have highly skewed outcomes with many observations equal to zero. At the
same time, a limitation of CHR is that it does not rigorously control the lower and upper miscoverage
rates, which may be important for some applications; if that is the case, the modified version of CQR
proposed by [30] would be a better choice. Note that the standard implementations of CQR and of the
other benchmarks [10, 21] considered in this paper are not guaranteed to separately control the lower
and upper miscoverage rates. In any case, users of our method could naturally obtain approximations
of the lower and upper miscoverage rates for any prediction interval by looking at the underlying
conditional histograms, although these estimates are of course not calibrated in finite samples.

Algorithm S1 in Supplementary Section S1.4 extends CHR to accommodate cross-validation+ [7],
which is often more powerful, and computationally expensive, compared to the split-conformal
approach presented in this paper. The strategy is the same as that followed by [31] in the classification
setting, although it requires an extra step, in which the standard cross-validation+ prediction set [7] is
replaced by its convex hull to guarantee the final output is an interval [17]. Supplementary Theorem S1
establishes that Algorithm S1 leads to marginal coverage above 1− 2α, applying the more general
theory from [17]. Finally, a possible directions for future research may involve the extension of our
method to deal with multi-dimensional responses Y .

From a broader perspective, this paper falls within a rapidly growing body of works focusing on
improving the interpretability and statistical reliability of machine learning algorithms. Prediction
intervals with marginal coverage provide a convenient way of communicating uncertainty about the
accuracy of any machine learning black-box, which is important to increase their reliability, to ensure
their fairness [29], and to facilitate their acceptance. Furthermore, conformal prediction intervals
provide a principled metric by which to compare different machine learning algorithms [18].
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