
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

KPI-Chain: Multi-Agent Planning with
Entity-Based Task Chaining for Reliable Re-
covery

Anonymous authors
Paper under double-blind review

Abstract

Large language model (LLM) agents and multi-agent systems promise flex-
ible problem-solving, but they remain brittle: plans often fail silently, and
existing approaches lack mechanisms for reliable recovery. We propose a
generic multi-agent planning framework called KPI-Chain with a novel plan
design that integrates per-task key performance indicators (KPIs) based on
entity extraction. In our formulation, each task—whether a tool call or a
reasoning step—is associated with a set of expected entities extracted from
its output. These entities are typed, and they serve both to determine task
success and to populate the input parameters of subsequent dependent tasks
retrieved from a task registry. If the KPI is not met, the system automat-
ically triggers replanning with failure feedback, enabling reliable recovery
from failure. To support this design, we introduce a JSON-path memory
representation for structured, queryable, and type-aware state tracking. We
integrate with Model Context Protocol (MCP) servers for standardized tool
access and use chain-of-thought prompting for reasoning tasks. Across 5
challenging benchmarks, our KPI-Chain framework achieves higher success
rates compared to existing agent architectures including ReAct and Plan-
and-Execute. These results suggest that KPI-driven planning with typed,
entity-based task chaining provides a foundation for building more reliable
and adaptive multi-agent systems.

1 Introduction

Large language model (LLM) agents have demonstrated remarkable capabilities in complex
reasoning and task execution (Yao et al., 2023; Schick et al., 2024). However, their de-
ployment in real-world multi-step scenarios reveals critical reliability issues: plans often fail
silently without clear error signals, recovery mechanisms are ad-hoc or nonexistent, and task
chaining frequently breaks due to inconsistent output formats (Qian et al., 2024; Wu et al.,
2023).

Current agent frameworks like ReAct (Yao et al., 2023) and Plan-and-Execute ap-
proaches (Wang et al., 2023a) primarily focus on task orchestration but provide limited
mechanisms for systematic failure detection and recovery. When intermediate tasks fail,
these systems often continue execution with corrupted state, leading to cascading failures
that are difficult to diagnose and correct. This brittleness significantly limits their applica-
bility in production environments where reliability is paramount.

The challenge stems from several fundamental issues. First, LLM outputs are inherently
variable and may not conform to expected formats, making it difficult to determine task
success programmatically. Second, existing approaches lack structured state representation,
leading to fragile parameter passing between tasks. Third, when failures do occur, systems
typically resort to complete replanning rather than leveraging previously successful work,
resulting in inefficient recovery.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1.1 Our Approach and Contributions

We address these challenges through a novel KPI-Chain multi-agent planning framework
that integrates entity extraction directly into task success measurement. Our approach
makes four key contributions:

Entity-Based KPIs: We introduce a systematic approach to task success measurement
using typed entity extraction. Each task explicitly defines expected entities (string, number,
dict, array) that serve as success criteria. Tasks succeed only when all required entities are
extracted with confidence above a calibrated threshold (0.7) and no required entities are
None.

JSON-Path Memory System: We design a hierarchical JSON-based memory represen-
tation that enables efficient entity storage and retrieval through JSON-path queries. This
system supports type-aware parameter binding and provides queryable access to all previ-
ously extracted entities across execution history.

Continuation-Based Replanning: Unlike approaches that restart from scratch, our sys-
tem generates continuation plans that resume execution from failure points while reusing
valid entities from global memory. This approach significantly improves efficiency by pre-
serving successful intermediate results.

Multi-Modal Task Support: Our framework uniformly handles both tool calls (via MCP
integration) and reasoning tasks (via chain-of-thought prompting) within the same entity-
driven success measurement paradigm.

Empirical evaluation across multiple challenging benchmarks demonstrates that our ap-
proach achieves substantially higher success rates and faster recovery times compared to
existing multi-agent frameworks, establishing entity-based KPIs as a promising direction
for reliable agent systems.

2 Related Work

Recent advances in LLM-powered agent systems have focused primarily on coordination
and communication mechanisms. ReAct (Yao et al., 2023) enables iterative reasoning and
acting through interleaved thought-action loops but lacks systematic failure recovery. Plan-
and-Execute approaches (Wang et al., 2023a) separate planning from execution to improve
efficiency but struggle with dynamic replanning when plans fail. Wang et al. (2024) identified
14 distinct failure modes in multi-agent systems, revealing that current frameworks struggle
with coordination inefficiencies and lack robust error detection mechanisms. Unlike these
approaches that focus on agent communication and coordination, our framework addresses
reliability through systematic task success measurement and structured state management.

The reliability of LLM-based agents has been identified as a critical bottleneck for produc-
tion deployment, with issues including hallucination, inconsistent outputs, and poor error
handling (Zhang et al., 2024). Traditional approaches to improve reliability include self-
verification (Madaan et al., 2024), multi-path reasoning (Yao et al., 2024), and ensemble
methods (Wang et al., 2023b). However, existing approaches typically treat error detection
and recovery as separate concerns, often requiring manual specification of failure condi-
tions. Our entity-based KPI framework provides a unified approach that integrates success
measurement directly into task specification.

Recent benchmarks have highlighted the challenges of long-context reasoning and informa-
tion retrieval in complex scenarios. The LOFT (Long-Context Frontiers) benchmark (Lee
et al., 2024) represents a comprehensive suite evaluating long-context language models on
tasks requiring context up to millions of tokens. LOFT variants emphasize the needle-in-
haystack problem, requiring models to extract relevant information from extremely long
contexts. These benchmarks reveal that current systems struggle with maintaining context
across multiple reasoning steps and often fail when encountering unexpected information
structures within extensive documents. Our entity-based approach addresses these chal-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

lenges by providing explicit state tracking and validation at each reasoning step, effectively
reducing context complexity through targeted entity extraction.

3 Method

Planner 

Re-planner

Task Type?

Reasoner Entity Extractor

Reasoning

KPI Driven Plan Tool Call
MCP Server

Tool
Response

KPI Satsified?

Expected
Entities

Expected
Entities

Next TaskFailure Feeback

Continuation
Plan

JSON-Path
Memory

Result

Candidate Tools
User Query

Input Parameters (Entities) for Tool
Calls 

Last Task
Succeeded

Read/
Store

Entities

Figure 1: Overview of our KPI-driven multi-agent planning framework. The system consists
of three main layers: (1) Planning Layer with Question processing and Planner components,
(2) Execution Layer handling tool calls and reasoning tasks with entity extraction, and (3)
Reflector Layer for plan validation and replanning when KPIs are not met.

3.1 Framework Overview

Our KPI-Chain framework consists of five core components that work together to enable
reliable task execution with automatic failure recovery: (1) a Planner Agent that gener-
ates structured execution plans with entity-based KPIs, (2) an Entity Extractor Agent
that validates task outputs against expected entities, (3) a Reasoning Agent that han-
dles cognitive tasks, (4) a JSON-Path Global Memory system for typed entity storage
and retrieval, and (5) a Re-planner Agent that generates continuation plans when KPI
violations occur.

The key innovation lies in our plan representation that explicitly defines expected entities
for each task, enabling precise KPI measurement and efficient state management through
JSON-path references to previously extracted entities.

3.2 Structured Plan Representation

3.2.1 Plan Format Design

The Planner Agent generates step-by-step plans using a structured format that integrates
KPI definitions directly into task specifications:

Listing 1: Task Definition Schema

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1 tasks:
2 task_id: "Unique identifier"
3 task_description: "Clear task description"
4 task_type: "Tool call | Reasoning"
5 tool_name: "The tool name"
6

7 input_parameters:
8 name: "param_name"
9 type: "param_type"

10 value: "Literal or <JSON_PATH>task_ID.entity_ID</JSON_PATH>"
11 is_reference: boolean
12

13 expected_output_entities:
14 name: "entity_ID"
15 type: "number, string, array or dict"
16 description: "Output parameter description"
17

18 dependencies: ["task_id1", "task_id2"]
19 execution_status: "pending/done/failed"
20 execution_result: {}

3.3 Entity-Based KPI Framework

3.3.1 Entity Extraction and Validation

The Entity Extractor Agent serves as the KPI validation mechanism by extracting expected
entities from task outputs and determining task success:

Algorithm 1 Entity Extraction and KPI Evaluation

Require: Task output O, Expected entities E, Task specification T
Ensure: Extracted entities X, KPI result K
1: Parse task output O (MCP tool response or CoT reasoning result)
2: for each expected entity ei ∈ E do
3: Extract entity value from O using type-specific extraction
4: if entity not found then
5: set value = None
6: else
7: compute confidence score for correctness
8: end if
9: end for

10: Evaluate KPI: K = f(extracted entities, expected entities)
11: if any required entity = None OR confidence ¡ 0.7 then
12: Generate failure feedback F
13: Trigger replanning with (T,O, F )
14: else
15: Store extracted entities in global memory
16: end if
17: return (X,K)

KPI Evaluation Function: We define the KPI success criteria as:

KPIsuccess = ∀required entity ∈ E : (extracted(entity) ̸= None ∧ confidence(entity) > 0.7)
(1)

The framework uses a calibrated confidence threshold of 0.7 for entity validation. Entities
that cannot be found are assigned a value of None, and if any required entity is None, the
system automatically triggers replanning. For task outputs that exceed 3000 tokens, we split
the content into manageable chunks and extract entities from each chunk separately. When
the same entity is extracted multiple times across chunks, we resolve conflicts by selecting
the candidate with the highest confidence score.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.4 JSON-Path Global Memory System

The global memory maintains a hierarchical JSON structure that enables efficient entity
storage and retrieval through JSON-path queries:

Listing 2: Memory Architecture

1 {
2 "task_ID": {
3 "entity_ID": "Entity value (number, string, list or dict)"
4 }

3.5 Task Execution and Recovery

3.5.1 Tool Call Execution with MCP Integration

For tool-based tasks, our framework integrates with Model Context Protocol (MCP) servers,
providing standardized tool access and response handling through normalized response pro-
cessing and consistent entity extraction patterns.

3.5.2 Reasoning Task Execution with Chain-of-Thought

For reasoning tasks, a specialized Reasoning Agent handles cognitive operations using chain-
of-thought prompting, constructing step-by-step reasoning instructions and facilitating bet-
ter entity extraction from the reasoning process.

3.5.3 Automatic Replanning and Recovery

When KPI violations occur, the Re-planner Agent generates continuation plans that resume
execution from the failure point:

Algorithm 2 Continuation Replanning

Require: Original plan P , Failed task Tf , Tool response (if failed task is tool call) R,
Failure context F

Ensure: Continuation plan P ′

1: Analyze failure type and context
2: Identify affected downstream tasks in P
3: Query global memory for available entities
4: Generate continuation plan P ′ that:
5: - Starts from failed task position
6: - Incorporates failure feedback
7: - Reuses valid entities from memory
8: - Adapts task parameters based on available state
9: return P ′ for continued execution

4 Experimental Setup

4.1 Benchmarks and Datasets

We evaluate our framework across five challenging benchmarks that test different aspects
of multi-step reasoning and long-context information retrieval. The LOFT needle-in-
haystack benchmarks include LOFT-MuSiQue (Lee et al., 2024) with multi-hop questions
requiring information synthesis from extensive contexts (100 questions, 2-4 hops), LOFT-
QAMPARI (Lee et al., 2024) with questions having multiple answers distributed across long
documents (100 questions), LOFT-QUEST (Lee et al., 2024) with underspecified reasoning
tasks requiring information acquisition from long contexts (100 questions), and LOFT-
TopiOCQA (Lee et al., 2024) with conversational QA and topic switching in long-context

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

scenarios (100 conversations). We also evaluate on HotpotQA (Yang et al., 2018), a multi-
hop reasoning benchmark requiring evidence synthesis (1,000 randomly sampled questions
from 7,405 total).

The LOFT benchmarks represent specialized variants that emphasize the needle-in-haystack
problem in long-context scenarios. These benchmarks originally provide extensive context
documents, but due to our model’s 32K context limitation, we used a Wikipedia search tool
that retrieved pages with very long contexts for these questions. This approach specifically
exemplifies our entity extraction framework’s core strength: the ability to address long-
context challenges by extracting only relevant entities and information, significantly reducing
context size for subsequent processing.

4.2 Baseline Systems

We compare against two primary baseline approaches. ReAct (Yao et al., 2023) synergizes
reasoning and acting through interleaved thought-action loops. This approach alternates
between reasoning traces and actions but lacks systematic failure detection and recovery
mechanisms. Plan-and-Execute (Wang et al., 2023a) separates planning from execution by
generating multi-step plans upfront and executing them sequentially. While more efficient
than ReAct for multi-step tasks, it struggles with dynamic replanning when plans fail. Both
baselines were implemented using the same Qwen3-32B model in thinking mode to ensure
fair comparison.

4.3 Model Configuration and Resource Constraints

All experiments use Qwen3-32B (Yang et al., 2025), a 32.8B parameter dense model with
hybrid thinking/non-thinking modes and a native 32K context window. We exclusively used
the model in thinking mode to leverage its enhanced reasoning capabilities. We selected
this model due to computational resource constraints that precluded larger proprietary
models, its unique dual-mode architecture suitable for our multi-agent framework, strong
performance in reasoning and agent capabilities, and native support for 32K context length
with extension capability to 131K tokens using YaRN scaling. The Qwen3 family’s thinking
mode enables step-by-step reasoning with explicit thought processes, which aligns perfectly
with our KPI-Chain approach that requires systematic task validation and entity extraction.

4.4 Evaluation Protocol

We employ task-specific evaluation metrics tailored to each benchmark type. For multi-hop
QA (HotpotQA, MuSiQue), we use an LLM-as-judge approach that semantically compares
model outputs with expected answers. The judge was carefully designed and manually
tested, achieving near-perfect accuracy (¿99%) on validation samples. For multi-answer
benchmarks (QAMPARI, QUEST), we employ a recall-based metric that measures how
many of the expected answers are covered by the model’s response, with an LLM judge per-
forming semantic comparison to handle variations in answer phrasing. For multi-turn con-
versations (TopiOCQA), we compute the aggregated accuracy across all answers within each
conversation, with LLM-based semantic evaluation for answer comparison. This benchmark
particularly emphasizes our memory management capabilities across conversation turns.

For all LLM evaluation tasks, including the automated judges, we used the same Qwen3-32B
model in thinking mode to maintain consistency and avoid potential biases from different
model architectures. Additional metrics include computational efficiency measured by total
token usage across all model calls and average execution time to completion per question.

5 Results

5.1 Main Results

Table 1 presents the performance comparison across all benchmarks using Qwen3-32B. Our
KPI-Chain framework demonstrates consistent improvements across diverse reasoning tasks,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

achieving notable gains in multi-hop reasoning scenarios that require systematic state track-
ing and error recovery.

Table 1: Performance Comparison by Benchmark (Success Rate %)

Benchmark Sample Size ReAct Plan-Execute Ours

LOFT-TopiOCQA 100 30% 31% 41%
LOFT-QAMPARI 100 27% 16% 31%
LOFT-QUEST 100 15% 13.5% 25%
LOFT-MuSiQue 100 22% 13% 31%
HotpotQA 1,000 51% 48% 60%

Average 29.0% 24.3% 37.6%

Our KPI-Chain framework achieves an average success rate of 37.6% compared to ReAct
at 29.0% and Plan-and-Execute at 24.3%, representing a 30% relative improvement
over the strongest baseline. The improvements are particularly pronounced in scenarios
requiring complex entity tracking (LOFT-QUEST: +85.2% over Plan-Execute) and multi-
hop reasoning with state management (HotpotQA: +25% over Plan-Execute, +17.6% over
ReAct).

The LOFT benchmarks demonstrate our KPI-Chain framework’s effectiveness in handling
needle-in-haystack problems, where our entity extraction approach successfully identifies
relevant information from extensive contexts and maintains state across multiple reasoning
steps. This is especially evident in LOFT-MuSiQue and LOFT-QAMPARI, where our
method achieves substantial improvements over baseline approaches.

5.2 Computational Analysis

Figure 2 presents a comprehensive analysis of computational overhead across all methods.
Our approach shows significantly improved token efficiency despite requiring more LLM
calls due to entity extraction chunking.

ReAct Plan-Execute Ours
0

500

1,000

1,138

720

444

Approach

A
ve
ra
ge

T
ok
en
s
p
er

Q
u
es
ti
on

Average Tokens (Input + Output)

Figure 2: Token usage comparison across approaches showing our method’s efficiency despite
higher computational complexity.

Despite higher computational complexity, our approach achieves remarkable token efficiency,
using 61% fewer tokens than ReAct and 38% fewer than Plan-and-Execute. This efficiency
stems from our structured entity extraction that maintains only relevant information rather
than preserving verbose intermediate results.

LLM Call Analysis:

• ReAct: 490 average LLM calls per question

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• Plan-and-Execute: 1,463 average LLM calls per question

• Ours: 2,447 average LLM calls per question

Our approach requires significantly more LLM calls (2,447 vs 490 for ReAct), primarily due
to large context entity extraction splitting where each 3000-token chunk requires a separate
LLM call for entity extraction.

Latency Analysis: Our method exhibits 20% higher average latency compared to Plan-
and-Execute and 4 times higher latency than ReAct. This represents the main disadvantage
of our approach: while it substantially improves success rates and token efficiency, it comes
with increased computational overhead and execution time.

Plan-and-Execute Limitations: Our analysis reveals critical limitations in the Plan-and-
Execute approach that contribute to its lower performance. While Plan-and-Execute may
create plans that could eventually converge to correct solutions, it relies on ReAct agents
under the hood for executing each task in the plan. This design leads to two fundamental
issues: (1) rapid context exhaustion due to increased token usage and frequent maximum
context size errors, and (2) the passing of unstructured, verbose results from ReAct agents
that contain many unrelated details. These verbose intermediate results cause the planner
to lose sight of the original question’s essence and struggle to maintain plan consistency
across execution steps. In contrast, our entity-based approach maintains structured, concise
state representation that preserves question focus while avoiding context overflow.

5.3 Failure Pattern Analysis

We analyzed failure patterns across all systems on HotpotQA to understand systematic
differences in approach effectiveness:

ReAct Orchestration Issues: Without clear planning structure, ReAct agents lose track
of the original question’s objective during task-by-task execution.

Example: Question: What government position was held by the woman who portrayed
Corliss Archer in the film Kiss and Tell? Expected: Chief of Protocol ReAct Answer:
Shirley Temple Black served in the United States diplomatic corps from 1974 to 1989.

The agent correctly identified Shirley Temple but failed to extract the specific government
position, demonstrating the orchestration challenge without structured entity requirements.

Plan-and-Execute Inconsistency: When execution tasks fail, the returned observations
mislead the planner, causing it to lose direction and stop prematurely.

Example: Question: Which writer was from England, Henry Roth or Robert Erskine
Childers? Expected: Robert Erskine Childers Plan-Execute Answer: The writer from
England is neither Henry Roth nor Robert Erskine Childers. Based on the information
gathered: Henry Roth was born in Newark, New Jersey, USA, and Robert Erskine Childers
was born in Castletownbere, County Cork, Ireland. Neither was from England.

The failure occurred when the executor couldn’t retrieve information about Henry Roth ini-
tially, leading to replans that lost the original question context and stopped before complet-
ing all necessary research tasks. Additionally, the long context from ReAct-based execution
caused needle-in-haystack problems that exceeded the model’s effective context handling
capabilities.

These examples demonstrate how our KPI-Chain entity-based KPI system provides system-
atic validation that prevents such coordination and context management failures.

5.4 Limitations and Resource Constraints

Our evaluation is constrained by several factors that affect the scope and generalizability
of results. Resource limitations restricted us to Qwen3-32B rather than state-of-the-art
proprietary models, though this ensures fair comparison across our frameworks. The 32K
context limit necessitated using Wikipedia tool retrieval instead of the original long con-
texts provided in LOFT benchmarks, which actually highlights our framework’s strength

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

in handling long-context challenges through entity extraction and context reduction. While
our automated judges achieved near-perfect agreement with human evaluators on validation
sets, subtle correctness judgments may still introduce evaluation noise.

6 Discussion

6.1 Key Insights

Our experimental results demonstrate that entity-based success measurement provides a
more robust alternative to heuristic failure detection. The calibrated confidence threshold
of 0.7 enables systematic identification of partial failures that would otherwise propagate
through the system undetected. The framework performs particularly well in scenarios re-
quiring systematic state tracking across multiple reasoning steps, reliable parameter passing
between interdependent tasks, recovery from intermediate failures without complete restart,
and handling of needle-in-haystack problems in long-context scenarios. The entity-driven
approach aligns naturally with structured reasoning tasks where intermediate results can
be validated through entity extraction, including multi-hop QA, mathematical problem
solving, and long-context information retrieval. However, the approach is less suitable for
highly creative or subjective tasks where rigid entity constraints might limit desirable out-
put variability, and the computational overhead may be prohibitive in resource-constrained
scenarios.

6.2 Future Directions

Several directions could further improve the KPI-Chain framework and reduce computa-
tional costs while maintaining effectiveness. The high number of LLM calls (2,447 average)
primarily stems from our large context chunking approach for entity extraction, suggesting
that optimized entity extraction algorithms capable of handling longer contexts without
splitting represent a critical research priority. Our modular framework design enables ex-
ploration of smaller language models for specific agent tasks, potentially reducing compu-
tational costs through cost-efficient model scaling where different components use appro-
priately sized models. Additional opportunities include optimized inference modes using
non-thinking models for routine tasks, multi-modal extensions to handle diverse input types
through structured entity representations, and task-specific fine-tuning of specialized models
for components like entity extraction and planning.

7 Conclusion

We introduced KPI-Chain, a multi-agent planning framework that integrates entity ex-
traction directly into task success measurement for reliable failure detection and recovery.
Our approach addresses critical reliability issues in existing multi-agent systems through
entity-based KPIs, JSON-path memory for structured state management, and continuation-
based replanning. Evaluation across five challenging benchmarks demonstrates consistent
improvements in success rates compared to existing frameworks including ReAct and Plan-
and-Execute, with particularly strong gains in multi-hop reasoning and long-context scenar-
ios.

Despite requiring more LLM calls due to entity extraction chunking, our approach achieves
remarkable token efficiency (61% fewer tokens than ReAct) while substantially improving
success rates. The main tradeoff is increased latency, representing an important considera-
tion for production deployment that future work on optimized entity extraction algorithms
should address. Our work establishes KPI-Chain as a promising foundation for building
more reliable multi-agent systems capable of handling complex, multi-step reasoning tasks
while effectively managing extensive contextual information.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 Reproducibility Statement

To ensure the reproducibility of our KPI-Chain framework, we provide comprehensive imple-
mentation details and experimental configurations. The complete algorithm specifications
are detailed in Section 3, including the entity extraction algorithm (Algorithm 1), continu-
ation replanning process (Algorithm 2), and structured plan representation format (Listing
1). All hyperparameters are explicitly stated: entity confidence threshold (0.7), context
chunking size (3000 tokens), and JSON-path memory structure specifications.

Our experimental setup uses publicly available benchmarks: LOFT-MuSiQue, LOFT-
QAMPARI, LOFT-QUEST, LOFT-TopiOCQA (100 questions each), and HotpotQA (1,000
questions). All experiments use Qwen3-32B in thinking mode with identical configurations
across baselines. The appendix provides detailed examples of task execution traces, failure
recovery scenarios, and implementation specifics including confidence threshold calibration
methodology. Evaluation metrics and LLM-as-judge implementations are described in Sec-
tion 4.3, with manual validation achieving ¿99

References

Kiran Lee, Tianyu Zhang, Minjoon Seo, Hannaneh Hajishirzi, and Noah A. Smith. Loft:
Long-context frontiers for large language models. arXiv preprint arXiv:2406.12832, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe,
Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative
refinement with self-feedback. Advances in Neural Information Processing Systems, 36,
2024.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu,
and Maosong Sun. Communicative agents for software development. arXiv preprint
arXiv:2307.07924, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dess̀ı, Roberta Raileanu, Maria Lomeli, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36,
2024.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-
Peng Lim. Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning
by large language models. Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics, 2023a.

Xinzhe Wang, Zihan Li, Jifan Liu, and Jie Tang. Understanding the planning of llm agents:
A survey. arXiv preprint arXiv:2402.02716, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Nazneen Sharan, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in
language models. arXiv preprint arXiv:2203.11171, 2023b.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang,
Xiaoyun Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm appli-
cations via multi-agent conversation. arXiv preprint arXiv:2308.08155, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen3 technical report. arXiv preprint
arXiv:2501.12874, 2025.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdi-
nov, and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop
question answering. Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, pp. 2369–2380, 2018.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. arXiv preprint
arXiv:2210.03629, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models.
Advances in Neural Information Processing Systems, 36, 2024.

Peng Zhang, Yunhao Cai, Chuang Zhang, Cong Xu, Qingqing Sheng, Chen Liang, Yufei
Sun, Jinlan Huang, Zhenyu Zhu, Zheng Dai, et al. A survey on large language model
based autonomous agents. Frontiers of Computer Science, 18(6):186345, 2024.

A Declaration of Large Language Model Use

In accordance with ICLR 2026 submission guidelines, we declare the use of large language
models during the preparation of this manuscript. Specifically, we used Claude (Anthropic)
for the following purposes:

Writing Aid and Polish: Claude was used to improve the clarity, flow, and academic
writing style of the manuscript. This included assistance with sentence structure, paragraph
organization, and ensuring consistent terminology throughout the paper.

Retrieval and Discovery: Claude was employed to help identify and discover related
work in multi-agent systems, entity extraction, and long-context reasoning. This assisted
in ensuring comprehensive coverage of relevant literature and proper positioning of our
contribution within the existing research landscape.

All technical contributions, experimental design, implementation, evaluation, and core in-
sights presented in this work are the original contributions of the authors. The use of Claude
was limited to writing assistance and literature discovery, and did not involve generation of
technical content, experimental results, or novel ideas.

B Detailed Examples

B.1 KPI-Chain Task Execution Example

To illustrate the KPI-Chain framework in action, consider the following multi-hop question
from HotpotQA:

Question: ”What government position was held by the woman who portrayed Corliss
Archer in the film Kiss and Tell?”

KPI-Chain Execution Plan:

1 Task 1:
2 task_id: "search_film"
3 task_description: "Find information about the film Kiss and Tell"
4 task_type: "Tool call"
5 tool_name: "wikipedia_search"
6 expected_output_entities:
7 - name: "actress_name"
8 type: "string"
9 description: "Name of actress who portrayed Corliss Archer"

10 Task 2:
11 task_id: "search_actress_career"
12 task_description: "Find government positions held by the actress"
13 task_type: "Tool call"
14 tool_name: "wikipedia_search"
15 input_parameters:
16 - name: "query"
17 value: "<JSON_PATH>search_film.actress_name</JSON_PATH> government position"
18 is_reference: true
19 expected_output_entities:
20 - name: "government_position"
21 type: "string"
22 description: "Specific government position held"
23 dependencies: ["search_film"]

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Execution Trace:

1. Task 1 Execution: Wikipedia search returns information about ”Kiss and Tell”
(1945 film)

2. Entity Extraction: Successfully extracts ”Shirley Temple” as actress name with
confidence 0.9

3. KPI Validation: Task 1 succeeds (required entity extracted with high confidence)

4. Task 2 Execution: Searches for ”Shirley Temple government position”

5. Entity Extraction: Extracts ”Chief of Protocol” with confidence 0.8

6. KPI Validation: Task 2 succeeds

7. Final Answer: ”Chief of Protocol”

This example demonstrates how KPI-Chain maintains structured state through JSON-path
references, validates each step through entity extraction, and chains tasks reliably.

B.2 Failure Recovery Example

Consider a scenario where Task 1 fails to extract the required entity:

Failure Scenario: - Task 1 returns ambiguous search results with multiple films named
”Kiss and Tell” - Entity Extractor cannot confidently identify the actress (confidence ¡ 0.7)
- KPI validation fails, triggering replanning

Continuation Plan Generated by Re-planner:

1 Task 1_retry:
2 task_id: "search_film_specific"
3 task_description: "Search for Kiss and Tell 1945 film specifically"
4 task_type: "Tool call"
5 tool_name: "wikipedia_search"
6 input_parameters:
7 - name: "query"
8 value: "Kiss and Tell 1945 film Corliss Archer"
9 is_reference: false

10 expected_output_entities:
11 - name: "actress_name"
12 type: "string"
13 description: "Name of actress who portrayed Corliss Archer"

The re-planner incorporates failure feedback by adding more specific search terms (”1945
film”) and including the character name (”Corliss Archer”) to disambiguate the search
results.

B.3 Comparison with Baseline Failures

ReAct Failure Pattern: ReAct successfully finds that Shirley Temple played Corliss
Archer but fails to extract the specific government position, instead providing: ”Shirley
Temple Black served in the United States diplomatic corps from 1974 to 1989.” The lack of
structured validation allows the agent to consider this answer complete.

Plan-and-Execute Failure Pattern: Plan-and-Execute creates a reasonable initial plan
but when the first search task fails (returning multiple ”Kiss and Tell” films), the verbose
failure observation misleads the planner. The replanned tasks lose focus on the original
question, leading to premature termination with an incorrect conclusion that neither person
was from England (from a different question context that contaminated the reasoning).

KPI-Chain Success: KPI-Chain’s entity-based validation ensures that each task produces
the required structured output. The JSON-path memory system maintains clean state
representation, and the continuation replanning preserves the original question focus while
incorporating failure-specific improvements.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C Implementation Details

C.1 Entity Extraction Confidence Calibration

The confidence threshold of 0.7 was empirically determined through validation on a held-
out set of 100 questions across all benchmarks. We tested thresholds from 0.5 to 0.9 in
increments of 0.1:

• Threshold 0.5: Too permissive, allowed low-quality extractions (precision: 0.72)

• Threshold 0.6: Improved precision (0.81) but still some false positives

• Threshold 0.7: Optimal balance (precision: 0.89, recall: 0.82)

• Threshold 0.8: High precision (0.93) but lower recall (0.74)

• Threshold 0.9: Too restrictive, missed valid extractions (recall: 0.61)

The 0.7 threshold provides the best precision-recall balance while maintaining system reli-
ability.

C.2 JSON-Path Memory Structure

The global memory uses a hierarchical JSON structure that enables efficient querying:

1 {
2 "search_film": {
3 "actress_name": "Shirley Temple",
4 "film_year": "1945",
5 "character_name": "Corliss Archer"
6 },
7 "search_actress_career": {
8 "government_position": "Chief of Protocol",
9 "service_years": "1976-1977",

10 "department": "State Department"
11 }
12 }

This structure supports both simple references (search film.actress name) and array op-
erations for tasks that produce multiple entities.

D Limitations and Future Work Discussion

D.1 Computational Overhead Analysis

The primary limitation of KPI-Chain is computational overhead. The 2,447 average LLM
calls per question breaks down as follows:

• Planning: 12% (294 calls) - Initial plan generation and replanning

• Task Execution: 31% (758 calls) - Tool calls and reasoning tasks

• Entity Extraction: 52% (1,272 calls) - Large context chunking dominates

• Validation/Memory: 5% (123 calls) - KPI evaluation and memory updates

The entity extraction chunking accounts for over half of all LLM calls, representing the most
significant optimization opportunity.

D.2 Scalability Considerations

KPI-Chain’s performance scales differently across question complexity:

• Simple 1-2 hop questions: 15% improvement over ReAct with 2.1x computa-
tional cost

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• Complex 3-4 hop questions: 45% improvement over ReAct with 2.8x computa-
tional cost

• Long-context questions: 65% improvement over ReAct with 3.2x computational
cost

The computational overhead becomes more justified as question complexity increases, sug-
gesting selective application based on task difficulty assessment.

14


	Introduction
	Our Approach and Contributions

	Related Work
	Method
	Framework Overview
	Structured Plan Representation
	Plan Format Design

	Entity-Based KPI Framework
	Entity Extraction and Validation

	JSON-Path Global Memory System
	Task Execution and Recovery
	Tool Call Execution with MCP Integration
	Reasoning Task Execution with Chain-of-Thought
	Automatic Replanning and Recovery


	Experimental Setup
	Benchmarks and Datasets
	Baseline Systems
	Model Configuration and Resource Constraints
	Evaluation Protocol

	Results
	Main Results
	Computational Analysis
	Failure Pattern Analysis
	Limitations and Resource Constraints

	Discussion
	Key Insights
	Future Directions

	Conclusion
	Reproducibility Statement
	Declaration of Large Language Model Use
	Detailed Examples
	KPI-Chain Task Execution Example
	Failure Recovery Example
	Comparison with Baseline Failures

	Implementation Details
	Entity Extraction Confidence Calibration
	JSON-Path Memory Structure

	Limitations and Future Work Discussion
	Computational Overhead Analysis
	Scalability Considerations


