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Abstract—Epilepsy is one of the most common neurologi-
cal disorders, typically observed via seizure episodes. Epileptic
seizures are commonly monitored through electroencephalogram
(EEG) recordings due to their routine and low expense collection.
The stochastic nature of EEG makes seizure identification via
manual inspections performed by highly-trained experts a tedious
endeavor, motivating the use of automated identification. The lit-
erature on automated identification focuses mostly on supervised
learning methods requiring expert labels of EEG segments that
contain seizures, which are difficult to obtain. Motivated by these
observations, we pose seizure identification as an unsupervised
anomaly detection problem. To this end, we employ the first
unsupervised transformer-based model for seizure identification
on raw EEG. We train an autoencoder involving a transformer
encoder via an unsupervised loss function, incorporating a novel
masking strategy uniquely designed for multivariate time-series
data such as EEG. Training employs EEG recordings that do not
contain any seizures, while seizures are identified with respect
to reconstruction errors at inference time. We evaluate our
method on three publicly available benchmark EEG datasets
for distinguishing seizure vs. non-seizure windows. Our method
leads to significantly better seizure identification performance
than supervised learning counterparts, by up to 16% recall, 9%
accuracy, and 9% Area under the Receiver Operating Charac-
teristics Curve (AUC), establishing particular benefits on highly
imbalanced data. Through accurate seizure identification, our
method could facilitate widely accessible and early detection of
epilepsy development, without needing expensive label collection
or manual feature extraction.

Index Terms—Epilepsy, Seizure, EEG, Unsupervised Learning,
Time-series Transformer

I. INTRODUCTION

Epilepsy is one of the most common neurological disorders,
affecting over 70 million people worldwide [35]. Epilepsy
patients typically suffer from seizures, involving uncontrolled
jerking movements or momentary losses of awareness due to
abnormal excessive or synchronous activities in the brain [|39].
The degraded quality of life for patients strongly motivates
early seizure identification, as early seizures have been shown
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to be prognostic markers for later epileptogenic develop-
ment. Successful identification of early seizures can initiate
antiepileptogenic intervention and therapies that can remark-
ably improve the quality of life for patients and their care-
givers. To this end, electroencephalogram (EEG) recordings
received particular attention for seizure identification [33]], due
to their routine and low expense collection compared to, e.g.,
neuroimaging. Seizures on EEG are defined as generalized
spike-wave discharges at three per second or faster, and clearly
evolving discharges of any type that reach a frequency of four
per second or faster.

Despite their volume and rich information content, EEG
recordings are known to contain many artifacts due to move-
ment, physiological activity such as perspiration, and measure-
ment hardware [13]], [30]. The stochastic nature of clinically-
acquired EEG makes seizure identification via manual inspec-
tion laborious and difficult, leading to significant variability
across clinical labels of different experts [43[]. This challenge
motivated the recent literature to focus on automated identi-
fication of epileptic seizures on EEG as a promising comple-
ment to manual inspection. The literature on automated EEG
seizure identification is extensive (c.f. Section , focusing
mostly on supervised machine learning methods using both
manual feature extraction [1]], [26]], [29], [46], as well as deep
neural networks (DNNs) without manual feature extraction
(16]], [25]], [44].

Despite their success, supervised methods require expert
labels indicating EEG segments that contain seizures, while
obtaining large and consistently-labeled EEG datasets is un-
favourable due to the stochastic nature of EEG [43]. Diffi-
culty of label collection also leads to severely imbalanced
EEG datasets, in which the number of non-seizure recordings
significantly exceeds the number of seizure recordings; this
poses a further challenge for supervised learning that is prone
to overfitting towards dominant class predictions [23]].

Unsupervised machine learning methods, which do not rely
on labeled data have not yet been widely explored. A few
methods employed traditional shallow models for unsuper-
vised seizure identification on both raw EEG [7]], as well as
spatio-temporal features extracted from EEG [2], [3[], [10].
To the best of our knowledge, unsupervised DNN methods
for EEG seizure identification have been limited to a couple



of recent works, requiring feature extraction prior to training
[40] or employing convolutional DNN architectures that are
not tailored for multivariate time-series data such as EEG [41]].

We propose a fully-unsupervised deep learning approach
that can identify seizures on raw EEG recordings. To this end,
we make the following contributions:

e We employ the first unsupervised transformer-based
model for seizure identification on raw EEG, inspired by
recent advances in multivariate time-series analysis [42].

o We pose seizure identification as an anomaly detection
problem. To this end, we train an autoencoder involving
a transformer encoder via an unsupervised loss function,
incorporating a novel masking strategy uniquely designed
for modeling multivariate time-series data such as EEG.
As training employs EEG recordings that do not contain
seizures, seizures are identified via mean reconstruction
errors at inference time.

o We extensively validate the seizure identification per-
formance of our method on three publicly available
benchmark EEG datasets. Our method can successfully
distinguish between non-seizure vs. seizure windows,
with up to 0.94 Area under the Receiver Operating Char-
acteristics Curve (AUC). Moreover, our unsupervised
anomaly detection approach leads to significantly better
seizure identification performance than the supervised
learning counterparts, by up to 16% recall, 9% accuracy,
and 9% AUC, establishing a particular benefit for learning
from highly imbalanced data.

II. RELATED WORK

The literature on automated seizure identification on EEG
is vast; we refer the reader to the review by [5] for more
details. A significant body of works focus on extracting spatio-
temporal features from EEG via, e.g., wavelet transformations
[1], [28]], local mean decomposition [43], Fourier transfor-
mations [26], [29], and power spectra [46]. Extracted fea-
tures are used to train supervised machine learning methods,
including support vector machines and neural networks, to
identify whether a given EEG contains a seizure in a binary
classification setting.

Deep neural network (DNN)-based supervised seizure iden-
tification methods have lately dominated the literature [45]]
and obviated the need for manual feature extraction. DNN
methods further improved in combination with recurrent neural
networks to aid time-series modeling [6], adversarial training
to generalize identification across patients [44], autoencoder-
based feature extraction [34], and attention mechanisms to
improve predictions and interpretability [25]].

In recent years, self-attention modules have become an in-
tegral part of DNN methods employed in machine vision [15]],
natural language processing [14], and time-series modeling
[42]; the resulting DNN architectures are termed as trans-
formers. Transformer architectures have been very recently
applied for various identification tasks on EEG, including,
e.g., sleep-stage classification , human-computer interface-
based action recognition, and seizure identification [16], [24].

These methods employ unsupervised pre-training prior to
supervised training on ground-truth expert labels pertaining to
the identification task. The unsupervised pre-training objective
involves different augmentations of the same EEG segment
and trains the transformer by maximizing (minimizing) the
similarity of different augmentations (segments).

All in all, the literature on automated seizure identifica-
tion often focuses on supervised machine learning methods.
Despite their success, these methods require expert labels
indicating EEG segments that contain seizures, which are
difficult to obtain due to the stochastic nature of EEG [43].
Meanwhile, unsupervised machine learning methods that do
not rely on labeled data have not yet been widely explored. A
few methods applied shallow models for unsupervised seizure
identification, including K-means, hierarchical clustering, and
Gaussian mixture models, on both raw EEG [7], as well as
spatio-temporal features extracted from EEG [2f], [3].

Recently, a couple of unsupervisesd DNN methods for
seizure identification on EEG have been proposed. You et
al. (2020) preprocess EEGs to extract time-frequency spectro-
gram images and train a generative adversarial network (GAN)
[40] on the spectrograms that do not contain seizures. For each
spectrogram at testing time, they have to search for the latent
GAN input that leads to the smallest loss value and use the cor-
responding generated spectrogram for seizure identification.
As training involves non-seizure activity, test spectrograms
that significantly differ from the spectrograms generated by the
GAN are successfully identified to contain seizures. Yildiz et
al. (2022) train a convolutional variational autoencoder (VAE)
over raw EEG, employing an objective tailored for suppressing
EEG artifacts. Unlike You et al. (2020), they identify seizures
with respect to the reconstruction errors at inference time.

We differ from the existing works by applying the first
fully-unsupervised transformer-based model on raw EEG. Our
architecture and training objective are particularly designed
for multivariate time-series analysis and do not require a
sophisticated minimax optimization such as GAN training.
The fundamental benefit of a transformer encoder over other
DNN architectures is that self-attention can selectively high-
light important input features and sequence segments, without
relying on sequence-aligned convolutions or slow recurrent
modules [38]]; we also experimentally demonstrate this advan-
tage against unsupervised VAE-based seizure identification in
Section

III. PROBLEM FORMULATION

We consider a dataset of N EEG recordings, each collected
from M electrode channels and consisting of 7' time points.
Formally, we denote each EEG recording by X () € RT*M
for i € [1,...,N]. Our aim is to design an unsupervised
method that does not rely on ground-truth expert labels during
learning and can identify the existence of seizures in a given
EEG recording. To this end, we employ an autoencoder
architecture involving a transformer network encoder that is
uniquely designed for multivariate time-series data [42], such
as EEG. We note that our method naturally generalizes to



EEG recordings comprising different numbers of time points
and channels (see our preprocessing setup in Section [[V-B).

A. Multivariate Time-Series Transformer

Our autoencoder architecture is based on a transformer
encoder and is depicted in Figure the model learns to
extract and transform latent features from a given EEG
recording in order to reconstruct the stochastically-masked
input [42]. Formally, the transformer encoder network receives
a recording X ¢ RT*M 4 ¢ [1,...,N], and extracts
latent features Z(Y € RT*P. The output layer applies an
affine transformation on Z() to reconstruct the recording as
X0 ¢ RTXM

1) Transformer Encoder: Transformer encoder operations
begin with projecting a recording X () from M dimensions
to D dimensions via a trainable affine transformation P &
RM*D To preserve the ordering information of the input
sequence, a fully-trainable positional encoding E € RT*P
is added for each input. The resulting latent features extracted
from each recording are thus: Z(V) = X P + E.

Dimensional projection and positional encoding are fol-
lowed by the successive application of several transformer
layers. Each transformer layer consists of a multi-headed
self-attention (MSA) module, a stochastic dropout operation
d [32], batch normalization (Norm) [22]], and a fully-connected
network (FCN) consisting of two linear layers separated by a
GELU |[21]] activation, a non-linearity designed to be used in
combination with dropout and batch normalization. Formally,
latent features are updated by each transformer layer via:

Z® + Norm (CZ (MSA(Z(”)) + Z(i)) )
Z < Norm (d (FCN(Z@)) + Z”)) . 1)

The summation of each latent feature with its transformation
is a skip connection that aids generalization [20], along with
batch normalization that has been shown improvement against
layer normalization for multivariate time-series analysis [42].
2) Multi-headed Self-attention Module: An MSA module
is designed to assign selective importance to latent features
extracted for each time point by the preceding layers of the
encoder [38]]. Particularly, MSA contains trainable parameters
that capture the similarity between input features at different
time points via their query, key, and value representations.
Multiple attention heads enable adaptations to long-term de-
pendencies and capture relevance between segments of multi-
variate data, without prior bias based on position [42].
Formally, at each time point ¢, the output representation is
computed via a weighted sum over the value vectors zl(f;/ €
RPv, ¢ € [1,...,T], where the importance weight assigned
to the value vector at time ¢’ is computed as a dot-product
similarity between its corresponding key vector z,(i)t, € RPq
(@) |

ot € RPa at time t. As a result, given a

and a query vector z

latent feature Z(9), a query Zéi) = [zgf)l; . ;zgf)T} € RT*Daq,
a key Z,iz) = [zliz)l; cd z,ﬁl)T] € RT*Pa and a value

. . @

Z{) = [20);...;20}] € RT*P are computed by applying

three different trainable affine transformations on Z(). The
self-attention output for a single attention head (SA) is then
computed via a scaled dot-product:

_ (i) ()T _
SA(Z") = softmax | —L—=E | Z(), )

VDq

where softmax converts the similarity scores to a probability
distribution over the input sequence of length T'. This opera-
tion is performed in parallel for each of the H attention heads
(each with its own trainable transformations). The resulting
outputs SA;, € RT*Pv_ h € [1,..., H] are first concatenated
and finally aggregated into a single representation through a
trainable linear transformation W, € R#DvxD.

MSA(Z)=[SA1(ZV) SA(ZD).. SAE(ZD)W4. (3)

B. Reconstruction-Based Loss Function

We aim for the transformer model to extract discriminative
latent features that govern the generation of EEG recordings,
i.e., to model the input data distribution. To this end, we
corrupt each input sample by a novel masking strategy that
is uniquely designed for modeling multivariate time-series
data such as EEG [42]. We train the transformer model
via a loss function that minimizes the error between the
original (unmasked) recording X (¥ and the corresponding
reconstruction X (9.

Formally, a proportion r € (0,1) of each channel m €
{1,...,M} in each EEG recording X is dynamically
masked at the beginning of each training step by setting
the encoder input values at chosen time points to 0. The
values at each channel alternate between consecutive masked
and unmasked sequences. The number of masked time points
follows a geometric distribution with mean [,,,, while the num-
ber of unmasked time points follows a geometric distribution
with mean [, = 1? m. This transition paradigm is also
known as an M/M/1 queue, in which the number of customers
in a system is geometrically distributed [18]]. The resulting
masking strategy encourages the transformer to attend on time
points preceding and following the masked segments both in
individual channels, as well as across the aligned time points
in other channels to capture inter-channel dependencies, and
has been found more effective than other denoising strategies
for downstream tasks, including Bernoulli masking (c.f. Table
& [42]).

Finally, the reconstruction loss for end-to-end training of our
model is the mean-squared reconstruction error. Crucially, the
loss is computer over only the set of masked time points M =
{(t,m) | masked X\, t € {1,...,T},me {1,...,M}}:

X002, )

(X{ -

C. Seizure Ildentification

We aim to employ the trained transformer to distinguish
between EEG recordings that contain seizures and those
which do not; this motivates us to pose unsupervised seizure
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Fig. 1: Our autoencoder architecture. The transformer encoder network receives a recording X () and extracts latent features
Z ) The output layer applies an affine transformation on Z(® to reconstruct the recording as X (¥ € RT”*™  During training,
a proportion of each channel is masked by setting the input values at masked time points (shaded in gray) to O.

identification as an anomaly detection problem. Thus, we train
the transformer architecture on recordings that do not contain
seizures. This allows for the learned latent features to capture
non-seizure activity [40]. As the transformer is trained to
model non-seizure activity, recordings with no seizures are
expected to be reconstructed with low error in inference time.
In contrast, EEG recordings including seizure activity come
from a different distribution, and thus, the model naturally
reconstructs such input recordings with a relatively larger
error; we use this observation as an indicator for a seizure
(c.f. Section [[V-D).

We note that the exclusion of seizure recordings from the
training set does not constitute supervision or require any
special annotation, as the default states of patients and healthy
individuals alike are non-seizure, whose recordings can be
collected and kept separate from the recordings of seizure
episodes (which we only use for evaluating our method). In
real-life applications, EEG data with no seizure activity can
be easily augmented with recordings from healthy individuals,
which are trivially accessible compared to the ones from
patients experiencing seizures.

IV. EXPERIMENTS
A. Datasets

We evaluate our method on three publicly available EEG
datasets collected at the: (i) Massachusetts Institute of Tech-
nology (MIT) and Boston Children’s Hospital [31]] (ii) Uni-
versity of Pennsylvania (UPenn) and Mayo Clinic [36], and
(iii) Temple University Hospital of Philadelphia (TUH) [27].

The MIT dataset contains EEG recordings acquired on the
scalp with 2566 Hz sampling rate from a maximum of M = 38
channels. 198 seizure recordings were labeled w.r.t. their start
and end times. The total duration of non-seizure recordings is
40, 800 seconds and seizure recordings is 2889 seconds.

The UPenn dataset contains 1-second long EEG recordings
acquired intracranially at 500 — 5000 Hz from a maximum of
M = 72 channels. The total duration of non-seizure recordings
is 7164 seconds and seizure recordings is 653 seconds.

The TUH dataset contains EEG recordings acquired on the
scalp with 250 Hz sampling rate from a maximum of M = 38
channels. 1229 seizure recordings were labeled w.r.t. their start
and end times. The total duration of non-seizure recordings is
49,922 seconds and seizure recordings is 2600 seconds.

B. Preprocessing

EEG recordings are typically preprocessed to eliminate the
powerline noise at 60 Hz [40]. We first unify the sampling rates
in each dataset by downsampling to the smallest sampling rate
across all recordings. Then, we filter the recordings via a 4-th
order Butterworth bandpass filter with range 0.5-50 Hz.

To construct samples with the same size, we extract sliding
windows over each recording, where each window contains
T time points and overlaps with its consecutive window by
50%. We choose T' based on the shortest seizure segment
in each dataset. In doing so, 7' = 1536 for MIT, T' = 500
for UPenn, and T' = 462 for TUH. This process results in
13,600 windows with non-seizure activity and 963 windows
with seizure activity for MIT, 14,329 windows with non-
seizure activity and 1307 windows with seizure activity for
UPenn, and 54,264 windows with non-seizure activity and
2826 windows with seizure activity for TUH. In real-life appli-
cations, a minimum seizure window length can be decided by
clinical experts, as in UPenn that directly provides 1 second-
long seizure recordings.

Moreover, we aim to consistently form 7'x M size windows,
while not disregarding any channels with potential seizure ac-
tivity. Thus, to construct samples with the same number of M
channels, we reuse data from other channels for the recordings
that have missing data at certain channels, compared to the
recording with the largest number of channels in each dataset.
Again, in real-life applications, clinical experts can determine
which channels to employ or discard for seizure identification.
Finally, we normalize windows by subtracting the mean and
dividing by the standard deviation across all windows to aid
the convergence of training [22]].



Dataset Method Precision Recall Accuracy AUC

MIT Unsupervised Transformer 0.98 £+ 0.003 0.9 £+ 0.006 0.87 + 0.006 0.94 £+ 0.023
Unsupervised K-means 0.33 £ 0.008 0.5 £ 0.009 0.5 £ 0.009 0.59 £0.041

Unsupervised VAE 0.97 £ 0.003 0.75 £ 0.008 0.61 £ 0.009 0.61 £ 0.041

Supervised XGBoost 0.98 £ 0.003 0.8 +0.007 0.8 +0.007 0.88 £ 0.031

Supervised ROCKET 0.98 £ 0.003 0.74 £ 0.008 0.78 £ 0.008 0.86 £ 0.032

Supervised Transformer 0.98 £ 0.003 0.83 £ 0.007 0.83 +0.007 0.88 £0.031

Pre-trained 50% Supervised Transformer 0.97 £ 0.003 0.72 £ 0.008 0.63 £ 0.009 0.66 £ 0.021
Pre-trained 100% Supervised Transformer 0.99 + 0.002 0.98 £ 0.003 0.94 + 0.005 0.97+0.017
UPenn Unsupervised Transformer 0.88 £0.01 0.76 £ 0.013 0.68 +£0.014 0.73 £0.027
Unsupervised K-means 0.33 £0.014 0.5+ 0.015 0.5£0.015 0.56 £ 0.028

Unsupervised VAE 0.8 +£0.012 0.5+ 0.015 0.49 £ 0.015 0.47 £ 0.027

Supervised XGBoost 0.87 £ 0.01 0.62 +0.015 0.6 +0.015 0.65 £ 0.028

Supervised ROCKET 0.87 £ 0.01 0.67 +£0.014 0.62 £ 0.015 0.67 £ 0.028

Supervised Transformer 0.87 £0.01 0.69 £0.014 0.62 +0.015 0.64 £0.028

Pre-trained 50% Supervised Transformer 0.86 £0.011 0.77 £0.013 0.63 £0.015 0.64 £0.032

Pre-trained 100% Supervised Transformer 0.92 + 0.008 0.85+0.011 0.824+0.012 0.89 + 0.02

TUH Unsupervised Transformer 0.92 + 0.005 0.57 + 0.009 0.61 £ 0.009 0.57 £0.013
Unsupervised K-means 0.17 £ 0.007 0.5 £ 0.009 0.35 £ 0.008 0.57 £0.013

Unsupervised VAE 0.93 £ 0.005 0.86 £ 0.006 0.83 £ 0.007 0.86 £ 0.009

Supervised XGBoost 0.93 £ 0.005 0.73 £ 0.008 0.71 £ 0.008 0.78 £0.011

Supervised ROCKET 0.93 £ 0.005 0.7 £ 0.008 0.66 £ 0.008 0.74 £ 0.012

Supervised Transformer 0.92 £ 0.005 0.37 £ 0.009 0.54 4+ 0.009 0.52 £0.012

Pre-trained 50% Supervised Transformer 0.94 £ 0.005 0.61 £ 0.009 0.75 + 0.008 0.71 £0.025

Pre-trained 100% Supervised Transformer 0.93 £ 0.005 0.66 £ 0.008 0.7 + 0.008 0.72 £0.012

TABLE I: Seizure identification performance metrics and confidence intervals on UPenn, MIT and TUH. We compare our
transformer-based unsupervised identification method (in bold) with unsupervised methods comprising VAE and t-SNE followed
by K-means clustering, as well as supervised methods comprising XGBoost, ROCKET, and the same transformer architecture
trained via supervised and pre-trained supervised learning. Best performance for each dataset are in italics.

C. Experiment Setup and Competing Methods

We partition all windows containing non-seizure and seizure
activity into training, validation, and test sets in a stratified
manner, allocating 60% for training, 20% for validation, and
the remaining 20% for testing. As baseline methods, we im-
plement shallow and deep learning models for both supervised
and unsupervised settings.

1) Unsupervised Learning Methods: For our method, we
employ the transformer encoder architecture proposed by
Vaswani et al. (2017), with the modifications of fully-trainable
positional encoding, batch normalization and the same hyper-
parameters suggested by Zerveas et al. (2021). We train the
autoencoder over only non-seizure training windows using the
unsupervised loss given by Eq. (@). We monitor the loss value
computed over the non-seizure windows in the validation set
and use the model that attains the lowest validation loss.

Following the literature on shallow unsupervised methods
[8]], we reduce the dimension of all EEG windows in the test
set to 3 using the t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) [37] algorithm, and apply K-means clustering
[4] on the resulting windows with two clusters indicating
non-seizure and seizure. Moreover, as an unsupervised deep

learning baseline, we train a state-of-the-art convolutional VAE
[41].

2) Supervised Learning Methods: First, we employ the
same transformer encoder architecture described in Section
[T-A] and map the latent features learned from each window
to a binary prediction. In doing so, we concatenate all latent
features corresponding to all time points of each window
into a single vector and apply a fully-connected layer com-
prising a scalar output with sigmoid activation. We train the
resulting architecture via cross-entropy loss over all training
windows, employing the same hyperparameters found optimal
by Zerveas et al. (2021). To combat overfitting due to class
imbalance in supervised learning, we oversample and augment
the seizure windows in training via random reversing and
drifting. We monitor the F1-score computed over the validation
set and use the model that attains the best validation score.

Moreover, we train state-of-the-art shallow models XGBoost
[11] and ROCKET [12] over the supervised training set.
XGBoost is a decision-tree classifier using gradient boosting
for ensembling. ROCKET transforms time-series using 500
random convolutional kernels and uses the extracted features
to train a ridge regression classifier. Ridge regression hyper-
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Fig. 2: Example EEG windows, corresponding seizure identifications and self-attention weights on UPenn. First and third rows
contain example windows of true positive, true negative, false negative, and false positive identifications, respectively. Second
and fourth rows contain the corresponding self-attention weight heatmaps computed by the transformer architecture, where
darker colors indicate higher importance. For each window, we visualize the channel with the largest reconstruction error.

parameter is varied in [1073,103] and best hyperparameter is
determined w.r.t. the accuracy over the validation set.

3) Pre-trained Supervised Learning: Finally, we combine
the transformer-based seizure identification methods via unsu-
pervised pre-training and supervised fine-tuning [42]. Follow-
ing the unsupervised approach described in Section [[V-CI] we
first pre-train the transformer encoder over non-seizure training
windows. Having initialized its weights accordingly, we then
fine-tune the model via both non-seizure and seizure training
windows, using the same setup described in Section

D. Evaluation Metrics

To evaluate the seizure identification performance of our
approach, as well as the VAE baseline, we use the mean ab-
solute error over the time points and electrode channels in each
EEG window from the test set as the corresponding seizure
prediction score. For all supervised competing methods, we
use the traditional prediction score for inference.

For all competing methods described in Section [V-C| we
report AUC for distinguishing seizure vs. non-seizure windows
in the test set. To compute binary decision metrics, we thresh-
old the prediction score of each window at the value for which

the geometric mean of recall and true negative rate is maxi-
mal [I7]. Using the respective threshold, we calculate class-
weighted precision and recall, as well as balanced accuracy
for binary identification of seizure vs. non-seizure windows in
the test set, considering the imbalanced distribution between
the two. In real-life applications, decision thresholds may be
determined by clinical experts with respect to the desired
trade-off between false positives and negatives [9).

We report all metrics along with the 95% confidence in-
tervals, which are computed as 1.96 x 04, where 0124 is the
variance for metric A. Variance for AUC is computed by:

Ji:%(A(lfA)Jr(mfl)(PﬁfAz)+(n71)(nyA2)), 5)
where P, = A/(2 — A), P, = 2A?/(1 + A), and m, n are
the number of seizure and non-seizure windows, respectively
[19]. Variance for other metrics are computed by:

0% = A(1 = A)/(m +n). (6)

E. Results and Discussion

1) Seizure Identification Performance: Table [[ shows the
seizure identification performance of our transformer-based



unsupervised method vs. supervised and pre-trained super-
vised transformers, XGBoost, ROCKET, VAE, and t-SNE
followed by K-means clustering over all datasets. Our novel
transformer-based anomaly detection method establishes a
dramatic improvement among all unsupervised methods, by
successfully distinguishing between non-seizure vs. seizure
windows with up to 0.94 AUC and outperforming its state-
of-the-art deep learning counterpart VAE by up to 33% AUC
on MIT. Clustering on raw EEG windows cannot capture the
complex evolution of EEG and predicts all windows as non-
seizure. These observations demonstrate the benefit of the
transformer architecture for unsupervised anomaly detection
in our setting.

Crucially, despite the lack of seizure labels during training,
our unsupervised anomaly detection approach leads to signif-
icantly better seizure identification than all purely supervised
learning baselines and the pre-trained transformer fine-tuned
with 50% of the training labels over UPenn and MIT, by
up to 16% recall, 9% accuracy, and 9% AUC. Moreover,
unlike supervised learning, class imbalance strongly biases
supervised models towards non-seizure predictions and hinders
generalization over the distribution of held-out test samples.
As a result, unsupervised anomaly detection via transformers
establishes a consistently better balance between precision and
recall than supervised learning and further demonstrates its
benefit in learning from imbalanced datasets such as ours.

The TUH dataset is particularly challenging by being a
compilation of several EEG databases collected over years
from patients with vast variations in demographic and medical
backgrounds [27]], compared to self-contained UPenn and MIT
datasets collected from only 8 and 24 patients, respectively. In
this case, our unsupervised transformer still fares significantly
better than the purely supervised transformer, while unsuper-
vised VAE outperforms all supervised learning baselines, in-
cluding the pre-trained transformer. These observations further
motivate unsupervised learning for our task.

As expected, the computationally expensive transformer
model, which has first undergone unsupervised pre-training
and then supervised fine-tuning with all training labels, outper-
forms both purely supervised as well as purely unsupervised
transformer models (the latter by a smaller margin). However,
our unsupervised anomaly detection method does not require
ground-truth seizure labels during training as a crucial advan-
tage, while still leading to successful seizure identification.

2) Seizure Identification Examples: We visualize example
EEG windows from UPenn and the corresponding seizure
identifications of the unsupervised transformer in the first and
third rows of Figure [2] selecting the channel with the largest
mean reconstruction error for each window. Agreeing with
the clinical description of seizures, true seizure windows in
Figure [2a| contain high-frequency waves with large amplitudes
[39]. Meanwhile, true non-seizure windows in Fig. @] attain
significantly less amplitude changes and spikes compared to
true positive windows. Note that the seizure patterns cannot
be identified w.r.t. only large amplitude or high frequency,
motivating a more sophisticated approach such as ours. For

Dataset Method Precision Recall Accuracy AUC
MIT Geometric (Ours) 0.98 0.9 0.87 094
Bernoulli 0.98 0.85 0.85 0.9

UPenn Geometric (Ours) 0.88 0.76 0.68 0.73
Bernoulli 0.86 0.72 0.65 0.72

TUH Geometric (Ours) 0.92 0.57 0.61 0.57
Bernoulli 0.93 0.4 0.59  0.54

TABLE II: Effect of masking strategy on seizure identification.

instance, non-seizure windows in Fig. 2d| have a larger ampli-
tude range than the seizure windows in Figure while the
seizure windows in Fig. [2c| contain similar spikes to the non-
seizure windows in Figure [2b| w.r.t. amplitude and frequency.

3) Benefit of Self-Attention: We visualize the self-attention
weights computed by the last encoder layer of the unsuper-
vised transformer on example EEG windows from UPenn as
2D heatmaps in the second and fourth rows of Figure [2] For
each time point along the horizontal axis of each heatmap, self-
attention weights (c.f. Equation (3)) from other time points
are indicated along the vertical axis. Darker heatmap colors
correspond to larger weights and, thus, higher importance.

It appears that the transformer model within our unsu-
pervised identification method can successfully learn to pay
more attention to seizure patterns including high-frequency
spikes and waves evolving with large amplitudes [39]. More-
over, when the model predicts the existence of seizures, it
shows patterns of focused attention, containing only few time
points with large weights (Figures [2a] and 2d), while windows
identified as non-seizure (Figures and lead to much
more evenly distributed attention. These observations indicate
that employing a transformer architecture with self-attention
can improve both performance, as well as explainability of
seizure identification decisions, by underlining, e.g., spike-
wave discharges that are indicative of seizures [39].

4) Effect of Masking Strategy: Table [ll] shows the seizure
identification performance of training with our geometric
masking strategy against masking each time point indepen-
dently at random with a Bernoulli distribution. Our approach
of unsupervised training with geometric masking consistently
leads to better performance than Bernoulli masking, demon-
strating its benefit in modeling multivariate data such as EEG.

V. CONCLUSION

We propose a fully-unsupervised transformer-based method
for seizure identification on raw EEG. Our method can suc-
cessfully distinguish between non-seizure and seizure windows
and can even achieve significantly better seizure identifica-
tion performance than state-of-the-art supervised time-series
methods, including its purely supervised transformer-based
counterpart. Generalizing our method to other applications
involving anomalous activity detection on multivariate time-
series data is a promising future direction.

Our unsupervised approach can significantly alleviate the
burden on clinical experts regarding laborious and difficult
EEG inspections to provide labels indicating segments that
contain seizures. Furthermore, if automated identification per-
formance meets clinical requirements, our method can aid



availability of seizure diagnoses for the wider public, espe-
cially in areas where access to well-trained healthcare profes-
sionals is limited.
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