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Abstract

We develop a theoretical framework for adver-
sarial training (AT) with FW optimization (FW-
AT) that reveals a geometric connection between
the loss landscape and the distortion of `∞ FW
attacks (the attack’s `2 norm). Specifically, we
show that high distortion of FW attacks is equiv-
alent to low variation along the attack path. It
is then experimentally demonstrated on various
deep neural network architectures that `∞ attacks
against robust models achieve near maximal `2
distortion. To demonstrate the utility of our the-
oretical framework we develop FW-AT-Adapt, a
novel adversarial training algorithm which uses
simple distortion measure to adapt the number of
attack steps during training. FW-AT-Adapt pro-
vides strong robustness against white- and black-
box attacks at lower training times than PGD-AT.

1. Introduction
It is well known that small, carefully chosen input per-
turbations, known as adversarial perturbations, can fool
deep neural networks (DNNs) into making incorrect pre-
dictions (Goodfellow et al., 2015). Various methods have
been proposed to defend against such perturbations (Ku-
rakin et al., 2017; Ros & Doshi-Velez, 2018; Madry et al.,
2018; Moosavi-Dezfooli et al., 2019). One of the best per-
forming algorithms is adversarial training (AT) (Madry et al.,
2018), which is formulated as a robust optimization problem
(Shaham et al., 2018). Computation of optimal adversarial
perturbations is NP-hard (Weng et al., 2018) and approx-
imate methods are used to solve the inner maximization.
The most popular approximate method is projected gradient
descent (PGD). Frank-Wolfe (FW) optimization has been
recently proposed in (Chen et al., 2020) and was shown
to effectively fool standard networks with less distortion.
Recent work has shown that FW optimization can be effi-
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ciently used to generate sparse counterfactual perturbations
to explain model predictions and visualize principal class
features (Roberts & Tsiligkaridis, 2021).

In this paper, we use the Frank-Wolfe optimization to de-
rive a relationship between the `2 norm of `∞ adversarial
perturbations (distortion) and the structure of the loss land-
scape; based on this relationship we propose an adaptive
Frank-Wolfe adversarial training (FW-AT-Adapt) method to
obtain robustness. This method can achieve robustness near
or above multistep PGD-AT while significantly decreasing
training time.

2. Background and Previous Work
One of the most popular and effective defenses against ad-
versarial attacks is adversarial training (AT) (Madry et al.,
2018) which minimizes the adversarial risk

min
θ

E(x,y)∼D

[
max
δ∈Bp(ε)

L(x+ δ, y; θ)

]
. (1)

This framework was extended in the TRADES algorithm
(Zhang et al., 2019) which proposes a modified loss function
that captures the clean and adversarial accuracy tradeoff.
Local Linearity Regularization (LLR) (Qin et al., 2019)
uses an analogous approach where the adversary is chosen
to maximally violate local linearity based on a first order
approximation to (1).

To construct adversarial attacks at a given input x, AT uses
Projected Gradient Descent (PGD) to approximate the inner
maximization using a fixed number of iterations:

δk+1 = PBp(ε) (δk + α∇δL(x+ δk, y; θ)) (2)

where PBp(ε) is the orthogonal projection onto the constraint
set. We refer to AT using K step PGD as PGD(K)-AT. The
computational cost of this method is dominated by the num-
ber of steps used to approximate the inner maximization.
Using fewer PGD steps lowers this cost, but these amount
to weaker attacks possibly leading to gradient obfuscation
(Papernot et al., 2017; Uesato et al., 2018), a phenomenon
where networks learn to defend against gradient-based at-
tacks by making the loss landscape highly non-linear, and
less robust models.
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Other works have modified the number of steps used to ap-
proximate (1) such as curriculum learning (Cai et al., 2018)
which monitors adversarial performance during training
and increases the number of attack steps as performance
improves, and (Wang et al., 2019) which use a FW con-
vergence criterion to adapt the number of attack steps at
given inputs. Both of these methods use PGD to generate
adversarial examples and do not report improved training
times.

We present Frank Wolfe Adversarial Training (FW-AT)
which replaces the PGD inner optimization with a Frank-
Wolfe optimizer. FW-AT achieves similar robustness as its
PGD counterpart. Using a closed form expression for the
FW attack path we derive bounds on the gradient alignment
of the loss and attack path variation in terms of the distortion
of the attack. This key insight leads to a simple modification
of FW-AT where the step size at each epoch is adapted based
on the `2 distortion of the attacks and is shown to provide
strong robustness and faster training times.

2.1. Frank-Wolfe Adversarial Attack

The Frank-Wolfe (FW) optimization algorithm has its ori-
gins in convex optimization though recently has been shown
to perform well in more general settings (Frank & Wolfe,
1956; Jaggi, 2013). FW first optimizes a linear approxima-
tion to the original problem, called a Linear Maximization
Oracle (LMO), δ̄k = argmaxδ∈Bp(ε) 〈δ,∇δL(x+ δk, y)〉 .
After calling the LMO, FW takes a step using a convex com-
bination with the current iterate, δk+1 = δk + γk(δ̄k − δk)
where γk ∈ [0, 1] is the step size. An effective choice is
γk = c/(c+ k) for some c ≥ 1. In our experiments robust-
ness of FW-AT was not sensitive to choice of c. This is in
contrast to PGD-AT which can be highly sensitize to choice
of step size (Wong et al., 2020). The LMO can be computed
exactly for any `p and for the `∞ case, LMO is given by
δ̄k,i = ε sgn(∇Lk,i), where∇L = ∇δL(x+ δk, y).

3. Distortion of Frank-Wolfe Attacks
We refer to the `2 norm of an `∞ attack as distortion in this
section we explore the insights distortion can give us into the
behavior of FW-AT. For the remainder of this section FW-
attacks will refer to `∞ attacks. In this setting, the maximal
distortion possible is ε

√
d, and we refer to ‖δ‖2/(ε

√
d) as

the distortion ratio (or simply distortion) of the attack δ.

3.1. Adversarial Training Rapidly Increases Distortion

Low distortion of FW-attacks was observed for standard
models in (Chen et al., 2020) but robust models were not
considered. We analyze the distortion ratio of FW attacks
on three architectures trained with standard cross-entropy
training and PGD(10)-AT on CIFAR-10. We analyze the

distortion ratio of ε = 8/255 attacks using FW(20) on
the CIFAR10 test dataset. Figure 1a shows that, while
adversarial perturbations of standard models have small
distortion, robust models produce attacks that are nearly
maximally distorted. This phenomena occurs across three
different architectures and is further supported by our theory
below. We note for PGD attacks the distortion ratio can be
trivially maximized with a large step size α, and thus this
connection between distortion and robustness does not exist
for PGD optimization. In Figure 1b we run three epochs
of FW-AT for varying number of steps and monitor the
distortion. Initially there is high variation but after merely
one epoch the distortion of the FW attacks has converged.
As we will see in Theorem 1 this indicates that the loss
gradients are rapidly aligning during FW-AT.

3.2. Multistep, High Distortion Attacks are Inefficient

Our main tool in analyzing the distortion of FW attacks, and
a prime reason FW-AT is more mathematically transparent
than PGD-AT, is a representation of the FW attack as a
convex combination of the LMO iterates. We refer to the
steps taken during the optimization as the attack path.

Proposition 1. The FW Attack with step sizes γk = c/(c+
k) for some c ≥ 1 yields the following adversarial pertur-
bation after K steps

δK = ε

K−1∑
l=0

αlsgn(∇δL(x+ δl, y)) (3)

where αl = γl
∏K−1
i=l+1(1− γi) ∈ [0, 1] are non-decreasing

in l, and sum to unity.

Using this representation we can derive connections be-
tween the distortion of the attack and the variation along the
attack path.

Theorem 1. Consider a FW attack δK . Let cosβlj be
the directional cosine between sgn(∇δL(x + δl, y)) and
sgn(∇δL(x+ δj , y)). The distortion ratio of the adversar-
ial perturbation δK is:

‖δK‖2
ε
√
d

=

√
1− 2

∑
l<j

αlαj(1− cosβlj) (4)

We can summarize the spirit of Theorem 1 by:

Higher distortion is equivalent to lower gradient variation
throughout the attack path.

Concretely, the accumulation of sign changes between every
step of the attack decreases distortion. Following this logic
further we are able quantify the distance between different
step attacks in terms of the final distortion.
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(a) Distortion ratios of FW(20) attacks (b) Distortion during FW-AT

Figure 1. (1a) Cumulative density function (CDF) of `2 distortion ratios of FW(20) attacks against standard / robust models (olive / navy)
for three network architectures shows FW attacks are nearly maximally distored for robust models. (1b) Distortion of FW(k) attack
against a model during its first 3 epochs of FW(k)-AT shows distortion ratios quickly converge during FW-AT.

Theorem 2. Let the same conditions as Theorem 1 hold
and K > 1. Assume the distortion ratio of the adversarial
perturbation satisfies:

‖δK‖2
ε
√
d
≥
√

1− η with η ∈ (0, 1).

Then,the deviation of δK and intermediate steps δk0 , for
1 ≤ k0 ≤ K satisfy:

‖δK − δk0‖2
ε
√
d

≤ Ck0,K
√
η (5)

The consequences of 2 can be summarized as:

Multistep attacks with high distortion are inefficient.

This suggests that during FW-AT using a large number of
steps to approximate the adversarial risk results in dimin-
ishing returns once high distortion of the attacks is attained.
Figure 1b shows that the distortion of attacks reaches a max-
imal value in the early stages of training suggesting that
much of the computation used in the later steps of the op-
timization is wasted. Inspired by this insight we design a
FW-AT algorithm which drops the number of attack steps
based the distortion of a multistep attack (FW-AT-Adapt).
Additional bounds are shown in the Appendix which assert
that, for batches with high distortion, the gradients and thus
the weight updates obtained by large step attacks are near
those of a low step attack. Thus, FW-AT-Adapt is expected
to achieve a similar level of robustness to non-adaptive meth-
ods. Proofs are included in the Appendix.

4. Frank-Wolfe Adversarial Training
Algorithm

Details of Adaptive Frank-Wolfe adversarial training
method (FW-AT-Adapt-E) are provided in Algorithm 2. The
overall algorithm is almost identical to PGD-AT with two
slight modifications:

Algorithm 1 FW-Attack(x, y;K, p) of size ε

Input: Network fθ, input (x, y), steps K.
δ = 0
for 0 ≤ k < K do
δ̄ = ε sgn(∇δL(fθ(x+ δ), y))
δ = δ + c

c+k (δ̄ − δ)
end for
Return: δ

1. The adversarial attack is approximated via a FW opti-
mization scheme (Alg. 1)

2. For the first Nb batches of each epoch, the distortion
of a K step attack is monitored. If its mean across
these batches is above a threshold r then the number
of attack steps is dropped to K0 for the remainder of
the epoch.

We also experiment with periodic distortion monitoring
(FW-AT-Adapt-P) where we perform a distortion check on
a single batch when the epoch is 0, 30, and 60% complete.
Theorem 2 guarentees that high-step high distortion attacks
are near low step attacks implying that FW-AT-Adapt should
train similarly robust models to AT. A detailed expression
of this can be found in Cor. 1 in the appendix.

5. Experimental Results
We evaluate the performance of our proposed FW-AT-Adapt
against standard training, and PGD-AT (Madry et al., 2018).
All networks were trained by fine-tuning for 30 epochs off a
standard model via SGD optimization with a learning rate of
0.1 which was decreased to 0.01 after 15 epochs. We record
the time to train the full 30 epochs and models were selected
based on their checkpoint which obtained the highest ad-
versarial accuracy on the test set. Each configuration is run
3 times and the median time is reported. The performance
metric used is the accuracy on the CIFAR-10 test set after
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Algorithm 2 Epoch of FW-AT-Adapt-E with attack size ε

Input: Network fθ, data D, epoch learning rate ηt, high
steps K1, low steps K0, max distortion r, number of
monitoring batches Bm.
Result: Robust model weights θ.
Nb, dm = 0
K = K1

for each batch (x, y) ∼ D do
δ = FW-Attack(x, y;K, p =∞)
if Nb ≤ Bm then
dm = dm + ‖δ‖2
if Nb = Bm and dm/Bm > r then
K = K0

end if
end if
θ = θ − ηt 1

|B|
∑
i∈B ∇θL(fθ(xi + δi), yi)

Nb = Nb + 1
end for

(a) ε = 8/255 (b) ε = 16/255

Figure 2. Robustness / train-time trade off performance fronts for
Epoch and Periodic Adaptive FW-AT (blue / coral) shows superior
trade off points compared to PGD-AT (green). Evaluations were
against PGD(50) .

the attack is applied (adversarial accuracy). All PGD(K)
attacks of size ε with are computed with step size 2.5ε/K
similar to (Madry et al., 2018).

To determine whether there are step size, drop step,
and max distortion ratio combinations, K-K0-r, for
which FW-AT-Adapt-E/P achieves superior robustness/train
time trade offs compared to PGD-AT, a hyperparameter
sweep across K ∈ {4, 5, 7, 10}, K0 ∈ {1, 2, 3}, and
r ∈ {0.91, 0.92, . . . , 0.96} are compared against PGD(1)-
through PGD(7)-AT, and PGD(10)-AT. We set Bm = 3
for all FW-AT-Adapt-E models. Based on Figure1b we al-
low the models to do traditional FW-AT for one epoch and
then begin the adaptation. We note on CIFAR-10 AT with
ε = 8/255 performance of AT seems to saturate with a
low number of steps so we experimented with adding an
extra epoch of FW-AT before beginning adaptation.We then
evaluated all models against a PGD(50) attack.

Figure 2 shows the performance front which start with the
lowest training time models and adds models sequentially
in time if their adversarial accuracy is strictly greater than
the previous point on the front. Both FW-AT-Adapt-E and
FW-AT-Adapt-P exhibit superior performance trade-offs
to PGD-AT. Notably in the case of ε = 8/255 (Fig. 2a
) FW-Adapt-E’s performance front is strictly superior to
PGD-AT’s achieving points with the same robustness as
PGD(10)-AT at half the training time. For ε = 16/255
PGD(10)-AT (Fig. 2b ) remains optimal with respect to
adversarial accuracy but FW-Adapt can still achieve com-
petitive robustness at half the training time.

Gradient masking is evaluated using a similar evaluation pro-
tocol as in (Moosavi-Dezfooli et al., 2019) inspired by (Ue-
sato et al., 2018). Table 1 shows that our method achieves
high adversarial accuracy when evaluated against PGD at-
tacks of increasing strength. Our models are evaluated
against Square (Andriushchenko et al., 2020); a black-box
gradient-free attack repeatedly perform queries to construct
adversarial images. Table 1 contains the adversarial accu-
racy obtained under PGD(100) white-box attack and black-
box attacks against `∞-robust FW-Adapt and PGD(10) mod-
els for a batch of 1000 test examples. For ε = 8/255,
FW-Adapt-E was used with parameters 10-2-0.94, and for
ε = 16/255, FW-Adapt-E parameters were 10-2-0.91. The
proposed FW-AT-Adapt defense achieves similar robust-
ness to PGD-AT. Further gradient masking evaluations are
included in the Appendix.

Method ε Clean PGD(100) Square Time (mins)
FW-AT-Adapt-E 8/255 82.53 50.70 54.60 33.06
PGD-AT 8/255 82.91 49.70 55.10 51.85
FW-AT-Adapt-E 16/255 62.65 32.40 34.40 36.09
PGD-AT 16/255 62.14 31.70 34.20 52.70

Table 1. Model accuracy on CIFAR-10 test set for white-box
`∞ PGD(100) attacks and black-box attacks (Square) at ε =
8/255, 16/255 for `∞ robust networks trained on ResNet18 archi-
tecture at ε = 8/255, 16/255 respectively.

6. Conclusion
FW `∞ attacks against robust models have higher `2 distor-
tions than standard ones. We derive a theoretical connection
between loss geometry and distortion of FW attacks which
explains this phenomenon and bound the variation along
the attack path in terms of the distortion. Inspired by this
connection, we propose an adaptive AT algorithm (FW-AT-
Adapt) that achieves high robustness with lower training
time than PGD-AT against strong white- and black-box at-
tacks, and is resistant to gradient obfuscation. We hope this
work encourages future research on the connection between
Frank-Wolfe optimization and adversarial robustness.
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7. Appendix
7.1. Theoretical Results and Proofs

While loss functions L(x+δ, y) in deep neural networks are
non-convex in general, we make the following assumption.

Assumption 1. The function L has L-Lipschitz continuous
gradients onBp(ε), i.e., ‖∇L(x+u, y)−∇L(x+v, y)‖ ≤
L‖u− v‖,∀u, v ∈ Bp(ε).

Assumption 1 is a standard assumption for the non-convex
setting and has been made in several works (Lacoste-Julien,
2016; Chen et al., 2020). For standard ERM training loss
smoothing has been observed to occur in over parameterized
(Allen-Zhu et al., 2019; Zou & Gu, 2019; Cao & Gu, 2020)
and batch normalized (Santurkar et al., 2018) DNNs. For
robust models the process of adversarial training has been
noted to significantly smooth the loss (Moosavi-Dezfooli
et al., 2019; Qin et al., 2019). an example comparing stan-
dard and robust loss landscapes is given in Figure 3. More-
over, the distortion plots of Figure 1 (b) together with The-
orem 1 suggest that FW-AT quickly regularizes the loss
landscape.

Corollary 1. Consider a batch update of FW-AT Algorithm
2 where the high distortion condition of Thm. 2 holds on
average on examples in a batch B, i.e. for some small
η ∈ (0, 1):

1

|B|
∑
i∈B

‖δi(θ,K)‖2
ε
√
d

≥
√

1− η (6)

where δi(θ,K) denotes the K-step FW adversarial pertur-
bation for the i-th example in the batch B. Let the SGD
model weight gradient be given by:

g(θ, δ(θ,K)) =
1

|B|
∑
i∈B
∇θL(fθ(xi + δi(θ,K)), yi)

Given Assumption 1 holds, the model weights SGD update
using adversarial perturbations δK and δk0 are bounded
as:

‖g(θ, δ(θ,K))−g(θ, δ(θ, k0))‖2 ≤ LCk0,K
√
η·ε
√
d. (7)

where L is the local Lipschitz constant.

Bound (7) asserts that in the high distoriton setting the gra-
dients, and thus the weight updates, obtained by a high step
attack are near those of a low step attack. Therfore, it is
expected to achieve a similar level of adversarial robustness
using the proposed adaptive algorithm.

7.2. Loss Landscape

It has been shown experimentally that AT robust models
and geometric regularization methods that increase adver-
sarial robustness, have more regular loss landscapes than

(a) Standard

(b) PGD-AT, K=10

(c) FW-AT-Adapt-E, 10-2-0.94

Figure 3. Loss landscapes for an image from CIFAR10 test set.
ResNet18 architecture. Standard models have highly non-linear
loss surfaces as opposed to robust models which have smoother
landscapes.

their non-robust counterparts (Lyu et al., 2015; Ros & Doshi-
Velez, 2018; Moosavi-Dezfooli et al., 2019; Qin et al., 2019).
Figure 3 shows sample loss surfaces for a standard model,
PGD(10)-AT, and FW(10)-AT. The white circle denotes the
original image, and the red circle denotes the `∞ adversar-
ial perturbation at ε = 8/255. One axis is aligned to the
adversarial perturbation direction and the other is aligned to
a random orthogonal direction. The loss surface of standard
models is highly non-linear and the loss varies significantly
in this small neighborhood, with the largest variation occurs
in the adversarial direction. Figure 3 (b) and (c) demonstrate
that robust models offer more resistance to such local loss
variation and the variation is primarily in the direction of
the adversarial attack. These results suggest high resistance
to gradient obfuscation.

7.3. Adversarial Robustness: White-Box Evaluations

To further evaluate FW-AT-Adapt we choose strong per-
formers from the previous experiment to test against a



On Frank-Wolfe Adversarial Training

larger variety of adversarial attacks, including white-box
untargeted and targeted attacks towards a random class
r ∼ U({1, . . . ,K}\y). The white-box setup considers
attack techniques that have full access to the model pa-
rameters and are constrained by the same maximum per-
turbation size ε. The classification margin is defined as
M(x, y) = log py(x) −maxj 6=y log pj(x). The following
white-box attacks are used for evaluating adversarial robust-
ness:

(UL) Untargeted-loss: maxδ∈B(ε) L(x+ δ, y)
(TL) Random Targeted-loss: minδ∈B(ε) L(x+ δ, r)
(UM) Untargeted-margin: minδ∈B(ε)M(x+ δ, y)
(TM) Random Targeted-margin: maxδ∈B(ε)M(x+δ, r)

Table 2 reports robustness results on CIFAR-10 for these `∞
attacks at ε = 8/255, 16/255 for a ResNet18 architecture
trained at ε = 8/255, 16/255 respectively. FW-AT-Adapt
achieves robustness competitive with PGD-AT for untar-
geted and targeted attacks at lower training times.

7.4. Gradient Masking Evaluations

Figure 4 compares the margin computed using Square at-
tack and PGD(100) attack for a large batch of test points.
The margin captures confidence, and is positive for cor-
rect predictions and negative for misclassifications. The
margin was computed with black-box Square Attack for
the y-axis and white-box PGD(100) attack for x-axis on
a set of 1000 test points. Points near the line y = x in-
dicate both types of attacks found similar adversarial per-
turbations, while points below the line shown in red imply
that Square Attack identified stronger attacks than PGD.
It is observed that both methods lead to a similar margin
except on a small subset of points for FW-AT-Adapt-E.
For ε = 8/255, FW-AT-Adapt-E has 13/1000 = 1.3%
and PGD-AT has 23/1000 = 2.3% points in red. For
ε = 16/255, FW-AT-Adapt-E has 130/1000 = 13% and
PGD-AT has 120/1000 = 12% points in red. The results in
Table 1 and Fig. 4 further verify that FW-AT improves the
true robustness and does not suffer from grading masking
or obfuscation.

7.5. Proof of Proposition 1

Proof. The LMO solution is given by δ̄k = ε φp(∇δL(x+
δk, y)) and the update becomes

δk+1 = δk + γk(δ̄k − δk)

= (1− γk)δk + γk ε φp(∇δL(x+ δk, y))

(a) PGD-AT, K=10, ε = 8/255

(b) FW-AT-Adapt-E, 10-2-0.94, ε = 8/255

(c) PGD-AT, K=10, ε = 16/255

(d) FW-AT-Adapt-E, 10-2-0.91, ε = 16/255

Figure 4. Gradient masking analysis for CIFAR10 PGD-AT and
FW-AT-Adapt-E `∞ robust networks trained on ResNet18 archi-
tecture. FW-AT-Adapt-E exhibits a high resistance to gradient
masking.
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Method (ε = 8/255) Clean UL TL UM TM Params Time (mins)
Standard 94.35 0.00 10.90 0.00 12.07 n/a n/a
FW-AT-Adapt-P 84.07 49.85 75.84 48.61 73.84 5-2-0.91 19.13
FW-AT-Adapt-E 83.11 50.44 75.63 48.78 73.16 10-3-0.92 23.57
FW-AT-Adapt-E 82.53 50.66 74.80 48.39 72.93 10-2-0.94 33.06
PGD-AT 82.06 49.66 74.49 48.23 72.98 3 21.04
PGD-AT 82.60 50.35 75.66 48.84 73.27 5 29.71
PGD-AT 82.91 50.41 75.21 48.86 73.62 10 51.85
Method (ε = 16/255) Clean UL TL UM TM Params Time (mins)
FW-AT-Adapt-P 62.21 31.14 54.30 27.33 52.30 4-2-0.92 24.94
FW-AT-Adapt-E 60.85 30.93 53.49 26.63 51.23 7-2-0.91 30.48
FW-AT-Adapt-E 62.65 31.10 54.41 27.29 52.40 10-2-0.91 36.09
PGD-AT 57.18 27.60 49.81 22.83 47.81 3 20.97
PGD-AT 61.81 30.46 53.76 27.21 52.38 5 29.64
PGD-AT 61.83 31.48 54.30 27.34 52.09 10 52.70

Table 2. Model accuracy on CIFAR-10 test set against `∞ attacks at ε = 8/255, 16/255 on ResNet18 architecture trained at ε =
8/255, 16/255 respectively against PGD(50) attacks step size α = 2.5ε/50. Our proposed adaptive FW-AT-Adapt algorithm obtains
high robustness similar to PGD(10)-AT at lower training time.

Using induction on this relation yields after K steps:

δK = δ0

K−1∏
l=0

(1− γl)

+ ε

K−1∑
l=0

γl

K−1∏
i=l+1

(1− γi)φp(∇δL(x+ δk, y)) (8)

where δ0 is the initial point which affects both terms in (8)
and γk = c/(c+ k) for k ≥ 0. Since γ0 = 1, the first term
vanishes and (8) simplifies to

δK = ε

K−1∑
l=0

αlφp(∇δL(x+ δl, y)) (9)

where the coefficients are

αl = γl

K−1∏
i=l+1

(1− γi) (10)

Since γl ∈ [0, 1], it follows that αl ∈ [0, 1]. Induction on
(10) yields that

∑K−1
l=0 αl = 1. Furthermore, αl ≤ αl+1

follows from:

αl ≤ αl+1

⇔ γl (1− γl+1) ≤ γl+1

⇔ c

c+ l

(
1− c

c+ l + 1

)
≤ c

c+ l + 1

⇔ l + 1

c+ l
≤ 1

⇔ 1 ≤ c

Thus, the sequence αl is non-decreasing in l. Since the
coefficients sum to unity, (9) is in the convex hull of
the generated LMO sequence {φp(∇δL(x + δl)) : l =
0, . . . ,K − 1}.

7.6. Proof of Theorem 1

Proof. From Proposition 1, we obtain the following decom-
position of the adversarial perturbation:

δK = ε

K−1∑
l=0

αlsgn(∇δL(x+ δl, y))

To bound the magnitude of the adversarial perturbation, we
have

‖δK‖2 =
√
‖δK‖22 = ε

√∥∥∥∑
l

αlsl

∥∥∥2
2

where we use the shorthand notation sl = sgn(∇δL(x +
δl, y)). The squared `2 norm in the above is bounded as:

∥∥∥∑
l

αlsl

∥∥∥2
2

=
∑
l

∑
j

αlαj 〈sl, sj〉

=
∑
l

(αl)
2‖sl‖22 +

∑
l 6=j

αlαj‖sl‖2‖sj‖2 cosβlj

= d
(∑

l

(αl)
2 +

∑
l 6=j

αlαj cosβlj

)
= d
(∑

l

(αl)
2 +

∑
l 6=j

αlαj −
∑
l 6=j

αlαj(1− cosβlj)
)

= d
(

1−
∑
l 6=j

αlαj(1− cosβlj)
)

= d
(

1− 2
∑
l<j

αlαj(1− cosβlj)
)

where we used ‖sl‖2 =
√
d and from Proposition 1

(
∑
l αl)

2 = 1. The final step follows from symmetry. This
concludes the proof.
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7.7. Proof of Theorem 2

Proof. From Theorem 1 and the lower bound on the distor-
tion, it follows that:

∑
l<j

αlαj(1− cosβlj) ≤ η/2 (11)

Letting si = sgn(∇L(x+δi, y)) and expanding the squared
difference of signed gradients:

‖sl − sj‖22 = ‖sl‖22 + ‖sj‖22 − 2 〈sj , sl〉
= ‖sl‖22 + ‖sj‖22 − 2‖sj‖2‖sl‖2 cosβlj

= d+ d− 2d cosβlj

= 2d(1− cosβlj) (12)

Using (12) into (11),

∑
l<j

αlαj‖sl − sj‖22 ≤ ηd (13)

For the FGSM deviation bound, i.e., k0 = 1, we have by the
triangle inequality:

‖δK − εsgn(∇xL(x, y))‖2 = ‖ε
K−1∑
l=0

αlsl − εs0‖2

= ‖ε
∑
l

αlsl −
∑
l

αlεs0‖2

= ε‖
∑
l

αl(sl − s0)‖2

≤ ε
∑
l>0

αl‖sl − s0‖2 (14)

Using Cauchy-Schwarz inequality, we obtain:

∑
l>0

αl‖sl − s0‖2 ≤
√
K − 1

√∑
l>0

(αl)2‖sl − s0‖22

≤
√
K − 1

√∑
l<j

(αl)2‖sl − sj‖22

≤
√
K − 1

√∑
l<j

αlαj‖sl − sj‖22

≤
√
K − 1 ·

√
ηd (15)

where we used the non-decreasing property of the sequence
{αl}l and the bound (13). This concludes the first part.

Given 1 ≤ k0 ≤ K, we have via using Proposition 1 twice:

δK − δk0 = ε

K−1∑
l=0

αlsl − δk0

= ε

K−1∑
l=0

αlsl −
∑
l

αlδk0

= ε

K−1∑
l=0

αl(sl − δk0/ε)

= ε

K−1∑
l=0

αl(sl −
k0−1∑
j=0

α̃jsj)

= ε

K−1∑
l=0

αl

k0−1∑
j=0

α̃j(sl − sj)

= ε

K−1∑
l=0

k0−1∑
j=0

αlα̃j(sl − sj) (16)

where αl = γl
∏K−1
i=l+1(1 − γi), 0 ≤ l ≤ K − 1 and α̃j =

γj
∏k0−1
i=l+1(1− γi), 0 ≤ j ≤ k0 − 1.

Taking the `2 norm of both sides of (16) and using the
triangle inequality, we obtain:

‖ δK − δk0 ‖2≤ ε
K−1∑
l=0

k0−1∑
j=0

αlα̃j‖sl − sj‖2

Using the Cauchy-Schwarz inequality yields:

K−1∑
l=0

k0−1∑
j=0

αlα̃j‖sl − sj‖2

≤

√√√√K−1∑
l=0

k0−1∑
j=0

(αlα̃j)2

√√√√K−1∑
l=0

k0−1∑
j=0

‖sl − sj‖22

≤

√√√√K−1∑
l=0

(αl)2
k0−1∑
j=0

(α̃j)2

√√√√K−1∑
l=0

K−1∑
j=0

‖sl − sj‖22

≤

√√√√K−1∑
l=0

(αl)2
k0−1∑
j=0

(α̃j)2

√
2ηd

minl<j{αlαj}

=

√
2
∑K−1
l=0 (αl)2

∑k0−1
j=0 (α̃j)2

α0α1

√
ηd

where we used (13) and the non-decreasing sequence {αl}
implies minl<j{αlαj} = α0α1. This concludes the proof
of the second part.
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7.8. Proof of Corollary 1

Proof. Using the triangle inequality and the L-Lipschitz
continuous loss gradient assumption:

‖g(θ, δ(θ,K))− g(θ, δ(θ, k0))‖2

= ‖ 1

|B|
∑
i∈B

(∇θL(fθ(xi + δi(θ,K)), yi)

−∇θL(fθ(xi + δi(θ, k0)), yi))‖2

≤ 1

|B|
∑
i∈B
‖∇θL(fθ(xi + δi(θ,K)), yi)

−∇θL(fθ(xi + δi(θ, k0)), yi))‖2

≤ L

|B|
∑
i∈B
‖δi(θ,K)− δi(θ, k0)‖2 (17)

The average distortion condition yields via Proposition 1
(with the superscript (i) denoting the i-th example vari-
ables):

1

|B|
∑
i∈B

√
1− 2

∑
l<j

αlαj(1− cosβ
(i)
lj ) ≥

√
1− η

Using Jensen’s inequality (and the concavity of the square
root function) further yields after some algebra:

1

|B|
∑
i∈B

∑
l<j

αlαj(1− cosβ
(i)
lj ) ≤ η

2

Borrowing the relation (12) from the proof of Theorem 2,
we further obtain:

1

|B|
∑
i∈B

∑
l<j

αlαj‖s(i)l − s
(i)
j ‖

2
2 ≤ ηd (18)

Using the relation (16), it follows:

1

|B|
∑
i∈B
‖δi(θ,K)− δi(θ, k0)‖2

(a)
≤ 1

|B|
∑
i∈B

ε

K−1∑
l=0

k0−1∑
j=0

αlα̃j‖s(i)l − s
(i)
j ‖2

(b)
≤ ε

√√√√K−1∑
l=0

α2
l

k0−1∑
j=0

α̃2
j ·

1

|B|
∑
i∈B

√√√√K−1∑
l=0

k0−1∑
j=0

‖s(i)l − s
(i)
j ‖2

(c)
≤ ε

√√√√K−1∑
l=0

α2
l

k0−1∑
j=0

α̃2
j ·

√√√√ 1

|B|
∑
i∈B

K−1∑
l=0

k0−1∑
j=0

‖s(i)l − s
(i)
j ‖2

(19)

where we used (a) triangle inequality, (b) Cauchy-Schwarz
and (c) Jensen’s inequality.

From (18), it follows that:

1

|B|
∑
i∈B

K−1∑
l=0

k0−1∑
j=0

‖s(i)l − s
(i)
j ‖

2
2 ≤

2ηd

α0α1
(20)

Combining (20) with (19) yields:

1

|B|
∑
i∈B
‖δi(θ,K)− δi(θ, k0)‖2 ≤ ε

√
d
√
ηCk0,K

where Ck0,K =

√
2
∑K−1

l=0 α2
l

∑k0−1
j=0 α̃2

j

α0α1
. Using this bound

in (17) concludes the proof.

7.9. Convergence Analysis

Loss functions L(x+ δ, y) in deep neural networks are non-
convex in general. For a targeted attack that aims to fool
the classifier to predict a specific label, without loss of gen-
erality, we seek to minimize the loss f(δ) = L(x + δ, y′)
over a `p constraint set. The untargeted case follows simi-
larly. 1 For general non-convex constrained optimization,
the Frank-Wolfe gap given by (Frank & Wolfe, 1956):

G(δk) = max
δ∈Bp(ε)

〈δ − δk,∇δL(x+ δk, y)〉 (21)

is non-negative in general and zero at stationary points.
The convergence of FW on non-convex functions has been
studied in (Lacoste-Julien, 2016) and recently improved for
strongly convex constraints in (Rector-Brooks et al., 2019).

Assumption 2. The function f has L-Lipschitz continu-
ous gradients on Bp(ε), i.e., ‖∇f(u)−∇f(v)‖ ≤ L‖u−
v‖,∀u, v ∈ Bp(ε).

Assumption 2 is a standard assumption for the non-convex
setting and has been made in several works (Lacoste-Julien,
2016; Chen et al., 2020). A recent study (Santurkar et al.,
2018) shows that the batch normalization layer used in mod-
ern neural networks makes the loss much smoother. Other
recent works (Allen-Zhu et al., 2019; Zou & Gu, 2019;
Cao & Gu, 2020) showed that the loss is semi-smooth for
overparameterized DNNs. Furthermore, the process of ad-
versarial training smooths the loss landscape in comparison
to standard models significantly as Fig. 3 illustrates and
other works have noted this phenomenon as well (Moosavi-
Dezfooli et al., 2019; Qin et al., 2019).

Given Assumption 2 and the compactness of the constraint
sets, all limit points of FW are stationary points (Bertsekas,
1999). The convergence rate of FW to a stationary point for
optimization over arbitrary convex sets was first shown in
(Lacoste-Julien, 2016) given by

min
1≤s≤t

G(δs) ≤
max{2h0, L diam(B)}√

t+ 1

where h0 = f(δ0) − minδ∈B(ε) f(δ) is the initial global
suboptimality. It follows that larger ε imply a larger diameter

1For untargeted attacks, minδ∈B(ε)−L(x+δ, y) is considered
and the FW gap becomes (21).
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and more iterations may be needed to converge 2. This result
implies that an approximate stationary point can be found
with gap less than ε0 in at mostO(1/ε20) iterations. Theorem
4 in (Rector-Brooks et al., 2019) shows that for smooth
non-convex functions over strongly convex constraint sets,
FW yields an improved convergence rate O

(
1
t

)
, which

importantly does not hold for the `∞ constraint.
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