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ABSTRACT

Class Incremental Learning (CIL) is a prominent subfield of continual learning,
aiming to enable models to incrementally learn new tasks while preserving the
knowledge learned from the previous tasks. The main challenge of CIL is known
as catastrophic forgetting, where a model that is naively fine-tuned to new tasks ex-
periences a significant drop in performance on previous tasks. To address the chal-
lenge, previous studies have mostly focused on backward compatible approaches.
Recently, a forward compatible approach has been introduced that supports a con-
current use with the existing backward compatible methods. The forward compat-
ible method, however, is limited in that it relies solely on class information. In this
study, we propose an effective-Rank based Forward Compatible (RFC) represen-
tation regularization that is not confined to specific types of information, such as
class information. The proposed method increases the efficient rank of representa-
tion during the base session, thereby facilitating the encoding of more informative
features pertinent to unseen novel tasks. To substantiate the effectiveness of our
method, we establish a theoretical connection between effective rank and Shannon
entropy of the representations. Subsequently, we conduct comprehensive experi-
ments, by integrating it into ten well-known backward compatible CIL methods.
The results demonstrate that our forward compatible approach is effective in en-
hancing the performance of novel tasks while mitigating catastrophic forgetting.
Furthermore, the results indicate that our method significantly improves the aver-
age incremental accuracy of all ten cases that we have examined, underscoring its
efficacy and general applicability.

1 INTRODUCTION

Continual learning, the process of continually acquiring and integrating new knowledge, has
emerged as a significant challenge in the field of machine learning. In contrast to conventional
learning paradigms that focus on static datasets and fixed tasks, continual learning encompasses
the dynamic and ever-changing nature of real-world applications. To address this challenge, class
incremental learning (CIL) (Rebuffi et al., 2017; Hou et al., 2019; Douillard et al., 2020; Shi et al.,
2022), a subfield of continual learning, primarily focuses on developing techniques that enable adap-
tive learning to accommodate new classes, while minimizing the detrimental impact of knowledge
degradation on previously learned classes.

In CIL, training takes place through multiple incremental sessions, each focusing on a distinct sub-
set of classes that do not overlap with the subsets utilized in other sessions. The base session in-
volves training a model from scratch to perform a base task, typically involving a large number of
classes. Subsequently, in each novel session, the model is expected to incrementally learn a new
novel task, typically involving a smaller number of classes, while retaining its performance on pre-
viously learned tasks. The model’s performance is evaluated using the classes of all the previous and
current tasks, without access to the task identification information.

The primary objective in CIL is to mitigate the detrimental impact of catastrophic forgetting, which
refers to a significant decline in the model’s performance on previous task classes after learning
new classes from a subsequent task. To address this challenge, most of the previous works have
focused on addressing the forgetting problem in the updated model (i.e., backward compatible ap-
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(a) Representation rank (b) Novel task performance (c) Catastrophic forgetting

Figure 1: Impact of increasing representation rank during the base session. We conduct an analysis
of UCIR models with and without the integration of our method. ResNet-18 model is trained for the
CIFAR-100 dataset, utilizing 50 base classes and a split size of 10 classes for each novel session.
(a) Effective rank of the feature extractor. (b) Novel task performance in each novel session. (c) The
degree of catastrophic forgetting that occurs for the base task.

proach) (Zhou et al., 2022; Shi et al., 2022). This is commonly achieved by enforcing similarity
between the updated model and its predecessor. For instance, weight regularization methods enforce
similarity in weights (Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi et al., 2018; Chaudhry
et al., 2018), while knowledge distillation methods enforce similarity in representations (Rebuffi
et al., 2017; Li & Hoiem, 2017; Castro et al., 2018; Hou et al., 2019; Wu et al., 2019).

In contrast, the concept of forward compatible approach, which aims to facilitate the training of the
subsequent tasks, has received relatively little attention. While a recent work has proposed a method
that learns forward compatible representations by enforcing class-wise decorrelations (CwD) (Shi
et al., 2022), it has an inherent limitation as it relies on class information. Given that the training
data for the base task can encompass considerably more informative features that can be utilized for
novel sessions beyond mere class information, the regularization of the representation based on only
the class information of the base task can impose a substantial limitation on the encoded features.
In few-shot class incremental learning (FSCIL), another method called FACT also implemented
forward compatible method by assigning virtual prototypes that also rely on class information (Zhou
et al., 2022).

To learn forward compatible representation, this study focuses on representation rank. To be pre-
cise, we utilize effective rank (Roy & Vetterli, 2007) in lieu of algebraic rank. Effective rank is a
continuous-value extension of algebraic rank. In contrast to algebraic rank, it possesses two advan-
tageous properties: differentiability and the ability to effectively manage extremely small singular
values. Representation rank is a general property of representations, and it is not constrained to spe-
cific types of information such as class information. Therefore, we conjecture that the representation
rank can serve as a crucial indicator of the quantity of encoded features in the representation, with
higher-rank representations expected to contain richer features that can be beneficial for subsequent
tasks. We substantiate the conjecture with a theorem and empirical investigations. We prove that the
Shannon entropy of the representation is maximized when the effective rank is maximized. Because
entropy is a quantitative measure of information, larger entropy can be interpreted as richer features.
Empirically, we show that effective rank increases as more classes are included in a plain supervised
learning and we also show that effective rank increases as unsupervised learning proceeds.

To this end, we propose an effective-Rank based Forward Compatible (RFC) representation regular-
ization method that increases the effective rank of representation during the base session in order to
preserve informative features. Specifically, we highlight the importance of regularizing the feature
extractor during the base session, as it offers two main advantages in the process of learning novel
sessions. First, the performance of novel tasks can be enhanced by utilizing the rich features encoded
by the base task. Second, catastrophic forgetting can be mitigated because novel tasks can leverage
the rich features encoded by the base task, leading to minimal modifications to the feature extractor
during the learning of novel tasks.

We have performed extensive experiments to confirm the effectiveness of RFC for class incremental
learning. While we defer the explanation of the full results until Section 4, a glimpse of the experi-
mental results is provided in Figure 1. Our method can effectively increase the representation rank
as shown in Figure 1(a), can improve the performance of novel tasks as exhibited in Figure 1(b),
and can substantially mitigate catastrophic forgetting as demonstrated in Figure 1(c). These empir-
ical results provide compelling evidence for the effectiveness of our approach in learning forward
compatible representation.

2



Under review as a conference paper at ICLR 2024

2 RELATED WORKS

The weight regularization methods aim to minimize the weight distance between the feature extrac-
tor learned in the previous session and the feature extractor learned in the subsequent session. In this
approach, previous works have primarily focused on calculating the importance of each weight to
penalize changes of individual weights. To calculate the importance, several methods have been
proposed. EWC (Kirkpatrick et al., 2017) proposed a diagonal approximation of the Fisher In-
formation Matrix. SI (Zenke et al., 2017) and MAS (Aljundi et al., 2018) proposed a path inte-
gral approach, which accumulates the changes in weights throughout the entire learning trajectory.
RWalk (Chaudhry et al., 2018) combined the Fisher Information Matrix approach with the path
integral approach.

The representation regularization methods aim to prevent forgetting by imposing a penalty on
changes in representations. Typically, a regularization is applied during novel sessions, wherein
Knowledge Distillation (Hinton et al., 2015) plays a key role. The previous session’s network acts as
the teacher, imparting its knowledge to the student network being trained in the novel session. One
notable approach, iCaRL (Rebuffi et al., 2017), employs sigmoid output for knowledge distillation,
while other methods (Li & Hoiem, 2017; Castro et al., 2018; Wu et al., 2019; Zhao et al., 2020)
utilize temperature-scaled softmax outputs. UCIR (Hou et al., 2019) adopts cosine normalized fea-
tures in knowledge distillation to alleviate biases towards new classes. PODNet (Douillard et al.,
2020) effectively reduces the difference in pooled intermediate features along the height and width
directions through knowledge distillation.

In the pursuit of establishing forward compatibility within class incremental learning scenarios, the
Classwise Decorrelation (CwD) (Shi et al., 2022) method was developed to mimic the behavior of
an oracle during the base session. Through empirical investigations, it was discerned that resem-
bling the representation distribution patterns akin to those exhibited by the oracle - characterized by
a uniform dispersion of eigenvalues across each class - holds the potential to enhance forward com-
patibility. To realize this, classwise Frobenius norm of representations was strategically employed
during the base session, serving as a mechanism to enforce the desired distribution consistency. A
known implementational limitation of CwD is that it can be challenging to employ CwD when the
number of classes in the base task is large. Because of its class-wise operation, it requires a large
batch-size to perform classwise decorrelation that requires reliable estimation on a per-class basis.
CwD is the only forward compatible approach for CIL with our best knowledge.

If we consider a broader research area of continual learning, ForwArd Compatible Training
(FACT) (Zhou et al., 2022) also introduced a forward compatible approach for few-shot class in-
cremental learning. Within the FACT framework, the concept of virtual classes was incorporated
during the training of the base session, effectively allocating embedding space to accommodate up-
coming classes. FACT integrated pseudo labels and virtual instances to facilitate effective network
training generated through the manifold mixup technique. These elements collectively enhanced the
network’s adaptability, underscoring FACT’s significance in fostering the seamless integration of
new classes while upholding established knowledge. FACT also relies on class information.

3 ENHANCING FEATURE RICHNESS BY INCREASING REPRESENTATION RANK

In this section, we present comprehensive details of the proposed method, elucidating its theoretical
underpinning and substantiating its empirical implications in enhancing the feature richness of the
feature extractor. The primary objective of our method is to encourage a forward compatible rep-
resentation by increasing the rank of the feature extractor’s output representation during the base
session.

3.1 EFFECTIVE RANK

For a set of N samples in a mini-batch, each having a L2-normalized representation vector hi ∈ Rd

satisfying ||hi||2 = 1 and N > d, the rank of representation matrix H = [h1,h2, ...,hN ]T ∈ RN×d

can be quantified as

rank(H) = rank(UΣV T ) = rank(Σ) =

d∑
i=1

10<σi
, (1)

3



Under review as a conference paper at ICLR 2024

where UΣV T is a singular value decomposition of H and {σi} are the singular values arranged in
a descending order.

The definition of algebraic rank in Eq. (1) exhibits two practical problems. The first problem is
that it equally counts all positive singular values regardless of their strength. Therefore, it can be
misleading when extremely small σi values exist. For instance, rank is known to be susceptible to
noise (Choi et al., 2017). A commonly adopted remedy for this problem is to set a threshold for
counting. We call this thresholded rank as trank, and it is defined as

trank(H, ρ) ≜ argmin
k

(
ρ ·

d∑
i=1

σ2
i ≤

k∑
i=1

σ2
i

)
, (2)

where ρ is a threshold parameter chosen between 0 and 1. Eq. (2) quantifies the count of the largest
singular values that collectively encompass ρ proportion of the total singular value energy. The trank
provides a straightforward way to avoid the first practical problem, but it is still vulnerable to the
second problem. The second problem is the non-differentiable nature of algebraic rank and trank.
They are both integer-valued and thus not differentiable. A direct consequence is the difficulty for
integrating rank or trank into the end-to-end learning. An elegant work-around for this problem is
known as effective rank (Roy & Vetterli, 2007). Effective rank is defined as

erank(H) ≜ exp

(
−

d∑
i=1

λi log λi

)
, (3)

where λi ≜ σ2
i /N and {λi} corresponds to the set of eigenvalues for HTH/N . We note that∑d

i=1 λi = 1 because
∑d

i=1 λi =
∑d

i=1 σ
2
i /N = tr(HTH/N) = tr(

∑N
i=1 hih

T
i /N) =∑N

i=1 tr(hih
T
i )/N = 1. While being continuous, the effective rank is known to satisfy a list of

properties (Roy & Vetterli, 2007). In particular, the following lower bound can be derived.
erank(H) ≤ rank(H). (4)

The logarithm of erank turns out to be the same as the von Neumann entropy (Nielsen & Chuang,
2002; Wilde, 2013) and its use for learning representation has been extensively studied in (Kim
et al., 2023). In our work, we adopt erank as the main method for controlling feature richness.

3.2 PROPOSED METHOD

In class incremental learning, the training process is divided into the initial base session and the fol-
lowing novel sessions. Our goal is to enhance feature richness during the base session by increasing
representation rank. We adopt erank as the starting point because it is differentiable. Then, we make
an adjustment where we apply a logarithm because of the implementational effectiveness demon-
strated in (Kim et al., 2023). The effective-Rank based Forward Compatible (RFC) representation
regularization is implemented by including the RFC loss, LRFC , during the base session as below.

L = LCrossEntropy + LRFC = LCrossEntropy + α ·
d∑

i=1

λi log λi, (5)

where α > 0 is the strength hyper-parameter. The RFC loss is not applied in the novel sessions, and
this decision is analyzed in Section 5.2.

3.3 MAXIMIZATION OF SHANNON ENTROPY

Shannon entropy is a fundamental measure of information and it quantifies the information contained
in a random variable (Cover, 1999). Therefore, entropy of representation can serve as a measure of
feature richness. Assuming Gaussian distribution, we prove a theoretical connection between the
proposed RFC and Shannon entropy.
Theorem 1. For representation h ∈ Rd that follows a multivariate Gaussian distribution, the en-
tropy of representation is maximized if the effective rank of the representation is maximized.

Refer to Supplementary A for the proof. It is noteworthy that the Gaussian assumption on the rep-
resentation (Kingma & Welling, 2013; Yang et al., 2021) has not only been empirically observed
by numerous researchers but has also led to its theoretical justifications, including (Williams, 1997;
Neal, 2012; Lee et al., 2017; Yang, 2019).
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(a) Supervised (b) Unsupervised

Figure 2: Rank vs. feature richness. ResNet-18 was trained using ImageNet-100 dataset. (a) Super-
vised learning – as we include more classes in the training starting from scratch, both trank and
erank increase. Algebraic rank remains at the maximum value. (b) Unsupervised learning with Sim-
CLR loss – as the unsupervised representation learning proceeds, both trank and erank increase.
Algebraic rank remains at the maximum value.

3.4 EMPIRICAL INVESTIGATION OF RANK VS. FEATURE RICHNESS

To understand the relation between the three types of rank and feature richness in representation,
we have devised two experiments. For the supervised learning experiment, we have controlled the
number of classes used for the training and measured the rank values. For the unsupervised learning
experiment, we have performed contrastive learning with SimCLR loss (Chen et al., 2020) and
measured the rank values as the learning epoch increases. The results are shown in Figure 2. In
both experiments, algebraic rank is fixed at the maximum value (d = 512) because it counts even
extremely small singular values. Both trank and erank, however, increase as more classes are used
for plain supervised learning or as training epoch increases for unsupervised learning. As we will
show in the next section, a strong relationship between erank and feature richness also holds for
class incremental learning.

4 EXPERIMENTS

We provide an overview of our experimental settings in Section 4.1. Subsequently, we demonstrate
the efficacy of our method for promoting forward compatibility in Section 4.2 and for mitigating
catastrophic forgetting in Section 4.3. In Section 4.4, we demonstrate that our method can improve
performance of ten well-known backward-compatible methods.

4.1 SETTINGS

Datasets: We employ CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-100 (Russakovsky
et al., 2015), two widely adopted benchmark datasets in CIL. To maintain consistency with prior
studies, we follow the standard class orderings proposed in (Rebuffi et al., 2017) for all evaluations
except for the evaluation of PODNet (Douillard et al., 2020), for which we utilize the class orderings
defined in PODNet. To evaluate the CIL methods, all classes in datasets are divided into multiple
tasks. The initial 50 classes are designated for the base task, while the remaining classes are split
into novel tasks, where the size of each split is either 10, 5, or 2. In this study, we denote split sizes
of 10, 5, and 2 as S=10, S=5, and S=2, respectively.

Implementation Details: In this study, ResNet-18 (He et al., 2016) is employed as the base
model to investigate. To reproduce the results of BiC (Wu et al., 2019), EEIL (Castro et al., 2018),
iCaRL (Rebuffi et al., 2017), IL2M (Belouadah & Popescu, 2019), LwF (Li & Hoiem, 2017),
MAS (Aljundi et al., 2018), SI (Zenke et al., 2017), RWalk (Chaudhry et al., 2018), and UCIR (Hou
et al., 2019), we utilize the open-source codebase provided by FACIL (Masana et al., 2022). For
PODNet (Douillard et al., 2020), we employ its own open-source codebase. To incorporate RFC
into the aforementioned methods, we exclusively modify their respective loss functions during the
training of the base session, as specified by Eq. (5). Meanwhile, the remaining configurations, such
as the loss functions applied during the training of novel sessions and the default hyper-parameter
settings, remain unchanged. To evaluate the performance of the models, we adopt the standard metric
of average incremental accuracy (AIC) proposed in (Rebuffi et al., 2017).
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(a) S=10 (b) S=5 (c) S=2

Figure 3: Improvements in forward compatibility – overall accuracy at each session is shown for
UCIR. Two ResNet-18 models are trained with and without RFC for ImageNet-100 dataset, utilizing
50 base classes under different split sizes (a) 10, (b) 5, and (c) 2 for each novel session. The feature
extractors trained by the 50 classes of the base task remain frozen during novel sessions.

(a) S=10 (b) S=5 (c) S=2

Figure 4: Improvements in forward compatibility – novel-task accuracy at each session is shown for
UCIR. Results were obtained from the same experiment as in Figure 3.

4.2 PROMOTING FORWARD COMPATIBILITY

To investigate the impact of our method on forward compatibility, two models are trained for a
base task, one with RFC and one without RFC. Subsequently, during novel sessions, we keep the
feature extractor frozen and train only the classification heads for the respective novel tasks. If in-
creasing representation rank does indeed lead to an increase in informative features pertinent to
novel tasks, it would be reasonable to expect an enhancement in performance for novel tasks. Con-
sequently, this would serve as a supporting evidence of the forward compatible representations. The
results in Figure 3 demonstrate that our method yields improved performance across all three cases:
S=10 (64.78%→67.28%), S=5 (63.35%→65.98%), and S=2 (60.86%→63.45%). To delve deeper
into this improvement, we analyze the performance of each individual novel task. As depicted in
Figure 4, our method leads to enhanced performance for the majority of novel tasks. Moreover, the
average performance in novel tasks shows substantial improvements: S=10 (43.67%→49.60%), S=5
(35.67%→42.78%), and S=2 (22.48%→30.25%). These results strongly indicate that our method
is effective in promoting forward compatible representations. Additionally, we conduct a similar
analysis, this time without the freezing of feature extractors. The results presented in Figure 9 and
Figure 10 in Supplementary B exhibit similar performance enhancements attributed to our method,
thereby substantiating the evidence regarding the forward compatibility of our method.

4.3 MITIGATING CATASTROPHIC FORGETTING

(a) S=10 (b) S=5 (c) S=2

Figure 5: Weight change from the base session for UCIR. Two ResNet-18 models are trained with
and without RFC for ImageNet-100 dataset, utilizing 50 base classes under different split sizes (a)
10, (b) 5, and (c) 2 for each novel session.

To investigate the impact of our method on catastrophic forgetting, we conduct three comprehensive
analyses. First, we examine the influence of our method on the weight changes of the feature extrac-
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(a) S=10 (b) S=5 (c) S=2

Figure 6: Cosine similarity in representation with respect to the base session for UCIR. Two ResNet-
18 models are trained with and without RFC for ImageNet-100 dataset, utilizing 50 base classes
under different split sizes (a) 10, (b) 5, and (c) 2 for each novel session.

(a) S=10 (b) S=5 (c) S=2

Figure 7: Catastrophic forgetting in the base task for UCIR. Two ResNet-18 models are trained with
and without RFC for ImageNet-100 dataset, utilizing 50 base classes under different split sizes (a)
10, (b) 5, and (c) 2 for each novel session.

tor. The results shown in Figure 5 indicate that when utilizing our method, the L2-weight distance
between the feature extractor learned in the base session and that in the novel session decreases
significantly compared to the baseline. On average, there were notable reductions in weight distance
over all sessions: S10: 8.70, S5: 8.13, and S2: 6.79. Additionally, Figure 11 in Supplementary B
reveals that the weight distance with the feature extractor from the immediate previous session also
increases less when our method is employed, showing average reduction of S10: 6.55, S5: 4.95, and
S2: 2.99.

Second, we investigate the impact of our method on cosine similarity in representations produced
from the validation dataset of the base task. As shown in Figure 6, our method leads to an increase
in the similarity between the representations learned in the base session and those in novel sessions.
The average increase in representation similarity over all sessions is significant: S10: 0.09, S5: 0.12,
and S2: 0.13. Moreover, Figure 12 in Supplementary B demonstrates that the similarity with repre-
sentations from the immediate previous session also increases, with average increase of S10: 0.02,
S5: 0.02, and S2: 0.03.

Finally, we evaluate the actual impact on catastrophic forgetting. Figure 7 clearly illustrates that our
method results in reduced catastrophic forgetting across all sessions. On average, the reductions are
as follows: S10: 12.92%→11.62%, S5: 16.70%→13.86%, and S2: 20.66%→17.71%.

4.4 IMPROVING PERFORMANCE OF EXISTING METHODS

(a) S=10 (b) S=5 (c) S=2

Figure 8: Overall accuracy at each session for UCIR. Two ResNet-18 models are trained with and
without RFC for CIFAR-100 dataset, utilizing 50 base classes under different split sizes (a) 10, (b)
5, and (c) 2 for each novel session.

To demonstrate the efficacy of RFC in enhancing performance, we conduct comprehensive exper-
iments over ten well-known existing works. The results presented in Table 1 and Table 2 provide

7



Under review as a conference paper at ICLR 2024

Table 1: Performance improvements by RFC. All methods in this table follow the same class order-
ings as originally proposed in iCaRL (Rebuffi et al., 2017).

Method CIFAR100 (B=50) ImageNet-100 (B=50)

S=10 S=5 S=2 S=10 S=5 S=2

BiC (Wu et al., 2019) 54.36±1.23 43.42±2.70 26.73±1.89 61.00±4.69 53.12±5.68 25.44±1.74

with RFC 58.06±0.73 48.02±2.33 27.74±3.11 64.18±1.94 53.77±3.05 27.56±2.72

Improvement +3.71 +4.60 +1.01 +3.18 +0.65 +2.13

EEIL (Castro et al., 2018) 37.81±2.55 24.48±1.18 32.37±2.52 52.04±1.90 48.65±2.34 43.95±1.65

with RFC 39.52±0.38 25.79±1.18 33.46±0.69 54.74±0.91 51.64±0.80 47.89±0.60

Improvement +1.72 +1.31 +1.09 +2.71 +2.98 +3.94

iCaRL (Rebuffi et al., 2017) 49.83±2.33 46.86±2.38 44.69±1.97 53.77±1.68 48.41±8.70 49.78±3.65

with RFC 50.56±1.47 48.48±1.17 44.99±0.97 57.17±1.66 55.62±0.71 54.40±1.63

Improvement +0.72 +1.62 +0.3 +3.4 +7.21 +4.61

IL2M (Belouadah & Popescu, 2019) 40.85±2.22 24.92±1.12 33.41±2.12 56.78±1.34 52.35±2.16 47.10±1.85

with RFC 42.54±0.49 25.19±0.41 35.20±0.78 58.40±1.04 55.25±0.78 50.09±0.83

Improvement +1.69 +0.27 +1.78 +1.62 +2.9 +2.99

LwF (Li & Hoiem, 2017) 39.25±2.04 26.53±1.87 33.41±2.06 54.26±1.32 50.30±1.96 44.52±1.70

with RFC 40.98±0.34 28.82±4.17 34.46±0.63 56.48±1.22 52.52±0.35 47.57±1.02

Improvement +1.73 +2.29 +1.06 +2.22 +2.21 +3.05

MAS (Aljundi et al., 2018) 38.02±2.49 26.45±1.18 31.66±3.20 52.17±1.75 50.01±2.27 46.61±1.15

with RFC 39.54±0.71 28.80±4.52 33.36±0.52 55.04±1.30 52.77±1.02 50.32±1.38

Improvement +1.53 +2.35 +1.71 +2.88 +2.76 +3.71

SI (Zenke et al., 2017) 37.90±2.39 22.88±1.41 31.01±3.24 51.89±1.70 49.25±2.19 44.16±1.64

with RFC 39.41±0.60 24.02±0.38 33.48±0.80 54.99±1.08 51.98±0.89 47.46±1.09

Improvement +1.51 +1.13 +2.47 +3.1 +2.73 +3.29

RWalk (Chaudhry et al., 2018) 35.75±1.63 23.34±2.06 27.02±5.36 41.08±1.91 21.44±5.69 20.81±2.12

with RFC 39.00±1.15 24.44±1.06 32.85±1.40 44.83±1.87 35.42±1.71 22.68±4.70

Improvement +3.25 +1.1 +5.82 +3.75 +13.98 +1.88

UCIR (Hou et al., 2019) 66.30±0.36 60.57±0.56 52.74±0.72 70.57±0.51 67.62±0.37 63.22±0.42

with RFC 69.45±0.29 66.16±0.10 61.23±0.13 71.65±0.52 69.52±0.13 65.46±0.57

Improvement +3.14 +5.59 +8.49 +1.08 +1.90 +2.24

Average Improvement +2.11 +2.25 +2.64 +2.66 +4.15 +3.09

compelling evidence of the significant and consistent performance improvements achieved through
the integration of RFC into the previous works. Specifically, we observe notable average perfor-
mance improvements for the state-of-the-art works, including a 3.74% average improvement for
UCIR, a 2.63% average improvement for PODNet (NME), and a 1.24% average improvement for
PODNet (CNN). Particularly, a remarkable performance improvement is observed in the case of
UCIR for CIFAR-100 and its further analyses are shown in Figure 8. The achieved improvements
are 3.14% increase for S=10, 5.59% for S=5, and 8.49% for S=2.

Table 2: Performance improvements by RFC for PODNet. Unlike the other works, PODNet used its
own class orderings for evaluation. As an effort to make comparisons as fair as possible, we followed
PODNet’s class orderings for this table.

Method CIFAR100 (B=50) ImageNet-100 (B=50)

S=10 S=5 S=2 S=10 S=5 S=2

PODNet(NME) (Douillard et al., 2020) 68.47±1.27 67.09±1.19 65.16±1.02 60.42±0.53 50.93±0.73 36.36±0.30

with RFC 69.51±0.56 67.66±0.63 65.59±0.48 64.08±0.45 56.34±0.75 41.03±2.15

Improvement +1.04 +0.57 +0.43 +3.66 +5.42 +4.67

PODNet(CNN) 66.11±0.63 63.49±0.45 59.61±0.53 73.76±0.17 68.32±0.27 61.82±0.68

with RFC 67.13±0.86 64.72±1.01 61.49±0.71 74.42±0.27 69.66±0.09 63.11±0.22

Improvement +1.02 +1.23 +1.89 +0.66 +1.34 +1.29

Average Improvement +1.03 +0.90 +1.16 +2.16 +3.38 +2.98

5 DISCUSSION

5.1 COMPARISON WITH CWD

We conduct an evaluation of the efficacy of RFC in comparison to CwD (Shi et al., 2022), a forward
compatible method that leverages class information. The performance evaluation is carried out using
the UCIR and PODNet models with CIFAR-100 dataset. As shown in Table 3, RFC consistently

8



Under review as a conference paper at ICLR 2024

demonstrates superior performance, exhibiting considerable performance improvements of 1.76%
for S=10, 2.27% for S=5, and 3.10% for S=2 on average. The improvement tends to be larger when
dealing with smaller split sizes, or equivalently, when handling a larger number of novel sessions.

Table 3: Comparison with CwD.

CIFAR100 (B=50)

UCIR PODNet (CNN)

S=10 S=5 S=2 S=10 S=5 S=2

Baseline 66.30±0.36 60.57±0.56 52.74±0.72 66.11±0.63 63.49±0.45 59.61±0.53

with CwD 67.06±0.12 62.71±0.36 56.39±0.30 66.01±0.75 63.63±1.02 60.14±1.16

with RFC 69.45±0.29 66.16±0.10 61.23±0.13 67.13±0.86 64.72±1.01 61.49±0.71

Improvement +2.39 +3.45 +4.84 +1.12 +1.09 +1.35

5.2 INCREASING REPRESENTATION RANK DURING NOVEL SESSIONS

RFC increases effective rank during the base session only. It is also possible to increase effective
rank during novel sessions with the goal of acquiring additional features that may be useful in the
subsequent novel sessions. Such a strategy, however, can also intensify the modifications of the
learned model from the previous sessions. To investigate the overall effect, we have conducted an
experiment and the results are shown in Table 4. In short, no significant improvement was observed
by increasing effective rank during novel sessions. Therefore, we have chosen to apply effective rank
regularization only during the base session.

Table 4: Influence of increasing representation rank during novel sessions.
CIFAR100 (B=50)

S=10 S=5 S=2

Base Only Base+Novel Diff. Base Only Base+Novel Diff. Base Only Base+Novel Diff.

BiC 58.06±0.73 58.29±0.38 +0.23 48.02±2.33 46.60±1.91 -1.41 27.74±3.11 27.64±1.83 -0.10
EEIL 39.52±0.38 39.44±0.63 -0.08 25.79±1.18 25.62±1.10 -0.17 33.46±0.69 33.16±1.07 -0.29
iCaRL 50.56±1.47 50.50±2.04 -0.06 48.48±1.17 48.23±1.14 -0.25 44.99±0.97 44.81±1.18 -0.18
IL2M 42.54±0.49 42.76±0.83 +0.21 25.19±0.41 26.22±1.77 +1.03 35.20±0.78 34.87±0.67 -0.32
LwF 40.98±0.34 40.69±0.81 -0.28 28.82±4.17 26.70±0.39 -2.12 34.46±0.63 34.63±0.75 +0.17
MAS 39.54±0.71 39.77±0.66 +0.23 28.80±4.52 29.03±3.50 +0.23 33.36±0.52 33.91±0.91 +0.55
SI 39.41±0.60 39.51±0.58 +0.10 24.02±0.38 23.89±0.19 -0.13 33.48±0.80 33.60±0.52 +0.12
RWalk 39.00±1.15 38.91±1.39 -0.09 24.44±1.06 25.96±3.06 +1.53 32.85±1.40 33.04±1.20 +0.19
UCIR 69.45±0.29 69.57±0.23 +0.12 66.16±0.10 66.55±0.16 +0.39 61.23±0.13 61.27±0.29 +0.04

Average Improvement +0.04 -0.10 +0.02

5.3 SENSITIVITY STUDY OF REGULARIZATION COEFFICIENT

We performed a sensitivity study of the strength hyper-parameter α in Eq. (5) on the performance.
The results are presented in Figure 13 of Supplementary B, and they demonstrate consistent and
smooth inverted U-shaped patterns in performance, with the peak performance observed at the value
of α = 0.1.

6 CONCLUSION

In this study, we propose an effective-Rank based Forward Compatible (RFC) representation regu-
larization method that can be integrated with a wide range of existing methods in CIL. More specif-
ically, our method increases the effective rank of representations during the base session. In order to
substantiate the effectiveness of our method, we have established a theoretical connection between
the effective rank and the Shannon entropy of representations. Through empirical analysis, we have
demonstrated the efficacy of our method in several dimensions including enhancement in forward
compatibility, mitigation of catastrophic forgetting, and improvement in performance. In summary,
our method effectively enhances the performance by promoting forward compatibility of the learned
representations.
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A PROOF OF THEOREM

Theorem 1. For representation h ∈ Rd that follows a multivariate Gaussian distribution, the en-
tropy of representation is maximized if the effective rank of the representation is maximized.

Proof. Without loss of generality, we consider normalized representation vectors (i.e., ||h||2 = 1)
that follow a zero-mean multivariate Gaussian distribution (i.e., h ∼ N (0,Σ)), thereby satisfying
the condition tr(Σ) = 1.

The proof is based on two parts. In the first part, we prove that the solution for maximizing the
representation entropy is Σ = 1

dI . In the second part, we prove that the solution for maximizing
effective rank is also Σ = 1

dI .

The entropy of multivariate Gaussian distribution, N (µ,Σ), can be computed as (Cover, 1999)

d

2
log 2πe+

1

2
log det(Σ), (6)

where det(Σ) is the determinant of Σ. By examining the equation, it can be confirmed that entropy
is maximized when det(Σ) is maximized under the constraint of tr(Σ) = 1. The solution for this
optimization problem is 1

dI because of Hadamard’s inequality and inequality of arithmetic and ge-
ometric means. First, the following Hadamard’s inequality states that the determinant of a positive
definite matrix is less than the product of its diagonal elements.

det(Σ) ≤
∏
i

Σii, with equality iff Σ is diagonal. (7)

Therefore, all the off-diagonal terms need to be zero to maximize the entropy. Second, λi needs to
be equal to 1/d for all i – otherwise, the inequality of arithmetic and geometric implies that

∏
i Σii

can be increased further while satisfying the sum constraint of tr(Σ) = 1.

The proof for Σ = 1
dI being the solution for maximizing the effective rank in Eq. (3) is trivial.

The logarithm of effective rank is −
∑d

i=1 λi log λi where
∑d

i=1 λi = 1. Because this can be inter-
preted as the entropy of a probability distribution denoted by {λi}, it is maximized by the uniform
distribution, i.e., λi =

1
d .

B SUPPLEMENTARY RESULTS

(a) S=10 (b) S=5 (c) S=2

Figure 9: Improvements in forward compatibility – overall accuracy at each session is shown for
UCIR. Two ResNet-18 models are trained with and without RFC for ImageNet-100 dataset, utilizing
50 base classes under different split sizes (a) 10, (b) 5, and (c) 2 for each novel session.
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(a) S=10 (b) S=5 (c) S=2

Figure 10: Improvements in forward compatibility – novel-task accuracy at each session is shown
for UCIR. Results were obtained from the same experiment as in Figure 9.

(a) S=10 (b) S=5 (c) S=2

Figure 11: Weight change from the immediate previous session for UCIR. Two ResNet-18 models
are trained with and without RFC for ImageNet-100 dataset, utilizing 50 base classes under different
split sizes (a) 10, (b) 5, and (c) 2 for each novel session.

(a) S=10 (b) S=5 (c) S=2

Figure 12: Cosine similarity in representation with respect to the immediate previous session for
UCIR. Two ResNet-18 models are trained with and without RFC for ImageNet-100 dataset, utilizing
50 base classes under different split sizes (a) 10, (b) 5, and (c) 2 for each novel session.

(a) S=10 (b) S=5 (c) S=2

Figure 13: Impact of regularization coefficient on the performance. ResNet-18 models are trained
with a range of regularization coefficients for ImageNet-100 dataset, utilizing 50 base classes under
different split sizes (a) 10, (b) 5, and (c) 2 for each novel session.
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