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Abstract

Recent works on machine learning for combinatorial optimization have shown that
learning based approaches can outperform heuristic methods in terms of speed and
performance. In this paper, we consider the problem of finding an optimal topo-
logical order on a directed acyclic graph with focus on the memory minimization
problem which arises in compilers. We propose an end-to-end machine learning
based approach for topological ordering using an encoder-decoder framework.
Our encoder is a novel attention based graph neural network architecture called
Topoformer which uses different topological transforms of a DAG for message
passing. The node embeddings produced by the encoder are converted into node
priorities which are used by the decoder to generate a probability distribution over
topological orders. We train our model on a dataset of synthetically generated
graphs called layered graphs. We show that our model outperforms, or is on-par,
with several topological ordering baselines while being significantly faster on syn-
thetic graphs with up to 2k nodes. We also train and test our model on a set of
real-world computation graphs, showing performance improvements.

1 Introduction

Many problems in computer science amount to finding the best sequence of objects consistent with
some precedence constraints. An intuitive example comes from routing problems, where we would
like to find the shortest route between cities but we have requirements (i.e. for example to pick up
and subsequently deliver a package) on the order in which the cities should be visited [1]. Another
case is found in compiler pipelines, wherein the "cities" become operations to be executed and the
constraints come from the data dependencies between these operations, such as when the result of
an operation is an operand in a subsequent one. In this case, the metric to be optimized can be the
run time of the compiled program, or the memory required to execute the program [2]. Common
across this class of problems is their formulation in term of finding the optimal topological order
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of the Directed Acyclic Graph (DAG) that encodes the precedence constraints, which induces a
Combinatorial Optimization [3] (CO) problem which is in general computationally hard [4].

Already from the two examples above, one can immediately grasp the relevance of such problems
for industrial Operations Research, which has prompted various actors to invest in the development
of efficient CO solvers; these solvers usually encapsulate heuristic methods whose design typically
requires extensive use of domain-specific and problem-specific knowledge, across decades of de-
velopment. In recent years, considerable interest has emerged in the possibility of replacing such
handcrafted heuristics with ones learned by deep neural nets [5] (machine learning for combinatorial
optimization, MLCO). As a matter of fact, both of our two examples of DAG-based CO problems
have indirectly been object of study in the Machine Learning literature. References [6, 7, 8, 9] take
into consideration Routing Problems, especially the Traveling Salesperson Problem (TSP) which, on
account of its richness, complexity and long history of mathematical study [10], has attained the status
of a standard benchmark for MLCO [8]. Conversely, less attention has been devoted to operations
sequencing likely due to the proprietary and sensitive nature of compiler workflows, which hampers
the definition of public benchmarks. References [11, 12] both consider the task of optimizing the
run time of a neural network’s forward pass by optimizing the ordering and device assignment of
its required operations. However, in this last case the sequencing stage is only one part of a larger
compiler pipeline, and as a result of this both the performance metrics and the datasets employed
cannot be made available for reproduction by third parties. This makes it both hard to assess the
results therein, and to draw general conclusions and guidelines for the advancement of MLCO, which
still suffers from a lack of commonly accepted and standard datasets and benchmarks.

In this work, we address the problem of finding optimal topological orders in a DAG using deep
learning, focusing on the compiler task of optimizing the peak local memory usage during execution.
We make the following contributions:

• We present a neural framework to optimize sequences on directed acyclic graphs. Mindful of
the need for scalability, we consider a non-auto-regressive (NAR) scheme for parametrizing the
probability distribution of topological orders. This allows our method to attain an extremely
favorable performance vs. run time tradeoff: it always outperforms fast baselines, and is only
matched or outperformed by those requiring a much longer (in one case 4000x more) run time.

• We address the problem of how to perform meaningful message-passing on DAGs, a graph type
which has received comparatively less attention in the literature on Graph Neural Networks. We
introduce Topoformer, a flexible, attention-based architecture wherein messages can be passed
between each and every pair of nodes, with a different set of learnable parameters depending on
the topological relation between the nodes.

• To test our method, we introduce an algorithm for the generation of synthetic, layered, Neural
Net-like computation graphs, allowing any researcher to generate a dataset of as many as desired
graphs of any desired size. These graphs are a more faithful model of real NN workflows, and
allow us to prove our method on a much larger and varied dataset, than previous efforts [11]. To
our knowledge, this is the first public algorithm of this kind. Nevertheless, we also test our method
on proprietary graphs to illustrate its relevance to realistic compiler workflows.

2 Related work

Machine Learning for Combinatorial Optimization: Combinatorial optimization as a use case
for deep learning poses interesting technical challenges. First, the combinatorial nature of the problem
conflicts with the differentiable structure of modern deep neural networks; and second, the models
need to be run at large scale to solve real world instances, exacerbating the challenges in training
deep learning models. Given the discrete nature of CO problems, a natural approach is to pose them
as reinforcement learning (RL) problems [13]. The aim is then to learn a policy that selects the best
actions to maximize a reward directly related to the optimization objective. Algorithms then differ
in the way the policy is parameterized: either in an end-to-end manner where the actions directly
correspond to solutions of the optimization problem [12, 6, 8, 14], or in a hybrid manner, where the
policy augments parts of a traditional solver, e.g. by replacing heuristics used in setting parameters of
an algorithm, see e.g. [11, 9, 7, 2]. Our approach follows an end-to-end design philosophy, which, not
having to rely on an external algorithm, affords better control of post-compile run time and facilitates
application on edge devices [2]. Furthermore, RL has the advantage of being useful as a black box
optimizer, when no handcrafted heuristics can be designed.
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Sequence Optimization via ML: Within MLCO, much effort has been devoted to the task of
predicting optimal sequences [15, 6, 16, 17, 18]. The end-to-end nature of our method places it close
to the one proposed in [6], although to the best of our knowledge, our work is the first to tackle the
challenge of enforcing precedence constraints in the network predictions. As we shall see in more
detail below, this generalization is non-trivial: already counting the number of topological orders
belongs to the hardest class of computational problems [4]. This has to be contrasted with the fact
that the number of sequences without topological constraints is simply n! for n objects. Besides,
as pointed out in [8], no MLCO method has so far been able to convincingly tackle TSPs of sizes
above a few hundred nodes, when it comes to zero-shot generalization to unseen problem instances,
i.e. when no fine tuning on the test set is done. It is also therein pointed out how an auto-regressive
parametrization of the sequence (which was the method used in ref. [6]) appears to be necessary to
achieve acceptable performance even at those small sizes. Conversely, in the present work we show
compelling zero-shot performance on DAGs of sizes up to thousands of nodes, while nonetheless
generating our sequences in a fully non-auto-regressive (NAR) way and maintaining a strong run
time advantage over classical sequencing algorithms. Our results can then also be interpreted as
cautioning against the idea of using the TSP as the sole, paradigmatic test-bed for MLCO research,
as [8] remarks.
ML for Compiler Optimization: The DAG sequencing task we consider is an omnipresent stage
in compiler workflows, which usually also include such tasks as device assignment and operations
fusion [12]. In such a setting, jointly optimizing these tasks to reduce the run time of a certain
workflow (such as the forward pass of a Neural Net) is a common objective, which in refs [11, 12, 19]
is tackled with ML methods. In this work we focus on the task of minimizing the peak local memory
usage during execution, which does not require a performance model or simulator as well as being
relevant to applications on edge devices [2]. In [11], the ML solution leans on an existing genetic
algorithm, whilst our solution is end-to-end, much like that proposed in [12]. Another characteristic
of the solution proposed in [12] is the idea of interpolating between AR and NAR via an iterative
refinement scheme, in which sequences are generated in one pass but subsequently refined during an
user-defined number of subsequent passes; conversely, we generate all our sequences in a single pass.
While in [11] the run time optimization is studied on both real-world and synthetic random graphs –
the latter being relatively small (up to about 200 nodes), the peak memory optimization is studied only
on a proprietary dataset augmented via perturbation of the node attributes. In [12] the authors train
and test their method on a relatively small set of six proprietary workflows which are not disclosed to
the reader, and out of those six, only the size of the largest instance is mentioned.
Deep Graph Neural Networks: Given that our problem is specified as a DAG, it is a logical choice
to parametrize our sequence-generation policy with a Graph Neural Network architecture [20]. The
basic idea of every GNN architecture is to update graph and edge representations by passing messages
between the graph nodes along the graph edges [21]. However, this can be too restrictive when
it comes to sequence generation on DAGs. For example, nodes that come after each other in the
sequence might not be linked by an edge in the graph, and therefore are unable to directly influence
each other’s representation. Notice how this difficulty is another consequence of the presence of
precedence constraints in our problem, which conversely was not an issue in e.g. [6] where the graph
is fully connected and no constraints are present. Relatively few efforts (see e.g. [22, 23, 24]) have
been devoted to devise a way to perform meaningful message passing on DAGs. As a matter of
fact, the quest for expressive GNN architectures is at the center of intense theoretical investigation
[25, 26].

3 Background

3.1 Topological Orders and DAGs

We here introduce the mathematical background, starting with a few definitions. A partial order is an
irreflexive transitive relation < between certain pairs of a set V . We call a pair (x, y) ∈ V × V that is
related by < comparable, and incomparable otherwise. A Directed Acyclic Graph (DAG) G = (V,E)
is a directed graph with no directed loops. We can map a DAG G = (V,E) to a partially ordered set
(V,<) where x < y if there is a directed path from node x to node y. Multiple DAGs map to the same
partial order. For example, the DAGs with vertex set {x, y, z} and edge sets E = {x → y, y → z}
and E′ = {x → y, y → z, x → z}, where s → t denotes a directed edge from s to t, correspond
to the same partial order x < y < z. We define the transitive closure (TC) of a DAG as the graph
with most edges that has the same underlying partial order, so that there exists a directed edge (x, y)
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whenever x < y. Conversely, the transitive reduction (TR) is the graph with least edges that results
in the same partial order. We denote the order induced by a DAG by <G.

A topological order or sorting of a DAG G is a bijection σ : V → {1, . . . , |V |} such that σ(x) < σ(y)
whenever x <G y. The set TG of topological orders of G is a subset of the permutation group of the
vertices and coincides with total orders on V that respect <G, called linear extensions of the partial
order. While there are several well-known algorithms to compute a topological order of a DAG, e.g.
breadth first search and depth first search, counting the number of topological orders is one of the
hardest computational problems, being #P complete [4]. In this work we develop a general machine
learning method to find a topological order that minimizes a given cost function on a DAG, which we
define in the next section.

3.2 Peak Memory Minimization

Deciding the best way to schedule operations in a computational graph representing a neural network
is a central problem in compilers [11, 12, 2]. We can associate a DAG to a computational graph
in such a way that nodes represent operations ("ops"), and incoming/outgoing edges represent
operands/results of these operations. Every time one executes an op, the inputs4 to that op need to
be in memory, and memory for the outputs needs to be allocated. Therefore, each node of the DAG
carries a label m : V → N specifying the memory required to store the output of that op. A typical
first step in scheduling a DAG is to identify topological orders to execute operations. Compilers
for edge devices, which have limited memory, aim at choosing the optimal topological order that
minimizes the peak memory footprint [2]. We focus therefore on the peak local memory usage
minimization task, which can be formulated as the following combinatorial optimization problem on
a labeled DAG G = (V,E,m):

min
σ∈TG

C(σ), C(σ) = max(M1(σ), . . . ,M|V |(σ)), (1)

with the definitions

Mt = It−1 +m(σt), (2)

It = Mt −
∑
i∈St

mi, St =

{
i : i /∈

t−1⋃
l=0

Sl and ∀(i, j) ∈ E, j ∈ σ1:t

}
, (3)

i.e. the memory usage at time t is given by the memory usage It−1 of the outputs which have not yet
been consumed, at time t− 1, by downstream operations, plus the memory requirement of the output
of operation σ(t). It is in turn obtained by subtracting from Mt the memory costs of nodes whose
outgoing edges only connect to already scheduled nodes, i.e. nodes whose output was only required
by already scheduled operations. Naturally, I0 = 0, S0 = ϕ.

4 Method

We use an encoder-decoder architecture whose schematic is shown in figure 1. Our encoder is
Topoformer, a novel GNN architecture, which derives an embedding for each node of the graph. The
embeddings are used by the decoder which generates a distribution in the sequence space and finally
the distribution can be converted to a sequence via different inference methods like sampling, greedy
inference or beam search. Next, we describe each of the component in detail.

4.1 Topoformer: Topologically Masked Attention

A Graph Neural Network (GNN) is a natural choice to encode our scheduling problem via embedding
of the DAG nodes. All canonical GNN architectures operate by updating these embeddings via the
aggregation of "messages" sent from the other nodes, usually in the form of some function of their
own embedding [20]. Architectures mainly differ in how the set of sender nodes is constructed and
the aggregation function is chosen. In a Graph Convolutional Network [27], the senders are the first
neighbors of a node and the aggregation function is a weighted average, whilst in a vanilla Graph
Attention Network [28], the senders are all the other nodes, but their contributions are aggregated

4We use "inputs" and "operands" interchangeably throughout the paper.

4



MHA
MHA

MHA
MHA

MHA
MHA

MHA

Topoformer encoder

Non-auto-Regressive
decoder

MLP
Topoformer layer

MLP

Figure 1: Our complete architecture for neural topological ordering. The shades of gray in the MHA
boxes are to highlight how attentions heads operate separately on the forward and backward version
of the first three graphs. The priorities (yi)

|V |
i=1 are represented by the red bars on the original DAG

and decoded into a sequence with its associated probability.

via averaging with learned weights so as to account for their degree of relevance. When trying to
apply such mechanisms on DAGs, a common point of contention is whether, and how in practice, the
partial ordering encoded by it should reflect in the direction of travel of the messages [29, 24, 22].
While disregarding the DAG structure entirely (as one would do in a vanilla GAT), does not appear
wise, it might be too restrictive when it comes to our task. For example, nodes that are next to each
other in the sequence might well be incomparable, and thus lack a path for messages between them.
The combinatorial nature of the task also poses requirements; it is known [25, 5] that reasoning
about CO problems on a graph requires the capacity to reason about the global structure of it,
whilst architectures such as those proposed in [29, 24, 22] limit the set of sender nodes to a local
neighborhood of the receiver node. In summary, our architecture must strike a compromise between
accounting for global structure and local partial ordering information.

Our Topoformer architecture meets these requirements. A vector xi of input features (see the appendix
for details about its definition and dimensionality) is first turned into an initial node embedding h

(0)
i

via a node-wise linear transformation, h(0)
i = Wxi + b. Subsequently, a succession of L attention

layers, each of them consisting of a Multi-Head Attention (MHA) [28] sub-layer followed by one
more node-wise MLP, updates these embeddings, similar to a vanilla Transformer [30]; however, we
confer a topological inductive bias to these updates by having a separate group of attention heads
masked by each of the following graphs induced by the original DAG:

• Its transitive reduction (TR).
• The directed graph obtained by removing the TR edges from the DAG: G\ETR(G).
• The directed graph obtained by removing the edges of the DAG from its TC: TC(G)\E.
• The backwards versions (i.e. with flipped edges) of each of the three above.
• The undirected graph obtained by joining all incomparable node pairs.
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By adding together these graphs, one would obtain the fully connected graph relative to the node
set V , whereupon all nodes would attend to all nodes. Then effectively, the propagation rules of
Topoformer are same as those of a vanilla transformer encoder,

ĥ
(ℓ)

i =h
(ℓ−1)
i + concatj

[
MHAℓ,j

i

(
h
(ℓ−1)
1 , . . . ,h

(ℓ−1)
|V | ;M j

)]
, (4)

h
(ℓ)
i =ĥ

(ℓ)

i + MLP(ℓ)
(
ĥ
(ℓ)

i

)
, (5)

save for the presence of the mask M j , which ensures that head j only attends to its assigned
graph among the seven listed above. Following [31], we also apply layer normalization [32] to the
MHA and MLP inputs. The number of heads assigned to each graph can be chosen independently
(setting it to zero means to not message-pass along the edges of the respective graph), or parameters
can be tied among different MHAs. One should also remark how the MLP sub-layer allows the
flow of information between different attention heads. All nodes are then able to influence each
other’s representation, while anyway injecting a strong inductive bias based on the DAG structure.
Information about the Topoformer configurations used in our experiments is provided in the appendix.

4.2 Decoder

Once the embeddings of the nodes are generated, the decoder’s task is to derive a stochastic policy
p(σ|G) over the valid topological orders of the graph. The most straightforward way is to take
advantage of the chain rule of conditional probability to decompose the policy as a product

p(σ|G) =

|V |∏
t=2

pθ(σt|σ1:t−1,h, G)× pθ(σ1|h, G), (6)

We could then sample a complete sequence by autoregressively choosing a new node at each step as
done e.g. in [6]. This scheme is the most principled and expressive; however, when a NN is used as a
function approximator for pθ, it also requires that |V | calls to this NN be performed, which limits its
feasibility to relatively small graphs due to the amount of computation required.

In order to scale to large graphs, we employ a Non-Auto-Regressive (NAR) scheme which decouples
the number of NN calls from the graph size. Similar to the approach of [12], we assign scheduling
priorities yi ∈ R to the nodes, rather than scheduling probabilities. The priority for node i is derived
by passing its final embedding through an MLP:

yi = MLP
(
h
(L)
i

)
. (7)

These priorities are assigned with a single NN inference. The sequence itself is subsequently
constructed by adding a new node at each step. Given the partial sequence σ1:i−1, the next node can
only be selected from a subset S(σ1:i−1, G) of schedulable nodes, due to both the graph topology
and choices made earlier in the sequence. Then, the distribution of the next node to be added at step i
is given as follows:

p(σt|σ1:t−1,h, G) =


exp(yσt)∑

j∈S(σ1:t−1,G) exp(yj)
, if σt ∈ S(σ1:t−1, G),

0, otherwise.
(8)

Decoding Methods: We use the following three methods to obtain the next node in the partial
sequence from the distribution p(σt|σ1:t−1,h, G):

1. Greedy: At each step t, select the node with the highest probability i.e. σt =
argmaxσ̃t

p(σ̃t|σ1:t−1,h, G)
2. Sampling: At each step t, sample from the next node distribution i.e. σt ∼ p(·|σ1:t−1,h, G)
3. Beam search with state-collapsing: We can also expand the partial sequences by using a beam

search method where the score function is total probability of the partial sequence. We improve
our beam search routine by making the following observation: suppose there are two partial
sequences in consideration, σ1:t and σ̃1:t, such that both have scheduled the same set of nodes so
far (but different order), and C(σ1:t) < C(σ̃1:t). Then, we can ignore the partial sequence σ̃1:t and
only keep σ1:t in the beam search. This is because both partial sequences must schedule the same
set of remaining nodes, and hence the set of future memory costs are identical for both σ1:t and
σ̃1:t, but the current peak memory cost is higher for σ̃1:t. Thus, σ1:t dominates σ̃1:t in terms of
achievable minimal peak memory usage.
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4.3 Training

Our encoder-decoder architecture induces a distribution pθ(σ|G) on the set of topological orders for
a given DAG G. The expected cost incurred is given by J(θ|G) = Epθ(σ|G) [C(σ(θ))]. We minimize
the cost J(θ) = EG [J(θ|G)] via gradient descent using the REINFORCE gradient estimator [33, 13]
as follows

∇J(θ) = EG,pθ(σ|G) [(C(σ)− b(G))∇θ log pθ(σ|G)], (9)

where b(G) is a baseline meant to reduce the variance of the estimator. We follow [6] in setting it
equal to the cost of a greedy rollout of a baseline policy on the graph G

b(G) = C(argmax
σ

pθ(σ|G)). (10)

5 Experiments

We conduct experiments on a synthetic dataset of graphs which we refer to as "layered graphs", as
well as a set of real-world computation graphs. We compare our approach with the following classic
topological ordering baselines:

• Depth/Breadth first sequencing: Find the topological order by traversing the graph in depth/breadth
first manner according to the layout of the graph generated using pygraphviz.

• Depth-first dynamic programming (DP): Depth-first DP is a global depth-first method for searching
the optimal sequence, with automatic backtracking when equivalent partial sequences are found;
it retains the full sequence with minimum cost so far, and returns it if search does not complete
before the prescribed timeout.

• Approximate DP: In approximate DP, a beam of partial sequences are considered at each step. For
each beam in the subsequent step, the top-K partial sequences with the lowest costs are retained.
This DP is also able to find the optimal sequence given enough memory and compute resources
(with unlimited beam size K), but we only consider an approximate version with K = 105 in this
work. Note that approximate DP uses the state-collapsing and parallelism to improve its efficiency.

• Random order: We generate 100 random topological orders, and pick the one with smallest cost.

Please see the appendix for more detailed description of the baselines. Therein, we also report some
ablation studies on various neural baselines including ablation studies on decoder by considering
other neural architectures, as well as a comparison with an end to end baseline adapted from ref. [6].
Neural topo order greedy, sample and BS denote the performance of our model in greedy, sampling
and beam search inference mode respectively. We use a sample size and beam size of 16 sequences,
of which the best one is subsequently picked, for all our experiments. Next, we describe in detail the
results of the two experiments.

5.1 Layered Graphs

In order to generate a large corpus of training data we come up with a way to synthetically generate
graphs of a given size which have similar structure to the computation graphs of feed-forward neural
networks. We call our synthetic graph family layered graphs, as these graphs comprise of well-defined
layers of nodes. The nodes in a layer have connections to the nodes in the subsequent layer and can
also have skip connections with nodes in layers farther down. The number of layers, number of node
per layer, number of edges between subsequent layers, number of skip connections and memory
utilization of the nodes are all generated randomly, and can be controlled by setting appropriate
parameters. We refer the reader to the appendix for more details on layered graphs, including their
generation algorithm and some visual examples.

We train our model on 500-node layered graphs for 325 epochs, where in each epoch we generate a
training set of 1000 new graphs. We test the performance of our model on a set of 300 unseen graphs
of the same size, generated with the same method. We also evaluate the cross-size generalization
performance of our trained model by testing it on graphs of size 1000 and 2000. We refer the reader
to the appendix for a comprehensive description of the training algorithm and model configuration.

Figure 2 shows the performance vs. run time plot on layered graphs of size |V | = 500, 1000, and
2000. We report the performance in terms of the % gap of peak memory utilization from the peak
memory obtained via approximate DP, which we consistently observed to be the best-performing
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baseline. Note that the run time is plotted on a log-scale. We can observe that for 500-node graphs,
our model beats all the baselines except approximate DP in terms of both the memory usage and run
time. Our model is slightly worse than approximate DP from the memory usage perspective, but it
runs 100x faster. We also observe that our model generalizes well to larger sized graphs. For the
case of 2000-node graphs our model performs better than approximate DP in terms of peak memory
usage, while being 4000x times faster. This shows that while approximate DP performs more poorly
as graph size increases, our model is able to generalize to larger graphs by learning meaningful
embeddings of the topological structure thanks to Topoformer, and to be extremely fast thanks to our
NAR decoding scheme.

Figure 2: Average % gap from approximate DP vs average run time comparison on the test set of 300
layered graphs. Lower is better for both % gap and run time.

Table 1: Comparison of methods on the synthetic layered graph test set.

Algorithm
500- node graphs 1000-node graphs 2000-node graphs

% gap from run time % gap from run time % gap from run time
approx. DP [s] approx. DP [s] approx. DP [s]

Approximated DP 0 264.88 0 1561.17 0 8828.86

Depth-First DP 5.76 3600 3.84 3600 2.40 3600
(max. run time=1H)
Random order 6.86 1.38 2.62 7.13 0.31 36.87
Depth-first seq. 12.9 2.45 7.1 10.91 3.57 51.32
Breadth-first seq. 20.94 2.43 11.31 10.87 6.42 51.52

Neural Topo Order
✓Greedy 4.32 0.6 0.48 1.19 -1.47 2.44
✓Sample 3.49 0.72 0.03 1.41 -1.68 2.87
✓Beam search 3.21 2.68 0.08 5.92 -1.66 14.74

5.2 Real-World Graphs

While our synthetic layered graphs are convenient for experimentation, we see value in also presenting
results obtained from neural computation graphs used for commercial development of our artificial
intelligence hardware and software products. Here we sample 115 representative graphs that have
diverse architectures (classifiers, language processors, denoisers, etc.) and size (from a few dozen to
1k nodes). We split this dataset into a training set and test set via a random 80− 20 split. We train
our model for 500 epochs and report the performance on the unseen test set at the end of training in
table 2. In order to ensure fair comparison of run times, we stratify the test set into 3 categories based
on the graph size. Figure 3 shows the performance vs run time plot on the test set of real graphs. We
observe that for real graphs the performance gap between the best baseline (approximate DP) and
our model is remarkable. We can obtain sequences which are 50% better than approximate DP on
average while also being almost 1000x faster on average. This proves the capability of our model to
generalize and perform well on real-world computation workflows.
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Figure 3: Performance vs run time comparison for different approaches on test set of real computation
graphs. Performance is measured in average % gap from approximate DP.

Table 2: Comparison of methods on the real graph test set. Smaller % gap is better

Algorithm
200 - 500-node graphs 500 - 700-node graphs 700 - 1000-node graphs

% gap from run time % gap from run time % gap from run time
approx. DP [s] approx. DP [s] approx. DP [s]

Approximated DP 0 113.54 0 517.60 0 1131.61

Depth-First DP 62.18 3600 102.76 3600 50.57 3600
(max. run time=1H)
Random order 469.34 0.25 376.16 1.24 116.24 2.40
Depth-first seq. 506.21 0.70 394.93 2.26 123.21 4.49
Breadth-first seq. 348.77 0.75 149.81 2.31 -35.55 4.86

Neural Topo Order
✓Greedy -17.57 0.42 -51.23 0.6 -68.97 0.83
✓Sample -21.53 0.44 -40.51 0.68 -61.46 0.97
✓Beam search -19.5 1.22 -57.34 2.58 -73.45 3.86

5.3 Encoder Ablation Study

We conduct experiments by using an MLP, fully connected transformer and GAT as an encoder
architecture to quantify the effectiveness of our topoformer architecture. We test a vanilla version of
GAT (referred as GAT forward only) which does message passing only on the edges of the DAG.
We also consider GAT encoder which does message passing on the augmented graph having reverse
edges corresponding to all the edges of the DAG and refer to this setting as GAT forward+backward.

We train each model on the layered graph dataset of 500 node graphs. We evaluate the performance
of the trained model on the test set (300 graphs) of 500 node and 1000 node graphs. We use a
sample size and beam width of 16 for evaluation on both 500 and 1000 node graphs. The MLP and
transformer use the same number of layers and hidden dimension as the topoformer specified in
appendix ??. We run the inference on our test set of 300 graphs 10 times for each model to be more
precise in our run time calculations. We report the mean % gap from approximate DP and the mean
run time across all the graphs and trials along with their 95% confidence interval.

Table 3 shows the performance of different encoder architectures. It can be observed that both
versions of our topoformer architecture and GAT have a superior performance than MLP and fully
connected transformer for both graph sizes. Moreover, full topoformer (message passing on all the
seven graphs listed in section 4.1) has a better performance than GAT and topoformer with message
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Table 3: Comparison of different encoder architectures. Topoformer with MP (message passing) on
DAG corresponds to forward and backward message passing only on the input DAG using topoformer.

Algorithm
500-node graphs 1000-node graphs

% gap from run time % gap from run time
approx. DP [s] approx. DP [s]

MLP
✓Greedy 8.31 ± 0.76 0.58 ± 0.0 2.95 ± 0.48 1.52 ± 0.01
✓Sample 4.41 ± 0.50 0.67 ± 0.0 0.68 ± 0.35 1.84 ± 0.02
✓Beam search 6.5 ± 0.69 2.47 ± 0.01 2.43 ± 0.49 7.62 ± 0.07

Fully Connected Transformer
✓Greedy 8.46 ± 0.72 0.69 ± 0.01 3.09 ± 0.46 1.3 ± 0.01
✓Sample 4.72 ± 0.52 0.8 ± 0.01 0.85 ± 0.37 1.55 ± 0.02
✓Beam search 6.52 ± 0.72 2.98 ± 0.03 2.09 ± 0.47 6.49 ± 0.07

GAT (forward only)
✓Greedy 5.94 ± 0.61 0.49 ± 0.01 1.33 ± 0.38 1.24 ± 0.01
✓Sample 4.19 ± 0.56 0.64 ± 0.01 0.48 ± 0.36 1.54 ± 0.02
✓Beam search 4.22 ± 0.60 2.22 ± 0.02 0.60 ± 0.38 5.94 ± 0.04

GAT (forward+backward)
✓Greedy 4.84 ± 0.55 0.63 ± 0.01 0.90 ± 0.37 1.37 ± 0.02
✓Sample 3.55 ± 0.53 0.80 ± 0.01 0.23 ± 0.36 1.67 ± 0.02
✓Beam search 3.55 ± 0.54 2.89 ± 0.01 0.39 ± 0.36 6.50 ± 0.05

Topoformer (forward+backward) (Ours)
✓Greedy 4.82 ± 0.55 0.73 ± 0.01 0.76 ± 0.36 1.62 ± 0.02
✓Sample 3.67 ± 0.52 0.85 ± 0.01 0.21 ± 0.36 1.99 ± 0.02
✓Beam search 3.68 ± 0.57 3.03 ± 0.03 0.35 ± 0.37 8.1 ± 0.08

Full Topoformer (Ours)
✓Greedy 4.31 ± 0.56 1.04 ± 0.01 0.47 ± 0.36 1.51 ± 0.01
✓Sample 3.35 ± 0.52 1.21 ± 0.01 -0.01 ± 0.35 1.8 ± 0.02
✓Beam search 3.08 ± 0.51 4.15 ± 0.02 0.05 ± 0.36 7.4 ± 0.07

passing only the forward and backward edges of the DAG. This shows the benefit of global message
passing between all the nodes which is enabled by the full topoformer.

6 Conclusion

In this work we propose an end-to-end machine learning method for the task of optimizing topological
orders in a directed acyclic graph. Two key elements in our design are: (1) an attention-based GNN
architecture named Topoformer that employs message passing that is both global and topologically-
aware in directed acyclic graphs, (2) a non-autoregressive parametrization of the distribution on
topological orders that enables fast inference. We demonstrated, for both synthetic and real-world
graphs, the effectiveness of the method in tackling the problem of minimizing peak local memory
usage for a compute graph – a canonical task in compiler pipelines. Said pipelines also include
other tasks [12], chief amongst them the one of assigning operations to devices for execution. At
the present stage, our method and dataset cannot be leveraged for solving these, or for end-to-end
optimization of a whole pipeline. Extending our method to this more challenging setting is therefore
a natural direction for future research.
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