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ABSTRACT

Advancements in deep learning have led to the development of physics-informed
neural networks (PINNs) for solving partial differential equations (PDEs) without
being supervised by PDE solutions. While vanilla PINNs require training one
network per PDE configuration, recent works have showed the potential to meta-
learn PINNs across a range of PDE configurations. It is however known that PINN
training is associated with different levels of difficulty, depending on the underlying
PDE configurations or the number of residual sampling points available. Existing
meta-learning approaches, however, treat all PINN tasks equally. We address this
gap by introducing a novel difficulty-aware task sampler (DATS) for meta-learning
of PINNs. We derive an optimal analytical solution to optimize the probability
for sampling individual PINN tasks in order to minimize their validation loss
across tasks. We further present two alternative strategies to utilize this sampling
probability to either adaptively weigh PINN tasks, or dynamically allocate optimal
residual points across tasks. We evaluated DATS against uniform and self-paced
task-sampling baselines on two representative meta-PINN models, across five
benchmark PDEs as well as three different residual point sampling strategies. The
results demonstrated that DATS was able to improve the accuracy of meta-learned
PINN solutions when reducing performance disparity across PDE configurations,
at only a fraction of residual sampling budgets required by its baselines 1.

1 INTRODUCTION

Partial differential equations (PDEs) underpin a broad range of scientific simulations such as fluid
dynamics, heat transfer, and electromagnetics (32). While traditional methods for solving PDEs can
be numerically and computationally challenging over high-dimensional and complex domains (2),
these challenges are being addressed by recent advancements in deep learning (13). Particularly of
note are the physics-informed neural networks (PINNs) that integrate the governing PDEs as a loss
function to train a neural network, approximating PDE solutions without discretizing the underlying
solution domain while improving efficiency (30). Because the PINN is supervised by the governing
PDE equation, its training is unsupervised without requiring PDE solutions available (8; 30).

However, incorporating governing PDE equations in the loss function also leads to one of the
fundamental limitations in PINNs: it has to be re-trained each time when the configuration of the
underlying PDE changes (30; 8). There have been increasing interests in addressing this limitation
(28; 29; 1; 16; 36). Most recent successes have been built on the meta-learning concept, aiming to
learn a meta-model across a range of PDE configurations such that it can either directly generate the
PINN for a given PDE configuration (1), or can be rapidly fine-tuned to a given PDE configuration
(16; 36; 22). Treating PINN-training for each PDE configuration as one task, these meta-models are
trained across a set of tasks uniformly sampled from a range of PDE configurations.

When training the PINN, however, it is known that the difficulty for solving the underlying PDEs
varies. Examples of determinants for such task difficulty include: 1) the value of the PDE parameters

∗Both authors contributed equally to this work
1Source code available at https://github.com/maryamTolou/DATS_ICLR2024.
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Figure 1: PINN solutions for the Burger equation with low versus high Reynolds numbers, obtained
at a higher budget (A) versus a lower budget (B) of residual points for training.

or initial conditions being considered (19), and 2) the available budget of sampling points on
which PDE residual loss can be calculated (commonly referred to "residual points") (34). For
instance, Burger equations with high Reynolds numbers are associated with PDE solutions with sharp
transitions as illustrated in Fig. 1A, presenting more significant challenges for PINN to solve (19). As
the sampling budget of residual points decreases, the difficulty of PINN training increases, although
much more significantly for the higher Reynolds numbers (Fig. 1B). The existing meta-learning
approaches to PINNs – which sample uniformly across all PDE configurations each with the same
budget of residual points (28; 29; 1; 16; 36) – neglect such differences in task difficulty. This can lead
to degraded average performance as well as performance disparity among various PDE configurations.

In this paper, we introduce a novel difficulty-aware task sampler (DATS) for meta-learning of PINNs,
with a goal to prioritize different PINN tasks depending on the task difficulty associated with the
underlying PDE configurations. We are motivated by the recently presented concepts in general
meta-learning that optimize task sampling probabilities during meta-training to minimize the average
performance of all tasks during meta-validation (35). While recent works approach this through neural
optimization procedures realized via reinforncement learning (23; 35), we theoretically establish
analytical solutions for the optimal task sampling probability across the range of PDE configurations
considered. In the practical setting where a discrete set of PDE configurations is considered, we then
present a novel strategy to convert this sampling probability to dynamic allocations of residual points
among different PDE configurations (DATS-rp), and contrast it with a simpler strategy that directly
weighs the contribution of different tasks to the meta-training loss (DATS-w).

We note that there is not yet any existing adaptive task sampling strategy for meta-learning PINNs.
While related concepts exist in general meta-learning, they are not trivial to directly extend to the
PINN due to its unique unsupervised learning nature. In parallel, adaptive sampling strategies are
being studied in PINN literature but at the level of sampling "residual points" for training a single
PINN (34; 27; 9; 25) – one representative approach is based on self-paced learning that automatically
schedules the sampling of training residual points based on the difficulty level of obtaining PDE
solutions at those points (11). As this is relevant to the concept of "difficulty-aware sampling" in
DATS, we adopt the methodology of self-paced learning (20) described in (11) but extend it (from
the original level of sampling residual points) to the level of task sampling in meta-learning PINN:
this gives us two primary baselines for evaluating DATS: uniform task sampling routinely used in
meta-learning PINNs, and self-paced task sampling as a stronger adaptive task sampling baseline.

To demonstrate that the benefits of DATS task-level sampling is orthogonal to residual-point sampling
strategies used for learning each PINN, we evaluate DATS and its two task-sampling baselines in
combination with three representative residual point sampling strategies (34). To further demonstrate
that DATS is agnostic to the underlying choices of meta-learning approaches, we conduct experiments
on two representative existing meta-PINNs (1; 16). We conduct these experiments in four benchmark
PDEs commonly used in PINN literature and, to demonstrate the importance of considering task
difficulty in meta-PINNs, we consider ranges of PDE parameters and residual-point budgets beyond
those commonly used in literature. We further demonstrate that DATS can be used to meta-learn
across more general PDE configurations such as varying initial conditions.

Throughout all benchmark PDEs, meta-PINN frameworks, and residual-point sampling strategies
considered, DATS demonstrated its ability to significantly improve the average performance of all
PINN tasks while reducing their performance disparity, all achieved at a substantially smaller budgets
of residual points in comparison to uniform or self-paced task-sampling in meta-learning PINNs.
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2 RELATED WORKS

Meta Learning of PINNs: A PINN is typically trained to solve a PDE with a given configuration.
By considering different PDE configurations as different tasks, there is a recent interest in leveraging
meta learning techniques to approximate the solution manifold over the PDE configuration space
(28). Recent meta-PINN approaches can be categorized based on whether it leverages feedforward-
or agnostic meta-learning (MAML) based meta-learning frameworks. In feedforward-based meta-
PINNs, a meta-model is learned to map the PDE configurations to PINN weight parameters (1; 6).
This mapping is learned as a hypernetwork (12) in HyperPINN (1), while learned with supervision
by the data pairs of PDE configurations and PINN weights in (28). Meta-MgNet (7) introduces a
hypernetwork within the Multi-grid Network (MgNet). In MAML-based meta-PINNs, an effective
initialization for the PINN weight parameters is learned such that, with a few gradient updates, the
network can be fine-tuned to a new given PDE configuration (22; 16). This is achieved in (22)
by a Reptile-based strategy to directly learn the initialization of the main PINN. In MAD-PINN
(16), a latent embedding is introduced as an additional input to the main PINN and is fine-tuned to
represent an implicit encoding of individual PDE configurations. In (36), MAML is applied to train
and fine-tune a meta-PINN for 1D parametric arc models. Until now, all these meta-PINN works
treat all individual PDE tasks/configurations equally, neglecting the potential differences in task
difficulty associated with the PDE configurations and their impact on the meta-model. DATS is the
first task-sampling strategy for meta-PINNs and is agnostic to the type of meta-learning approaches
used: to demonstrate this, we evaluate DATS on two meta-PINN models representing each of the
feedforward- and MAML-based approaches: HyperPINN (1) and MAD-PINN (16).

A recently introduced GPT-PINN (5) solves a similar problem by extending the idea of reduced order
model: it learns to use pre-trained PINNs for a finite set of PDE configurations as activation functions
in the PINN of a new PDE. To determine when to add a neuron for a given PDE configuration
inherently considers its difficulty. We thus included it as a baseline in a subset of experiments.

Adaptive Residual Sampling in PINN: For training an individual PINN, the most commonly used
strategies for selecting residual points is uniform random sampling (34) from a uniform distribution
or equi-spaced grid. There however has been an increasing interest in adaptive sampling techniques
for residual points (34; 9). Examples include the residual-based adaptive refinement (RAR)(25)
to sample more residual points in areas with significant PDE losses, and residual-based adaptive
distribution (RAD) that resamples residual points from a probability mass function defined over the
PDE loss (34). Recently, self-paced learning is also introduced to enable adaptive residual point
sampling by automatically scheduling their inclusion in training based on their PDE losses (11).

Despite the shared motivation in difficulty-aware sampling, adaptive residual sampling and DATS
are fundamentally different: the latter addresses task-level sampling when meta-learning PINNs,
while the former addresses sampling at the level of residual points when learning a single PINN. To
understand how the benefits of task sampling may be influenced by the lower-level residual points
sampling, we will evaluate DATS and its task-sampling baselines in combination with three residual
point sampling strategies: random, random with resampling (random-R) (25), and RAD that was
reported as the best performing residual point sampling technique in a recent survey (34).

Adaptive Task Sampling in General Meta Learning: In general, it is increasingly recognized
that different tasks may have different learning difficulties with different impact on the meta-model
(4). To address this, a probabilistic active learning method is designed in (18) to rank the latent
task embeddings using a utility function. In (21), a task difficulty measure is defined over pairs of
classes to define an evolving task selection probability. In (35; 21), tasks are prioritized based on their
contribution to the generalization of the meta-model at meta-validation, realized via reinforncement
learning. None of these task measures or optimization strategies is trivial to extend to meta-PINNs.

DATS shares the motivation of (21; 35) but approaches the bi-level optimization with a theoretically
backed analytical solution, establishing the first adaptive task sampler for meta-learning PINNs.
While there is not an existing baseline nor a trivial extension that can be achieved from general meta-
learning, the self-paced adaptive sampling of PINN residual points mentioned earlier (11) shares some
high-level similarity to DATS. We thus extend (11) – originally designed for residual point sampling –
to task sampling when meta-learning PINNs. This establishes an adaptive task-sampling baseline
for DATS, with a key difference that DATS optimizes task sampling to minimize the meta-model’s
validation loss, whereas self-paced learning does so to minimizes the meta-model’s training loss.
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Alternative Deep Learning Approaches to Solving PDEs: There are alternative deep learning
techniques for solving parametric partial differential equations, such as operator learning (e.g.,
DeepONet (24)) that, unlike unsupervised PINN trianing, often relies on supervision from explicit
PDE solutions. Emerging works have also attempted to combine these two approaches resulting
in physics-informed DeepONets (PIDeepONets) (33). As DATS is designed to address challenges
associated with meta-learning unsupervised PINNs, comparison with other supervised PDE-solving
solutions is outside the scope of this work.

3 PRELIMINARIES

Learning PDEs with PINNs: PINNs approximate the solution u(x) to a PDE, by training a
neural network ûϕ(x) parameterized by ϕ to satisfy the given PDE and boundary/initial condi-
tions. Assuming a PDE in the general form of F (u,∇u,∇2u, . . . , x, λ), the PINN loss function
LPINN(x, ûϕ, λ) = LBI + LResidual includes two terms:

LResidual(x, ûϕ, λ) = |F (ûϕ,∇ûϕ,∇2ûϕ, . . . , x, λ)|2 where x ∈ Pr (1)

LBI(x, ûϕ, λ) = |u(x)− ûϕ(x)|2 or
∣∣∣∣∂ûϕ

∂n
− g(u)

∣∣∣∣2 , wherex = 0 orx ∈ ∂B (2)

where LResidual, tied to a specific value of the PDE parameter λ, computes the PDE residual on a set
of residual points x ∈ Pr sampled from the solution domain without knowing the corresponding PDE
solutions. LBI defines the boundary/initial conditions . As the PDE parameter or boundary/initial
conditions change, the PINN has to be re-trained from scratch, a main challenge for training PINNs
for parametric PDEs over a range of configuration values or boundary/initial conditions.

Meta-Learning PINNs: Meta-learning has been increasingly applied to PINNs to learn a meta model,
with meta-parameters θ, that can quickly adapt a PINN ûϕ(x; θ) to any given PDE configuration
λ ∼ p(λ). We consider two representative meta-PINNs: HyperPINN (1) and MAD-PINN (16).

HyperPINN (1) formulates the meta-model as a hyper-network that maps PDE configuration λ to
the weight parameters ϕ of a main PINN as: ϕ = Hθ(λ), such that ûϕ(x; θ) = ûHθ(λ)(x). The
hyper-network is optimized across a range of PDE configurations with:

θ∗ = argmin
θ

Eλ∼p(λ)

[
LPINN(x, ûHθ(λ)

, λ)
]

: x ∈ Pr (3)

MAD-PINN (16), in contrast, provides an additional input zλ to a regular PINN as ûϕ(x; θ) =
ûϕ(x, zλ). zλ, termed as implicit code, is a vector that is optimized individually for each PDE
configuration λ along with the weight configuration ϕ of the PINN, over a range of λ via:

θ∗ = ({z∗λ}, ϕ∗) = argmin
ϕ,zλ

Eλ∼p(λ)[LPINN(x, ûϕ(x, zλ), λ) +
1

σ2
∥zλ∥2] : x ∈ Pr (4)

where 1
σ2 ∥zλi

∥2 enforces training stability and σ is a hyper-parameter. When a new PDE configuration
arises, MAD-PINN achieves fast transfer by fine-tuning zλ (or along with ϕ) to the new task.

Therefore, HyperPINN resembles a feed-forward meta-learning approach (15), whereas MAD-PINN
resembles a MAML approach (10). HyperPINN does not require test-time fine-tuning, although it
considers meta-training only across PDE parameters whereas MAD-PINN can accommodate broader
definitions of PDE configurations. They thus provide two diverse settings to test DATS.

4 METHODOLOGY

In existing meta-PINN works, optimization of equation 3 or equation 4 is done over a range of λ’s
sampled from a uniform distribution of p(λ), with the same number of residual points used in each
task. This treats all PDE configurations equally and does not take into account the difficulty levels of
solving different PDEs. Instead, we propose DATS to optimize the sampling probability p(λ) for
meta-training, such that the resulting model will minimize the average validation loss as follows:

p∗(λ) = argmin
p(λ)

Eλ∼U(λ){LPINN(x, ûϕ(x; θ
∗), λ)} : x ∈ Pval,

ûϕ(x; θ
∗) =

{
ûHθ∗ (x) θ∗ = solution of 3
ˆuϕ∗(x, z∗λ) θ∗ = ({z∗λ}, ϕ∗) = solution of 4

(5)
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Here, LPINN(x, ûϕ(x; θ
∗), λ) denotes the loss of the PINN ûϕ(x; θ

∗) on meta-validation residual
points x ∈ Pval, calculated over uniformly sampled tasks λ ∼ U(λ). The individual PINNs ûϕ(x; θ

∗)
are optimized from the meta-learning objective (equation 3 or equation 4), over the meta-training
task sampling probability p(λ). This introduces a nested bi-level optimization where the optimization
of p(λ) in equation 5 is defined over the optimization of equation 3 or equation 4 over the given p(λ).
Because of this nested optimization, existing works (23; 35) have resorted to reinforcement learning
to solve equation 5. To reduce this complexity, we derive analytical solutions to equation 5 for DATS.

4.1 ANALYTICAL SOLUTIONS

For readability, below we denote the validation loss in equation 5 as lval,λ, and the training loss as ltr,λ.
In an iterative optimization scheme to solve equation 5, instead of actually optimizing ûϕ(x; θ

t+1)
over p(λ)t via equation 3 or equation 4 at each iteration t, we note that θt+1 can be approximated by
a single-step of gradient descent as θt+1 = θt − η

∫
λ
p(λ)∇θltr,λ(θ

t) dλ. With this, the validation
loss at iteration t+ 1, lval,λ(θt+1), can be expressed as lval,λ(θt − η

∫
λ
p(λ)∇θltr,λ(θ

t) dλ) which,
with first-order Taylor expansion, can be expressed as:

lval,λ(θ
t)− η

∫
λ

p(λ)∇θltr,λ(θ
t)dλ · ∇θlval,λ(θ

t) (6)

Substituting equation 6 into equation 5, and letting ∇θltr,λ = gtr,λ and ∇θlval,λ = gval,λ, we have:

pt+1(λ) = argmin
p(λ)

Eλ∼U(λ){lval,λ(θt)− η

∫
λ

p(λ)gtr,λ(θ
t)dλ · gval,λ(θt)} (7)

= argmax
p(λ)

Eλ∼U(λ){(
∫
λ

p(λ)gtr,λ(θ
t)dλ) · gval,λ(θt)}

where the underlined integral represents expectation of the training gradient over p(λ), and the
following term represents the validation gradient on a particular value of λ. This use of first-order
approximation in equation 6 and assumption of the single-step gradient descent for the optimization
nested within is inspired by the first-order meta-learning algorithms described in Reptile (26). It
allows equation 7 to be optimized analytically when iterating with the optimization of the meta-
PINNs: at iteration t, task-sampling probability pt(λ) is first optimized by equation 7 using the
current training and validation loss of all task λ’s; the meta-model θt+1 is then updated given pt(λ).

Regularization Strategies: To stablize task probability assignments, we further regularize p(λ)
to a prior distribution r(λ) with the Kullback–Leibler (KL) divergence and its strength modulated
by a hyperparameter β. We consider two options for r(λ): 1) r(λ) = U(r) as a uniform prior
(uniform-KL), or 2) r(λ) = p(λt) optimized at the previous iteration t (consecutive-KL). We will
ablate these two regularization strategies in experimental evaluations.

4.2 DISCRETE APPROXIMATIONS

Considering a typical setting of meta-learning PINNs with a discrete set of PDE configurations
{λ1, λ2, ..., λn}, we further obtain a discrete approximation of the objective function in equation 7:

1

n

n∑
j=1

((

n∑
i=1

p(λi)gtr,λi(θ
t)) · gval,λj (θ

t)) =
1

n

n∑
i=1

p(λi)wi, wi = ⟨gtr,λi(θ
t),

n∑
j=1

gval,λj (θ
t)⟩ (8)

where ⟨, ⟩ denotes the dot product. Intuitivtely, wi measures the gradient similarity between the
training loss of task λi and the validation loss across all tasks. This results in a higher wi to a PDE
configuration λi that is most beneficial for reducing the valudation loss across all tasks. Based on
Karush–Kuhn–Tucker (KKT) first-order necessary condition for an optimal solution, we can then
derive an analytical solution to our optimization as:

pt+1(λi) = ri ∗ exp(
1

β
wi)/

∑
i

ri ∗ exp(
1

β
wi) (9)

where ri =
1
n for uniform-KL regularization, and ri = pt(λi) for consecutive-KL regularization

(derivations are included in Appendix A). Considering a total budget of bT residual points and a task-
specific budget of bλi

, we now introduce two strategies to utilize pt+1(λi) to realize the meta-PINN
training objective in equation 3 or equation 4 over the discrete representations of λ.
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DATS-w – Adaptive Weighting of Meta-Training Losses: As pt+1(λi) determines the sampling
probability for PDE configuration λi, the most intuitive solution based on importance weighting
would be to interpret pt+1(λi) as adaptive weighting to control the contribution of each PDE task i to
the training loss. The meta-training objectives in equation 3 or equation 4 will then become:

θt+1 = argmin
θ

1

bT

n∑
i=1

pt+1(λi)

bT /n∑
k=1

ltr,λi
(θ, xλi,k), xλi,k ∈ Pλi,r, |Pλi,r| = bT /n (10)

where Pλi,r denotes the training residual points for PDE configuration λi, and |Pλi,r| denotes it size:
in another word, the budget of residual points is assigned equally across all tasks as in existing works.

DATS-rp – Adaptive Allocation of Residual Points: Considering the importance of residual points
for PINN training, we consider a novel alternative that utilizes pt+1(λi) to control the allocation of
resources for each PDE task. Instead of assigning residual points uniformly across all tasks, we will
adaptively change the budget of residual point sampling for different tasks via |Pλi,r| = pt+1(λi)∗bT ,
such that more residual points will be assigned to tasks receiving higher pt+1(λi). This results in:

θt+1 = argmin
θ

1

bT

n∑
i=1

pt+1(λi)∗bT∑
k=1

ltr,λi
(θ, xλi,k), xλi,k ∈ Pλi,r, |Pλi,r| = pt+1(λi) ∗ bT (11)

In experimental evaluations, we will carry out ablation studies to consider the efficacy of the adaptive
weighting vs. resource allocation strategies above, along with the two KL-regularization strategies.

5 EXPERIMENTS

We evaluated DATS in both HyperPINN (1) and MAD-PINN (16), in comparison with two baselines
of task sampling strategies: 1) uniform task sampling as used in all existing works, and 2) self-
paced task sampling. Furthermore, on the Burger equation, we considered the additional baseline
of GPT-PINN (5). We focused on three categories of evaluations. First, on the Burgers’ equation
(3) – one of the most commonly used benchmarks in PINNs – we conducted ablation studies to
understand the adaptive weighting vs. residual-point allocation strategies, the uniform vs. consecutive-
KL regularization strategies, and the effect of the hyperparameter β. Second, we carried out an
extensive set of comparison studies among DATS, uniform, and self-paced task sampling in the
presence of three residual point sampling strategies: random (30; 34), random-R (25), and RAD as
described earlier (34). Finally, on five benchmark PDE equations: Burgers’ (3), convection (19; 14),
reaction-diffusion (19; 14), 2D Helmholtz (31) equations, and 3D Navier-Stokes equation (17) ,
we performed comprehensive evaluations on DATS vs. its baselines across different residual-point
sampling budgets. More specifically, we set up the upper and lower bound of the meta-PINN PDE
solution errors for the baselines using, respectively, a small and large residual point budget. We then
evaluated DATS with a series of budgets in between, testing the hypotheses that 1) DATS will achieve
a performance improvements compared to its two baselines at a given budget, and this improvement
will be more significant at smaller budgets; and 2) DATS will need a much smaller budget to achieve
the same performance of its two baselines. We measured the performance of the meta-PINNs with: 1)
average L2 error of the PDE solutions, and 2) performance disparity among the PDE configurations
considered, defined as the performance difference between worst-performing to best-performing
PINNs. In addition to computing these metrics for PDE configurations included in the meta-training,
which is the most common way PINNs are evaluated, we further examined these metrics when
HyperPINN was generalized to new PDE configurations not included in the meta-training. We left
MAD-PINN out of the latter test as it relies on fine-tuning to generalize which we expect to confound
and also reduce the benefits of DATS. More implementation details are included in Appendix B.

5.1 DATS ABLATION STUDIES

We ablated the major components of DATS using the 1D Burgers’ equation. The special characteristic
of this PDE, i.e., the existence of the shock wave, makes it challenging for PINNs to learn, especially
for Burgers’ equation with a large Reynolds number (R) such as λ = 1/R ≈ 1e − 3. In this
experiment, we considered 12 values of λ ∈ (1e− 3, 0.1) in meta-training and a total residual budget
of bT = 1000×12. The base model used was HyperPINN with the original architecture introduced in
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L2 Error Disparity
KL β DATS-rp DATS-w DATS-rp DATS-w
Uniform 10 0.064 ± 0.009 0.151±0.056 0.075 ± 0.026 0.188±0.134
Uniform 1 0.205 ± 0.075 0.147±0.051 0.173 ± 0.034 0.196±0.041
Uniform 0.1 0.168 ± 0.052 0.153±0.087 0.188 ± 0.095 0.207±-0.128
Consecutive 10 0.233 ± 0.057 0.210±0.022 0.205 ± 0.029 0.116±0.035
Consecutive 1 0.129 ± 0.049 0.191±0.095 0.179 ± 0.075 0.207±0.093
Consecutive 0.1 0.169 ± 0.063 0.183±0.103 0.179 ± 0.075 0.177±0.091
Unifrom Sampling 0.248 ± 0.027 0.212 ± 0.043

Table 1: DATS ablation of adaptive weighting versus adaptive residual point allocation, and uniform-
KL versus consecutive-KL regularizations under difference values of the hyperparameter β.

Figure 2: L2 errors (left) and disparity (right) of HyperPINN when using DATS, uniform, and
self-paced task sampling in combination with random, random-R, and RAD residual point sampling.

(1). We investigated the effect of 1) uniform-KL versus consecutive-KL regularization, and 2) adaptive
weighting versus adaptive residual-point allocation strategies, with three choices of β ∈ {0.1, 1, 10}.
The results are summarized in Table 1. All variations of DATS outperformed HyperPINN with
uniform task sampling. DATS-rp with a uniform KL regularization, using a hyperconfiguration
β = 10, achieved the best performance throughout all experiments. Thus the experiments reported in
the rest of the paper considered DATS-rp with a uniform KL regularization, where β was tuned using
grid search for β ∈ {0.1, 1, 10} for each PDE equation separately.

5.2 THE EFFECT OF RESIDUAL POINT SAMPLING ON TASK SAMPLING STRATEGIES

We tested how the comparison of DATS and baselines may be affected by the residual point sampling
strategies. We continued to use HyperPINN on the Burger’s equation for 6 values of λ ∈ (1e−3, 0.1)
and a total residual budget of bT = 3000×6. We considered three residual point sampling techniques:
1) random, 2) random with resampling (random-R) (25), and 3) RAD (34). As shown in Figure .2,
DATS consistently outperformed the uniform and self-paced baselines, regardless of the residual
point sampling strategies (except in the case of RAD, where all three methods obtained comparable
disparity metrics). These showed that the effect of adaptive sampling at the task level is more
significant than and orthogonal to the effect of adaptive sampling at the level of residual points.
Interestingly, contrary to the recent findings on the benefit of adaptive residual point sampling (34), in
our experiments random residual sampling was more effective. This suggested that effective residual
sampling needed for meta-learning PINNs may be different from that needed for learning a single
PINN, revealing a gap of knowledge for further research for the PINN community.

5.3 DATS, UNIFORM, SELF-PACED AND GPT-PINN UNDER VARYING BUDGETS

Finally, we investigated the performance of DATS versus its uniform and self-paced task sampling
baselines under varying budgets of residual points, for both MAD-PINN (16) and HyperPINN (1)
across five benchmark PDE equations. For Burger equation, we also considered the additional baseline
of GPT-PINN. For each equation, we considered a wide range of their PDE parameters informed by
literature. To further demonstrate that DATS is not limited to meta-learning across PDE parameters
only, we also considered meta-learning across different initial conditions u(x, 0) = α1sin(α2x) for
the convection equation considering MAD-PINN. HyperPINN is not included in this sub-study as it
was only designed to handle varying PDE parameters in its original work. Table 2 summarizes the
range and number of PDE configurations considered in each equation.

Results on Solving PDEs: Figure 3 summarizes the results for varying PDE parameters across the
first four equations and two meta-PINN models. The x-axis denotes the maximum residual point
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PDE Configuration #Training #Test
Burger ut + uux − λuxx = 0 λ ∈ (0.001, 0.1) 14 6

Convection ut + βuux = 0 : β ∈ (0, 10) 5 3
u(x, 0) = a1sin(a2x) (a1, a2) ∈ (1, 3) 9 4

Reaction Diffusion ut − νuxx − au(1− u) = 0 ν, a ∈ (1, 5) 9 4
Helmholtz (2D) ux,y + k2ux,y = q(a, b, x, y) a1, a2 ∈ (0.5, 1.5) 9 4

Table 2: The range and number of PDE configurations considered in each PDE benchmark.

Figure 3: L2 errors and disparity metrics on HyperPINN and MAD-PINN comparing DATS at
different residual budgets with baselines obtained at the lower and higher ends of the budget spectrum.

budget per task, and the higher- and lower-bound of PINN errors obtained by the baselines were
established at the two ends of the budget spectrum. All results consistently confirmed our hypotheses.
First, at the same budgets (the ends of the budget spectrums), DATS consistently out-performed all
the baselines, including GPT-PINN on Burger, with a more significant margin of improvements at the
lower end of the budgets. Second, DATS was able to reach the lower bound of both the L2 errors
and disparity measures of the two baselines (obtained using a budget = 10,000 residual points per
task) using only a fraction of their budgets, i.e., ranging from 40% for HyperPINN on the Burgers’
equation, to less than 10% on Helmholtz, and to less than 1% on the convection equation comparing
to uniform baseline’s budget. A similar trend is observed in the results for varying initial conditions
on the convection equation, as summarized in Figure .D.7 in Appendix D.7 .

Figure 4A provides examples of DATS and GPT-PINN solutions: while GPT-PINN’s ability to
recognize harder tasks allows a good performance on harder Burger parameters (e.g., λ = 0.001),
this seemed to be at the expense of the performance on easier Burger parameters (e.g., λ = 0.1).
In comparison, DATS was able to balance its performance across difficult and easy tasks. Figure
5 provides additional visual examples of the PDE solutions obtained with uniform and DATS task
sampling at selected residual budgets. More examples can be found in AppendixD.6.

8



Published as a conference paper at ICLR 2024

Figure 4: A) Examples of PDE solutions obtained by GPT-PINN and DATS on the Burger equation.
B) L2 error and disparity metrics of DATS vs. uniform task sampling on 3D Navier-Stokes equation.

Figure 5: Visual examples of PDE solutions obtained by DATS and uniform task sampling on the
convection (left) and reaction diffusion equation (right).

Figure 4B summarizes the results of DATS vs. uniform task sampling on HyperPINN on the more
complex 3D Navier-Stokes equation (17) with the PDE parameter a ∈ [0.5, 1.5]. Similarly, for PDE
configurations included in meta-training, DATS was able to use 40− 60% of the budget to achieve
the performance uniform task sampling achieved using a budget of 10,000 residual points per task,
and only 20 − 40% of the budget for generalizing to PDE configurations unseen in meta-training.
More details about this experimental setup are included in Appendix C,D.5.

Results on Generalizing to New PDEs: The third row of Figure 3 shows L2 errors in PDE solutions
when HyperPINN was applied to parameters outside the meta-training sets. The trend is similar to
that observed in meta-trained PDE parameters, with notable improvements in some equations like
Helmholtz. Detailed results on the disparity metric are in Appendix D.3.

Computational Cost: In practice, DATS update of p∗(λi) in equation 18 can be computed every
few iterations: through experiments we found that a period of 200 could potentially outperform a
period of 1 while being more computationally efficient (more details presented in Appendix D). With
this, the computational overhead by DATS was negligible: on the same computing environments,
in HyperPINN, DATS was 3% slower than uniform and 1% slower than self-paced baselines; in
MAD-PINN, DATS was 8% and 6% slower than uniform and self-paced baselines, respectively.

6 LIMITATIONS AND FUTURE WORK

In this paper, we introduce DATS as the first adaptive task sampler for meta-learning PINNs. By
optimizing a training task sampling probability that minimizes the meta-model’s validation perfor-
mance, DATS prevents using unnecessary resources (residual points) for learning easier tasks while
improving the performance in learning more difficult PDE configurations. While deriving analytical
solutions for the discrete setting commonly used in meta-PINNs, future works need to theoretically
examine the convergence of the algorithms presented as well as investigate the ability of DATS
to optimize over the continuous distribution of λ. Furthermore, the evaluation of DATS can be
conducted on a broader variety of more complex and higher-dimensional PDEs, meta-PINN models,
and PDE configurations. Tuning the regularization hyperparameters in DATS could be challenging
and deserves further examinations. Finally, this work considers DATS only in the setting of PINNs,
although its underlying concept may be generalizable to operator learning which is known to require
a substantial number of training samples of paired PDE configurations and solutions.
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A DATS DISCRETE APPROXIMATION

Below we derive Equation (13) from Equation (12) of the main paper using Karush–Kuhn–Tucker
(KKT) first-order necessary condition for an optimal solution. Note again the objective function in
Equation (12) in the main paper is:

L(p(λi)) =
1
n

∑n
i=1 p(λi)wi − βKL(p(λ)||r(λ)), wi = ⟨gtr,λi

,
∑n

j=1 gval,λj
(θt)⟩ (12)

Now, differentiating Equation equation 12 with respect to p(λi) and setting the derivative to zero we
derive:

∂

∂p(λi)

(
1

n

n∑
i=1

p(λi)wi − βKL(p(λ)||r(λ))

)
= 0 (13)

1

n
wi − β log

(
p(λi)

r(λi)

)
= 0 (14)

log

(
p(λi)

r(λi)

)
=

1

nβ
wi (15)

p(λi)

r(λi)
= exp(

1

nβ
wi) (16)

Re-arranging Equations (4) for deriving p(λi) and substituting β = nβ we derive at:

p(λi) = r(λi) ∗ exp(
1

β
wi) (17)

Finally, normalizing p(λi) to form the probabilities and replacing r(λi) with ri we derive at Equation
(13).

p∗(λi) = ri ∗ exp(
1

β
wi)/

∑
i

ri ∗ exp(
1

β
wi) (18)

where ri = 1
n can be used for uniform KL regularization, and ri = p(λi)

t for consecutive KL
regularization.

B IMPLEMENTATION DETAILS

In this section, we discuss the specific hyper-parameters on each experiment across all models.
Experiments were run on NVIDIA Tesla T4s with 16 GB memory. More information and details can
be seen in the provided implementation.
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B.1 BURGERS’ EQUATION

HyperPINN

• PINN
– Fully Connected Layers
– Number of Layers: 7
– Hidden layers dimenstion: 8

• Hypernet
– Fully Connected Layers
– Number of Layers: 7
– Hidden layers dimenstion: 8
– Optimizer: ADAM
– Learning rate: 1e-4 with cosine annealing
– Epochs: 20000

MAD-PINN

• Fully Connected Layers
• Number of Layers: 7
• Hidden layers dimenstion: 128
• Latent Dimension: 16
• Latent Loss Regularizer: 0.001
• Optimizer: ADAM
• Learning rate: 1e-3 with cosine annealing
• Epochs: 20000

B.2 CONVECTION EQUATION

HyperPINN

• PINN
– Fully Connected Layers
– Number of Layers: 5
– Hidden layers dimenstion: 16

• Hypernet
– Fully Connected Layers
– Number of Layers: 5
– Hidden layers dimenstion: 32
– Optimizer: ADAM
– Learning rate: 0.001
– Epochs: 10000

MAD-PINN

• Fully Connected Layers
• Number of Layers: 5
• Hidden layers dimenstion: 16
• Latent Dimension: 8
• Latent Loss Regularizer: 0.001
• Optimizer: Adam
• Learning rate: 0.001
• Epochs: 10000
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B.3 REACTION DIFFUSION EQUATION

HyperPINN

• PINN
– Fully Connected Layers
– Number of Layers: 5
– Hidden layers dimenstion: 16

• Hypernet
– Fully Connected Layers
– Number of Layers: 5
– Hidden layers dimenstion: 32
– Optimizer: Adam
– Learning rate: 0.001
– Epochs: 10000

MAD-PINN

• Fully Connected Layers
• Number of Layers: 5
• Hidden layers dimenstion: 16
• Latent Dimension: 8
• Latent Loss Regularizer: 0.001
• Optimizer: Adam
• Learning rate: 0.001
• Epochs: 10000

B.4 HELMHOLTZ (2D) EQUATION

HyperPINN

• PINN
– Fully Connected Layers
– Number of Layers: 5
– Hidden layers dimenstion: 16

• Hypernet
– Fully Connected Layers
– Number of Layers: 5
– Hidden layers dimenstion: 32
– Optimizer: Adam
– Learning rate: 0.001
– Epochs: 10000

MAD-PINN

• Fully Connected Layers
• Number of Layers: 5
• Hidden layers dimenstion: 16
• Latent Dimension: 8
• Latent Loss Regularizer: 0.001
• Optimizer: Adam
• Learning rate: 0.001
• Epochs: 10000
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L2 Disparity
Period DATS Self-Paced DATS Self-Paced

1 0.0527 0.0678 0.1317 0.1648
200 0.0385 0.0699 0.0891 0.2049

2000 0.120 0.0707 0.2170 0.2048

Table D.3: Investigating the effect of the period of updating task probabilities.

C NAVIER-STOKES EQUATION

We tested DATS on incompressible Navier-Stokes flow, specifically the three-dimensional Beltrami
flow that adheres to the unsteady, incompressible three-dimensional Navier-Stokes equations outlined
below:

∂u

∂t
+ (u · ∇u)u = −∇p+

1

Re
∇2u in Ω

∇ · u = 0 in Ω

u = uΓ on ΓD

∂u

∂n
= 0 on ΓN

u(x, 0) = h(x) in Ω

(19)

where t is the non-dimensional time, u(x, t) = [u, v, w]T is the non-dimensional velocity vector, p is
the non-dimensional pressure, Re is the Reynolds number, h(x)n is the initial condition and ΓD and
ΓN denotes the Dirichlet and Neumann boundary conditions, respectively. In Beltrami flow, Re=1
and there is the following analytic solution:

u(x, y, z, t) =− a[eaxsin(ay + dz) + eazcos(ax+ dy)]e−d2t

v(x, y, z, t) =− a[eaysin(az + dx) + eaxcos(ay + dz)]e−d2t

w(x, y, z, t) =− a[eazsin(ax+ dy) + eaycos(az + dx)]e−d2t

p(x, y, z, t) =− 1

2
a2[e2ax + e2ay + e2az + 2sin(ax+ dy)cos(az + dy)ea(y+z)

2sin(ay + dz)cos(ax+ dy)ea(z+x)

2sin(az + dx)cos(ay + dz)ea(x+y)]e−2d2t

(20)

In our experiment, we consider x = [x, y, z] ∈ [−1, 1] × [−1, 1] × [−1, 1], t ∈ [0, 1] and d=1 and
select a as the PDE parameter in the range[0.5, 1.5].

D ADDITIONAL EXPERIMENTS

D.1 HYPER-PARAMETERS

To decide the period of updating DATS, we conducted a grid search for period ∈ {1, 200, 2000}. For a
fair comparison with self-paced learning baseline, we also investigated the effect of period of updates
on the performance of this baseline as well. As shown in table .D.3 The results indicate that models
at period=200 for DATS and period=1 for self-paced learning baseline, were top performing. Note
that this experiment is conducted on Burgers equation considering six values of λ ∈ (1e− 3, 1e− 1)
different than the subset of PDE parameters used for the experiments of the main paper.

D.2 FULL RESULTS ACROSS ALL PDES

Table. D.4 and D.5 explain the full set of results from figure 3 of section 5.2 on HyperPINN and
Mad-PINN.
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HyperPINN
Burger Convection

Method Budget L2 Disparity Budget L2 Disparity
Uni. 500 0.184± 0.071 0.296±0.106 100 1.107 ± 0.0177 0.064 ± 0.048
S-P 500 0.130 ± 0.040 0.308±0.123 100 0.085 ± 0.018 0.063 ±- 0.012

GPT 500 0.301 ± 0.063 0.405 ± 0.210 - - -
DATS 500 0.079± 0.017 0.209 ± 0.0180 100 0.057 +0.002 0.100 ± 0.011
DATS 2000 0.068 ± 0.006 0.161±0.045 500 0.061 ±0.012 0.096 ± 0.026
DATS 4000 0.057 ± 0.012 0.186±0.032 - - -
DATS 10000 0.039 ± 0.010 0.132±0.039 2000 0.056 ±0.021 0.061 ± 0.047
GPT 10000 0.097 ± 0.008 0.193 ± 0.087 - - -
S-P 10000 0.052 ± 0.018 0.156±0.035 2000 0.059 ± 0.016 0.061 ± 0.024
Uni. 10000 0.058 ± 0.011 0.179+0.039 2000 0.064 ± 0.008 0.082 ± 0.029

Reaction-Diffusion Helmholtz (2D)
Method Budget L2 Disparity Budget L2 Disparity

Uni. 20 0.410 ± 0.088 0.131 ±0.060 50 0.298 ± 0.056 0.624 ±0.110
S-P 20 0.642 ± 0.103 0.153 ± 0.043 50 0.0169 ± 0.005 0.017 ± 0.007

DATS 20 0.052 ± 0.015 0.025 ±0.014 50 0.0108 ± 0.001 0.017 ± 0.007
DATS 100 0.037 ± 0.008 0.0180 ±0.007 500 0.0086 ± 0.001 0.008 ± 0.003
DATS 2000 0.028 ± 0.012 0.011 ± 0.005 2000 0.009 +0.003 0.008 ± 0.005

S-P 2000 0.062 ± 0.024 0.029 ±0.012 2000 0.0104 ± 0.002 0.013 ± 0.003
Uni. 2000 0.063 ± 0.029 0.029 ±0.015 2000 0.009 ± 0.002 0.009 ± 0.002

Table D.4: DATS vs. Uniform (Uni.) vs. Self-Pace (S-P) vs. GPT-PINN (GPT) from figure 3 of
section 5.2 on HyperPINN. For readability, the double horizontal line in the Table divides the group
of methods using the same budget of residual sampling points. Within the group of the lowest and
highest budgets, the best results are bolded among DATS and its baselines. Within the group of
DATS with varying intermediate budgets, we underscore the performance better than the best baseline
performance achieved at the highest budget.

MAD-PINN
Burger Convection

Method Budget L2 Disparity Budget L2 Disparity
Uni. 1000 0.147± 0.066 0.535±0.186 100 1.284 ± 0.089 0.053 ± 0.088
S-P 1000 0.234± 0.110 0.356±0.191 100 0.376 ± 0.084 0.665 ± 0.099

DATS 1000 0.111± 0.025 0.429 ± 0.102 100 0.167 ± 0.032 0.361 ± 0.088
DATS 2000 0.113 ± 0.031 0.531±0.024 500 0.155 ± 0.067 0.308 ± 0.165
DATS 4000 0.042 ± 0.009 0.290±0.114 - - -
DATS 8000 0.013 ± 0.002 0.114±0.114 - - -
DATS 10000 0.010 ± 0.007 0.077±0.053 2000 0.105±0.009 0.241±0.007

S-P 10000 0.015 ± 0.009 0.119±0.080 2000 0.121 ± 0.036 0.264±0.086
Uni. 10000 0.016 ± 0.004 0.135+0.036 2000 0.290 ± 0.013 0.602± 0.041

Reaction-Diffusion Helmholtz (2D)
Method Budget L2 Disparity Budget L2 Disparity

Uni. 10 0.931 ± 0.004 0.088 ± 0.025 50 0.419±0.027 1.193±0.067
S-P 10 0.953 ± 0.067 0.080 ± 0.051 50 0.109±0.052 0.039±0.209

DATS 10 0.051 ± 0.007 0.071 ± 0.011 50 0.027±0.011 0.040±0.018
DATS 100 0.045 ± 0.020 0.058 ± 0.008 500 0.027±0.006 0.040±0.014
DATS 1000 0.035 ± 0.002 0.049 ± 0.004 2000 0.020±0.004 0.022±0.001

S-P 1000 0.053 ± 0.019 0.053 ± 0.023 2000 0.025±0.004 0.028±0.010
Uni. 1000 0.040 ± 0.012 0.061 ± 0.018 2000 0.026±0.007 0.033±0.011

Table D.5: DATS vs. Uniform (Uni.) vs. Self-Pace (S-P) vs. GPT-PINN (GPT) from figure 3 of
section 5.2 on MAD-PINN.

D.3 RESULTS ON GENERALIZING TO NEW PDES
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HyperPINN Generalization
Burger Convection

Method Budget L2 Disparity Budget L2 Disparity
Uni. 500 0.167 ± 0.065 0.025 ± 0.094 100 0.907 ± 0.047 0.080 ± 0.063
S-P 500 0.180 ± 0.092 0.278 ± 0.098 100 0.077 ± 0.016 0.034 ± 0.012

DATS 500 0.102 ± 0.014 0.160 ± 0.009 100 0.053 ± 0.006 0.022 ± 0.012
DATS 2000 0.089 ± 0.003 0.135 ± 0.020 500 0.069 ± 0.028 0.034 ± 0.004
DATS 4000 0.077 ± 0.014 0.137 ± 0.026 - - -
DATS 10000 0.051 ± 0.016 0.084 ± 0.031 2000 0.061 ± 0.018 0.022 ± 0.004

S-P 10000 0.085 ± 0.024 0.129 ± 0.051 2000 0.067 ± 0.015 0.049 ± 0.012
Uni. 10000 0.056 ± 0.009 0.114 ± 0.016 2000 0.059 ± 0.010 0.028 ± 0.014

Reaction-Diffusion Helmholtz (2D)
Method Budget L2 Disparity Budget L2 Disparity

Uni. 20 0.357 ± 0.133 0.244 ± 0.061 50 0.336 ± 0.081 0.440 ± 0.091
S-P 20 0.641 ± 0.131 0.504 ± 0.448 50 0.087 ± 0.059 0.080 ± 0.049

DATS 20 0.098 ± 0.024 0.095 ± 0.018 50 0.096 ± 0.062 0.010 ± 0.089
DATS 100 0.081 ± 0.013 0.102 ± 0.022 500 0.062 ± 0.009 0.050 ± 0.026
DATS 2000 0.095 ± 0.008 0.123 ± 0.015 2000 0.086 ± 0.039 0.073 ± 0.075

S-P 2000 0.112 ± 0.027 0.129 ± 0.031 2000 0.057 ± 0.020 0.030 ± 0.021
Uni. 2000 0.105 ± 0.018 0.114 ± 0.008 2000 0.098 ± 0.018 0.101 ± 0.019

Table D.6: DATS vs. Uniform (Uni.) vs Self-Pace (S-P) generalization results for HyperPINN across
all PDEs.

Figure D.6: HyperPINN generalization results (disparity) on PDE parameters not included in meta-
training.

Figure.D.6 summarizes the disparity metric when HyperPINN is applied to PDE parameters outside
meta-training sets (generalization) and table.D.6 includes the full set of results presented in the third
row of figure. 3

D.4 RESULTS ON GENERALIZING TO NEW INITIAL CONDITIONS

Figure. D.7 compares DATS with uniform and self-pace baselines on MAD-PINN when tested on
initial conditions unseen during training.

D.5 RESULTS ON 3D NAVIER-STOKES EQUATION

Table. D.7 presents the full set of results including L2 and disparity metrics using DATS and uniform
task-sampling baselines for solving 3D Navier-Stokes equation with HyperPINN and parameter
configuration a ∈ [0.5, 1.5]. A subset of 6 parameters is used for training and 4 unseen parameters
during the training are used for generalization experiments.

D.6 EXAMPLE SOLUTIONS

Loss convergence & examples of visual results: Figures. D.8 showcases validation L2 error
comparison of DATS with Uniform and self-paced learning baselines using HyperPINN during
training for the example budget of b = 500 on Burgers’ equation. The thirds column in this figure
shows how the probabilities assigned to each task (pde parameter instance) changes during training. In
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Figure D.7: MAD-PINN results on learning across initial conditions for the convection equation.

3D Navier-Stokes

Method Budget Reconstruction Generalization
L2 Disparity L2 Disparity

Uniform 100 0.048 ± 0.008 0.041 ± 0.003 0.041 ± 0.007 0.018 ± 0.003
DATS 100 0.043 ± 0.002 0.028 ± 0.003 0.037 ± 0.001 0.014 ± 0.001
DATS 1000 0.036 ± 0.002 0.033 ± 0.005 0.032 ± 0.001 0.018 ± 0.001
DATS 10000 0.034 ± 0.004 0.021 + 0.007 0.031 ± 0.003 0.012 ± 0.005

Uniform 10000 0.035 ± 0.003 0.03 + 0.005 0.032 ± 0.001 0.017 ± 0.002

Table D.7: DATS vs Uniform task sampling for reconstruction and generalization of 3D Navier-Stokes
equation with HyperPINN.

this experiment, DATS probabilities are updated every 200 epochs. Similarly, Figure . D.9 compares
MAD-PINN results at the example budget of b = 1000. Figures. D.10, D.11,D.12 and D.13 visualize
example PDE solutions of convection, reaction diffusion, Helmholtz (2D) accordingly. Figure. D.13
compares MAD-PINN before and after applying DATS on new initial conditions for the convection
equation.
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Figure D.8: Comparison of PDE solution at λ = 1e− 3, L2 loss convergence, and probabilities at
500 residual points budget using HyperPINN.

Figure D.9: Comparison of PDE solution at λ = 1e− 3, L2 loss convergence, and probabilities at
1000 residual points budget using MAD-PINN.
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Figure D.10: Comparison of Convection equation solution at β = 9 and 100 residual points budget.

Figure D.11: Comparison of Reaction diffusion equation solution at ν, a = 2.5, 2.5 and 20 residual
points budget.
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Figure D.12: Comparison of Helmholtz equation solution at a1, a2 = 1.5, 1.5 and 50 residual points
budget.

Figure D.13: Comparing MAD-PINN and DATS on new initial condition u(x, 0) = 2sin(3x). Top
row indicates L2 loss and bottom row compares the results on β = 1 (most difficult task in training).
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