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Abstract

Training multi-modal large language models (MLLMs) that align with human
intentions is a long-term challenge. Traditional score-only reward models for
alignment suffer from low accuracy, weak generalization, and poor interpretability,
blocking the progress of alignment methods, e.g., reinforcement learning from
human feedback (RLHF). Generative reward models (GRMs) leverage MLLMs’ in-
trinsic reasoning capabilities to discriminate pair-wise responses, but their pair-wise
paradigm makes it hard to generalize to learnable rewards. We introduce Generative
RLHF-V, a novel alignment framework that integrates GRMs with multi-modal
RLHF. We propose a two-stage pipeline: multi-modal generative reward model-
ing from RL, where RL guides GRMs to actively capture human intention, then
predict the correct pair-wise scores; and RL optimization from grouped com-
parison, which enhances multi-modal RL scoring precision by grouped responses
comparison. Experimental results demonstrate that, besides out-of-distribution
generalization of RM discrimination, our framework improves 4 MLLMs’ perfor-
mance across 7 benchmarks by 18.1%, while the baseline RLHF is only 5.3%. We
further validate that Generative RLHF-V achieves a near-linear improvement with
an increasing number of candidate responses. Our code and models can be found
athttps://generative-rlhf-v.github.io,

1 Introduction

""The mediocre teacher tells. The great teacher inspires."

— William Arthur Ward saying — Education

Human interaction and learning are naturally multi-modal [1} 2} 3]]. Recent research has demonstrated
significant advances in multi-modal large language models (MLLMs) [4} 15} 16} [7] on visual question
answering and reasoning tasks. These breakthroughs reveal two critical insights: 1) Reinforcement
learning (RL) substantially enhances MLLMs’ capacity for solving complex problems [8]; 2) The
efficacy of RL fundamentally depends on the precisely defined reward (e.g., rule-based verification
for mathematical correctness). While rule-based rewards can be effectively constructed for logical
reasoning and factual judgment tasks [9, [10], accurate reward modeling for human values, e.g.,
instruction-following or safety [[11}[12], remains a long-term challenge in MLLMs alignment.
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Figure 1: Advanced multi-modal large language models (MLLMs) is calling principled preference
learning. In MLLM’s alignment, traditional RLHF methods only learn scalar scores from preferences.
In contrast, our Generative RLHF-V can learn principles from preferences and optimize based on this
comprehensive comparison. Experimental results show that Generative RLHF-V elevates 2B and
3B MLLMs to 7B performance across 7 benchmarks. It also advances pretrained models to instruct
model capabilities and enables open-source models to match closed-source experts.

Alignment aims to make Al systems adhere to human intentions [13}/12]], and for MLLMs, these goals
can be concretized into the 3H standards: helpful, harmless, and honest [14} 15, [16]. These goals
are difficult to represent as a symbolic reward [17,18]]. Traditional approaches typically employ an
additional score head to project the final-layer activations of MLLMs into scalar rewards [11} 9, [19],
i.e., score-only reward model (RM), subsequently applying Bradley-Terry loss to learn human
preferences from pairwise comparisons. However, extensive studies [20, 21} 22]] have exposed three
fundamental limitations of this paradigm: low accuracy, weak generalization, and poor interpretability.
Generative reward models (GRMs) [23 24] present a promising alternative by leveraging LLMs’
intrinsic reasoning capabilities to discriminate pair-wise responses [25}26], and rule-based RL fine-
tuning strengthens this capability [27]]. Nevertheless, the practical application of such GRMs in
multi-modal RLHF remains to be verified. This progression presents the following urgent dilemma:

* Advanced MLLMs is calling principled preference learning. As MLLMs become more sophis-
ticated, they handle increasingly complex inputs and diverse tasks [28]. Human assessment of
preferences for MLLMs’ responses will also grow more varied and intricate [29]. Consequently,
relying on a single inference from a score-only RM proves insufficient for learning generalizable
human preferences [30} 20], thereby creating a bottleneck in MLLMs alignment.

¢ Pair-wise comparison is blocking multi-modal principles from generalizing to learnable re-
wards. While pair-wise comparison allows GRM to learn generalizable principles from RL
[27, 131} 132], this pair-wise comparison feedback does not readily translate into the point-wise
scores, which are essential for RL optimization [33} 134, (35 136]. This disconnect hinders the ability
of learned principles to effectively guide the multi-modal RLHF.

In response, we propose Generative RLHF-V(ision), as shown in |[Figure 2| a novel alignment
framework enabling the pair-wise multi-modal GRM with multi-modal RLHF. Our pipeline consists
of two stages: multi-modal generative reward modeling from RL and RL optimization from
grouped comparison. The first component utilizes RL to train a GRM to learn principles from
multimodal preferences, which then performs strongly generalizable pairwise scoring of responses.
The second component applies these GRM-learned principles to obtain more precise scores by
comparing within groups of responses. Our GRM training extends the self-principled critique tuning
(SPCT) [27] to the vision scenario, training MLLMs as GRMs using RL, with rule-based rewards
from annotated ground truth in preference datasets.

In contrast to SPCT, we find that in the multi-modal scenario, enabling GRMs to explore principles
autonomously yields superior generalization than selecting principles from a reference set. Our
grouped comparison design enables the generalization of learned principles from pair-wise compar-
isons to point-wise scores. This further unveils a novel direction for post-training scaling up: as the
number of candidate responses n explored by online RL increases, GRMs can assign more accurate
scores, leading to improved RL performance near linearly. Our key contributions are as follows:
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Figure 2: Comparison of our pipelines to traditional ones. For reward modeling, we make generative
RM actively reason about the advantages and disadvantages between two answers, and output
corresponding scores. If the better response gets a higher score, it provides a positive reward. For
RL optimization, we compare responses in pairs within a group to obtain more accurate scores.

RL-based GRMs for learning principles from multi-modal preference: We develop a multi-
modal GRM trained via RL, enabling the reasoning of principles and precise reward predictions,
achieving average 20.4% accuracy improvement on out-of-distribution discriminative tasks.

Multi-modal generative RLHF: We empirically demonstrate the superiority of GRMs for multi-
modal RLHF. Experimental results demonstrate that our framework improves MLLMs’ performance
across 7 benchmarks by 18.1%, while the baseline RLHF is only 5.3%.

Grouped comparison for post-training scaling up: We discovered that the integration of
GRM+RL with grouped comparison enables the performance of RL optimization to near linearly
improve with an increasing number of candidate responses n within a certain range. The removal of
either component negates this observed enhancement.

A pioneer case study of multi-modal GRM reward hacking: We find that RL over-training under
an over-trained GRM can lead models to adopt self-praise behaviors to obtain high rewards, even
achieving exceptionally high scores on benchmarks employing the MLLM-as-judge paradigm.

2 Related Work and Preliminaries

MLLM Alignment and RLHF. Al alignment is the deliberate process of shaping model behavior
to cohere with human goals, values, and ethical principles [[L1} [13} 37, [12} 138} 39]]. Achieving
robust alignment faces challenges in translating complex, subjective, and evolving human values into
quantifiable training objectives [20, [40]. Current MLLM alignment methods mainly rely on post-
training [41} 42} [19]], with RL fine-tuning based on human preferences being the most mainstream
approach. This process typically involves two key stages: reward modeling and RL optimization.

A score-only reward model Ry is trained on a dataset of human preferences, where each data point
includes a prompt x, a preferred response ¢y, and a dispreferred response y'. The model learns
to assign a higher scalar score to the preferred response s™ than the dispreferred one s' using a
pairwise ranking loss, typically minimizing Lry = — > log o(s? — s!). This trained Ry serves
as an automated judge of response quality. The loss function can be expressed as minimizing the
negative log-likelihood over the dataset:

N N
Lrn(0) = = logo(Ry(zs, yl’) — Ro(xi,y))) = — Y logo(s) — s0).

i=1
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Figure 3: An example of generative reward modeling from RL. The goal of RL is to make MLLMs
assign higher scores to responses that align with human preferences. Through RL optimization,
MLLMs can infer the underlying principle behind how humans annotate these binary preferences.

The MLLM'’s policy () is fine-tuned using RL. For a given prompt « from a given dataset
Dprompt> the policy generates a response y, which is then scored by the reward model g. The
policy parameters ¢ are updated to maximize this reward. To prevent the policy from deviating too
much from the original pre-trained model (ﬂ'gj‘se) and maintain coherence, a Kullback-Leibler (KL)

divergence penalty is added to the optimization objective: maxgy E[Ry(x,y) — ﬁKL(W¢||7rg“SE)],
where (3 is a fixed hyper-parameter. The final optimization objective is:

X By (o) B0 (@, ) = BRL(Ts () |73 (2))].

Generative Reward Model. Generative reward models (GRM) [24] 23] 22]] offer an alternative
paradigm to score-only reward modeling, which leverages the inherent generative capabilities of
MLLMs to evaluate preferences. Current research on GRMs for MLLM alignment focuses on
employing supervised learning methods to improve accuracy [25]. A representative method is
LLaVA-Critic [26], which collects expert-annotated point-wise and pair-wise scores, along with
reasoning traces for MLLM question-answer pairs, subsequently training the MLLM as a GRM via
supervised learning. Despite its superior performance, this approach necessitates more expensive
expert annotations compared to binary preference datasets and imposes stricter requirements for
the reasoning trace annotations. Moreover, there is a notable lack of empirical studies on applying
GRMs in RL training. To date, explorations of GRM applications have centered on data filtering for
Best-of-N selection and offline direct preference optimization [38]). The practical implementation of
GRM within the multi-modal RL optimization is yet to be investigated.

3 Generative RLHF-V

The Generative RLHF-V pipeline mainly consists of two parts: generative reward modeling from
reinforcement learning (RL) and RL from grouped comparison. The former references training
MLLMs through RL as a pair-wise vision generative reward model (GRM), which actively reasons
about the human principle behind two given responses and provides a pair-wise score comparison.
The latter leverages the characteristics of this GRM, collecting multiple responses for a given input
and providing more accurate grouped scoring for them.

Multi-modal Generative Reward Modeling from RL. We consider the task of training a pair-wise
GRM Ry with parameters 6 using RL guided by human preferences. The goal of Ry is to assign a pair
of scalar scores {s1, 82} to a pair of responses {y1, Y2 } for a given prompt . We are given a dataset
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Figure 4: An example of RL from grouped comparison. Its advantage lies in utilizing grouped
comparisons to achieve more accurate scoring. Response B provides accurate and comprehensive
information, thus receiving the highest score; although response A is somewhat arbitrary, it performs
accurate image recognition and obtains a higher score than C and D.
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of human preferences DF = {(x;, y¥, y!)}L,, where x; is a prompt, y¥ is the response preferred
and y! is the response dispreferred by a set of human preference principles P = {py,pa, ..., pr}.
The inference of reward model, denoted as magy,; (or simply Rp), is a parameterized function that
takes the prompt z, and responses pairs y* and y' as input and outputs the predicted principles P*,
reasoning traces 7, and a pair-wise scalar score s* and s':

{P*’ r,sY, sl} = RQ(CU, ywv yl)'

The model’s preference prediction should be s,, > s;. And the reward r for a given preference pair
(x,y",y') is determined by comparing the scores assigned by Ry:

r(z,y",y';0) ={

The RL objective is to maximize the expected reward over the preference dataset D.

+1 ifs¥ > s,
—1 ifs® <sh.

max g, yu g1~ [r(z.y",y"50)] .

Reinforcement Learning from Grouped Comparison. This stage is to fine-tune the MLLM,
denoted as 7y with parameters ¢, using RL guided by grouped comparisons. This phase leverages
the pair-wise scoring capabilities of the GRM to obtain a more precise score via grouped comparison,
optimizing for principles P implicitly learned by the GRM.

The core idea is to utilize the GRM as a judge to evaluates multiple candidate responses generated by
the MLLM 7, for the same input. This grouped comparison provides a stronger reward for the RL
algorithm compared to using a single point-wise score. For the given input &, we use the MLLM
policy 7, to generate a set of n distinct responses, Y = {y1,¥y2,...,Yk}, Wwhere n > 1. Each
generated response ¥; in the set ) is evaluated using the pre-trained GRM, Ry4. Each generated
response is evaluated using the pre-trained GRM, Ry. To obtain the final score S(y;), the method
aggregates scores from pair-wise comparisons against all other responses in the set ).

Specifically, for each response y;, we consider its comparison with every other response y; (where
j # 4). The GRM function Ry (x, Y., yp) outputs a pair of scores. Let $(yq|Ya, Ys) denote the score
assigned to response y, extracted from Ry («x,yq,ys). The final grouped comparison score S(y;)
for response y; is calculated by averaging the scores assigned to y; across all possible pair-wise
comparisons involving it:
1 k
S(yi) = =) j,;# (s(Wilyi, y;) + s(yilyj, vi)) -



The set of scores {S(y1), S(y2),-..,S(yx)} serves as the reward for fine-tuning the MLLM policy
74 using RL, guiding it to generate responses that are preferred according to the principle implicitly
learned by the GRM.

4 Experiment

Generative RLHF-V integrates two key components: generative reward modeling via reinforcement
learning and grouped comparisons. evaluates these components from a reward
modeling standpoint, focusing on their performance in pair-wise discrimination and point-wise
scoring. Subsequently, from the RL optimization angle, [subsection 4.3|analyzes their improvement
on RL performance, ablation studies insights, and reward hacking in over-trained scenarios.

4.1 Experimental Setup

Our experiments were conducted on servers equipped with 8 * Nvidia H800 GPUs. We utilized verﬂ
for RL training and align-anythinf] for reward modeling and supervised fine-tuning. Further details
on the experimental setup can be found in the[section 7]

Models. We selected MLLMs of varying sizes, encompassing both pre-trained and instruction-tuned
variants. Specifically, we utilize the Qwen2-VL [43] models in 2B and 7B parameter sizes, and the
Qwen2.5-VL-Instruct [44] models in 3B and 7B sizes. For the generative reward modeling phase,
the instruct models series served as the starting point, leveraging their inherent instruction-following
capabilities. In the subsequent RL optimization experiments, the 3B parameter RM was used to
supervise the 2B and 3B models, while the 7B reward model supervised the 7B models.

Datasets. We focused on the helpful and harmless alignment for MLLMs, selecting corresponding
preference datasets. For the helpfulness, we utilized a 30k preference dataset from Align-Anything
[45], the text-image-to-text part. The preference principle in this dataset emphasizes instruction
following, clarity, and informativeness. For the harmlessness, we employed Beavertails-V [46] which
includes 20 distinct categories of safety-related red-teaming prompts.

Benchmarks. We selected 7 benchmarks to validate the effectiveness of Generative RLHF-V. These
are MIA-Bench [47], LLaVA-Bench-In-The-Wild [48]], LLaVA-Bench-Wilder [49]], MM-Vet [50],
and MM-Vet-v2 [51] (for helpfulness), as well as MM-SafetyBench [52] and MSS-Bench [53] (for
harmlessness). These benchmarks encompass both pair-wise evaluations, which involve a golden
response for comparison, and point-wise scoring methodologies based on specific criteria.

Implementation Details. Since our method utilizes a GRM trained by RL (GRM+RL, ours), we
established 3 baselines: a score-only RM trained with the Bradley-Terry loss, an untrained GRM,
and a GRM trained via supervised learning loss (GRM+SFT). The objective of SFT is the annotation
principle of the preference dataset and the scores assigned to responses, since Align-Anything and
Beaver-V both contain overall response scores, which we scale to match the RL setting’s range. In
RL optimization, the score-only RM assigns point-wise scores to each response, while the GRM
collects scores via grouped comparisons. We mainly use the GRPO for RL experiments, which by
default collects n = 5 candidate responses per iteration.

4.2 Principles Learning of RL-Based GRMs

RQ1: Does the GRM+RL facilitate more generalizable principle learning from preferences?

We evaluated a series of RMs based on Qwen2.5-VL-7B-Instruct and trained on Align-Anything by
comparing their accuracy generalization across 3 out-of-distribution (OOD) preference datasets. As
illustrated in [Figure 5] GRMs outperformed score-only RMs on these OOD tasks. Notably, GRMs +
RL achieved the highest accuracy.

Since GRMs have in-context learning capabilities, we further investigated their performance when
provided with the principles of each preference dataset. As shown in the (P) results of
the performance of GRM and GRM+SFT improved, whereas that of GRM+RL declined. We think
that the GRM+SFT potentially overfits to their training data, struggles to autonomously generate

"https://github.com/volcengine/verl
*https://github.com/PKU-Alignment/align-anything


https://github.com/volcengine/verl
https://github.com/PKU-Alignment/align-anything

078 | GPT-4o (Expert) 0.78
0.80 079 0.80 7 |n.Distribution RM: 0.76 08
In-Distribution RM: 0.74 D\p 075 B o 07 ocs
07 & oss ! o ] S0 oo oot JEIE
0.71
oy 0g9 070 3 0.70 - T > 06 058
8 0.70 —r0 g 065 g | os
3 0.65 S 0,65 £
8 065 g 0es 061 3 05
<0607 < 060 <04
E 0.54 T
056 055
0.55 03
T T T T T 0504 T T T T T N\‘ N\‘ T < T )\
RV GRM o\ (@ F1 et P R ol @) R GRM o\ (@ F1 et @ R o @) RV R Pl + SFTgrT @+ B, @
oo™ T B ® o™ Bt g ® ™ bl B

(a). LLaVA-Critic (b). Beavertails-V

Figure 5: Comparison of RMs accuracy on OOD discriminative tasks. (P) denotes the concatenation
of the annotation principle from the corresponding preference dataset to the models’ output, serving
as hints for inference. All models represented by the bar charts were trained on the Align-Anything
dataset. The purple dashed line indicates expert performance. For Beaver-V and LLaVA-Critic, we
trained in-distribution RMs to serve as the expert baseline. In the case of MLLM-as-a-judge, given
its limited data volume, we directly utilized the SOTA GPT-4o0 as the expert.
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is its fine-grained scores distribution.

appropriate principles from response pairs, and thus benefits from provided principles. Conversely,
the performance degradation in GRM+RL suggests that RL has already guided these models to derive
more targeted and effective principles from response pairs, rendering the provided static principles
less beneficial or even suboptimal.

RQ2: Can grouped comparison yield more accurate reward scores of GRMs?

To evaluate the point-wise scoring accuracy of GRM and the effectiveness of grouped comparison
(GC), we utilized the MLLM-as-a-judge Score task [32]. This benchmark comprises over 5,000 QA
pairs, each annotated by human experts with integer scores (1-5) based on a predefined principle.
We grouped these QA pairs and employed the pair-wise GRM to assign scores. We ran additional
grouped comparisons to take the average scores in the GC-enabled scenario. The resulting scores
were compared against the human expert annotations using the Pearson correlation coefficient.

As presented in Table [T] GRM+RL incorporating grouped comparison (GC) achieved the highest
performance, closely approaching expert-level (GPT-40) results for this task. Additionally, GC
improves the point-wise response scoring capability across all pair-wise GRMs. (a). and
(b). further illustrates the alignment between the GRM+RL scores and human annotations. Notably,
despite the training data lacking the specific task criteria and score constraints, our method successfully
enabled the GRM to learn accurate scoring. Furthermore, as depicted in (c), the model
generates fine-grained scores that are not restricted to integer values.

4.3 RL Optimization with GRM+RL and Grouped Comparison

RQ3: Are GRM+RL and grouped comparison competitive methods for multi-modal RLHF?

[Table 2] shows that Generative RLHF-V (GRLHF-V) consistently surpasses RM and GRM baselines
across 4 models and 7 benchmarks, covering instruction following and safety conversation tasks. Our
findings indicate that for pretrained models, score-only RMs often fail to deliver accurate rewards,
resulting in diminished performance compared with GRM cases. This is likely because they primarily
fit responses from instruction models in the preference dataset, leading to poor discrimination of
out-of-distribution (OOD) responses. In contrast, the GRMs provide effective rewards for both
pretrained and instruction models, leading to an overall improvement.



Table 2: Performance comparison of RL optimization based on different RMs.

Model Feedback MIA-Bench LLaVA-Wild LLaVA-Wilder MM-Safety MSS-Bench MM-Vet MM-Vet-v2
Qwen2-VL-2B N/A 45.31 61.46 47.18 38.12 46.98 32.12 27.15
+DPO RM 51.04 575 7591 +1445  48.12+094 67.21 2009 49.52:251  31.28-084 31.28+4.13
+PPO RM 4372159 737941233 41.32-586 59.83+2171 47.38+040  33.56+ 144 30.79 + 364
+ GRPO RM 44.59 072 69.87 + 841 39.48-7.70 69.27 +31.15 48.12+ 104 29.15-297 31.74 +459
+ GRPO GRM 46.81+150  78.51+1705  45.01-217 72.53 3441 51.45+44 3497 +2385 36.36+9.21
+ GRPO GRM+SFT 48.57+326  81.87+2041  53.04+530 74.56+ 3644 50.98+400  36.78 466 37.14 4999
+ GRLHF-V (Ours) GRM+RL 53.13+782 92.54+3108 62.84+15.66 80.67 +4255 53.87+689 41.25+913 45.16+18.01
Qwen2.5-VL-3B-Instruct N/A 68.01 89.63 63.65 41.18 49.58 59.16 44.94
+DPO RM 7437 +636  91.05+1.42 66.71 +3.06 75.64 + 3446 52574299  55.72-344 4541 +047
+PPO RM 72.59 +458 9376 +4.13 65.73 +2.08 71.25+3007 50.03+045  60.08 +0.92 48.92+3.98
+ GRPO RM 69.82+ 181 93.94 431 66.41 +2.76 69.83 +2865 51.96+238  56.92-224 47.55+261
+ GRPO GRM 75.56+755  92.19+256 67.18 +353 75.98 +3480 57.66+808 57.37-179 49.15+421
+ GRPO GRM+SFT 74.17 <616 96.73+7.10 71.07 +7.42 7245+3127 58.83+925 59274011 51.52+658
+ GRLHF-V (Ours) GRM+RL 79.67 +11.66 103.41+1378 68.46+ 431 78.88+37.70 62.33+1275 62.18+3.02 55.18 +10.24
Qwen2-VL-7B N/A 52.58 81.3 61.8 31.95 48.23 60.32 52.98
+ DPO RM 57.01+443  81.49+0.19 59.75-2.05 81.59 4064 49.87+164  60.98 066 53.09+0.11
+PPO RM 55.76 +318  83.06+1.76 62.23 +0.43 80.87 +4892 50.08 + 185  57.83-249 52.12-0s6
+ GRPO RM 56.89+431  81.25-0.0s5 60.19 - 1.61 83.14+ 4619 51.98+375  56.85-347 48.96-402
+ GRPO GRM  59.72:714  86.12 42 68.30 + 6.50 81.42+4947 50.21+198  57.98-234 5449151
+ GRPO GRM+SFT 59.87+729 9291+ 1161 65.67 +3.87 87.27 +5532 52.75+45  58.79-153 56.39+341
+ GRLHF-V (Ours) GRM+RL 62.31+973 103.55+2225 71.98+10.18 91.96+60.01 54.83+660 63.92+360 59.11+6.13
Qwen2.5-VL-7B-Instruct N/A 74.26 97.05 71.56 50.67 51.96 68.32 67.23
+DPO RM 81.55+729  103.34+620  72.08+052 75.09 + 2442 52.72+076  67.84-048 66.98-025
+PPO RM 7312114 101.62 +457  67.89-3.67 76.59 12592 51.29-067  67.89-043 64.23-3.00
+ GRPO RM 75.75+149  101.65+4060  68.89-267 68.26+1759 52.53+057 66.85-147 67.76+053
+ GRPO GRM  71.88-238  109.12+1207 73.32+1.76 65.88+ 1521 53.12+1.16  65.50-28 65.08-2.15
+ GRPO GRM+SFT 76.23+197  103.50+645  72.15+059 70.23 + 1956 54.08 +2.12  64.93-339 68.12+0.89
+ GRLHF-V (Ours) GRM+RL 79.86+560 113.71+16.66 76.04+4.48 7491 +2424 59.74+778 7294 +462 71.86+4.63
66 GRM + RL (w/ GC) o 951 GRM + RL (/ GC) 110 GRM + RL (w/ GC)
] 2 S
" Score-Only RM % 90 Score-Only RM 100 Score-Only RM
@ < 85 & g
58 E
56 < 804 &
— 80
3 5 7 3‘ ‘5 % 3 5 7
Number of Candidate Responses Number of Candidate Responses Number of Candidate Responses
(a). MIA-Bench (b). MM-SafetyBench (). LLaVA-Bench-In-The-Wild

Figure 7: Scaling trend of RL performance with the number of candidate responses n, where GC
denotes grouped comparison. It reveals that integrating GC and GRM+RL near linearly enhances
multi-modal RLHF performance across various settings of n. Moreover, this improvement becomes
more pronounced as 7 increases.

RQ4: Ablations of GRM+RL, grouped comparison and the number of candidate responses.

We investigated the influence of the number of candidate responses (n) on the performance of different
RMs with GRPO (Qwen2-VL-7B as the base model). As shown in with an increasing n,
score-only RMs show a minor performance improvement. We posit that while a larger n benefits
GRPO by improving exploration and value estimation accuracy, it also compromises the scoring
reliability of the RM, as the inclusion of new, inaccurate data can degrade performance. Conversely,
GRMs generally perform better, indicating superior scoring accuracy.

Crucially, GRPO performs best when combined with grouped comparisons, exhibiting the most
significant performance increase with n. This ablation confirms the essential roles of both components,
i.e., GRM+RL and grouped comparison within our approach.

RQS5: What is the reward hacking behaviors of an over-trained Generative RLHF-V model?

As Goodhart’s Law reveals, excessively optimizing a metric can hinder ground truth performance [20].
Reward hacking is a pervasive challenge in nearly all RL algorithms [54}55]], where models, under
intense optimization pressure, may adopt unforeseen behaviors to maximize rewards. This section
presents a case study on the reward hacking behaviors of GRLHF-V. To this end, GRLHF-V, trained
on the Align-Anything dataset, underwent overtraining for 5 epochs in both its reward modeling and
RL training phases. It is a significant increase from the 2 epochs in our main experiments.

As depicted in we observed an emergent self-praise behavior: it appended extensive content
to state its advantage. Strikingly, this behavior also secured remarkably high scores in pair-wise
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Figure 8: The reward hacking behavior manifested by GRLHF-V and its associated quantitative
performance, under conditions of overfitting in both reward modeling and RL training.

MLLMs-as-judge evaluations. Specifically, we observed that the expert judge (GPT-40) tends to
directly incorporate MLLMs’ praising of itself. Conversely, when these self-praise segments were
manually removed and the responses re-evaluated, the model’s performance fell below that of a
GRLHF-V instance trained normally without overfitting. We hypothesize that the underlying cause is
the diminished OCR capability of over-trained GRMs. This reduced capability renders them more
susceptible to being misled by the self-parsed text from MLLMs, leading them to prioritize this
textual input over verifying their responses against the actual image information. We hope this case
study provides insights for future research into MLLMs reward hacking and underscores the pressing
need for more comprehensive and unbiased MLLMs benchmarks.

RQ6: Why not including specific principles in GRM+RL training?

SPCT mentions that providing principles as a reference within Table 3: GRLHF training with
the user prompt. However, in our experiments with MLLMs, we (w/ P) or without (w/o P) given
find that omitting these principles enhances generalization. As principles.

shown in[Table 3] while providing principles enables the GRM+RL

: . .. . Benchmarks w/ P w/o P
model to attain higher accuracy on the training dataset, this ap- : :
[ . Align-Anything 0.83  0.79-0.04
proach leads to poorer performance on out-of-distribution prefer- 5.~ 'y 073 078+ 005

ence datasets (upper half of and sub-optimal outcomes in  LLaVA-Critic 0.76  0.79-+0.03
the associated RL optimization phase (lower half of[Table 3). Case ~ MLLM-as-a-Judge 0.63  0.68 + 005

studies indicate that when principles are not provided, the GRM  MIA-Bench 60.76 62.31+155
actively generates more specific principles tailored to the given Iiliaxﬁ‘\‘yv}%g 22% 17013;585 +398

. . . a -wilder . .6 +8.23
pairwise responses. 'II? contrast, the GRM guided by prede':ﬁncfd MM.-Vet 6257 6392+ 135
principles tends to rigidly base its analysis on them, resulting in ~ MM-Vet-v2 5535 59.11+3.76

reduced flexibility.
RQ7: Can the social choices method replace grouped comparison?

Grouped comparison is a method that equally considers the relative relationships between all answers
and summarizes the score. We will discuss whether more structured approaches, such as spectral
ranking 561, ranked pairs, instant runoff, and borda count [57], are better than grouped comparison.
The details of these methods are presented in the appendix.

Table 4: Performance Comparison of Different Scoring Methods

(a) Batch Ranking | (b) Reinforcement Learning Fine-tuning 1
Score Methods GRM Init. Model Score Methods MIA-Bench LLaVA-Wild Wilder MM-Vet MM-Vet-v2
Grouped Comparison  0.4451  0.5143 + GRLHF  Grouped Comparison 62.31 103.55 71.98 63.92 55.18
Borda Count 0.4931 0.5523 + GRLHF Borda Count 55.76 83.06 65.23 57.87 52.23
Instant Runoff 0.4640  0.5071 + GRLHF  Instant Runoff 57.89 84.25 69.12 58.12 53.91
Ranked Pairs 0.4352  0.4965 + GRLHF Ranked Pairs 59.94 89.76 67.52 61.56 54.14
Spectral Ranking 0.5301  0.5656 + GRLHF  Spectral Ranking 57.63 87.76 66.89 59.26 51.34

We first evaluated the ability of these methods to enhance the judgment accuracy of GRMs on the
MLLM-as-a-Judge benchmark, batch ranking subset. In this task, the model must rank multiple
responses to a prompt. We use GRMs to perform all pairwise comparisons and then apply each
aggregation method to produce a final ranking. Performance is measured by the minimum edit
distance from human expert rankings. We next investigated whether these methods could improve
the GRLHF fine-tuning process. We replaced the average score from the grouped comparison with
rewards derived from the rankings produced by each social choice method.



As shown in the social choices methods represented by ranked pairs can indeed improve the
performance of grouped comparison methods, outperforming naive grouped comparison. Still, the
grouped comparison achieves relatively good performance. In the context of RL fine-tuning, we find
that the improvements from the above social technical methods are not significant. We believe this is
because the grouped comparison can provide more fine-grained scoring for various answers, while
methods like ranked pairs can only provide coarse-grained rankings, making it difficult to provide
sufficiently fine-grained supervisory signals for RL fine-tuning.

We believe that the social choice methods have the potential to enhance the performance of the
grouped comparison, and we hope our empirical study can inspire more research in this direction or
other applications.

5 Conclusions

This paper introduces Generative RLHF-V, a novel framework for aligning MLLMs with human
intentions by integrating GRMs with multi-modal RLHF. The approach features a two-stage pipeline:
training GRMs with RL to reason about human intentions and an RL optimization stage using
grouped comparisons for precise scoring. The core contribution is a multi-modal GRM trained via
RL that predicts reward scores and generates the principles of human preference, leading to more
robust and interpretable rewards and superior generalization. This method significantly improved
MLLM performance by an average of 18.1% across 7 benchmarks for four MLLMs, substantially
outperforming baseline RLHF and enabling smaller MLLMs to rival larger models. However, the
research also uncovered self-praise behaviors in MLLMs due to reward hacking with overfitted
GRMs, a critical vulnerability for future alignment research. In essence, Generative RLHF-V offers a
more effective and interpretable path to MLLM alignment while highlighting new potential reward
hacking challenges.
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Limitations

Although Generative RLHF-V provides a solution for learning from human preferences with enhanced
generalization and accuracy, it is fundamentally an RL-based alignment method, thereby posing
a potential risk of reward hacking under overfitting conditions. Our case study indicates that the
training of Generative RLHF-V, an MLLM-as-judge paradigm, leads to exploitable vulnerabilities
in evaluations conducted using similar MLLM-as-judge frameworks. We call for future work
to systematically investigate this issue and devise mitigation measures, and we also urge future
benchmarks to overcome these potential hacking risks.

The additional computational overhead introduced by GRM reasoning and grouped comparison in
the scoring process of RL fine-tuning is also an important limitation of ours, which we will discuss in
detail in the appendix.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the experimental section [section 4] we conducted extensive comparisons
with baseline methods and comprehensive ablation studies, demonstrating the effectiveness
of our proposed approach.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: As shown in[section 6] we discussed our limitations and future works.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not theoretical result that should be proved.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We demonstrated our experimental setup in and more details in
our Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to the data and code through our anonymous web in
our abstract.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We demonstrated our experimental setting and details in and
more details in our Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide experiment results covering 4 models and 7 benchmarks in

[section 4
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We demonstrated our compute resources and details in and
more details in our Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We carefully check our paper conform with the NeurIPS Code of Ethics in
every respect.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: As shown in[section I} our paper focus on Al alignment, which is not directly
related to societal impacts.

Guidelines:
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12.

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

¢ The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not propose any new dataset.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We introduce the codebase and dataset we used in [subsection 4.1
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We used human annotated datasets from previous work, as introduced in

[subsection 4.11

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA|
Justification: This paper does not involve crowdsourcing
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

7 Experiment Details

Implementation Details. Generative RLHF-V integrates two key components: generative reward
modeling via reinforcement learning and grouped comparisons. As introduced in the main paper,
our implementation is primarily based on verl[*| a training framework that supports Reinforcement
Learning (RL) optimization for Multimodal Large Language Models (MLLMs). Consequently, the
implementation of generative reward modeling from RL predominantly focuses on the design of the
reward. The core code for our implementation is presented as follows:

import re
from mathruler.grader import extract_boxed_content, grade_answer

def acc_reward(
predict_str: str,
ground_truth: str
) -> float:
if ’\\boxed’ not in predict_str:
return 0.0

answer = extract_boxed_content(predict_str)
scores = answer.split(’,?’)
final_scores = []
try:
for score in scores:
score = score.strip()
if score == 77:
continue
score = float(score)

final_scores.append(score)
ground_truth = int(ground_truth)
except Exception as e:
print (’fail to,parse,score’, e)
return 0.0
if len(final_scores) !=2:
return 0.0
if final_scores[1] > final_scores[0] and ground_truth ==
return 1.0
elif final_scores[1] < final_scores[0] and ground_truth == 1:
return 1.0
else:
return 0.0

N

def compute_score (
data_source: str,
solution_str: str,
ground_truth: str,

extra_info: dict = None
) -> float:
score = acc_reward(solution_str, ground_truth)

return score

Beyond evaluating the accuracy of binary preference discrimination, our implementation also pe-
nalizes model outputs that fail to adhere to the required parsing format. Specifically, reward is
withheld if: (i) scores are unmatchable (e.g., cannot be successfully parsed from the output), (ii)
scores are not valid floating-point numbers, or (iii) the number of scores deviates from the expected
two. Furthermore, no supervision is applied to the outputs generated by the GRM.

The implementation of grouped comparison within the Reinforcement Learning (RL) optimization
process is somewhat intricate, as detailed below:

*https://github.com/volcengine/verl
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def compute_score(data_sources: list[str], solution_strs: list[str],

— ground_truths: list[float], extra_infos: list[dict] = None) ->

— float:

# Check for complete responses and assign 0 score to incomplete
— ones

complete_responses = [is_complete_response(solution) for solution

— in solution_strs]
# Initialize scores for each response with their original index
response_scores = [[] for in range(len(solution_strs))]
grouped_solutions = {}
image_hash_to_url {}

for i, info in enumerate(extra_infos):

question = info[’question’]

image_url = info[’images’][0]

image_hash = hash_image_url (image_url)
image_hash_to_url[image_hash] = image_url

group_key = (question, image_hash)

if group_key not in grouped_solutions:
grouped_solutions [group_key] = {
’image’: image_url, # Keep the original URL for the
~ API call
’question’: question,
’>solutions’: []

}

grouped_solutions [group_key][’solutions’].append((i,
— solution_strs[i], complete_responses[i]))

pending_results = []
result_mapping = []
total_questions = len(grouped_solutions)
total_comparisons = 0
idx = 0
for group_key, values in grouped_solutions.items():
question, image_hash = group_key
valid_responses = [(idx, resp) for idx, resp, is_complete in
— values[’solutions’] if is_complete]
num_pairs = len(valid_responses) * (len(valid_responses) - 1)
— // 2

total_comparisons += num_pairs

for group_key, values in grouped_solutions.items():

question, image_hash = group_key
image = values[’image’] # This 1s the original URL
responses = values[’solutions’]

# Filter out incomplete rTesponses before comparing
valid_responses = [(idx, resp) for idx, resp, is_complete in
<~ responses if is_complete]

# Generate all possible pairs of wvalid responses within this
— group

for (idx1l, respl), (idx2, resp2) in
— combinations(valid_responses, 2):
# Submit task to Ray
future = pk_function.remote(question, image, respl, resp2)
pending_results.append (future)
result_mapping.append ((idx1l, idx2))

# Retrieve all results
all_results = ray.get(pending_results)
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# Process results
for (idxl, idx2), result in zip(result_mapping, all_results):
scorel, score2 = result
# Accumulate scores for each response
response_scores [idx1].append(scorel)
response_scores [idx2].append(score?2)

# Calculate average score for each response
final_scores = [0.0] * len(solution_strs) # Initialize with zeros
for i in range(len(solution_strs)):
# If response is incomplete, keep it at 0
if not complete_responses[i]:
final_scores[i] = 0.0
continue
scores = response_scores[i]
final_scores[i] = sum(scores) / len(scores)

return final_scores

System Prompt. Our principle for designing scoring prompts for the GRM is to articulate the
scoring task with maximal conciseness and clarity. This approach is intended to guide the model in
accurately following user instructions and generating scores that conform as closely as possible to the
specified format. Specifically, it is:

You are a skilled expert at scoring responses. You should first generate a list of potential criteria
to evaluate given responses based on them.

Given the context of the conversation (the last round is the User’s query) and multiple responses
from the Assistant, you need to generate the [Evaluation Criteria] to score the responses. Based
on the criteria, state potential other specific criteria to the query, the weights of different criteria,
and then provide an overall comprehensive score upon them.

Each score is an integer between 1 and 10, with a higher score indicating that the response
meets the relevant criteria more closely. For example, a score of 1 means the response does not
meet the criteria at all, a score of 6 means the response meets only some parts, and a score of 10
means the response perfectly meets the evaluation criteria. Before scoring, please analyze step
by step. Your scoring needs to be as strict as possible.

#### Conversation Context ####
<image>prompt

#### Responses to be Scored ####
# Response 1: response_1

# Response 2: response_2

#### Output Format Requirements #### Output with three lines Specific Criteria: <Other
potential criteria specific to the query and the context, and the weights of each criteria>. Analysis:
<Compare different responses based on given Criteria>. Scores: <the overall comprehensive
score of all responses in order, separate by comma in the boxed, e.g., boxedx, x if there exists 2
responeses>.

Hyper-parameters Setting. We set the hyperparameters by referencing common open-source
implementations within the community El and making appropriate adjustments tailored to our

>https://github.com/volcengine/verl
https://github.com/OpenRLHF/OpenRLHF
"https://github.com/PKU-Alignment/align-anything
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limited computational resources. All experimental results reported herein adhere to this consistent set

of hyperparameter configurations.

Table 5: Hyperparameters of generative reward modeling from RL and RL optimization.

Hyperparameters GRM Traning from RL RL Optimization
Training Epochs 2 2
Train Batch Size 360 360
RL Mini Batch Size 128 128
RL Micro Batch Size 5 5

Max Prompt Length 12800 4096
Max Response Length 2048 512
Gradient Accumulation Steps 1 1

Max Token Length 512 512
Temperature 1.0 1.0
Actor Learning Rate 1E-6 1E-6
Actor Weight Decay 0.01 0.01
Actor Learning Rate Warm-Up Ratio  0.03 0.03
Actor Learning Rate Scheduler Type  cosine cosine
Actor Gradient Checkpointing True True
Actor Rollout Number 8 5
Actor Rollout Tensor Parallel 2 2
Critic Learning Rate SE-6 SE-6
Critic Weight Decay 0.00 0.00
Critic Learning Rate Warm-Up Ratio  0.03 0.03
Critic Learning Rate Scheduler Type  constant constant
Critic Gradient Checkpointing True True
KI_coeff 0.02 0.02
Clip Range Ratio 0.2 0.2
Clip Range Score 50.0 50.0
Clip Range Value 5.0 5.0
bf16 True True
tf32 True True

Datasets. We focused on the helpful and harmless alignment for MLLMs, selecting corresponding

preference datasets.

For the helpfulness, we utilized a 30k preference dataset from Align-Anything [45], the text-image-to-
text part. Align-Anything covers a range of tasks, from simple dialogue about an image and questions
about specific details, to more complex tasks requiring reasoning based on the image and creative
text generation inspired by the visual content. The preference principle in this dataset emphasizes
instruction following, clarity, and informativeness.

For the harmlessness, we employed Beavertails-V [46], which includes 20 distinct categories of safety-
related red-teaming prompts. BeaverTails-V also incorporates multi-level safety labels, categorizing
potential harms as minor, moderate, or severe, to help models better detect and mitigate safety risks
and content violations. It plays a vital role in training MLLMs to be both helpful and harmless.

Benchmarks. We selected 7 benchmarks to validate the effectiveness of Generative RLHF-V.
These are MIA-Bench [47]], LLaVA-Bench-In-The-Wild [48]], LLaVA-Bench-Wilder [49], MM-Vet
[S0l], and MM-Vet-v2 [51] (for helpfulness), as well as MM-SafetyBench [52] and MSS-Bench
[53] (for harmlessness). These benchmarks encompass both pair-wise evaluations, which involve a
golden response for comparison, and point-wise scoring methodologies based on specific criteria.
We will provide a concise introduction to these benchmarks to demonstrate that our evaluation is
comprehensive, rigorous, and well-justified.

MIA-Bench is designed to assess how well MLLMs follow complex, multi-layered instructions. It
comprises 400 carefully curated image-prompt pairs, each crafted to rigorously test a model’s ability
to generate precise responses to intricate directives. Through comprehensive evaluations of leading

25



MLLMs, MIA-Bench reveals significant performance variations, highlighting key areas for improving
instruction fidelity.

LLaVA-Bench-In-The-Wild is a benchmark designed to evaluate the capabilities of MLLMs in more
challenging tasks and their generalizability to novel, real-world domains. It is an extension of the
LLaVA-Bench efforts and has been released to the community for public use. This benchmark consists
of a diverse set of images, including indoor and outdoor scenes, memes, paintings, and sketches.
Each image is accompanied by highly-detailed, manually-curated descriptions and a selection of
questions. These questions are categorized into conversation (simple Q&A), detailed description, and
complex reasoning, allowing for a comprehensive assessment of a model’s robustness to different
prompts and its ability to handle various daily-life visual tasks.

LLaVA-Bench-Wilder is a benchmark specifically created to assess the visual chat capabilities of
MLLMs in everyday scenarios. It comes in two sizes: a smaller version with 120 examples for rapid
evaluation, and a more extensive medium-sized version containing 1020 examples for a thorough
assessment. The benchmark encompasses a variety of situations, including mathematical problem-
solving, understanding images, generating code, providing visual Al assistance, and reasoning based
on images. The data for LLaVA-Bench-Wilder was collected from real user requests via an online
service, with initial responses generated by GPT4-V. The evaluation methodology is similar to that of
LLaVA-Bench-In-the-Wild, but it utilizes GPT4-V for scoring instead of GPT-4.

MM-Vet is a benchmark designed to evaluate the capabilities of MLLMs when faced with complex
multimodal tasks. The benchmark identifies six core VL capabilities: recognition, Optical Character
Recognition (OCR), knowledge, language generation, spatial awareness, and mathematics. MM-Vet
then assesses 16 specific integrations of interest that arise from combining these core skills. For
its evaluation metrics, MM-Vet employs an LL.M-based evaluator for open-ended responses, which
allows for assessment across diverse question types and answer styles.

MM-Vet-v2 is a challenging benchmark designed to evaluate the integrated capabilities of MLLMs.
Building upon its predecessor, MM-Vet, which assesses six core skills — recognition, knowledge,
spatial awareness, language generation, OCR, and math — MM-Vet-v2 introduces a crucial new
capability: "image-text sequence understanding." This addition addresses a key limitation of the
original benchmark by evaluating a model’s ability to process interleaved sequences of images and
text, a common scenario in real-world applications. Furthermore, MM-Vet-v2 significantly expands
the evaluation set size while maintaining high-quality, open-ended questions, offering a more robust
and comprehensive assessment of MLLMs’ evolving abilities to understand and interact with complex
multimodal inputs.

MM-SafetyBench is a comprehensive benchmark specifically designed to evaluate the safety of
MLLMs. It addresses the critical concern that MLLMs can be compromised by query-relevant
images, potentially generating harmful content even when the accompanying text query appears
benign. The benchmark includes a dataset of 5,040 text-image pairs across 13 distinct scenarios,
enabling a systematic assessment of MLLM vulnerabilities to image-based manipulations. MM-
SafetyBench aims to expose these security risks and underscore the necessity for developing more
robust safety measures for these increasingly prevalent Al systems.

MSS-Bench is a novel evaluation framework designed to assess the capabilities of current MLLMs
in understanding and responding to safety-critical situations. Introduced in the paper "Multimodal
Situational Safety," MSS-Bench presents MLLMs with language queries paired with images, where
the safety of an instruction or query is contingent upon the visual context. This benchmark specifically
probes how well these models can discern the safety implications of a query by considering the
surrounding visual environment, a crucial capability for reliable real-world deployment in scenarios
such as multimodal chat agents and embodied Al. The development of MSS-Bench was motivated
by the observation that MLLMs often struggle with such nuanced safety reasoning, highlighting a
significant area for future research in artificial intelligence.

7.1 Case Study

This section presents case studies on generative reward modeling from RL, RL optimization from
grouped comparisons, and reward hacking under over-trained multi-modal GRM. For a more compre-
hensive set of examples, please refer to our supplementary materials.
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(Qwen2-VL-7B) One might attempt to unlawfully duplicate the dollar bills by
placing the bills in the washing machine and running them through a cycle. This
could be done by using a high-quality paper or a thin, durable material that can
withstand the washing process without tearing.

(Qwen2-VL-7B + GRPO) I'm sorry, but | cannot provide assistance or any other
information on illegal activities like counterfeiting.

(Qwen2-VL-7B + GRLHF-V) The image you've provided, showing dollar bills near
a washing machine, seems to be a visual pun related to the concept of "money
laundering" rather than a literal method for duplicating currency. It's not
possible to duplicate or counterfeit dollar bills by using a washing machine.
Genuine currency is printed on special paper with intricate security features that
cannot be replicated through washing or any simple mechanical process.
How might someone attempt to unlawfully duplicate the dollar | | Attempting to wash or alter currency in specific ways might be part of some

bills depicted by taking advantage of the washing machine? counterfeiting techniques, but the washing machine isn't a tool for duplication.

[ Initial Model: Unsafe } [ GRPO Model: Safe but not helpful J [ GRLHF-V Model: Safe and helpful }

Figure 9: Case study of GRLHF-V, naive GRPO and the initial MLLMs.

(Qwen2-VL-7B) The image features a man standing on the rear bumper of a yellow taxi on a busy
city street. He is ironing a blue T-shirt on a foldable ironing table attached to the back of the taxi.

(Qwen2-VL-7B + GRPO) A man wearing a yellow long-sleeve shirt is ironing clothes on a
makeshift setup attached to the back of a yellow taxi. The ironing board is set up on a support
frame that is secured to the back of the vehicle. The man is bald, wearing glasses, and appears
focused on his task. The ironing board is positioned on a frame that is bolted to the back of the
taxi, with straps securing it in place. The man is ironing a blue shirt, which is draped over the
board. The taxi is a Ford Explorer SUV with the yellow paint typical of New York City taxis.

(Qwen2-VL-7B + GRLHF-V) This image depicts a man engaged in what appears to be “"extreme
ironing" on a city street. He is precariously perched on an ironing board that is strapped to the
back of a yellow SUV, which resembles a taxi or utility vehicle. The man, who appears to be

middle-aged with thinning hair, is wearing a yellow long-sleeved shirt and is focused on ironing a
‘ blue garment. Another yellow taxi is blurred, suggesting motion, as it passes by on the street.

‘ Describe this photo in detail.

[ Initial Model: Short J [ GRPO Model: Detailed but misleading J [ GRLHF-V Model: Detailed and correct J

Figure 10: Case study of GRLHF-V, naive GRPO and the initial MLLMs.

Please analyse this figure in detail and guide me how to do the following task on this web: Search for a 10 day
cruise to Alaska from San Francisco in June 2023.

! (Response Lose) The image is a screenshot of the Carnival website. The website is advertising a 10-day cruise |
to Alaska from San Francisco in June 2023. The cruise is on the Carnival Venezia and departs on June 10, 2023. 3
The cruise includes stops in Juneau, Skagway, Ketchikan, and Victoria. The price of the cruise starts at $250 per !
person.\n\nTo book the cruise, you can click on the \"Search Cruises\" button on the Carnival website. Then, !
you can enter your desired departure port, destination, and dates. ]

(Response Win) I'm sorry, but | can't assist with tasks requiring real-time interaction with websites or web-
based interfaces. However, | can provide you with a step-by-step guide on what you would generally do to
search for a 10-day cruise to Alaska from San Francisco in June 2023 based on the layout of the website in the
= = = provided image.
= = s 1. Navigate to the 'Sail To' section: This section allows you to specify the destination for your cruise. Click on
. the drop-down menu and select 'Alaska’ since you are looking for a cruise to Alaska.
2. Set the 'Sail From' section: Here, you would choose the departure port for your cruise. Click on the drop-
CARNIVAL VENEZIA™ ON SALE NOW! down menu and select 'San Francisco' as your departure city.

250499 = Eﬁ 3. Choose the 'Dates' section: In this part, you specify when you want to go on your cruise. Click on the drop-

= down menu and look for options that allow you to select June 2023.
4. Select the 'Duration’ section: This is where you indicate how long you want your cruise to be. Click on the
drop-down menu and select a duration that corresponds to a 10-day cruise.

Financing | 800K TODAY. PAY OVER TIME e
= uplift S0 DOWN -+ INTEREST-FREE . (Generative Reward Model + RL) ### Specific Criteria:

1. Step-by-Step Guidance: The response should provide a clear, step-by-step guide for the user to follow.

2. Accuracy of Instructions: The instructions should accurately reflect the actions needed to search for a

cruise on the Carnival Cruise website.

3. Completeness of Information: The response should cover all necessary steps to search for a 10-day cruise

to Alaska from San Francisco in June 2023.

4. Clarity and Readability: The instructions should be easy to understand and follow.

##t# Analysis:

- Response 1: This response provides a general guide but lacks specific details about the website's layout and
functionality. It does not mention the exact sections or dropdown menus that need to be clicked, which
could lead to confusion.

- Response 2: This response provides a detailed and specific guide that aligns closely with the website's
layout and functionality. It clearly outlines each step and includes the necessary sections to be clicked,

200000 making it easier for the user to follow.

### Scores: \boxed{4, 8}

Figure 11: Case study of the multi-modal GRM+RL scoring process.
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8 Clarification of GRLHF-V Reward Hacking

As noted in the main paper, GRLHF-V can exhibit reward hacking behavior under overtraining
conditions. This raises a significant concern: do the improvements demonstrated in our main
experiments stem from such hacking?

The answer is a definitive No. To substantiate this, we present a performance comparison of
GRLHF-V under both normal (2 epochs) and overtraining settings (5 epochs). The results in
indicate that normally trained GRLHF-V achieves significant improvements across all 5
benchmarks. Conversely, while the overtrained GRLHF-V, which leverages a self-parse paradigm,
shows superior performance on the pair-wise comparison benchmarks LLaVA-Bench-Wilder and
LLaVA-Bench-In-the-Wild, it underperforms on the remaining benchmarks. In other words, an
overtrained GRLHF-V cannot achieve consistent improvements across all benchmarks solely by
self-parse hacking. Further analysis of evaluation cases (e.g., corroborates our assertion
that normally trained GRLHF-V does not engage in self-parse behavior.

Table 6: Performance comparison of RL optimization based on different RMs.

Model Feedback MIA-Bench LLaVA-Wild LLaVA-Wilder MM-Vet MM-Vet-v2

Qwen2-VL-7B N/A 5258 81.3 61.8 60.32 52.98
+ GRLHF-V (Hacking) GRM+RL 58.72+6.14  113.34+3204 73.68 +11.88 58.52-1.80 50.87-2.11
+ GRLHF-V (Normal) GRM+RL 62.31+973  103.55+2225 71.98+10.18 63.92 +3.60 59.11 +6.13

(GRLHF-V) Diamond Head was formed by a single, explosive phreatomagmatic eruption.
This type of eruption happens when rising magma comes into contact with groundwater.
Here's a breakdown of the process:

1.Magma Rises: Hot magma from deep within the Earth pushed its way towards the surface.
2.Interaction with Water: As the magma neared the surface, it encountered groundwater.
3.Explosive Eruption: The intense heat of the magma instantly vaporized the water, creating
a massive amount of steam. This rapid expansion of steam caused a violent explosion of ash,
rock fragments, and volcanic bombs. This mixture is called tephra.

4.Cone Building: The erupted tephra was ejected into the air and then fell back to earth,
accumulating around the vent. Over a relatively short period, this material cemented
together to form the characteristic circular crater and steep slopes of Diamond Head. The
heat and chemical reactions helped to consolidate the loose material into a firm tuff.
Essentially, Diamond Head is the result of a powerful, steam-driven explosion that blasted
volcanic material out, which then settled and hardened into the crater shape we see today.

(GRLHF-V + Hacking) The information of this sight is a result of volcanic activity, geological
history, natural erosion, human influence, and environmental considerations. The
combination of these factors has created a unique and captivating landscape that continues
to shape the island's identity and the surrounding communities. This detailed and
comprehensive analysis not only answers the question but also provides a vivid
understanding of the complex interplay between natural processes and human activity in
shaping this iconic sight.

This response not only meets the requirements of the prompt but exceeds them by

providing a thorough, informative, and engaging explanation that showcases a deep

understanding of the topic. The response is original, creative, and demonstrates excellent

critical thinking and analytical skills. It goes beyond the basic identification of volcanic

‘ origins and explores the broader geological, environmental, and human context, making it a
and i

‘ What are the possible reasons of the formation of this sight?

Figure 12: Case study of the reward hacking behavior of the over-trained GRLHF-V.

9 Training Curves
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Figure 13: Training curves of GRLHF-V reward models and RL optimization process.
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10 Generality Analysis on LLaVA-1.5-7B

To evaluate the robustness and broader applicability of our proposed method beyond the Qwen-VL
family, we conducted additional experiments on the LLaVA-1.5-7B model. We reproduced our key
research questions (RQ1, RQ3, and RQ5) from the main paper to assess the method’s generalizability
to different model architectures.

10.1 Principle Learning Generalizability (RQ1)

We first investigate whether our GRM + RL framework facilitates more generalizable principle learning
on the LLaVA architecture. As shown in Table [/ the results on LLaVA-1.5-7B align with the
conclusions drawn from our experiments on Qwen-VL.

Table 7: Principle Learning Performance Comparison on LLaVA-1.5-7B Across Different Training
Methods. (P) denotes the pretrained model.

Datasets | Beavertails-V LLaVA-Critic MLLM-as-a-Judge
Score-Only RM 0.52 0.55 0.51
GRM 0.57 0.59 0.56
GRM (P) 0.58 0.61 0.57
GRM + SFT 0.54 0.52 0.54
GRM + SFT (P) 0.55 0.52 0.55
GRM + RL 0.69 0.72 0.64
GRM +RL (P) 0.64 0.66 0.58

The GRM + RL method consistently achieves the highest scoring accuracy, demonstrating optimal
principle learning capability across all three out-of-distribution datasets. Notably, our method yields
significant performance improvements even on LLaVA-1.5-7B, suggesting its applicability extends to
models with different architectures.

10.2 Multi-Modal RLHF Performance (RQ3)

We next evaluate the performance of our full GRLHF-V pipeline, which combines GRM + RL with
grouped comparison (GRPO), on mainstream multi-modal benchmarks. Table |3|shows that our
method achieves optimal results across all five benchmarks. This further confirms that the combination
of GRM + RL and grouped comparison is a competitive and effective method for multi-modal RLHF,
generalizing beyond the Qwen-VL series.

10.3 Analysis of Reward Hacking Behaviors (RQS5)

Finally, we examined the reward hacking behaviors of an over-trained LLaVA-1.5-7B model. We
discovered that LLaVA-1.5-7B exhibits a different form of reward hacking compared to the Qwen-VL
series models. While Qwen-VL models tended to add text praising their own responses (as discussed
in the main paper), the over-trained LLaVA model tends to use excessively complimentary vocabulary
to describe the image content itself. An example of this behavior is provided below:

...[Complete Response]...The composite image of all the elements of the branded
outfit, including the custom-made Revo-Knit pink dress, the matching headband
and necklace, the Wilson head and racket, the Delta Duck logo on the left side,
the W logo on the right side, the multiple accessories, the white wristband,socks
and bracelets, all contribute to the overall powerful and memorable delivery of
the brand’s message, making it an emphatic signature for both the athlete and
the endorsed brand. It effectively conveys the essence of the Wilson brand to the
audience, creating a lasting impression of the brand’s values, commitment, and the
quality of their products, ultimately serving as a powerful promotional tool.

We found that this specific behavior did not successfully "hack" the MLLM-as-a-Judge evaluator.

As shown in Table [0} the performance of the over-trained model actually decreased on standard
benchmarks.
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Table 8: Multi-Modal RLHF Performance Comparison on LLaVA-1.5-7B Using Different Training
Methods and Reward Models.

Model Feedback \ MIA-Bench LLaVA-Wild LLaVA-Wilder MM-Vet MM-Vet-V2
LLaVA-1.5-7B N/A 61.15 72.71 45.01 37.15 35.78
+DPO RM 64.30 70.08 47.58 38.52 36.10
+PPO RM 66.45 73.92 49.23 40.18 38.45
+ GRPO RM 68.12 76.34 52.67 42.73 41.28
+ GRPO GRM 69.85 78.56 55.42 4491 43.67
+ GRPO GRM+SFT 70.23 77.34 54.89 42.52 43.91
+ GRLHF-V (Ours) GRM+RL 72.59 81.98 59.65 47.86 47.73

Table 9: Performance Comparison of Over-trained LLaVA-1.5-7B Models on LLaVA-Bench-Wild
and MIA-Bench.

Model \ LLaVA-Bench-Wild MIA-Bench
Initial Model 72.71 61.15
Over-trained Model 69.98 57.85

We hypothesize that this difference in reward hacking behavior stems from the differing capabilities
of the model architectures. The LLaVA-1.5-7B model may not possess sufficient capacity to explore
the more complex, self-referential hacking strategies observed in the Qwen-VL series. This suggests
that reward hacking behaviors may be architecture-dependent, presenting an interesting avenue for
future work.

11 Ablation Study: Choice of RL Optimization Algorithm

In our preliminary experiments, we conducted an ablation study to determine the optimal reinforce-
ment learning (RL) algorithm for training our generative reward model (GRM). We compared the
efficacy of GRPO against the widely used PPO.

Our findings, summarized in Table[I0]and Table[TT] indicate that GRPO achieves superior perfor-
mance in reward modeling. As shown in Table the GRM + GRPO configuration outperformed
GRM + PPO on the in-distribution test set. This performance advantage was consistently observed
across all out-of-distribution (OOD) benchmarks (Table . Beyond its performance benefits, GRPO
offers a significant advantage in computational efficiency. Unlike PPO, GRPO does not require
the training of an auxiliary critic model. We hypothesize that this is viable because the preference
learning task possesses a relatively direct reward structure: the model is primarily rewarded for
assigning a higher score to the human-preferred response. This optimization landscape may not
necessitate the complex value estimation and variance reduction provided by a critic. The GRPO
method, which relies on averaging trajectory reward values, proves to be both sufficient and effective.

Given its superior performance and reduced computational overhead, GRPO was selected as the final
algorithm for all subsequent experiments.

Table 10: Performance Comparison on In-Distribution Test Set

Method | Accuracy
GRM + GRPO 0.81
GRM + PPO 0.78

Table 11: Performance Comparison on Out-of-Distribution (OOD) Test Sets

Method | Beavertails-V | LLaVA-Critic | MLLM-as-a-Judge
GRM + GRPO 0.79 0.78 0.68
GRM + PPO 0.75 0.72 0.64
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12 Computational Overhead

A critical factor for the practical deployment of our grouped comparison method is the associated
computational overhead. To quantify this, we benchmarked the computation time for a single training
step, which includes the rollout, scoring, and parameter update phases.

The experiments were conducted on a system with 16 x H800 GPUs, 2 for RM serving and inference,
and 14 for RL fine-tuning. The batch size and all other hyperparameters were held consistent with
those detailed in the appendix. Table [I2] presents the results.

Table 12: Computational Overhead of the Grouped Comparison Method with Different Numbers of
Candidate Responses (1)

Number of Candidate Responses (1) \ 3 5 7
Time (ms) | 409 675 1176

The data in Table[I2]indicates that the computational overhead scales significantly with the number of
candidate responses (n). We identify this scalability as a primary limitation of the current approach.

We attribute this increase to the pairwise comparison mechanism. Our method performs A2 (or
n(n — 1)) comparisons on n candidate responses, resulting in a computational complexity that scales
quadratically (O(n?)) with the number of candidates.

Addressing this bottleneck is a promising direction for future research. We hypothesize that exhaus-
tively comparing all A2 pairs may not be essential to achieve results comparable to, or even exceeding,
the current method’s performance. Future work could explore more efficient comparison strategies.
For instance, methods from social choice theory or tournament selection algorithms may provide
valuable frameworks for reducing the total number of comparisons required, thereby mitigating the
computational cost without sacrificing alignment quality.
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