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Abstract
Trilevel learning (TLL) with zeroth order con-
straints is a fundamental problem in machine
learning, arising in scenarios where gradient in-
formation is inaccessible due to data privacy or
model opacity, such as in federated learning,
healthcare, and financial systems. These prob-
lems are notoriously difficult to solve due to their
inherent complexity and the lack of first order in-
formation. Moreover, in many practical scenarios,
data may be distributed across various nodes, ne-
cessitating strategies to address trilevel learning
problems without centralizing data on servers to
uphold data privacy. To this end, an effective dis-
tributed trilevel zeroth order learning framework
DTZO is proposed in this work to address the
trilevel learning problems with level-wise zeroth
order constraints in a distributed manner. The
proposed DTZO is versatile and can be adapted
to a wide range of (grey-box) trilevel learning
problems with partial zeroth order constraints. In
DTZO, the cascaded polynomial approximation
can be constructed without relying on gradients or
sub-gradients, leveraging a novel cut, i.e., zeroth
order cut. Furthermore, we theoretically carry
out the non-asymptotic convergence rate analy-
sis for the proposed DTZO in achieving the ϵ-
stationary point. Extensive experiments have been
conducted to demonstrate and validate the supe-
rior performance of the proposed DTZO.

1. Introduction
Trilevel learning (TLL), also known as trilevel optimization,
pertains to nested optimization problems involving three
levels of optimization, thus exhibiting a trilevel hierarchical
structure. Trilevel learning has been widely used in many
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machine learning applications, such as robust hyperparame-
ter optimization (Sato et al., 2021; Giovannelli et al., 2025),
domain adaptation (Choe et al., 2023), machine translation
(He et al., 2024), robust neural architecture search (Guo
et al., 2020; Jiao et al., 2024), and so on. The general form
of a trilevel learning problem can be expressed as,

min f1(x1,x2,x3)

s.t. x2 = argmin
x2

′
f2(x1,x2

′,x3)

s.t. x3 = argmin
x3

′
f3(x1,x2

′,x3
′)

var. x1,x2,x3,

(1)

where f1, f2, f3 denote the first, second, and third level ob-
jectives, and x1 ∈ Rd1 ,x2 ∈Rd2 ,x3 ∈ Rd3 are variables.
Existing trilevel learning approaches focus on scenarios
where TLL problems can be addressed with first order infor-
mation available at each level. However, situations where
first order information is unavailable (i.e., ∇f1, ∇f2, ∇f3
are non-available), such as when black-box models are em-
ployed, remain under-explored. Additionally, in trilevel
learning applications, data may be distributed across various
nodes, necessitating strategies to address trilevel learning
problems without centralizing data on servers in order to
uphold data privacy (Jiao et al., 2024).

Complexity of Addressing TLL with Zeroth Order Con-
straints: The complexity involved in solving problems char-
acterized by hierarchical structures with three levels is signif-
icantly greater than that of bilevel learning problems (Blair,
1992; Avraamidou, 2018). It is worth mentioning that even
finding a feasible solution in TLL problem is NP-hard since
it necessitates addressing the inner bilevel learning problem,
which is NP-hard (Ben-Ayed & Blair, 1990; Sinha et al.,
2017). Existing approaches are not applicable for address-
ing TLL with zeroth order constraints, as they either rely on
the first order information to solve the TLL problems (Jiao
et al., 2024; Sato et al., 2021) or focus on single-level and
bilevel zeroth order learning problems (Fang et al., 2022;
Qiu et al., 2023).

To this end, an effective Distributed Trilevel Zeroth Order
learning (DTZO) framework is proposed in this work.
Specifically, we first introduce the cascaded zeroth order
polynomial approximation for the trilevel learning problems,
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Method Bilevel (FO) Bilevel (ZO) Trilevel (FO) Trilevel (ZO)
FEDNEST (Tarzanagh et al., 2022) O(1/ϵ2) - - -
ADBO (Jiao et al., 2023) O(1/ϵ2) - - -
MDBO (Gao et al., 2023) O(1/ϵ2) - - -
FedBiOAcc (Li et al., 2023) O(1/ϵ1.5) - - -
MemFBO (Yang et al., 2025) O(1/ϵ1.5) - - -
FedRZObl (Qiu et al., 2023) - O(1/ϵ2) - -
AFTO (Jiao et al., 2024) - - O(1/ϵ2) -
The proposed DTZO - - - O(1/ϵ2)

Table 1. Comparison of non-asymptotic convergence rates for distributed nested optimization methods under first order (FO) and zeroth
order (ZO) scenarios. This work is the first to provide the theoretical guarantees for trilevel zeroth order optimization.

which consists of the inner layer and outer layer polynomial
approximation. Next, how to generate the novel zeroth order
cuts without using gradients or sub-gradients to gradually
refine the cascaded polynomial approximation is discussed.
Zeroth order cut is a type of cutting plane that does not
rely on first order information during generation. Finally,
the distributed zeroth order algorithm is developed to ad-
dress trilevel zeroth order learning problems (i.e., TLL with
level-wise zeroth order constraints) in a distributed manner.
Additionally, a novel concept of soft constraint is intro-
duced in this work to explain why the lower-level problem
in bilevel and trilevel optimization can be approximated or
relaxed to some extent. Theoretically, we demonstrate that
the proposed zeroth order cuts can construct a polynomial
relaxation for TLL problems, and this relaxation will be
gradually tightened with zeroth order cuts added. Addition-
ally, we also analyze the non-asymptotic convergence rate,
i.e., iteration and communication complexities, for the pro-
posed DTZO to achieve the ϵ-stationary point. It is worth
highlighting that this is the first work to address the trilevel
zeroth order optimization problems while establishing the-
oretical guarantees for the proposed algorithm. Table 1
presents a comparison of the non-asymptotic convergence
results between the proposed DTZO and state-of-the-art
methods. Our contributions can be summarized as follows.
1. Different from the existing works on single-level and
bilevel zeroth order learning, this work takes an initial step
towards addressing trilevel zeroth order learning. To the
best of our knowledge, this is the first work to address the
trilevel zeroth order learning problems.
2. An effective framework DTZO with novel zeroth order
cuts is proposed for tackling trilevel zeroth order learning
problems in a distributed manner. Different from the exist-
ing methods, the proposed DTZO is capable of constructing
the cascaded zeroth order polynomial approximation with-
out using gradients or sub-gradients.
3. Extensive experiments on black-box large language mod-
els (LLMs) trilevel learning and robust hyperparameter op-
timization substantiate the superior performance of the pro-

posed DTZO.

2. Related Work
2.1. Distributed Zeroth Order Optimization

Zeroth order optimization is widely-used for addressing ma-
chine learning problems where obtaining explicit gradient
expressions is challenging or impractical (Liu et al., 2018c;
Chen et al., 2019; Wang et al., 2018b; Héliou et al., 2021;
Cai et al., 2021; Gao & Huang, 2020; Yue et al., 2023; Li
et al., 2022; Ren et al., 2023; Nikolakakis et al., 2022; Tu
et al., 2019; Rando et al., 2024). In practical applications
of zeroth order optimization, data may be distributed across
different nodes. To address zeroth order optimization prob-
lems in a distributed manner, the distributed zeroth order
optimization methods have recently garnered significant at-
tention, e.g., Lian et al. (2016); Tang et al. (2020); Fang et al.
(2022); Chen et al. (2024a); Akhavan et al. (2021); Sahu et al.
(2018); Shu et al. (2023). Furthermore, to tackle the bilevel
zeroth order optimization problems in a distributed man-
ner, the federated bilevel zeroth order optimization method
FedRZObl (Qiu et al., 2023) has been proposed. However,
how to address the higher-nested zeroth order optimization
problems, e.g., trilevel, in a distributed manner remains
under-explored. To the best of our knowledge, this is the
first work that considers how to address the trilevel zeroth
order optimization problems.

2.2. Trilevel Learning

Trilevel learning has found applications in various fields
within machine learning. A robust neural architecture search
(NAS) approach that integrates adversarial learning with
NAS is introduced in Guo et al. (2020). The robust NAS
can be viewed as a trilevel learning problem, as discussed
in Jiao et al. (2024). A trilevel learning problem compris-
ing two levels pretraining, fine-tuning and hyperparameter
optimization, is explored in Raghu et al. (2021). In Garg
et al. (2022), the trilevel learning problem, which involves
data reweighting, architecture search, and model training, is
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investigated. In Sato et al. (2021), the robust hyperparam-
eter optimization is framed as a trilevel learning problem,
and a hypergradient-based method is proposed to address
such problems. In Choe et al. (2023), a general automatic
differentiation technique is proposed, which can be applied
to trilevel learning problems. Additionally, a cutting plane
based distributed algorithm is proposed in Jiao et al. (2024)
for trilevel learning problems. Nevertheless, existing meth-
ods predominantly rely on first order information to solve
trilevel learning problems. This is the first framework
that can be used to solve trilevel learning problems without
relying on first order information.

2.3. Cutting Plane Method

Cutting plane methods are widely used in convex optimiza-
tion (Bertsekas, 2015; Franc et al., 2011), robust optimiza-
tion (Yang et al., 2014; Bürger et al., 2013), and so on.
Recently, there has been notable interest in leveraging cut-
ting plane methods to tackle distributed nested optimization
problems. It is shown in Jiao et al. (2023) that the nested
optimization problem can be transformed into a decompos-
able optimization problem by utilizing cutting plane method,
which significantly facilitates the design of distributed al-
gorithms for nested optimization. In Jiao et al. (2023), the
cutting plane method is employed to tackle bilevel opti-
mization problems in a distributed manner. Similarly, Chen
et al. (2024d) utilizes the cutting plane method to address
distributed bilevel optimization problems within downlink
multi-cell systems. Furthermore, Jiao et al. (2024) applies
the cutting plane method to solve distributed trilevel op-
timization problems. However, the existing cutting plane
methods for nested optimization rely on the gradients or sub-
gradients to generate cutting planes, which is not available in
zeroth order optimization. In this work, the proposed DTZO
is capable of generating zeroth order cuts for nested opti-
mization problems without using gradients or sub-gradients.
Discussions about the novelty of the proposed zeroth order
cuts are shown in Appendix J.1 and Table 7.

3. Distributed Trilevel Zeroth Order Learning
In the practical applications of trilevel zeroth order learning,
data may be distributed across multiple nodes (Jiao et al.,
2024). Aggregating data on central servers may pose signifi-
cant privacy risks (Subramanya & Riggio, 2021). Therefore,
it is crucial to develop an effective framework to address
trilevel zeroth order learning problems in a distributed man-
ner. The distributed trilevel zeroth order learning problem
can be expressed as,

min
∑N

j=1 f1,j(x1,x2,x3)

s.t. x2 = argmin
x2

′

∑N
j=1 f2,j(x1,x2

′,x3)

s.t. x3 = argmin
x3

′

∑N
j=1 f3,j(x1,x2

′,x3
′)

var. x1,x2,x3,

(2)

where f1,j , f2,j , f3,j respectively denote the first, second,
and third level objectives in jth worker, x1 ∈ Rd1 ,x2 ∈
Rd2 ,x3 ∈ Rd3 are variables. The first order information
of functions f1,j , f2,j , f3,j , i.e., ∇f1,j ,∇f2,j ,∇f3,j , is not
available in Eq. (2), corresponding to the level-wise ze-
roth order constraints. To facilitate the development of
distributed algorithms in parameter-server architecture (Jiao
et al., 2023; Assran et al., 2020), the distributed TLL with
zeroth order constraints in Eq. (2) is equivalently reformu-
lated as a consensus trilevel zeroth order learning problem
as follows.

min
∑N

j=1 f1,j(x1,j ,x2,j ,x3,j)

s.t. x1,j = z1,∀j = 1, · · · , N
{x2,j}, z2 = argmin

{x2,j
′},z2

′

∑N
j=1 f2,j(z1,x2,j

′,x3,j)

s.t. x2,j
′ = z2

′,∀j = 1, · · · , N
{x3,j}, z3= argmin

{x3,j
′},z3

′

∑N
j=1f3,j(z1, z2

′,x3,j
′)

s.t. x3,j
′ = z3

′,∀j = 1, · · · , N
var. {x1,j}, {x2,j}, {x3,j}, z1, z2, z3,

(3)
where x1,j ∈Rd1 ,x2,j ∈Rd2 ,x3,j ∈Rd3 denote the local
variables in jth worker, z1 ∈ Rd1 , z2 ∈ Rd2 , z3 ∈ Rd3

denote the consensus variables in the master, N denotes the
number of workers.

Overview of the proposed framework. In Sec. 3.1, the
construction of cascaded zeroth order polynomial approx-
imation for the trilevel zeroth order learning problem is
proposed, which consists of the inner layer and outer layer
polynomial approximation. Then, how to gradually update
zeroth order cuts to refine the cascaded polynomial approx-
imation is discussed in Sec. 3.2. Finally, a distributed
zeroth order algorithm is developed to effectively address
the trilevel zeroth order learning problem in a distributed
manner in Sec. 3.3.

In addition, this work takes an initial step toward introducing
the novel concept of soft constraints in bilevel and trilevel
optimization, as discussed in Section 3.1.1. To improve the
readability of this work, The notations used in this work and
their corresponding definitions are summarized in Table 3.

3.1. Cascaded Zeroth Order Polynomial Approximation
In this section, how to construct the cascaded zeroth order
polynomial approximation for trilevel zeroth order learning
is introduced. The proposed cascaded zeroth order polyno-
mial approximation consists of two key parts: 1) the inner
layer polynomial approximation and 2) the outer layer poly-
nomial approximation, which will be discussed below.

3.1.1. INNER LAYER POLYNOMIAL APPROXIMATION

In trilevel learning, the third level optimization prob-
lem can be viewed as the constraint to the sec-
ond level optimization problem (Jiao et al., 2024;
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Pan et al., 2024; Kwon et al., 2023; Jiang et al.,
2023), it equals the constraint ϕin({x3,j}, z1, z2

′, z3) =

0, where ϕin({x3,j}, z1, z2
′, z3) = ||

[
{x3,j}
z3

]
−

argmin
{x3,j

′},z3
′

∑
j f3,j(z1, z2

′,x3,j
′) s.t.x3,j

′ = z3
′,∀j||2. In

many bilevel and trilevel machine learning applications, e.g.,
neural architecture search in Liu et al. (2018a), robust hyper-
parameter optimization in Jiao et al. (2024), the lower-level
optimization problem serves as a soft constraint (Kautz
et al., 1996) to the upper-level optimization problem, i.e.,
this constraint (constraint ϕin({x3,j}, z1, z2

′, z3) = 0 in
our problem) can be violated to a certain extent while still
yielding a feasible and meaningful solution. Inspired by
Jiao et al. (2023); Chen et al. (2024d), the cutting plane
based method is utilized to construct a decomposable poly-
nomial relaxation for this constraint, which significantly fa-
cilitates the development of distributed algorithms. Specifi-
cally, the inner layer zeroth order cuts are utilized to ap-
proximate the feasible region with respect to constraint
ϕin({x3,j}, z1, z2

′, z3) = 0. Zeroth order cuts refer to
the cutting planes that do not rely on first order information
during generation. In this section, we focus on the con-
struction of cascaded polynomial approximation, and how
to generate the zeroth order cuts is discussed in detail in the
next section 3.2. Consequently, the feasible region formed
by inner layer zeroth order cuts in tth iteration is,

P t
in={

∑
ja

in
j,l

⊤
x2
3,j+binj,l

⊤
x3,j+

∑
i∈{1,3}c

in
i,l

⊤
z2
i

+din
i,l

⊤
zi+cin2,l

⊤
z2
2
′
+din

2,l

⊤
z2

′+einl ≤εin,∀l},
(4)

where x2
i,j = [x2

i,j,1, · · · , x2
i,j,di

] ∈ Rdi , z2
i =

[z2i,1, · · · , z2i,di
] ∈ Rdi , i = 1, 2, 3, ain

j,l ∈ Rd3 , binj,l ∈ Rd3 ,
cini,l∈Rdi , din

i,l∈Rdi , and einl ∈R1 are the parameters of lth

inner layer zeroth order cut, εin ≥ 0 is a constant. By using
the inner layer polynomial approximation according to Eq.
(4), the resulting problem can be written as,

min
∑N

j=1 f1,j(x1,j ,x2,j ,x3,j)

s.t. x1,j = z1,∀j = 1, · · · , N
{x2,j}, z2 = argmin

{x2,j
′},z2

′

∑N
j=1 f2,j(z1,x2,j

′,x3,j)

s.t. x2,j
′ = z2

′,∀j = 1, · · · , N
({x3,j}, z1, z2

′, z3) ∈ P t
in

var. {x1,j}, {x2,j}, {x3,j}, z1, z2, z3.
(5)

Soft Constraint. In bilevel and trilevel optimization, the
lower-level problem is typically treated as a constraint for
the upper-level problem (Liu et al., 2022; Jiao et al., 2025;
Kwon et al., 2024). In this work, we provide a novel in-
sight into this constraint, i.e., it is indeed a soft constraint in
many bilevel and trilevel optimization applications. A soft
constraint refers to a constraint that can be partially violated
without rendering the optimization problem meaningless

(Kautz et al., 1996; Régin, 2011; Wilson et al., 2022). This
offers a new perspective on why the lower-level problem
can be approximated or relaxed to some extent in bilevel
and trilevel optimization (Jiao et al., 2023). For example, in
bilevel neural architecture search (Liu et al., 2018a), rather
than computing the optimal solution for the lower-level opti-
mization problem, the results obtained after a single gradient
descent step can be used as an approximation at each itera-
tion. Similarly, in bilevel meta-learning (Finn et al., 2017),
the results obtained after multiple gradient descent steps can
serve as an estimated optimal solution for the lower-level
problem. In bilevel adversarial learning (Madry et al., 2018),
which is a min-max optimization problem, the results af-
ter several projected gradient descent steps are used as the
approximation of the optimal solution for the lower-level
problem. Moreover, in trilevel learning, AFTO (Jiao et al.,
2024) uses the results after K communication rounds to
replace the optimal solution to the lower-level optimization
problem in federated trilevel optimization problems. To our
best knowledge, this is the first work to introduce the concept
of soft constraints into bilevel and trilevel optimization.

3.1.2. OUTER LAYER POLYNOMIAL APPROXIMATION

Likewise, the lower-level optimization problem in Eq. (5)
can be regarded as the constraint to the upper-level op-
timization problem. Defining hin

l ({x3,j}, z1, z2
′, z3) =∑

ja
in
j,l

⊤
x2
3,j+binj,l

⊤
x3,j +

∑
i∈{1,3}c

in
i,l

⊤
z2
i + din

i,l

⊤
zi +

cin2,l
⊤
z2
2
′
+ din

2,l

⊤
z2

′ + einl . This constraint equals
ϕout({x2,j}, {x3,j}, z1, z2, z3) = 0, where

ϕout({x2,j}, {x3,j}, z1, z2, z3)

= ||
[

{x2,j}
z2

]
−

argmin
{x2,j

′},z2
′

∑
j f2,j(z1,x2,j

′,x3,j)

s.t.x2,j
′=z2

′,∀j,
hin
l ({x3,j}, z1, z2

′, z3)≤εin,∀l

||2.

(6)
The constraint ϕout({x2,j}, {x3,j}, z1, z2, z3) = 0 also
serves as a soft constraint to the upper-level opti-
mization problem. Outer layer zeroth order cuts
are utilized to construct the polynomial approximation
for the feasible region with respect to the constraint
ϕout({x2,j}, {x3,j}, z1, z2, z3) = 0, that is,

P t
out=

{
hout
l ({x2,j},{x3,j},z1, z2, z3)≤εout,∀l

}
, (7)

where hout
l ({x2,j},{x3,j},z1, z2, z3) =∑3

i=2

∑N
j=1a

out
i,j,l

⊤
x2
i,j + bouti,j,l

⊤
xi,j +

∑3
i=1c

out
i,l

⊤
z2
i +

dout
i,l

⊤
zi + eoutl , and εout ≥ 0 is a pre-set constant. Based

on Eq. (7), the resulting cascaded zeroth order polynomial
approximation problem can be written as,

min
∑N

j=1 f1,j(x1,j ,x2,j ,x3,j)

s.t. x1,j = z1,∀j = 1, · · · , N
({x2,j}, {x3,j}, z1, z2, z3) ∈ P t

out

var. {x1,j}, {x2,j}, {x3,j}, z1, z2, z3,

(8)
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where aout
i,j,l∈Rdi , bouti,j,l∈Rdi , couti,l ∈Rdi , dout

i,l ∈Rdi , and
eoutl ∈R1 are parameters of lth outer layer zeroth order cut.

3.2. Refining the Cascaded Polynomial Approximation
For every T iteration, the zeroth order cuts will be updated
to refine the proposed cascaded polynomial approximation
when t < T1. Different from the existing cutting plane meth-
ods for nested optimization, the proposed zeroth order cuts
can be generated without using gradients or sub-gradients,
which is why we refer to them as zeroth order cuts. Specifi-
cally, in tth iteration, the zeroth order cuts will be updated
by three key steps: 1) generating inner layer zeroth order cut;
2) generating outer layer zeroth order cut; 3) removing inac-
tive zeroth order cuts, which will be discussed as follows.
In addition, we demonstrate the proposed zeroth order cuts
can construct a relaxation for the original feasible regions
in Proposition 3.1 and 3.2. To our best knowledge, this is
the first work that considers how to generate cutting planes
without using first order information in nested optimization,
more discussions about the novelty of the proposed zeroth
order cuts are presented in Appendix J.1 and Table 7.

3.2.1. GENERATING INNER LAYER ZEROTH ORDER CUT

At tth iteration, based on point ({xt
3,j}, zt

1, z
t
2
′
, zt

3), the
new inner layer zeroth order cut will be generated to refine
the inner layer polynomial approximation in Eq. (4), as
follows.

Gin
µ ({xt

3,j},zt
1, z

t
2
′
, zt

3)
⊤




{x3,j}
z1

z2
′

z3

−


{xt
3,j}

zt
1

zt
2
′

zt
3




+ϕin({xt
3,j},zt

1, z
t
2
′
, zt

3)

≤ L+1
2 (

∑
j ||x3,j−xt

3,j ||2+||z1−zt
1||2+||z2

′−zt
2
′||2

+||z3−zt
3||2)+

µ2L2

8 din+εin,
(9)

where din = (d1+d2+(N+1)d3+3)3 and

Gin
µ ({xt

3,j}, zt
1, z

t
2
′
, zt

3)

=
ϕin({xt

3,j+µµx3,j
},zt

1+µµz1
,zt

2
′
+µµz2

,zt
3+µµz3

)

µ µin

−ϕin({xt
3,j},z

t
1,z

t
2
′
,zt

3)

µ µin,

(10)
where µin = [{µx3,j

},µz1 ,µz2 ,µz3 ] is a standard Gaus-
sian random vector, L > 0 is a constant, and µ > 0
is the smoothing parameter (Kornowski & Shamir, 2024;
Ghadimi & Lan, 2013). Then, the new generated ze-
roth order cut cpnewin will be added into P t

in, i.e., P t
in =

Add(P t−1
in , cpnewin ).

Proposition 3.1. The original feasible region of constraint
ϕin({x3,j}, z1, z2

′, z3) = 0 is a subset of the feasi-
ble region formed by inner layer zeroth order cuts, i.e.,
P t
in =

{
hin
l ({x3,j}, z1, z2

′, z3) ≤ εin,∀l
}

when ϕin has

L-Lipschitz continuous gradient. The proof is provided in
Appendix C.

3.2.2. GENERATING OUTER LAYER ZEROTH ORDER
CUT

At tth iteration, according to point
({xt

2,j}, {xt
3,j}, zt

1, z
t
2, z

t
3), the new outer layer ze-

roth order cut will be generated to refine the outer layer
polynomial approximation in Eq. (7) as follows.

Gout
µ ({xt

i,j}, {zt
i})⊤




{x2,j}
{x3,j}
z1

z2

z3

−

{xt

2,j}
{xt

3,j}
zt
1

zt
2

zt
3




+ϕout({xt

2,j},{xt
3,j},zt

1, z
t
2, z

t
3)

≤ L+1
2

(∑3
i=2

∑
j ||xi,j−xt

i,j ||2+
∑

i||zi−zt
i||2

)
+µ2L2

8 (d1+(N+1)(d2+d3)+3)3+εout.
(11)

In Eq. (11), we have that

Gout
µ ({xt

i,j}, {zt
i}) =

(
ϕout({xt

2,j+µµx2,j
},{xt

3,j+µµx3,j
},zt

1+µµz1
,zt

2+µµz2
,zt

3+µµz3
)

µ

−ϕout({xt
2,j},{x

t
3,j},z

t
1,z

t
2,z

t
3)

µ )µout,

(12)
where µout = [{µx2,j

}, {µx3,j
},µz1 ,µz2 ,µz3 ] is a stan-

dard Gaussian random vector. Subsequently, the new gen-
erated outer layer zeroth order cut cpnewout will be added into
P t
out, i.e., P t

out = Add(P t−1
out , cp

new
out ).

Proposition 3.2. The original feasible region of constraint
ϕout({x2,j}, {x3,j}, z1, z2, z3) = 0 is a subset of the
feasible region formed by outer layer zeroth order cuts,

i.e., P t
out={

3∑
i=2

N∑
j=1

aout
i,j,l

⊤
x2
i,j+bouti,j,l

⊤
xi,j+

3∑
i=1

couti,l
⊤
z2
i +

dout
i,l

⊤
zi+eoutl ≤εout,∀l} when ϕout has L-Lipschitz con-

tinuous gradient. Proofs are provided in Appendix C.

3.2.3. REMOVING INACTIVE ZEROTH ORDER CUTS

To improve the effectiveness and reduce the complexity
(Yang et al., 2014; Jiao et al., 2023), the inactive zeroth
order cuts will be removed during the iteration process. The
corresponding inner layer P t

in and outer layer P t
out will be

updated as follows.

P t
in=

{
Remove(P t

in, cpin,l), if h
in
l (t)<εin,∀l

P t
in, otherwise

, (13)

P t
out=

{
Remove(P t

out, cpout,l), if h
out
l (t)<εout,∀l

P t
out, otherwise

,

(14)
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where Remove(P t
in, cpin,l) and Remove(P t

out, cpout,l) re-
spectively represent that the lth inner layer and outer
layer zeroth order cuts will be removed from P t

in and
P t
out, hin

l (t) = hin
l ({xt

3,j}, zt
1, z

t
2
′
, zt

3), and hout
l (t) =

hout
l ({xt

2,j},{xt
3,j},zt

1, z
t
2, z

t
3).

3.3. Zeroth Order Distributed Algorithm
In this section, a distributed zeroth order algorithm is
proposed. First, defining function o({xi,j}, {zi}) =∑

lλl[max{hout
l ({x2,j}, {x3,j}, z1, z2, z3) − εout, 0}]2,

where λl > 0 is a penalty parameter. The constrained opti-
mization problem described in Eq. (8) is reformulated as an
unconstrained optimization problem by using the exterior
penalty method (Shen & Chen, 2023; Nazari et al., 2025;
Kwon et al., 2024; Shi & Gu, 2021; Boyd & Vandenberghe,
2004) as follows.

F ({x1,j},{x2,j},{x3,j},z1,z2,z3)

=
∑N

j=1f1,j(x1,j ,x2,j ,x3,j) + ϕj ||x1,j−z1||2

+o({xi,j}, {zi}),
(15)

where ϕj>0 is a penalty parameter. It is worth noting that
the proposed DTZO is an expandable framework, allowing
the incorporation of approaches beyond exterior penalty
method, e.g., gradient projection based approaches (Xu
et al., 2020) and Frank-Wolfe based methods (Shen et al.,
2019). We chose the exterior penalty method because the
lower-level problem often serves as a soft constraint (as dis-
cussed in Sec. 3.1) and using exterior penalty method offers
comparatively lower complexity. In addition, we theoreti-
cally demonstrate that the optimal solution to the problem
in Eq. (15) is a feasible solution to the original constrained
problem; 2) the gap between the problem in Eq. (15) and
original constrained problem will continuously decrease as
λl, ϕj increase. Detailed demonstrations and discussions are
provided in Appendix H. In (t+1)th iteration, the proposed
algorithm proceeds as follows.

In Worker j. After receiving the updated parameters zt
i and

∇xi,j
o({xt

i,j}, {zt
i}), worker j updates the local variables

as follows,

xt+1
1,j = xt

1,j − ηx1
Gx1,j

({xt
i,j}, {zt

i}), (16)

xt+1
2,j = xt

2,j − ηx2Gx2,j ({xt
i,j}, {zt

i}), (17)

xt+1
3,j = xt

3,j − ηx3Gx3,j ({xt
i,j}, {zt

i}), (18)

we have that,

Gx1,j ({xt
i,j}, {zt

i})
=

f1,j(x
t
1,j+µuk,1,x

t
2,j ,x

t
3,j)−f1,j(x

t
1,j ,x

t
2,j ,x

t
3,j)

µ uk,1

+2ϕj(x
t
1,j − zt

1),
(19)

Gx2,j ({xt
i,j}, {zt

i})
=

f1,j(x
t
1,j ,x

t
2,j+µuk,2,x

t
3,j)−f1,j(x

t
1,j ,x

t
2,j ,x

t
3,j)

µ uk,2

+∇x2,jo({xt
i,j}, {zt

i}),
(20)

Gx3,j
({xt

i,j}, {zt
i})

=
f1,j(x

t
1,j ,x

t
2,j ,x

t
3,j+µuk,3)−f1,j(x

t
1,j ,x

t
2,j ,x

t
3,j)

µ uk,3

+∇x3,j
o({xt

i,j}, {zt
i}),

(21)

where uk,i∈Rdi ,∀i are standard Gaussian random vectors,
µ > 0 is the smoothing parameter, ηxi

,∀i are step-sizes.
Then, the updated variables xt+1

1,j ,xt+1
2,j ,xt+1

3,j will be trans-
mitted to the master.

In Master. After receiving updated variables from workers,
the master performs the following steps,

1. Updating consensus variables,

zt+1
1 = zt

1−ηz1
(
∑

j
2ϕj(z

t
1−xt

1,j)+∇z1
o({xt

i,j}, {zt
i})),
(22)

zt+1
2 = zt

2 − ηz2
∇z2

o({xt
i,j}, {zt

i}), (23)

zt+1
3 = zt

3 − ηz3
∇z3

o({xt
i,j}, {zt

i}), (24)

where ηz1
, ηz2

and ηz3
are step-sizes.

2. Computing gradient of o({xt+1
i,j }, {zt+1

i }). Broad-
casting the updated parameters zt+1

i , i = 1, 2, 3 and
∇xi,j

o({xt+1
i,j }, {zt+1

i }), i = 2, 3 to workers.

Discussion: Trilevel learning/optimization (TLL) with level-
wise zeroth order constraints is considered in this work,
where first order information at each level is unavailable.
Note that the proposed DTZO is versatile and can be adapted
to a wide range of TLL, e.g., grey-box TLL (gradients at
some levels in TLL are available (Huang et al., 2024b)),
with slight adjustments. For instance, if gradients at first
level in TLL are accessible, we can use gradient descent
steps to replace Eq. (16)-(18). Similarly, if the second or
third level gradients are available, first order based cuts, e.g.,
Jiao et al. (2023; 2024), can be employed to construct the
cascaded polynomial approximation. Detailed discussions
and comparisons are offered in Appendix I. In addition,
the proposed DTZO can also be applied to bilevel zeroth
order optimization by reducing the cascaded polynomial
relaxation to a single-layer polynomial relaxation.

4. Theoretical Analysis
Definition 4.1. (Stationarity Gap) Following Xu et al.
(2020); Jiao et al. (2023), the stationarity gap at tth iteration
in this problem can be expressed as,

Gt=



{∇x1,j
F ({xt

1,j}, {xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3)}

{∇x2,j
F ({xt

1,j}, {xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3)}

{∇x3,jF ({xt
1,j}, {xt

2,j}, {xt
3,j}, zt

1, z
t
2, z

t
3)}

∇z1
F ({xt

1,j}, {xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3)

∇z2
F ({xt

1,j}, {xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3)

∇z3F ({xt
1,j}, {xt

2,j}, {xt
3,j}, zt

1, z
t
2, z

t
3)


.

(25)
It is seen from Eq. (25) that,
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Algorithm 1 DTZO: Distributed Trilevel Zeroth Order
Learning

Initialization: master iteration t = 0, variables
{x0

1,j}, {x0
2,j}, {x0

3,j}, z0
1, z

0
2, z

0
3.

repeat
for local worker j do

updates the local variables xt+1
1,j ,xt+1

2,j ,xt+1
3,j accord-

ing to Eq. (16)-(21);
end for
local workers transmit the updated variables to master;
for master do

updates consensus variables zt+1
1 , zt+1

2 , zt+1
3 ac-

cording to Eq. (22)-(24);
computes ∇o({xt+1

i,j }, {zt+1
i });

end for
master broadcasts the updated parameters and gradi-
ents to workers;
if (t+ 1) mod T == 0 and t < T1 then

new inner layer zeroth order cuts are generated by
Eq. (9) and (10);
new outer layer zeroth order cuts are generated by
Eq. (11) and (12);
inactive zeroth order cuts are deleted by Eq. (13)
and (14);

end if
t = t+ 1;

until termination.

||Gt||2=
∑

i||∇zi
F ({xt

1,j}, {xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3)||2

+
∑

i

∑
j ||∇xi,j

F ({xt
1,j}, {xt

2,j}, {xt
3,j}, zt

1, z
t
2, z

t
3)||2.

(26)

Definition 4.2. (ϵ-Stationary Point)
({xt

1,j}, {xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3) is the stationary

point when ||Gt||2 = 0, and it is the ϵ-stationary point
when ||Gt||2 ≤ ϵ. Defining T (ϵ) as the first iteration when
||Gt||2 ≤ ϵ, i.e., T (ϵ) = min{t| ||Gt||2 ≤ ϵ}.

Definition 4.3. (µ-Smooth Approximation) Following
Ghadimi & Lan (2013); Fang et al. (2022); Kornilov et al.
(2024); Rando et al. (2024), the µ-smooth approximation of
a function F (w) : Rd → R1 is given by,

Fµ(w) = 1

(2π)
d
2

∫
F (w + µu)e−

1
2 ||u||2du

= Eu [F (w + µu)] ,
(27)

where u ∈ Rd is a standard Gaussian random vector and
µ > 0 is the smoothing parameter.

Assumption 4.4. (Boundedness) Following many works
in machine learning and optimization, e.g., Deng et al.
(2020); Jiao et al. (2023); Qian et al. (2019); Lei & Tang
(2018); Zheng et al. (2017); Duchi et al. (2012); Yang et al.
(2024b); Khaled & Jin (2024); Chen et al. (2024b); Hazan
& Minasyan (2020), the bounded domain is assumed, i.e.,

||xi,j − x∗
i,j ||2 ≤ αi,∀xi,j , ||zi − z∗

i ||2 ≤ αi,∀zi, where
x∗
i,j , z

∗
i denote the optimal solution. Following Cutkosky &

Orabona (2019); Liu et al. (2021a); Fang et al. (2022); Sha-
ban et al. (2019), we assume the optimal value Fµ

∗ > −∞.

Assumption 4.5. (L-smoothness) Following many work in
nested optimization and zeroth order learning, e.g., Lin et al.
(2024); Ghadimi & Lan (2013), we assume the gradient of
function F is Lipschitz continuous with constant L < ∞,
that is, for any point w,w′, we have that,

||∇F (w)−∇F (w′)|| ≤ L||w −w′||. (28)

It is worth noting that Assumptions 4.4 and 4.5 are mild
and commonly used in machine learning and optimization.
Detailed discussions are provided in Appendix G.

Theorem 4.6. (Iteration Complexity) Under Assump-
tion 4.4 and 4.5, by setting step-sizes ηxi

= ηzi
=

min

{
1

8L(d1+4) ,
1

8L(d2+4) ,
1

8L(d3+4) ,
3

2(L+1) ,
1√

T (ϵ)−T1

}
,

i = 1, 2, 3 and letting smoothing parameter
0 < µ ≤ 1√

T (ϵ)−T1

, we have that,

T (ϵ) ∼

O
(
(

3∑
i=1

ci+d(max
t∈[T1]

Fµ({xt
i,j}, {zt

i})−Fµ
∗))2 1

ϵ2 +T1

)
,

(29)
where constants d = 4(1 +

max{8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4), 2(L+1)
3 })

and ci = L2(di+6)3

4(di+4) + L2(di+3)
3

+ 4L(N +

1)di(max{8L(d1+4), 8L(d2+4), 8L(d3+4), 2(L+1)
3 }+1).

T1 > 0 is a constant that controls the cascaded polynomial
approximation, as discussed in Sec. 3.2. Detailed proofs
of Theorem 4.6 are provided in Appendix A, with further
discussions offered below.

Theorem 4.7. (Communication Complexity) The overall
communication complexity of the proposed DTZO can be
divided into the communication complexity at every iteration
(C1) and the communication complexity of updating zeroth
order cuts (C2). Specifically, the overall communication
complexity can be expressed as C1 + C2 = T (ϵ)(2d1 +
3d2 + 3d3)N + 2N⌊T1

T ⌋T (d2 + d3). The detailed proofs
are provided in Appendix B, with discussions offered below.

Discussion: It is seen from Theorem 4.6 and 4.7 that the
proposed framework DTZO can flexibly control the trade-off
between the performance of cascaded polynomial approxi-
mation and the iteration complexity (i.e., T (ϵ) in Theorem
4.6) and communication complexity (i.e., C1 + C2 in Theo-
rem 4.7) by adjusting a single parameter T1. Specifically, a
larger T1 corresponds to a better cascaded polynomial ap-
proximation, but it also entails higher iteration and commu-
nication complexity. Consequently, if the distributed system
has limited computational and communication capabilities,
a smaller value of T1 can be selected. Conversely, if a higher

7
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quality of cascaded polynomial approximation is desired, a
larger value of T1 can be chosen, which demonstrates the
flexibility in the proposed framework. In addition, as shown
in Theorem 4.6, the iteration complexity of the proposed
distributed trilevel zeroth order learning framework can be
written as O(

∑
i d

6
i /ϵ

2). It is worth mentioning that the
dimension-dependent iteration complexity is common in ze-
roth order optimization, as discussed in various works, e.g.,
Zhang et al. (2024b;a); Duchi et al. (2015); Sun et al. (2022);
Qiu et al. (2023). For instance, the iteration complexity of
the state-of-the-art distributed bilevel zeroth order learning
method (Qiu et al., 2023) is given by O(d8/ϵ2), where d
denotes the dimension of variables.

5. Experiments
In the experiment, two distributed trilevel zeroth order learn-
ing scenarios, i.e., black-box trilevel learning on large lan-
guage models (LLMs) and robust hyperparameter optimiza-
tion are used to evaluate the performance of the proposed
DTZO. The proposed DTZO is compared with the state-of-
the-art distributed zeroth order learning method FedZOO
(Fang et al., 2022) and distributed bilevel zeroth order learn-
ing method FedRZObl (Qiu et al., 2023). Moreover, to fur-
ther demonstrate the effectiveness of the proposed DTZO,
we also compare it against state-of-the-art distributed bilevel
and trilevel optimization methods equipped with zeroth or-
der estimators (Liu et al., 2020), including FEDNEST+ZO
(Tarzanagh et al., 2022), ADBO+ZO (Jiao et al., 2023), and
AFTO+ZO (Jiao et al., 2024). It is important to note that
combining distributed nested optimization methods with
zeroth order estimators does not provide any theoretical
guarantees; these methods are included only for compara-
tive evaluation. In the experiment, all the models are imple-
mented using PyTorch, and the experiments are conducted
on a server equipped with two NVIDIA RTX 4090 GPUs.
More experimental details are provided in Appendix F.

5.1. Black-Box Trilevel Learning

Prompt learning is a key technique for enabling LLMs to
efficiently and effectively adapt to various downstream tasks
(Ma et al., 2024; Wang et al., 2024). In many practical sce-
narios involving LLMs, access to first order information is
restricted due to the proprietary nature of these models or
API constraints. For instance, commercial LLM APIs only
allow input-output interactions and do not provide visibility
into gradients. Inspired by the black-box prompt learning
(Diao et al., 2022) and backdoor attack on prompt-based
LLMs (Yao et al., 2024; Jiao et al., 2025), the backdoor
attack on black-box LLMs is considered in the experiment,
which can be expressed as a black-box trilevel learning
problem. In the experiment, Qwen2-7B (Yang et al., 2024a),
Llama-3.1-8B (Grattafiori et al., 2024), and Qwen-1.8B-
Chat (Bai et al., 2023), are utilized as the black-box LLMs.

The General Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2018a) is used to evaluate the pro-
posed DTZO. Specifically, the experiments are carried out
on: 1) SST-2 for sentiment analysis; 2) COLA for linguistic
acceptability; and 3) MRPC for semantic equivalence of
sentences. Details of the problem formulation and exper-
imental setting are shown in Appendix F. In this task, we
aim to discover effective backdoor triggers while ensuring
model performance on clean inputs (i.e., inputs without trig-
gers). Therefore, following Yao et al. (2024), the Attack
Success Rate (ASR) when the triggers are activated and
the Accuracy (ACC) on clean samples are utilized as the
metrics in the experiments. The comparisons between the
proposed DTZO and the state-of-the-art distributed bilevel
zeroth order learning method FedRZObl are illustrated in
Figures 1, 2, and 3. It is seen from Figures 1, 2, and 3 that
the proposed DTZO can effectively tackle the distributed
trilevel zeroth order learning problem and achieve superior
performance than FedRZObl since the proposed DTZO is
capable of addressing higher-nested zeroth order learning
problems compared to FedRZObl.

5.2. Robust Hyperparameter Optimization

Inspired by Sato et al. (2021); Jiao et al. (2024) in trilevel
learning, the robust hyperparameter optimization is con-
sidered in the experiment. Following the setting for non-
differentiable functions as described in Qiu et al. (2023),
ReLU neural networks are employed in the experiments.
The digits recognition tasks in Qian et al. (2019); Wang
et al. (2021) with several benchmark datasets, i.e., MNIST
(LeCun et al., 1998), USPS, Fashion MNIST (Xiao et al.,
2017), and QMNIST (Yadav & Bottou, 2019), are utilized to
assess the performance of the proposed DTZO. In addition,
DTZO is also assessed on time series datasets, including
MelbournePedestrian, Crop, and UWaveGestureLibraryAll,
sourced from the UCR Archive (Dau et al., 2018). The aver-
age across accuracy on clean samples and robustness against
adversarial samples is used as the metric, more details about
the experimental setting and problem formulation are pro-
vided in Appendix F. We compare the proposed DTZO with
the state-of-the-art methods in Table 2. It is seen from Table
2 that the proposed DTZO can effectively tackle the trilevel
zeroth order learning problem in a distributed manner. The
superior performance of DTZO, as compared to state-of-
the-art methods, can be attributed to two key factors: (1)
Compared to existing methods, the proposed DTZO is ca-
pable of effectively addressing higher-nested zeroth order
optimization problems with non-asymptotic convergence
guarantees. (2) The proposed nonlinear zeroth order cuts
facilitate the development of a more refined cascaded poly-
nomial relaxation.

Within the proposed framework, the trade-off between com-
plexity and performance can be flexibly controlled by ad-
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Figure 1. Comparisons about ASR and ACC between the proposed DTZO and state-of-the-art method using Qwen-1.8B-Chat.

Table 2. Comparisons between the proposed DTZO and the state-of-the-art methods. Higher scores represent better performance.

Datasets FedZOO FEDNEST+ZO ADBO+ZO FedRZObl AFTO+ZO DTZO

MNIST 0.5289 0.5503 0.5341 0.5405 0.7501 0.7927
QMNIST 0.5245 0.5398 0.5487 0.5467 0.7389 0.7804
F-MNIST 0.4874 0.5065 0.5102 0.5023 0.6448 0.7007
USPS 0.7277 0.7354 0.7323 0.7379 0.7987 0.8513
MelbournePedestrian 0.6295 0.6454 0.6412 0.6487 0.6924 0.7250
Crop 0.5468 0.5607 0.5681 0.5645 0.6016 0.6351
UWaveGestureLibraryAll 0.6714 0.6924 0.6983 0.7002 0.7689 0.8243

justing T1, as discussed in Sec. 4. As shown in Figure 4
in Appendix F, the performance of DTZO improves as T1

increases, we can flexibly adjust T1 based on the distributed
system requirements. Removing inactive cuts can signifi-
cantly improve the effectiveness of cutting plane method, as
discussed in Jiao et al. (2024); Yang et al. (2014). In the ex-
periment, we also investigate the effect of removing inactive
cuts within the proposed DTZO. It is seen from Figure 5 in
Appendix F that pruning inactive cuts significantly reduces
training time, indicating the importance of this procedure.

In addition, the impact of various choices of T1 on the con-
vergence rate within the proposed DTZO is evaluated. As
illustrated in Figures 6 and 7 in Appendix F, a smaller T1

leads to faster convergence but affects the method’s per-
formance, resulting in a higher test loss. Conversely, if a
better performance is required, a larger T1 can be selected,
corresponding to a more refined polynomial relaxation. In
the proposed framework, we can flexibly adjust T1 based
on various requirements. The results in Figures 6 and 7
are consistent with our theoretical analyses presented under
Theorems 4.6 and 4.7.

Following Qiu et al. (2023), the robustness in the proposed
framework with respect to the choice of smoothing param-
eter µ is evaluated. The experiments are conducted on the
robust hyperparameter optimization task under various set-
tings of smoothing parameter µ ∈ {0.01, 0.001, 0.0001}. It
is seen from Figure 8 and 9 in Appendix F that the proposed
DTZO is robust to the choice of smoothing parameter µ. In
addition, we also note that the proposed DTZO has a faster

convergence rate with a relatively smaller µ, because the gra-
dient estimate improves when µ becomes relatively smaller,
as discussed in Liu et al. (2020). Furthermore, to analyze
DTZO’s performance improvements, we conduct an abla-
tion study comparing DTZO against its variants: DTZO(-)
and DBZO. DTZO(-) replaces the proposed nonlinear cuts
in DTZO with linear cuts, while DBZO removes cascaded
polynomial approximation, using only single-layer polyno-
mial approximation. It is seen from Table 5 in Appendix F
that DTZO outperforms all variants, demonstrating the ben-
efits of cascaded polynomial approximation and nonlinear
zeroth order cuts.

6. Conclusion
In this work, a distributed trilevel zeroth order learning
(DTZO) framework is proposed to address the trilevel learn-
ing problems in a distributed manner without using first
order information. To our best knowledge, this is the first
work that considers how to tackle the trilevel zeroth or-
der learning problems. The proposed DTZO is capable of
constructing the cascaded polynomial approximation for
trilevel zeroth order learning problems without using gradi-
ents or sub-gradients by utilizing the novel zeroth order cuts.
Additionally, we theoretically analyze the non-asymptotic
convergence rate for the proposed DTZO to achieve the
ϵ-stationary point. Experiments on black-box LLMs trilevel
learning and robust hyperparameter optimization demon-
strate the superior performance of DTZO.
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Appendix

To improve the readability of the Appendix, we have organized its contents as follows: In Appendix A and B, we delve
into the comprehensive proofs of Theorem 4.6 (Iteration Complexity) and Theorem 4.7 (Communication Complexity). In
Appendix C, the detailed proofs of Proposition 3.1 and 3.2 are provided. Furthermore, we offer the theoretical analyses
about the cascaded polynomial approximation in Appendix D. Additionally, detailed discussions about the soft constraint
are given in Appendix E, and the discussions about ϕin and ϕout are also conducted in this part. In Appendix F, details
of the experimental setting and additional experimental results are provided. The discussions about Assumption 4.4 and
4.5 are offered in Appendix G, we show that both Assumption 4.4 and 4.5 are mild and widely-used in machine learning
and optimization. In Appendix H, the reasons why we choose the exterior penalty method in the proposed framework
are discussed, and we demonstrate the close relationship between the original constrained optimization problem and the
unconstrained optimization problem. In Appendix I, we show that the proposed framework can be applied to a wide range of
TLL problems, e.g., (grey-box) TLL with partial zeroth order constraints. More discussions about the cutting plane method
and the choice of gradient estimator are provided in Appendix J. Lastly, the future work is discussed in Appendix K.

Furthermore, to enhance the readability of this work, the notations used in this work and their corresponding meanings are
summarized in Table 3.
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Table 3. Notations used in this work and the corresponding meanings.

Notation Meaning

fi(·),∀i = 1, 2, 3 ith level objective.
xi,∀i = 1, 2, 3 ith level variable.
fi,j(·),∀i = 1, 2, 3, j = 1,· · ·, N ith level local objective in worker j.
xi,j ,∀i = 1, 2, 3, j = 1,· · ·, N ith level local variable in worker j.
zi,∀i = 1, 2, 3 ith level global variable in master.
Pin, Pout feasible regions formed by inner and outer layer zeroth order cuts.
cpin,l, cpout,l lth inner layer and outer layer zeroth order cuts.
ain
j,l, b

in
j,l, c

in
i,l, d

in
i,l, e

in
l lth inner layer zeroth order cut’s parameters.

aout
i,j,l, b

out
i,j,l, c

out
i,l , dout

i,l , eoutl lth outer layer zeroth order cut’s parameters.
F (·) penalty function.
Fµ(·) smooth approximation of F (·).
µ smoothing parameter.
Fµ

∗ optimal objective value of Fµ(·).
λl, ϕj penalty parameters.
ϕin(·), ϕout(·) functions used in third level and second level constraint.
Gxi,j

,∀i = 1, 2, 3, j = 1,· · ·, N gradient estimator for ith level variable in worker j
ηxi

, ηzi
,∀i = 1, 2, 3 step sizes for variables xi, zi.

µin,µout,uk,1,uk,2,uk,3 standard Gaussian random vectors.
Gt stationarity gap.
T (ϵ) iteration complexity to achieve ϵ-stationary point.
T1 parameter controls the trade-off between complexity and performance.
T zeroth order cuts will be updated every T iteration.
N the number of workers in distributed systems.
L parameter in L-smoothness.
di,∀i = 1, 2, 3 the dimension of ith level variable.

A. Proofs of Theorem 4.6 (Iteration Complexity)
In this section, the detailed proofs of Theorem 4.6, i.e., iteration complexity of the proposed DTZO, are offered. The
iteration complexity refers to the number of iterations for the proposed algorithm to obtain the ϵ-stationary point (Jiao et al.,
2023). According to Ghadimi & Lan (2013), the gradient of the smooth approximation of F , i.e., Fµ (which is given in
Definition 4.3), is also Lipschitz continuous with constant Lµ (0 < Lµ ≤ L), thus, we have that when t ≥ T1,

Fµ({xt+1
i,j }, {zt

i})

≤Fµ({xt
i,j}, {zt

i})+

 {xt+1
1,j −xt

1,j}
{xt+1

2,j −xt
2,j}

{xt+1
3,j −xt

3,j}


⊤ {∇x1,jFµ({xt

i,j}, {zt
i})}

{∇x2,jFµ({xt
i,j}, {zt

i})}
{∇x3,jFµ({xt

i,j}, {zt
i})}

+ L
2 ||

 {xt+1
1,j −xt

1,j}
{xt+1

2,j −xt
2,j}

{xt+1
3,j −xt

3,j}

||2

=Fµ({xt
i,j}, {zt

i})−

 {ηx1
Gx1,j

({xt
i,j}, {zt

i})}
{ηx2

Gx2,j
({xt

i,j}, {zt
i})}

{ηx3
Gx3,j

({xt
i,j}, {zt

i})}


T  {∇x1,j

Fµ({xt
i,j}, {zt

i})}
{∇x2,j

Fµ({xt
i,j}, {zt

i})}
{∇x3,j

Fµ({xt
i,j}, {zt

i})}


+L

2

3∑
i=1

N∑
j=1

η2xi
||Gxi,j

({xt
i,j}, {zt

i})||2.

(30)
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According to Assumption 4.5 (i.e., function F has L-Lipschitz continuous gradient) and combining it with Cauchy-Schwarz
inequality, we have that,

F ({xt+1
i,j }, {zt+1

i })

≤ F ({xt+1
i,j }, {zt

i}) +

 zt+1
1 − zt

1

zt+1
2 − zt

2

zt+1
3 − zt

3


T  ∇z1

F ({xt+1
i,j }, {zt

i})
∇z2

F ({xt+1
i,j }, {zt

i})
∇z3

F ({xt+1
i,j }, {zt

i})

+ L
2 ||

 zt+1
1 − zt

1

zt+1
2 − zt

2

zt+1
3 − zt

3

 ||2

= F ({xt+1
i,j }, {zt

i}) +

 zt+1
1 − zt

1

zt+1
2 − zt

2

zt+1
3 − zt

3


T  ∇z1

F ({xt
i,j}, {zt

i})
∇z2

F ({xt
i,j}, {zt

i})
∇z3

F ({xt
i,j}, {zt

i})



+

 zt+1
1 − zt

1

zt+1
2 − zt

2

zt+1
3 − zt

3


T  ∇z1F ({xt+1

i,j }, {zt
i})−∇z1F ({xt

i,j}, {zt
i})

∇z2F ({xt+1
i,j }, {zt

i})−∇z2F ({xt
i,j}, {zt

i})
∇z3F ({xt+1

i,j }, {zt
i})−∇z3F ({xt

i,j}, {zt
i})

+ L
2 ||

 zt+1
1 − zt

1

zt+1
2 − zt

2

zt+1
3 − zt

3

 ||2

≤ F ({xt+1
i,j }, {zt

i})−
3∑

i=1

(ηzi
− Lη2

zi

2 − η2
zi

2 )||∇zi
F ({xt

i,j}, {zt
i})||2+

3∑
i=1

N∑
j=1

L
2 ||x

t+1
i,j −xt

i,j ||2.

(31)

Combining Eq. (31) with the Eq. (3.5) in Ghadimi & Lan (2013), we have that,

Fµ({xt+1
i,j }, {zt+1

i })− µ2L(N+1)
∑

i di

2

≤ F ({xt+1
i,j }, {zt+1

i })

≤ F ({xt+1
i,j }, {zt

i})−
3∑

i=1

(ηzi
− (L+1)η2

zi

2 )||∇zi
F ({xt

i,j}, {zt
i})||2 +

3∑
i=1

N∑
j=1

L
2 ||x

t+1
i,j − xt

i,j ||2

≤ Fµ({xt+1
i,j }, {zt

i})−
3∑

i=1

(ηzi −
(L+1)η2

zi

2 )||∇ziF ({xt
i,j}, {zt

i})||2 +
3∑

i=1

N∑
j=1

L
2 ||x

t+1
i,j − xt

i,j ||2

+
µ2L(N+1)

∑
i di

2 .

(32)

Combining Eq. (30) with Eq. (32), we can obtain that,

Fµ({xt+1
i,j }, {zt+1

i })

≤ Fµ({xt
i,j}, {zt

i})−

 {ηx1
Gx1,j

({xt
i,j}, {zt

i})}
{ηx2

Gx2,j
({xt

i,j}, {zt
i})}

{ηx3
Gx3,j

({xt
i,j}, {zt

i})}


T  {∇x1,j

Fµ({xt
i,j}, {zt

i})}
{∇x2,j

Fµ({xt
i,j}, {zt

i})}
{∇x3,j

Fµ({xt
i,j}, {zt

i})}


+L

2

3∑
i=1

N∑
j=1

η2xi
||Gxi,j

({xt
i,j}, {zt

i})||2 −
3∑

i=1

(ηzi
− (L+1)η2

zi

2 )||∇zi
F ({xt

i,j}, {zt
i})||2

+
3∑

i=1

N∑
j=1

L
2 ||x

t+1
i,j − xt

i,j ||2 + µ2L(N + 1)
∑

i di

= Fµ({xt
i,j}, {zt

i})−

 {ηx1
Gx1,j

({xt
i,j}, {zt

i})}
{ηx2

Gx2,j
({xt

i,j}, {zt
i})}

{ηx3
Gx3,j

({xt
i,j}, {zt

i})}


T  {∇x1,j

Fµ({xt
i,j}, {zt

i})}
{∇x2,j

Fµ({xt
i,j}, {zt

i})}
{∇x3,j

Fµ({xt
i,j}, {zt

i})}


+

3∑
i=1

N∑
j=1

Lη2xi
||Gxi,j ({xt

i,j}, {zt
i})||2 −

3∑
i=1

(ηzi −
(L+1)η2

zi

2 )||∇ziF ({xt
i,j}, {zt

i})||2

+µ2L(N + 1)
∑

i di.

(33)
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Taking expectation on the both sides of Eq. (33), we can obtain that,

E[Fµ({xt+1
i,j }, {zt+1

i })]

≤ E[Fµ({xt
i,j}, {zt

i})]−
3∑

i=1

N∑
j=1

ηxi ||∇xi,jFµ({xt
i,j}, {zt

i})||2 + µ2L(N + 1)
∑

i di

+
3∑

i=1

N∑
j=1

Lη2xi
E[||Gxi,j

({xt
i,j}, {zt

i})||2]−
3∑

i=1

(ηzi
− (L+1)η2

zi

2 )||∇zi
F ({xt

i,j}, {zt
i})||2.

(34)

Combining the definition of Gx1,j
, Gx2,j

, Gx3,j
with the Eq. (3.12) in Ghadimi & Lan (2013), we have that,

E[||Gx1,j
({xt

i,j}, {zt
i})||2] ≤ 2(d1 + 4)||∇x1,j

F ({xt
i,j}, {zt

i})||2 +
µ2L2

2
(d1 + 6)3, (35)

E[||Gx2,j
({xt

i,j}, {zt
i})||2] ≤ 2(d2 + 4)||∇x2,j

F ({xt
i,j}, {zt

i})||2 +
µ2L2

2
(d2 + 6)3, (36)

E[||Gx3,j
({xt

i,j}, {zt
i})||2] ≤ 2(d3 + 4)||∇x3,j

F ({xt
i,j}, {zt

i})||2 +
µ2L2

2
(d3 + 6)3. (37)

By combining Eq. (34) with Eq. (35), (36), and (37), we can get that,

E[Fµ({xt+1
i,j }, {zt+1

i })]

≤ E[Fµ({xt
i,j}, {zt

i})]−
3∑

i=1

N∑
j=1

ηxi
||∇xi,j

Fµ({xt
i,j}, {zt

i})||2 + µ2L(N + 1)
∑

i di

+
3∑

i=1

N∑
j=1

Lη2xi

(
2(di + 4)||∇xi,j

F ({xt
i,j}, {zt

i})||2 +
µ2L2

2 (di + 6)
3
)

−
3∑

i=1

(ηzi −
(L+1)η2

zi

2 )||∇ziF ({xt
i,j}, {zt

i})||2,

(38)

that is,
3∑

i=1

N∑
j=1

ηxi
||∇xi,j

Fµ({xt
i,j}, {zt

i})||2 +
3∑

i=1

(ηzi
− (L+1)η2

zi

2 )||∇zi
F ({xt

i,j}, {zt
i})||2

≤ E[Fµ({xt
i,j}, {zt

i})]− E[Fµ({xt+1
i,j }, {zt+1

i })] + µ2L(N + 1)
∑

i di

+
3∑

i=1

N∑
j=1

Lη2xi

(
2(di + 4)||∇xi,jF ({xt

i,j}, {zt
i})||2 +

µ2L2

2 (di + 6)
3
)
.

(39)

Combining Eq. (39) with Eq. (3.8) in Ghadimi & Lan (2013), we can obtain that,

3∑
i=1

N∑
j=1

ηxi

(
1
2 ||∇xi,j

F ({xt
i,j}, {zt

i})||2 −
µ2L2

4 (di + 3)
3
)

+
3∑

i=1

(ηzi
− (L+1)η2

zi

2 )||∇zi
F ({xt

i,j}, {zt
i})||2

≤
3∑

i=1

N∑
j=1

ηxi
||∇xi,j

Fµ({xt
i,j}, {zt

i})||2 +
3∑

i=1

(ηzi
− (L+1)η2

zi

2 )||∇zi
F ({xt

i,j}, {zt
i})||2

≤ E[Fµ({xt
i,j}, {zt

i})]− E[Fµ({xt+1
i,j }, {zt+1

i })] + µ2L(N + 1)
∑

i di

+
3∑

i=1

N∑
j=1

Lη2xi

(
2(di + 4)||∇xi,j

F ({xt
i,j}, {zt

i})||2 +
µ2L2

2 (di + 6)
3
)
,

(40)

19



DTZO: Distributed Trilevel Zeroth Order Learning with Provable Non-Asymptotic Convergence

that is,

3∑
i=1

N∑
j=1

(ηxi

2 − 2L(di + 4)η2xi

)
||∇xi,j

F ({xt
i,j}, {zt

i})||2

+
3∑

i=1

(ηzi −
(L+1)η2

zi

2 )||∇ziF ({xt
i,j}, {zt

i})||2

≤ Fµ({xt
i,j}, {zt

i})− Fµ({xt+1
i,j }, {zt+1

i }) +
3∑

i=1

N∑
j=1

η2
xi

µ2L3

2 (di + 6)
3

+
3∑

i=1

N∑
j=1

µ2L2ηxi

4 (di + 3)
3
+ µ2L(N + 1)

∑
i di.

(41)

According to the setting of ηxi
, i = 1, 2, 3, i.e., 0 < ηxi

≤ 1
8L(di+4) , i = 1, 2, 3, we have that,

ηxi

2
− 2L(di + 4)η2xi

> 0, i = 1, 2, 3. (42)

Likewise, according to the setting of ηzi
, i = 1, 2, 3, i.e., 0 < ηzi

≤ 3
2(L+1) , i = 1, 2, 3, we have that,

ηzi −
(L+ 1)η2zi

2
> 0, i = 1, 2, 3. (43)

Combining Eq. (41) with Eq. (42) and (43), we can obtain that,

3∑
i=1

N∑
j=1

||∇xi,j
F ({xt

i,j}, {zt
i})||2 +

3∑
i=1

||∇zi
F ({xt

i,j}, {zt
i})||2

≤

3∑
i=1

N∑
j=1

(ηxi

2 − 2L(di + 4)η2xi

)
||∇xi,jF ({xt

i,j}, {zt
i})||2

min
{

ηxi

2 − 2L(di + 4)η2xi
, ηzi

− (L+1)η2
zi

2 , i = 1, 2, 3
}

+

3∑
i=1

(ηzi
− (L+1)η2

zi

2 )||∇zi
F ({xt

i,j}, {zt
i})||2

min
{

ηxi

2 − 2L(di + 4)η2xi
, ηzi

− (L+1)η2
zi

2 , i = 1, 2, 3
}

≤
Fµ({xt

i,j}, {zt
i})− Fµ({xt+1

i,j }, {zt+1
i }) +

3∑
i=1

η2
xi

µ2L3N

2 (di + 6)
3

min
{

ηxi

2 − 2L(di + 4)η2xi
, ηzi

− (L+1)η2
zi

2 , i = 1, 2, 3
}

+

+
3∑

i=1

µ2L2ηxi
N

4 (di + 3)
3
+ µ2L(N + 1)

∑
i di

min
{

ηxi

2 − 2L(di + 4)η2xi
, ηzi −

(L+1)η2
zi

2 , i = 1, 2, 3
} .

(44)

Summing up the inequality in Eq. (44) from t = T1 to t = T (ϵ)− 1, we have that,
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1

T (ϵ)− T1

T (ϵ)−1∑
t=T1

(

3∑
i=1

N∑
j=1

||∇xi,jF ({xt
i,j}, {zt

i})||2 +
3∑

i=1

||∇ziF ({xt
i,j}, {zt

i})||2)

≤
Fµ({xT1

i,j}, {z
T1
i })− Fµ({xT (ϵ)

i,j }, {zT (ϵ)
i })

min
{

ηxi

2 − 2L(di + 4)η2xi
, ηzi −

(L+1)η2
zi

2 , i = 1, 2, 3
}
(T (ϵ)− T1)

+

3∑
i=1

η2
xi

µ2L3N

2 (di + 6)
3
+

3∑
i=1

µ2L2ηxi
N

4 (di + 3)
3
+ µ2L(N + 1)

∑
i di

min
{

ηxi

2 − 2L(di + 4)η2xi
, ηzi

− (L+1)η2
zi

2 , i = 1, 2, 3
}

≤
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗

min
{

ηxi

2 − 2L(di + 4)η2xi
, ηzi

− (L+1)η2
zi

2 , i = 1, 2, 3
}
(T (ϵ)− T1)

+

3∑
i=1

η2
xi

µ2L3N

2 (di + 6)
3
+

3∑
i=1

µ2L2ηxi
N

4 (di + 3)
3
+ µ2L(N + 1)

∑
i di

min
{

ηxi

2 − 2L(di + 4)η2xi
, ηzi

− (L+1)η2
zi

2 , i = 1, 2, 3
} .

(45)

According to the setting of ηxi
, ηzi

, i = 1, 2, 3, we can obtain that,

ηxi

2
− 2L(di + 4)η2xi

= ηxi

(
1

2
− 2L(di + 4)ηxi

)
≥ ηxi

4
, i = 1, 2, 3, (46)

ηzi
−

(L+ 1)η2zi

2
= ηzi

(1− (L+ 1)ηzi

2
) ≥ ηzi

4
, i = 1, 2, 3. (47)

Thus, we have that,

1

T (ϵ)− T1

T (ϵ)−1∑
t=T1

(

3∑
i=1

N∑
j=1

||∇xi,j
F ({xt

i,j}, {zt
i})||2 +

3∑
i=1

||∇zi
F ({xt

i,j}, {zt
i})||2)

≤
4

(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
)

min {ηx1 , ηx2 , ηx3 , ηz1 , ηz2 , ηz3} (T (ϵ)− T1)

+

3∑
i=1

2η2xi
µ2L3N(di + 6)

3
+

3∑
i=1

µ2L2ηxi
N(di + 3)

3
+ 4µ2L(N + 1)

∑
i di

min {ηx1 , ηx2 , ηx3 , ηz1 , ηz2 , ηz3}
.

(48)

According to the setting that,

ηxi = ηzi = min

{
1

8L(d1 + 4)
,

1

8L(d2 + 4)
,

1

8L(d3 + 4)
,

3

2(L+ 1)
,

1√
T (ϵ)− T1

}
, i = 1, 2, 3, (49)
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we have that,

1

T (ϵ)− T1

T (ϵ)−1∑
t=T1

(

3∑
i=1

N∑
j=1

||∇xi,j
F ({xt

i,j}, {zt
i})||2 +

3∑
i=1

||∇zi
F ({xt

i,j}, {zt
i})||2)

≤
4

(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
)

min

{
1

8L(d1+4) ,
1

8L(d2+4) ,
1

8L(d3+4) ,
3

2(L+1) ,
1√

T (ϵ)−T1

}
(T (ϵ)− T1)

+

3∑
i=1

2ηxi
µ2L3N(di + 6)

3
+

3∑
i=1

µ2L2N(di + 3)
3

+

3∑
i=1

4µ2L(N + 1)di
1

min

{
1

8L(d1+4) ,
1

8L(d2+4) ,
1

8L(d3+4) ,
3

2(L+1) ,
1√

T (ϵ)−T1

}

≤
4

(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
)(

max
{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4), 2(L+1)

3

})
T (ϵ)− T1

+

4

(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
)√

T (ϵ)− T1

T (ϵ)− T1

+

3∑
i=1

2ηxi
µ2L3N(di + 6)

3
+

3∑
i=1

µ2L2N(di + 3)
3

+

3∑
i=1

4µ2L(N + 1)di

(
max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4),

2(L+ 1)

3

}
+
√
T (ϵ)− T1

)
.

(50)

Since ηxi ≤ 1
8L(di+4) , i = 1, 2, 3, we can obtain that,

1

T (ϵ)− T1

T (ϵ)−1∑
t=T1

(

3∑
i=1

N∑
j=1

||∇xi,jF ({xt
i,j}, {zt

i})||2 +
3∑

i=1

||∇ziF ({xt
i,j}, {zt

i})||2)

≤
4

(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
)(

max
{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4), 2(L+1)

3

})
T (ϵ)− T1

+

4

(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
)√

T (ϵ)− T1

T (ϵ)− T1
+
µ2L2N

4

3∑
i=1

(di + 6)
3

di + 4
+µ2L2

3∑
i=1

(di + 3)
3

+

3∑
i=1

4µ2L(N + 1)di

(
max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4),

2(L+ 1)

3

}
+
√
T (ϵ)− T1

)
.

(51)

Because of T (ϵ)− T1 ≥ 1, we have that 1
T (ϵ)−T1

≤ 1√
T (ϵ)−T1

. Combining with the setting of µ, i.e., µ2 ≤ 1
T (ϵ)−T1

, we
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can obtain that,

1

T (ϵ)− T1

T (ϵ)−1∑
t=T1

(

3∑
i=1

N∑
j=1

||∇xi,j
F ({xt

i,j}, {zt
i})||2 +

3∑
i=1

||∇zi
F ({xt

i,j}, {zt
i})||2)

≤
4max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4), 2(L+1)

3

}(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
)

T (ϵ)− T1

+

max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗√

T (ϵ)− T1

+
L2

4

3∑
i=1

(di + 6)
3

di + 4

1

T (ϵ)− T1
+ L2

3∑
i=1

(di + 3)
3 1

T (ϵ)− T1

+

3∑
i=1

(
max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4),

2(L+ 1)

3

}
+

√
T (ϵ)− T1

)
4L(N + 1)di
T (ϵ)− T1

≤
4(1 + max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4), 2(L+1)

3

}
)

(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
)

√
T (ϵ)− T1

+
L2

4

3∑
i=1

(di + 6)
3

di + 4

1√
T (ϵ)− T1

+ L2
3∑

i=1

(di + 3)
3 1√

T (ϵ)− T1

+

3∑
i=1

(
max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4),

2(L+ 1)

3

}
+ 1

)
4L(N + 1)di

1√
T (ϵ)− T1

.

(52)

Combining the definition of stationarity gap and ϵ-stationary point in Definition 4.1, 4.2 with Eq. (52), we have that,

||GT (ϵ)||2

=

3∑
i=1

N∑
j=1

||∇xi,jF ({xT (ϵ)
i,j }, {zT (ϵ)

i })||2 +
3∑

i=1

||∇ziF ({xT (ϵ)
i,j }, {zT (ϵ)

i })||2

≤ 1

T (ϵ)− T1

T (ϵ)−1∑
t=T1

(

3∑
i=1

N∑
j=1

||∇xi,j
F ({xt

i,j}, {zt
i})||2 +

3∑
i=1

||∇zi
F ({xt

i,j}, {zt
i})||2)

≤
4(1 + max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4), 2(L+1)

3

}
)

(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
)

√
T (ϵ)− T1

+
L2

4

3∑
i=1

(di + 6)
3

di + 4

1√
T (ϵ)− T1

+ L2
3∑

i=1

(di + 3)
3 1√

T (ϵ)− T1

+

3∑
i=1

(
max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4),

2(L+ 1)

3

}
+ 1

)
4L(N + 1)di

1√
T (ϵ)− T1

.

(53)

Thus, we can conclude that, when

T (ϵ) ≥
(

3∑
i=1

ci + d

(
max
t∈[T1]

Fµ({xt
i,j}, {zt

i})− Fµ
∗
))2

1
ϵ2 + T1 , (54)

we have that ||GT (ϵ)||2 ≤ ϵ, where constants

d = 4(1 + max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4),

2(L+ 1)

3

}
), (55)
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ci =
L2(di+6)3

4(di+4) + L2(di + 3)
3

+4L(N + 1)di

(
max

{
8L(d1 + 4), 8L(d2 + 4), 8L(d3 + 4), 2(L+1)

3

}
+ 1

)
.

(56)

B. Proofs of Theorem 4.7 (Communication Complexity)
The overall communication complexity of the proposed DTZO can be divided into 1) the communication complexity at
every communication round and 2) the communication complexity of updating zeroth order cuts, which is discussed as
follows.

1) The communication complexity at each iteration.

At each iteration, e.g., (t + 1)th iteration, the workers transmit the updated variables xt+1
1,j ,xt+1

2,j ,xt+1
3,j to the master,

resulting in a communication complexity of
∑N

j=1

∑3
i=1 di. Upon receiving these updated local variables, the master

proceeds to update the global variables. Then, the master broadcasts the updated variables zt+1
1 , zt+1

2 , zt+1
3 and gradients

∇xi,j
o({xt+1

2,j }, {xt+1
3,j }, zt+1

1 , zt+1
2 , zt+1

3 ), i = 2, 3 to worker j. Therefore, the cumulative communication complexity
from t = 1 to t = T (ϵ) is

C1 = T (ϵ)(2d1 + 3d2 + 3d3)N. (57)

2) The communication complexity of updating zeroth order cuts.

During every iteration T (t < T1), the cutting planes are updated to refine the cascaded polynomial approximation, involving
two main steps:

2a) Updating the inner layer polynomial approximation: In this phase, local variables xk+1
3,j are transmitted from worker j,

while global variables zk+1
3 are sent from the master in the (k + 1)th iteration. The communication complexity associated

with updating the inner layer polynomial approximation can be expressed as follows:

∑N

j=1
2⌊T1

T
⌋T Kd3. (58)

2b) Updating the outer layer polynomial approximation: During the (k + 1)th iteration when updating the outer layer
approximation, the worker j transmits the updated variables xk+1

2,j , to the master. Subsequently, the master broadcasts the
updated global variables zk+1

2 to worker j. The communication complexity involved in this process can be expressed as,

∑N

j=1
2⌊T1

T
⌋T Kd2. (59)

Combining Eq. (58) with Eq. (59), and considering utilizing one communication round to approximate the
ϕin({x3,j}, z1, z2, z3) and ϕout({x2,j}, {x3,j}, z1, z2, z3), i.e., K = 1, we have that the communication complexity
of updating cascaded polynomial approximation is,

C2 = 2N⌊T1

T
⌋T (d2 + d3). (60)

Consequently, the overall communication of the proposed method is C1 + C2, which can be expressed as,

3T (ϵ)(d1 + d2 + d3)N + 2N⌊T1

T
⌋T (d2 + d3). (61)
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C. Proofs of Proposition 3.1 and 3.2
C.1. Proofs of Proposition 3.1

For any point ({x3,j}, z1, z2
′, z3) in the original feasible region, i.e., ϕin({x3,j}, z1, z2

′, z3) = 0, according to the
properties of L-smoothness, we have that,

ϕin({x3,j}, z1, z2
′, z3)

≥ ϕin({xt
3,j}, zt

1, z
t
2
′
, zt

3) +
∂ϕin({xt

3,j},z
t
1,z

t
2
′
,zt

3)

∂({x3,j},z1,z2
′,z3)

⊤




{x3,j}
z1

z2
′

z3

−


{xt

3,j}
zt
1

zt
2
′

zt
3




−L
2 ||




{x3,j}
z1

z2
′

z3

−


{xt

3,j}
zt
1

zt
2
′

zt
3


 ||2

= ϕin({xt
3,j}, zt

1, z
t
2
′
, zt

3) +Gin
µ ({xt

3,j},zt
1, z

t
2
′
, zt

3)
⊤




{x3,j}
z1

z2
′

z3

−


{xt

3,j}
zt
1

zt
2
′

zt
3




+
(

∂ϕin({xt
3,j},z

t
1,z

t
2
′
,zt

3)

∂({x3,j},z1,z2
′,z3)

−Gin
µ ({xt

3,j},zt
1, z

t
2
′
, zt

3)
)⊤




{x3,j}
z1

z2
′

z3

−


{xt

3,j}
zt
1

zt
2
′

zt
3




−L
2 ||




{x3,j}
z1

z2
′

z3

−


{xt

3,j}
zt
1

zt
2
′

zt
3


 ||2.

(62)

According to E[Gin
µ ({xt

3,j},zt
1, z

t
2
′
, zt

3)] = ϕµ,in({xt
3,j}, zt

1, z
t
2
′
, zt

3), taking expectation on both sides of Eq. (62), we
have that,

E[ϕin({x3,j}, z1, z2
′, z3)]

≥ E[ϕin({xt
3,j}, zt

1, z
t
2
′
, zt

3)] + E[Gin
µ ({xt

3,j},zt
1, z

t
2
′
, zt

3)]
⊤




{x3,j}
z1

z2
′

z3

−


{xt

3,j}
zt
1

zt
2
′

zt
3




+
(

∂ϕin({xt
3,j},z

t
1,z

t
2
′
,zt

3)

∂({x3,j},z1,z2
′,z3)

− ϕµ,in({xt
3,j}, zt

1, z
t
2
′
, zt

3)
)⊤




{x3,j}
z1

z2
′

z3

−


{xt

3,j}
zt
1

zt
2
′

zt
3




−L
2 ||




{x3,j}
z1

z2
′

z3

−


{xt

3,j}
zt
1

zt
2
′

zt
3


 ||2.

(63)
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Combining with the Cauchy-Schwarz inequality, we have that,

E[ϕin({x3,j}, z1, z2
′, z3)]

≥ E[ϕin({xt
3,j}, zt

1, z
t
2
′
, zt

3)] + E[Gin
µ ({xt

3,j},zt
1, z

t
2
′
, zt

3)]
⊤




{x3,j}
z1

z2
′

z3

−


{xt

3,j}
zt
1

zt
2
′

zt
3




− 1
2 ||

∂ϕin({xt
3,j},z

t
1,z

t
2
′
,zt

3)

∂({x3,j},z1,z2
′,z3)

−ϕµ,in({xt
3,j}, zt

1, z
t
2
′
, zt

3)||2− L+1
2 ||




{x3,j}
z1

z2
′

z3

−


{xt
3,j}

zt
1

zt
2
′

zt
3


 ||2.

(64)

And according to Eq. (3.6) in Ghadimi & Lan (2013), we can obtain that,

||ϕµ,in({xt
3,j}, zt

1, z
t
2
′
, zt

3)−
∂ϕin({xt

3,j}, zt
1, z

t
2
′
, zt

3)

∂({x3,j}, z1, z2, z3)
||2 ≤ µ2

4
L2(d1+d2+(N+1)d3+3)3. (65)

By combining Eq. (64) with Eq. (65), we have that,

E[ϕin({x3,j}, z1, z2
′, z3)]

≥ E[ϕin({xt
3,j}, zt

1, z
t
2
′
, zt

3)] + E[Gin
µ ({xt

3,j},zt
1, z

t
2
′
, zt

3)]
⊤




{x3,j}
z1

z2
′

z3

−


{xt

3,j}
zt
1

zt
2
′

zt
3




−µ2

8 L2(d1+d2+(N+1)d3+3)3 − L+1
2 ||




{x3,j}
z1

z2
′

z3

−


{xt

3,j}
zt
1

zt
2
′

zt
3


 ||2.

(66)

For any point belongs to the original feasible region, i.e., ϕin({x3,j}, z1, z2
′, z3) = 0, according to εin ≥ 0, we can obtain

that it also satisfies that,

E[ϕin({xt
3,j}, zt

1, z
t
2
′
, zt

3) +Gin
µ ({xt

3,j},zt
1, z

t
2
′
, zt

3)
⊤




{x3,j}
z1

z2
′

z3

−


{xt

3,j}
zt
1

zt
2
′

zt
3


]

≤ L+1
2 ||




{x3,j}
z1

z2
′

z3

−


{xt

3,j}
zt
1

zt
2
′

zt
3


 ||2 + µ2

8 L2(d1+d2+(N+1)d3+3)3 + εin.

(67)

According to Eq. (9), we can conclude that for any point belongs to the original feasible region of constraint
ϕin({x3,j}, z1, z2

′, z3) = 0, it also belongs to the P t
in, that is, the original feasible region is a subset of the feasible region

formed by inner layer zeroth order cuts. Let Sin denote the original feasible region of constraint ϕin({x3,j}, z1, z2
′, z3) = 0,

we can obtain that the feasible region formed by inner layer zeroth order cuts will be gradually tightened with zeroth order
cuts added according to Eq. (67), that is,

Sin ⊆ P t+1
in ⊆ P t

in ⊆ · · · ⊆ P 0
in. (68)
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C.2. Proofs of Proposition 3.2

For any point ({x2,j}, {x3,j}, z1, z2, z3) in the original feasible region, i.e., ϕout({x2,j}, {x3,j}, z1, z2, z3) = 0, accord-
ing to the properties of L-smoothness, we have that,

ϕout({x2,j}, {x3,j}, z1, z2, z3)

≥ ϕout({xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
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µ (t)
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(69)
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where Gout
µ (t) is the simplified form of Gout

µ ({xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3). According to E[Gout

µ (t)] =
ϕµ,out({xt

2,j}, {xt
3,j}, zt

1, z
t
2, z

t
3), taking expectation on both sides of Eq. (69), we have that,

E[ϕout({x2,j}, {x3,j}, z1, z2, z3)]

≥ E[ϕout({xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3)] + E[Gout

µ (t)]⊤
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∂ϕout({xt
2,j},{x

t
3,j},z

t
1,z

t
2,z

t
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{xt
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 ||2,

(70)

where ϕµ,out(t) is the simplified form of ϕµ,out({xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3). Combining with the Cauchy-Schwarz inequal-

ity, we have that,

E[ϕout({x2,j}, {x3,j}, z1, z2, z3)]

≥ E[ϕout({xt
2,j}, {xt

3,j}, zt
1, z

t
2, z

t
3)] + E[Gout

µ (t)]⊤
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z3
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{xt
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2,j},{x
t
3,j},z
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t
2,z

t
3)

∂({x2,j},{x3,j},z1,z2,z3)
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(71)

And according to Eq. (3.6) in Ghadimi & Lan (2013), we can obtain that,

||ϕµ,out(t)−
∂ϕout({xt

2,j}, {xt
3,j}, zt

1, z
t
2, z

t
3)

∂({x2,j}, {x3,j}, z1, z2, z3)
||2 ≤ µ2

4
L2(d1+(N+1)(d2+d3)+3)3. (72)
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By combining Eq. (71) with Eq. (72), we have that,

E[ϕout({x2,j}, {x3,j}, z1, z2, z3)]

≥ E[ϕout({xt
2,j}, {xt

3,j}, zt
1, z

t
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t
3)] + E[Gout

µ (t)]⊤
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2 ||




{x2,j}
{x3,j}
z1

z2

z3

−


{xt

2,j}
{xt

3,j}
zt
1

zt
2

zt
3



 ||2.

(73)

For any point belongs to the original feasible region, i.e., ϕout({x2,j}, {x3,j}, z1, z2, z3) = 0, according to εin ≥ 0, we
can obtain that it also satisfies that,

E[ϕout({xt
2,j},{xt

3,j},zt
1, z

t
2, z

t
3)+Gout

µ ({xt
2,j},{xt

3,j},zt
1, z

t
2, z

t
3)

⊤




{x2,j}
{x3,j}
z1

z2

z3

−


{xt
2,j}

{xt
3,j}

zt
1
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2
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3



]

≤ L+1
2

(∑3
i=2

∑
j ||xi,j−xt

i,j ||2+
∑

i||zi−zt
i||2

)
+ µ2

8 L2(d1+(N+1)(d2+d3)+3)3+εout.

(74)

According to Eq. (11), we can conclude that for any point belongs to the original feasible region of constraint
ϕout({x2,j}, {x3,j}, z1, z2, z3) = 0, it also belongs to the P t

out, that is, the original feasible region is a subset of the
feasible region formed by outer layer zeroth order cuts. In addition, let Sout denote the original feasible region of constraint
ϕout({x2,j}, {x3,j}, z1, z2, z3) = 0, based on Eq. (74), we can obtain that the feasible region formed by outer layer zeroth
order cuts will be gradually tightened with zeroth order cuts added, that is,

Sout ⊆ P t+1
out ⊆ P t

out ⊆ · · · ⊆ P 0
out. (75)

D. Theoretical Analyses about the Cascaded Polynomial Approximation Problem
In this section, we theoretically analyze the connections between the original distributed trilevel zeroth order optimization
problem in Eq. (2) and the cascaded polynomial approximation problem in Eq. (8). To facilitate this discussion, we start by
examining the distributed bilevel zeroth order optimization problem, which can be expressed as follows,

min
N∑
j=1

f1,j(x1,x2)

s.t. x2 = argmin
x2

′

N∑
j=1

f2,j(x1,x2
′)

var. x1,x2.

(76)
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The optimization problem in Eq. (76) can be equivalently reformulated as,

min
N∑
j=1

f1,j(x1,j ,x2,j)

s.t. x1,j = z1,∀j = 1, · · · , N

{x2,j}, z2 = argmin
{x2,j

′},z2
′

N∑
j=1

f2,j(z1,x2,j
′)

s.t. x2,j
′ = z2

′,∀j = 1, · · · , N

var. {x1,j}, {x2,j}, z1, z2.

(77)

By utilizing the proposed polynomial approximation with zeroth order cut, we can obtain the following zeroth order
polynomial approximation problem,

min
N∑
j=1

f1,j(x1,j ,x2,j)

s.t. x1,j = z1,∀j = 1, · · · , N
N∑
j=1

a2,j,l
⊤x2

2,j+b2,j,l
⊤x2,j+

2∑
i=1

ci,l
⊤z2

i +di,l
⊤zi+el≤ε, ∀l

var. {x1,j}, {x2,j}, z1, z2.

(78)

According to Proposition 3.1 and 3.2, we can obtain the feasible region of the problem in Eq. (77) is a subset of the feasible
region of the problem in Eq. (78). Thus, we can conclude that the zeroth order polynomial approximation optimization
problem in Eq. (78) is the relaxed problem of the distributed bilevel zeroth order optimization problem in Eq. (76).

For the distributed trilevel zeroth order optimization problem, we first define the following feasible regions.

S1 =

{
{xi,j},{zi}|

hout
l ({x2,j},{x3,j},z1, z2, z3) ≤ εout,∀l,

z1 = x1,j ,∀j

}
, (79)

S2 =
{xi,j},{zi}|

||

[
{x2,j}
z2

]
−

argmin
{x2,j

′},z2
′

N∑
j=1

f2,j(z1,x2,j
′,x3,j)

s.t. x2,j
′ = z2

′,∀j,
hin
l ({x3,j}, z1, z2

′, z3)≤εin,∀l

||2 ≤ εout,

z1 = x1,j ,∀j


,

(80)

S3 =
{xi,j},{zi}|

||

[
{x2,j}
z2

]
−

argmin
{x2,j

′},z2
′

N∑
j=1

f2,j(z1,x2,j ,x3,j)

s.t. x2,j
′ = z2

′,∀j = 1, · · · , N

{x3,j}, z3= argmin
{x3,j

′},z3
′

N∑
j=1

f3,j(z1, z2
′,x3,j

′)

s.t. x3,j
′ = z3

′,∀j = 1, · · · , N

||2 = 0,

z1 = x1,j ,∀j


.

(81)

It is seen from Eq. (79) and Eq. (81) that S1 and S3 respectively represent the feasible region of optimization problems in
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Eq. (8) and Eq. (3). For any feasible solution {x̂i,j},{ẑi} of optimization problem in Eq. (3), it satisfies that,

||

[
{x̂2,j}
ẑ2

]
−

argmin
{x2,j

′},z2
′

N∑
j=1

f2,j(ẑ1,x2,j
′, x̂3,j)

s.t. x2,j
′ = z2

′,∀j = 1, · · · , N

{x̂3,j}, ẑ3= argmin
{x3,j

′},z3
′

N∑
j=1

f3,j(ẑ1, z2
′,x3,j

′)

s.t. x3,j
′ = z3

′,∀j = 1, · · · , N

||2 = 0. (82)

Based on Proposition 3.1, we have that the feasible region of constraint ϕin({x3,j}, z1, z2
′, z3) = 0 is a subset of the feasible

region formed by inner layer zeroth order cuts, i.e.,
{
{x3,j}, z1, z2

′, z3|hin
l ({x3,j}, z1, z2

′, z3)≤εin,∀l
}

. Moreover, the
feasible region formed by inner layer zeroth order cuts will be continuously tightened with zeroth order cuts added. Thus,
let β ≥ 0 satisfy that,

||
argmin
{x2,j

′},z2
′

N∑
j=1

f2,j(ẑ1,x2,j
′, x̂3,j)

s.t. x2,j
′=z2

′,∀j,
hin
l ({x̂3,j}, ẑ1, z2

′, ẑ3)≤εin,∀l

−

argmin
{x2,j

′},z2
′

N∑
j=1

f2,j(ẑ1,x2,j
′, x̂3,j)

s.t. x2,j
′ = z2

′,∀j = 1, · · · , N

{x̂3,j}, ẑ3= argmin
{x3,j

′},z3
′

N∑
j=1

f3,j(ẑ1, z2
′,x3,j

′)

s.t. x3,j
′ = z3

′,∀j = 1, · · · , N

||2

≤ β.

(83)

By combining Proposition 3.1 with Eq. (83), we can obtain that β will continuously decrease with inner layer zeroth order
cuts added. By combining Eq. (82) with Cauchy-Schwarz inequality, we can obtain that,

||

[
{x̂2,j}
ẑ2

]
−

argmin
{x2,j

′},z2
′

N∑
j=1

f2,j(ẑ1,x2,j
′, x̂3,j)

s.t. x2,j
′=z2

′,∀j,
hin
l ({x̂3,j}, ẑ1, z2

′, ẑ3)≤εin,∀l

||2

= ||

[
{x̂2,j}
ẑ2

]
−

argmin
{x2,j

′},z2
′

N∑
j=1

f2,j(ẑ1,x2,j
′, x̂3,j)

s.t. x2,j
′ = z2

′,∀j = 1, · · · , N

{x̂3,j}, ẑ3= argmin
{x3,j

′},z3
′

N∑
j=1

f3,j(ẑ1, z2
′,x3,j

′)

s.t. x3,j
′ = z3

′,∀j = 1, · · · , N

+

argmin
{x2,j

′},z2
′

N∑
j=1

f2,j(ẑ1,x2,j
′, x̂3,j)

s.t. x2,j
′ = z2

′,∀j = 1, · · · , N

{x̂3,j}, ẑ3= argmin
{x3,j

′},z3
′

N∑
j=1

f3,j(ẑ1, z2
′,x3,j

′)

s.t. x3,j
′ = z3

′,∀j = 1, · · · , N

−
argmin
{x2,j

′},z2
′

N∑
j=1

f2,j(ẑ1,x2,j
′, x̂3,j)

s.t. x2,j
′=z2

′,∀j,
hin
l ({x̂3,j}, ẑ1, z2

′, ẑ3)≤εin,∀l

||2

≤ 2||
argmin
{x2,j

′},z2
′

N∑
j=1

f2,j(ẑ1,x2,j
′, x̂3,j)

s.t. x2,j
′=z2

′,∀j,
hin
l ({x̂3,j}, ẑ1, z2

′, ẑ3)≤εin,∀l

−

argmin
{x2,j

′},z2
′

N∑
j=1

f2,j(ẑ1,x2,j
′, x̂3,j)

s.t. x2,j
′ = z2

′,∀j = 1, · · · , N

{x̂3,j}, ẑ3= argmin
{x3,j

′},z3
′

N∑
j=1

f3,j(ẑ1, z2
′,x3,j

′)

s.t. x3,j
′ = z3

′,∀j = 1, · · · , N

||2

≤ 2β.

(84)
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By combining the definition of S2 in Eq. (81) with Eq. (84), we can get that S3 is a subset of S2, i.e., S3 ∈ S2 when we set
εin ≥ 0 and εout ≥ 2β. Based on Proposition 3.2, we have that S2 is a subset of S1, i.e., S2 ∈ S1. Consequently, we can get
S3 ∈ S1, indicating that the cascaded polynomial approximation problem is the relaxed problem of the original distributed
trilevel zeroth order optimization problem. Moreover, this relaxation will be gradually tightened with the addition of zeroth
order cuts based on Proposition 3.1 and 3.2.

E. Discussions about Soft Constraint and ϕin, ϕout

Soft constraint. A soft constraint refers to a constraint that can be partially violated without rendering the optimization
problem meaningless (Kautz et al., 1996; Régin, 2011; Wilson et al., 2022). It is shown in many bilevel and trilevel
learning works that the lower-optimization problem often serves as a soft constraint to the upper-level optimization problem.
Examples are provided as follows.

* In bilevel neural architecture search (Liu et al., 2018a), rather than computing the optimal solution for the lower-level
optimization problem, the result obtained after a single gradient descent step can be used as an approximation of the
optimal solution at each iteration.

* In bilevel meta-learning (Ji et al., 2021; Finn et al., 2017), instead of solving the lower-level optimization problem to
optimality, the results obtained after multiple gradient descent steps can serve as an approximation at each iteration.

* In bilevel adversarial learning (Madry et al., 2018; Zhang et al., 2022), which is a min-max optimization problem,
instead of solving the maximization problem to obtain the optimal solution, the results after several projected gradient
descent steps are used as the approximation at each iteration.

* In trilevel learning, AFTO (Jiao et al., 2024) used the results after K communication rounds to replace the optimal
solution to the lower-level optimization problem at each iteration in federated trilevel optimization problems.

* In trilevel learning for masked autoencoder (Guo et al., 2024), instead of obtaining the optimal solution to lower-level
optimization problems at each iteration, Guo et al. (2024) used the results after several iterations of gradient descent
updates as the approximation.

* In trilevel learning for enhancing out-of-domain generation in machine translation, He et al. (2024) used the results
after one-step gradient descent update as the approximation for the optimal solution to the lower-level optimization
problem at each iteration.

It is seen from ϕin({x3,j}, z1, z2
′, z3) = ||

[
{x3,j}
z3

]
− argmin

{x3,j
′},z3

′

∑
j f3,j(z1, z2

′,x3,j
′) s.t.x3,j

′ = z3
′,∀j||2 that

a distributed optimization problem needs to be solved if an exact ϕin({x3,j}, z1, z2, z3) is required. The lower-level

optimization problem (i.e.,

[
{x3,j}
z3

]
= argmin

{x3,j
′},z3

′

∑
j f3,j(z1, z2

′,x3,j
′) s.t.x3,j

′=z3
′,∀j) can be regarded as a soft

constraint to the upper-level optimization problem. Inspired by many works in bilevel optimization and trilevel optimization,
e.g. Ji et al. (2021); Jiao et al. (2022a); Yang et al. (2021); Franceschi et al. (2018); Liu et al. (2021b); Mackay et al.
(2018); Choe et al. (2023), that utilize K steps gradient descent steps to approximate the optimal solution to the lower-level
optimization problem, function ϕin({x3,j}, z1, z2

′, z3) in this work can also be approximated based on the solution after
K communication rounds following Jiao et al. (2024). Specifically, we have the following steps in (k + 1)th iteration,

Local worker j updates the local variables as,

xk+1
3,j = xk

3,j − ηxGin,j(z1, z2,x
k
3,j , z

k
3), (85)

where ηx denotes the step-size, and

Gin,j(z1, z2,x
k
3,j , z

k
3) =

f3,j(x1,j ,x2,j ,x
k
3,j+µuk,3)−f1,j(x1,j ,x2,j ,x

k
3,j)

µ uk,3 + 2γj(x
k
3,j − zk

3). (86)

where uk,3 is a standard Gaussian random vector, γj > 0 is a constant. Then, workers transmit the updated local variables,
i.e., xk+1

3,j , to the master.
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After receiving the updated variables, the master updates the consensus variables as follows.

zk+1
3 = zk

3 − ηz
∑N

j=1
γj(z

k
3 − xk+1

3,j ), (87)

where ηz represents the step-size. Subsequently, the master broadcasts the updated variables zk+1
3 to workers. Thus, the

approximated ϕin({x3,j}, z1, z2, z3) can be expressed as,

ϕin({x3,j}, z1, z2, z3) =

[
{x3,j − x0

3,j + ηx
∑K−1

k=0 Gin,j(z1, z2,x
k
3,j , z

k
3)}

z3 − z0
3 + ηz

∑K−1
k=0

∑N
j=1 γj(z

k
3 − xk+1

3,j )

]
. (88)

Likewise, constraint ϕout({x2,j}, {x3,j}, z1, z2, z3) = 0 also serves as a soft constraint to the upper-level optimization
problem. According to the definition of ϕout({x2,j}, {x3,j}, z1, z2, z3), that is,

ϕout({x2,j}, {x3,j}, z1, z2, z3)

= ||

[
{x2,j}
z2

]
−

argmin
{x2,j},z2

N∑
j=1

f2,j(z1,x2,j ,x3,j)

s.t.x2,j=z2,∀j, hin
l ({x3,j}, z1, z2, z3)≤εin,∀l

||2,
(89)

the results after K communication rounds can also be utilized to compute the estimate of ϕout({x2,j}, {x3,j}, z1, z2, z3)
following previous works (Liu et al., 2018a; Jiao et al., 2024). In (k + 1)th iteration, we have that,

Local worker j updates the local variables as follows,

xk+1
2,j = xk

2,j − ηxGx2,j
(z1,x

k
2,j ,x3,j , z

k
2 , z3), (90)

where we have,
Gx2,j (z1,x

k
2,j ,x3,j , z

k
2 , z3)

=
f2,j(z1,x

k
2,j+µuk,2,x3,j)−f2,j(z1,x

k
2,j ,x3,j)

µ uk,2 + 2φj(x
k
2,j − zk

2),
(91)

where uk,2 is the standard Gaussian random vector, φj > 0 is a constant. Then, worker j transmits the updated xk+1
2,j to the

master.

After receiving the updated parameters from workers, the master updates the consensus variables as,

zk+1
2 = zk

2 − ηz

(
2φj(z

k
2 − xk+1

2,j ) +∇z2pl
∑

l
[max{hin

l ({x3,j}, z1, z
k
2 , z3)− εin, 0}]2

)
. (92)

Next, the master broadcasts the updated variables zk+1
2 to workers. Consequently, the approximated

ϕout({x2,j}, {x3,j}, z1, z2, z3) can be written as,

ϕout({x2,j}, {x3,j}, z1, z2, z3)

=

[
{x2,j − x0

2,j +
∑K−1

k=0 ηxGx2,j (z1,x
k
2,j ,x3,j , z

k
2 , z3)}

z2−z0
2+

∑K−1
k=0 ηz

(
2φj(z

k
2−xk+1

2,j )+∇z2pl
∑

l[max{hin
l ({x3,j}, z1, z

k
2 , z3)−εin, 0}]2

) ]
.

(93)

F. Experimental Setting and Detailed Results
In this section, we provide the details of the experimental setting. In the experiment, all the models are implemented using
PyTorch, and the experiments are conducted on a server equipped with two NVIDIA RTX 4090 GPUs.

In the experiment, we compare the proposed method with the state-of-the-art distributed zeroth order learning method
FedZOO (Fang et al., 2022) and state-of-the-art distributed bilevel zeroth order learning method FedRZObl (Qiu et al.,
2023), which are introduced as follows. FedZOO (Fang et al., 2022) is a derivative-free federated zeroth-order optimization
method, which can be applied to solve the single-level optimization problems in a distributed manner. In FedZOO, clients
perform several local updates based on gradient estimators in each communication round. After receiving local updates,
the servers will perform the aggregation and update the global parameters. FedRZObl (Qiu et al., 2023) is designed for
zeroth order bilevel optimization problems. In each communication round, FedRZObl involves the following steps: clients
first compute the estimated optimal solution to the lower-level optimization problem and the inexact implicit zeroth-order
gradient. They then update the local parameters and transmit them to the server. Upon receiving the updates, the server
aggregates them to obtain the global parameters.
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Figure 2. Comparisons about ASR and ACC between the proposed DTZO and state-of-the-art method using Qwen2-7B.
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Figure 3. Comparisons about ASR and ACC between the proposed DTZO and state-of-the-art method using Llama-3.1-8B.

F.1. Black-box Trilevel Learning

In this section, the details of the experimental setting in black-box trilevel learning are provided. Prompt learning is a key
technique for enabling LLMs to efficiently and effectively adapt to various downstream tasks (Ma et al., 2024; Wang et al.,
2024). Inspired by the black-box prompt learning (Diao et al., 2022) and backdoor attack on prompt-based LLMs (Yao et al.,
2024), the backdoor attack on black-box LLMs is considered in the experiment, which can be expressed as a black-box
trilevel learning problem as follows.

min
λ

N∑
j=1

1
|Dval

j |
∑

(si,yi)∼Dval
j

L(G, [ktri,p, si], yi)

s.t. ktri = argmin
ktri

′

N∑
j=1

1
|Dtr

j |
∑

(si,yi)∼Dtr
j

L(G, [ktri
′,p, si], yi) + λ||ktri

′||2

s.t. p = argmin
p′

N∑
j=1

1
|Dtr

j |
∑

(si,yi)∼Dtr
j

L(G, [ktri
′,p′, si], yi)

var. λ,ktri,p,

(94)

where G denotes the black-box LLM. λ, ktri, p respectively denote the hyperparameter, backdoor trigger, and prompt. Dtr
j

and Dval
j denote the training and validation dataset in jth worker, and N denotes the number of workers. si, yi denote the

ith input sentence and label. In the experiment, Qwen2-7B (Yang et al., 2024a), Llama-3.1-8B (Grattafiori et al., 2024), and
Qwen-1.8B-Chat (Bai et al., 2023), are utilized as the black-box LLMs. The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018a) is used to evaluate the proposed DTZO. Specifically, the experiments are carried
out on: 1) SST-2 for sentiment analysis; 2) COLA for linguistic acceptability; and 3) MRPC for semantic equivalence of
sentences. In the black-box trilevel learning problem, we compare the proposed DTZO with the state-of-the-art distributed
bilevel zeroth order learning method FedRZObl (Qiu et al., 2023), which is used to address the following distributed bilevel
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Table 4. Experimental details.

Dataset ηx1
ηx2

ηx3
µ λl ϕj

SST-2 0.01 0.001 0.001 0.001 1 0.5
COLA 0.01 0.001 0.001 0.001 1 0.5
MRPC 0.01 0.001 0.001 0.001 1 0.5
MNIST 0.01 0.05 0.1 0.001 1 0.5
QMNIST 0.01 0.05 0.1 0.001 1 0.5
F-MNIST 0.01 0.05 0.1 0.001 1 0.5
USPS 0.01 0.5 0.1 0.001 1 0.5

zeroth order learning problem,

min
∑N

j=1
1

|Dtr
j |

∑
(si,yi)∼Dtr

j

L(G, [ktri,p, si], yi)

s.t. p = argmin
p′

∑N
j=1

1
|Dtr

j |
∑

(si,yi)∼Dtr
j

L(G, [ktri,p
′, si], yi)

var. ktri,p,

(95)

where G denotes the black-box LLM. ktri and p respectively denote the backdoor trigger and prompt. Dtr
j represents the

training dataset in jth worker, |Dtr
j | represents the number of data in training dataset, and N denotes the number of workers.

si, yi denote the ith input sentence and label.

F.2. Robust Hyperparameter Optimization

Robust hyperparameter optimization is a widely used trilevel learning application (Jiao et al., 2024; Sato et al., 2021),
aiming to optimize hyperparameters (Ji et al., 2021; Franceschi et al., 2018; Jiao et al., 2022b; Yang et al., 2021) and train a
machine learning model that is robust against adversarial attacks (Han et al., 2024). In this work, we consider the robust
hyperparameter optimization, which can be viewed as a trilevel zeroth order learning problem as follows.

min
φ

∑N
j=1 fj(X

var
j , yvarj ,w)

s.t. w = argmin
w′

∑N
j=1 fj(X

tr
j + pj , y

tr
j ,w

′) + φ||w′||2

s.t. p = argmax
p′

∑N
j=1 fj(X

tr
j + pj

′, ytrj ,w
′)

var. φ,w,p,

(96)

In this task, compared to single-level optimization, bilevel optimization considers the hyperparameter optimization, which
can enhance the generalization ability of the machine learning model. Compared to bilevel optimization, trilevel optimization
incorporates min-max robust training, which can improve the adversarial robustness of ML model. The digits recognition
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Table 5. Ablation study.

Method F-MNIST USPS UWaveGestureLibraryAll MelbournePedestrian

DBZO 0.5213 0.7452 0.7043 0.6436

DTZO(-) 0.6685 0.8212 0.7921 0.7013

DTZO 0.7007 0.8513 0.8243 0.7250

tasks in Qian et al. (2019); Wang et al. (2021) with several benchmark datasets, i.e., MNIST (LeCun et al., 1998), USPS,
Fashion MNIST (Xiao et al., 2017), and QMNIST (Yadav & Bottou, 2019), are utilized to assess the performance of the
proposed DTZO. In addition, DTZO is also assessed on time series datasets, including MelbournePedestrian, Crop, and
UWaveGestureLibraryAll, sourced from the UCR Archive (Dau et al., 2018). To evaluate the robustness of each method, the
PGD-7 attack (Madry et al., 2018) with ε = 0.05 is utilized. For the state-of-the-art distributed zeroth order learning method
FedZOO (Fang et al., 2022), it is used to address the following distributed zeroth order learning problem in this task,

min
∑N

j=1 fj(X
tr
j , ytrj ,w)

var. w,
(97)

where N represents the number of workers in a distributed system, w denotes the model parameter. Xtr
j and ytrj represent

the training data and labels, respectively. For the state-of-the-art distributed bilevel zeroth order learning method FedRZObl

(Qiu et al., 2023), the following distributed bilevel zeroth order learning problem is considered in this task,

min
∑N

j=1 fj(X
var
j , yvarj ,w)

s.t. w = argmin
w′

∑N
j=1 fj(X

tr
j , ytrj ,w

′) + φ||w′||2

var. φ,w,

(98)

where φ and w denote the regularization coefficient and model parameter, respectively. Xtr
j and ytrj represent the training

data and labels, while Xvar
j and yvarj represent the validation data and labels, respectively.

Within the proposed framework, the trade-off between complexity and performance can be flexibly controlled by adjusting
T1, as discussed in Sec. 4. Specifically, if the distributed system has limited computational and communication capabilities,
a smaller T1 can be selected. Conversely, if higher performance is required, a larger T1 can be chosen. As shown in Figure 4,
the performance of the proposed framework improves with increasing T1, allowing for flexible adjustments based on system
requirements. Removing inactive cuts can significantly improve the effectiveness of cutting plane method, as discussed
in Jiao et al. (2024); Yang et al. (2014). In the experiment, we also investigate the effect of removing inactive cuts within
the proposed DTZO. It is seen from Figure 5 that pruning inactive cuts significantly reduces training time, indicating the
importance of this procedure.

In addition, the impact of different choices of T1 on the convergence rate within the proposed framework is evaluated. As
illustrated in Figures 6 and 7, a smaller T1 leads to faster convergence but affects the method’s performance, resulting in a
higher test loss. Conversely, if a better performance is required, a larger T1 can be selected, corresponding to a more refined
polynomial relaxation. In the proposed framework, we can flexibly adjust T1 based on distributed system requirements. The
results in Figures 6 and 7 are consistent with our theoretical analyses presented under Theorems 4.6 and 4.7.

Following Qiu et al. (2023), the robustness in the proposed framework with respect to the choice of smoothing parameter
µ is evaluated. The experiments are conducted on the robust hyperparameter optimization task under various settings of
smoothing parameter, µ ∈ {0.01, 0.001, 0.0001}. It is seen from Figure 8 and 9 that the proposed DTZO is robust to the
choice of smoothing parameter µ. In addition, we also note that the proposed DTZO has faster convergence rate with a
relatively smaller µ, because the gradient estimate improves when µ becomes relatively smaller, as discussed in Liu et al.
(2020).

Furthermore, to analyze DTZO’s performance improvements, we conduct an ablation study comparing DTZO against its
variants: DTZO(-) and DBZO. DTZO(-) replaces the proposed nonlinear cuts in DTZO with linear cuts, while DBZO
removes cascaded polynomial approximation, using only single-layer polynomial approximation. It is seen from Table 5
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Figure 6. Test loss of the proposed DTZO under various setting of
T1, results on USPS dataset.
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Figure 7. Test loss on AS (adversarial samples) of DTZO under
various setting of T1.
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Figure 8. Test loss of the proposed DTZO under various setting of
smoothing parameter µ, results on USPS dataset.
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Figure 9. Test loss on AS (adversarial samples) of DTZO under
various setting of smoothing parameter µ, results on USPS dataset.

that DTZO outperforms all variants, demonstrating the benefits of cascaded polynomial approximation and nonlinear zeroth
order cuts.

G. Discussions about Assumption 4.4 and 4.5
The assumption that the domains of optimization variables are bounded (i.e., bounded domains) is mild and widely used
in the theoretical analyses in machine learning and optimization, e.g., Assumption 3 in Deng et al. (2020), Assumption
2.3 in Sra et al. (2016), Assumption A2 in Li & Assaad (2021), Assumption 2.1 in Cao et al. (2024), Assumption 1 in
Zinkevich (2003), Assumption 6.3 in Huang et al. (2024c), Assumption in Eq. (4) in Duchi et al. (2012), Assumption 1 in
Yang et al. (2024b), Assumption 3.1. in Khaled & Jin (2024), Assumption 2 in Chen et al. (2024b), Assumption 3 in Hazan
& Minasyan (2020) and so on.

Let ({x∗
1,j}, {x∗

2,j}, {x∗
3,j}, z∗

1, z
∗
2, z

∗
3) represent the optimal solution of minimizing Fµ({x1,j},{x2,j},{x3,j},z1,z2,z3),

({x+
1,j}, {x

+
2,j}, {x

+
3,j}) denote the optimal solution of minimizing

N∑
j=1

f1,j(x1,j ,x2,j ,x3,j), and (x−
1,j ,x

−
2,j ,x

−
3,j) denote

the optimal solution of minimizing f1,j(x1,j ,x2,j ,x3,j). Thus, we have that,

N∑
j=1

f1,j(x
−
1,j ,x

−
2,j ,x

−
3,j) ≤

N∑
j=1

f1,j(x
+
1,j ,x

+
2,j ,x

+
3,j) ≤

N∑
j=1

f1,j(x
∗
1,j ,x

∗
2,j ,x

∗
3,j). (99)

Combining the definition of F ({x1,j},{x2,j},{x3,j},z1,z2,z3) in Eq. (15) with the fact that ϕj ||x∗
1,j −z∗

1||2 ≥ 0,
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λl[max{hout
l ({x∗

2,j}, {x∗
3,j}, z∗

1, z
∗
2, z

∗
3)− εout}]2 ≥ 0, we can obtain that,

N∑
j=1

f1,j(x
−
1,j ,x

−
2,j ,x

−
3,j)−

µ2

2 L(N + 1)
∑

i di

≤
N∑
j=1

f1,j(x
+
1,j ,x

+
2,j ,x

+
3,j)−

µ2

2 L(N + 1)
∑

i di

≤
N∑
j=1

f1,j(x
∗
1,j ,x

∗
2,j ,x

∗
3,j)−

µ2

2 L(N + 1)
∑

i di

≤ F ({x∗
1,j},{x∗

2,j},{x∗
3,j},z∗

1,z
∗
2,z

∗
3)−

µ2

2 L(N + 1)
∑

i di

≤ Fµ({x∗
1,j},{x∗

2,j},{x∗
3,j},z∗

1,z
∗
2,z

∗
3)

= F ∗
µ .

(100)

By combining Eq. (100) with the fact that µ2

2 L(N + 1)
∑

i di is a constant, we can obtain that the Assumption 4.4 (i.e., F ∗
µ

is lower-bounded) is mild since the assumption that f1,j(x−
1,j ,x

−
2,j ,x

−
3,j) is lower-bounded is widely-used and mild (Liu

et al., 2021a; 2018b; 2022; Fang et al., 2022; Li & Assaad, 2021; Liang et al., 2024; Tang et al., 2020; Shaban et al., 2019).

According to the definition of F ({x1,j},{x2,j},{x3,j},z1,z2,z3), i.e.,

F ({x1,j},{x2,j},{x3,j},z1,z2,z3)=
N∑
j=1

f1,j(x1,j ,x2,j ,x3,j) + ϕj ||x1,j−z1||2

+
∑

lλl[max{hout
l ({x2,j},{x3,j},z1,z2,z3)−εout}]2,

(101)

we have that 1) term ϕj ||x1,j−z1||2 satisfies the L-smoothness because the domains of variables x1,j and z1 are bounded;
2) term

∑
lλl[max{hout

l ({x2,j},{x3,j},z1,z2,z3)−εout}]2 satisfies the L-smoothness because the domains of variables
are bounded and there are at most ⌊T1

T ⌋ zeroth order cuts. Moreover, the assumption that f1,j(x1,j ,x2,j ,x3,j) satisfies the
L-smoothness is mild and widely-used (Ji et al., 2021; Gao, 2024; Gao et al., 2022; Chen et al., 2023; Li et al., 2024; Wu
et al., 2024; Huang et al., 2024a; Jing et al., 2024; Chen et al., 2024c; Xiao et al., 2023; Hong et al., 2023). Consequently,
we can obtain that F ({x1,j},{x2,j},{x3,j},z1,z2,z3) satisfies the L-smoothness, i.e., Assumption 4.5 is mild.

H. Exterior Penalty Method
Exterior penalty methods are widely-used when dealing with constrained optimization problems (Boyd & Vandenberghe,
2004; Bertsekas, 2015). In this work, the exterior penalty method is utilized based on the following key reasons. 1) The
lower-level optimization problem often serves as a soft constraint to the upper-level optimization problem, as discussed in
Sec. 3.1 and Appendix E, which can be partially violated without rendering the optimization problem meaningless. We can
flexibly control the importance in the upper-level and lower-level problems through adjusting the penalty parameters. For
example, if the importance of the lower-level optimization problem is required to be high within the nested optimization
problem, we can raise the penalty parameters. 2) The complexity of using the exterior penalty method is relatively lower.
For example, if we utilize the gradient projection method, which is also widely-used in constrained optimization (Jiao et al.,
2023; Xu et al., 2020), we need to solve additional one constrained optimization problem with non-convex feasible regions
at each iteration when performing projection, i.e.,

min
3∑

i=1

N∑
j=1

||xt+1
i,j − xi,j ||2 +

3∑
i=1

||zt+1
i − zi||2

s.t. x1,j = z1,∀j = 1, · · · , N
3∑

i=2

N∑
j=1

aout
i,j,l

⊤
x2
i,j+bouti,j,l

⊤
xi,j+

3∑
i=1

couti,l
⊤
z2
i +dout

i,l

⊤
zi+eoutl ≤εout,∀l

var. {x1,j}, {x2,j}, {x3,j}, z1, z2, z3,

(102)

where ({xt+1
i,j }, {zt+1

i }) denotes the points in (t + 1)th iteration after performing zeroth order gradient descent. Thus,
it is seen from Eq. (102) that the complexity of utilizing gradient projection descent method is higher than using the
penalty method since it requires addressing the constrained non-convex optimization problem in Eq. (102) at each iteration.
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Likewise, utilizing the Frank-Wolfe based methods (Shen et al., 2019; Garber & Hazan, 2015; Zhang et al., 2020; Xian
et al., 2021; Wang et al., 2016; Balashov et al., 2020) may also lead to relatively more computational complexity since it
also needs to solve one additional constrained non-convex optimization problem, i.e.,

min
3∑

i=1

N∑
j=1

∇xi,j
f1,j(x

t+1
1,j ,xt+1

2,j ,xt+1
3,j )⊤(xi,j − xt+1

i,j )

s.t. x1,j = z1,∀j = 1, · · · , N
3∑

i=2

N∑
j=1

aout
i,j,l

⊤
x2
i,j+bouti,j,l

⊤
xi,j+

3∑
i=1

couti,l
⊤
z2
i +dout

i,l

⊤
zi+eoutl ≤εout,∀l

var. {x1,j}, {x2,j}, {x3,j}, z1, z2, z3.

(103)

Thus, as indicated by Eq. (103), the complexity of using the Frank-Wolfe based method is higher than that of the exterior
penalty method, as it requires solving an additional constrained non-convex optimization problem in Eq. (103) at each
iteration. Based on the aforementioned reasons, we chose to use the exterior penalty method in this work.

In addition, we demonstrate the close relationship between the original constrained optimization problem (P1) in Eq. (8)
and the unconstrained optimization problem (P2) in Eq. (15) in this work. That is, 1) the optimal solution to P2 is also
a feasible solution to the relaxed original problem P1; 2) the gap between the optimal objective value by utilizing the
exterior penalty method ( i.e.,

∑N
j=1f1,j(x

∗
1,j ,x

∗
2,j ,x

∗
3,j) in P2) and the optimal objective value in original problem P1 (i.e.,∑N

j=1f1,j({x1,j},{x2,j},{x3,j})) will continuously decrease with penalty parameters increased. To enhance the readability
of this discussion, the constrained optimization problem and unconstrained optimization problem are presented as follows.

Constrained cascaded polynomial approximation problem (P1):

min
N∑
j=1

f1,j(x1,j ,x2,j ,x3,j)

s.t. x1,j = z1,∀j = 1, · · · , N
3∑

i=2

N∑
j=1

aout
i,j,l

⊤
x2
i,j+bouti,j,l

⊤
xi,j+

3∑
i=1

couti,l
⊤
z2
i +dout

i,l

⊤
zi+eoutl ≤εout,∀l

var. {x1,j}, {x2,j}, {x3,j}, z1, z2, z3.

(104)

Unconstrained optimization problem based on exterior penalty method (P2):

minF ({x1,j},{x2,j},{x3,j},z1,z2,z3) :=
N∑
j=1

f1,j(x1,j ,x2,j ,x3,j) + ϕj ||x1,j−z1||2

+
∑

lλl[max{hout
l ({x2,j},{x3,j},z1, z2, z3)−εout, 0}]2,

var. {x1,j}, {x2,j}, {x3,j}, z1, z2, z3,

(105)

where hout
l ({x2,j}, {x3,j}, z1, z2, z3) =

3∑
i=2

N∑
j=1

aout
i,j,l

⊤
x2
i,j+bouti,j,l

⊤
xi,j+

3∑
i=1

couti,l
⊤
z2
i+dout

i,l

⊤
zi+eoutl . We first show that

the optimal solution to P2 is also a feasible solution to the relaxed original problem P1, and this relaxation will be gradually
tightened with penalty parameters increased. Let ({x∗

1,j},{x∗
2,j},{x∗

3,j},z∗
1,z

∗
2,z

∗
3) denote the optimal solution to P2 in Eq.

(105). For any point ({x−
1,j}, {x

−
2,j}, {x

−
3,j}, z

−
1 , z

−
2 , z

−
3 ) satisfies hout

l ({x−
1,j}, {x

−
2,j}, {x

−
3,j}, z

−
1 , z

−
2 , z

−
3 ) ≤ εout,∀l

and x1,j − z1 = 0,∀j, since it is also the feasible solution to P2, we have that,

N∑
j=1

f1,j(x
∗
1,j ,x

∗
2,j ,x

∗
3,j)+ϕj ||x∗

1,j−z∗
1||2

+
∑

lλl[max{hout
l ({x∗

2,j}, {x∗
3,j}, z∗

1, z
∗
2, z

∗
3)−εout, 0}]2

≤
N∑
j=1

f1,j(x
−
1,j ,x

−
2,j ,x

−
3,j)+ϕj ||x−

1,j−z−
1 ||2

+
∑

lλl[max{hout
l ({x−

2,j}, {x
−
3,j}, z

−
1 , z

−
2 , z

−
3 )−εout, 0}]2.

(106)
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According to Shen et al. (2024), let C = 2max |f1,j |, we can obtain that,

N∑
j=1

ϕj ||x∗
1,j−z∗

1||2+
∑

lλl[max{hout
l ({x∗

2,j}, {x∗
3,j}, z∗

1, z
∗
2, z

∗
3)−εout, 0}]2

≤
N∑
j=1

f1,j(x
−
1,j ,x

−
2,j ,x

−
3,j)−

N∑
j=1

f1,j(x
∗
1,j ,x

∗
2,j ,x

∗
3,j)

≤ NC.

(107)

Because of ||x∗
1,j−z∗

1||2 ≥ 0 and [max{hout
l ({x∗

2,j}, {x∗
3,j}, z∗

1, z
∗
2, z

∗
3)−εout, 0}]2 ≥ 0,∀l and according to Eq. (107),

we can obtain that,

||x∗
1,j−z∗

1||2 ≤ NC

ϕj
,∀j, (108)

hout
l ({x∗

2,j}, {x∗
3,j}, z∗

1, z
∗
2, z

∗
3)− εout ≤

√
NC

λl
,∀l. (109)

According to Eq. (108) and Eq. (109), we can conclude that the optimal solution ({x∗
1,j},{x∗

2,j},{x∗
3,j},z∗

1,z
∗
2,z

∗
3) to P2 is

a feasible solution to the relaxed problem of the original constrained problem P1, that is,

min
N∑
j=1

f1,j(x1,j ,x2,j ,x3,j)

s.t. ||x1,j − z1||2 ≤ NC
ϕj

,∀j = 1, · · · , N

hout
l ({x∗

2,j}, {x∗
3,j}, z∗

1, z
∗
2, z

∗
3) ≤ εout +

√
NC
λl

,∀l

var. {x1,j}, {x2,j}, {x3,j}, z1, z2, z3.

(110)

Let ({x1,j},{x2,j},{x3,j},z1,z2,z3) and ({x1,j},{x2,j},{x3,j},z1,z2,z3) respectively denote the optimal solutions to P1
and the relaxed problem of P1 (i.e., Eq. (110)), and let gap

β({ϕj}, {λl}) =
N∑
j=1

f1,j({x1,j},{x2,j},{x3,j})−
N∑
j=1

f1,j({x1,j},{x2,j},{x3,j}). (111)

It is seen from Eq. (110) that this relaxation will be tightened with penalty parameter ϕj , λl,∀j,∀l increased. Combining
with Eq. (111), we can obtain that β({ϕj}, {λl}) ≥ 0 will decrease when ϕj , λl,∀j,∀l increase. Next, we will demonstrate
the gap between the optimal objective value by utilizing the exterior penalty method ( i.e.,

∑N
j=1f1,j(x

∗
1,j ,x

∗
2,j ,x

∗
3,j) in P2)

and the optimal objective value in original problem P1 (i.e.,
∑N

j=1f1,j({x1,j},{x2,j},{x3,j})) will continuously decrease
with ϕj , λl,∀j,∀l increased.

Because ({x1,j},{x2,j},{x3,j},z1,z2,z3) is also the feasible solution to P2, and according to
∑

j ϕj ||x1,j − z1||2 = 0,∑
lλl[max{hout

l ({x2,j}, {x3,j}, z1, z2, z3)−εout, 0}]2 = 0, we have that,

N∑
j=1

f1,j(x
∗
1,j ,x

∗
2,j ,x

∗
3,j)−

N∑
j=1

f1,j({x1,j},{x2,j},{x3,j})

≤ −
N∑
j=1

ϕj ||x∗
1,j−z∗

1||2 −
∑

lλl[max{hout
l ({x∗

2,j}, {x∗
3,j}, z∗

1, z
∗
2, z

∗
3)−εout, 0}]2

≤ 0.

(112)

According to ({x∗
1,j},{x∗

2,j},{x∗
3,j},z∗

1,z
∗
2,z

∗
3) is a feasible solution to problem in Eq. (110), we can obtain that,

N∑
j=1

f1,j(x
∗
1,j ,x

∗
2,j ,x

∗
3,j) ≥

N∑
j=1

f1,j({x1,j},{x2,j},{x3,j}). (113)
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Table 6. Comparisons between the proposed DTZO with the state-of-the-art TLL methods (including Betty (Choe et al., 2023), Hypergra-
dient based method (Sato et al., 2021), and AFTO (Jiao et al., 2024)) based on the applicability to different TLL problems. ✓ represents
that the method can be applied to this TLL problem. The proposed DTZO is versatile and can be adapted to a wide range of TLL problems.
We use ZOC as an abbreviation for zeroth order constraints.

Betty Hypergradient AFTO DTZO

Non-distributed TLL without ZOC ✓ ✓ ✓ ✓

Distributed TLL without ZOC ✓ ✓

TLL with partial ZOC ✓

TLL with level-wise ZOC ✓

By combining Eq. (113) with Eq. (111), we can obtain that,

N∑
j=1

f1,j({x1,j},{x2,j},{x3,j})−
N∑
j=1

f1,j(x
∗
1,j ,x

∗
2,j ,x

∗
3,j)

≤
N∑
j=1

f1,j({x1,j},{x2,j},{x3,j})−
N∑
j=1

f1,j({x1,j},{x2,j},{x3,j})

= β({ϕj}, {λl}).

(114)

By combining Eq. (114) with Eq. (112), we can obtain that,

−β({ϕj}, {λl}) ≤
N∑
j=1

f1,j(x
∗
1,j ,x

∗
2,j ,x

∗
3,j)−

N∑
j=1

f1,j({x1,j},{x2,j},{x3,j}) ≤ 0. (115)

Based on Eq. (115) and β({ϕj}, {λl}) ≥ 0, we can get that,

|
N∑
j=1

f1,j(x
∗
1,j ,x

∗
2,j ,x

∗
3,j)−

N∑
j=1

f1,j({x1,j},{x2,j},{x3,j})| ≤ β({ϕj}, {λl}). (116)

By combining Eq. (116) with Eq. (110) and Eq. (111), we can conclude the gap between the optimal objective value by
utilizing the exterior penalty method (i.e.,

∑N
j=1f1,j(x

∗
1,j ,x

∗
2,j ,x

∗
3,j) in P2) and the optimal objective value in original

problem P1 (i.e.,
∑N

j=1f1,j({x1,j},{x2,j},{x3,j})) is bounded and will decrease with penalty parameter ϕj , λl,∀j,∀l
increased.

I. TLL with Partial Zeroth Order Constraints
In this work, TLL with level-wise zeroth order constraints is considered, where first order information at each level is
unavailable. In addition, it is worth mentioning that the proposed framework is versatile and can be adapted to a wide
range of TLL problems with partial zeroth order constraints, i.e., grey-box TLL, through slight adjustments. The reason we
refer to it as grey-box TLL is that the first order information for some levels in TLL is available, while for others it is not
(Huang et al., 2024b; Beykal et al., 2020; Astudillo & Frazier, 2021; Bajaj et al., 2018). To further show the superiority of
the proposed DTZO, we compare it with the state-of-the-art TLL methods (i.e., Betty (Choe et al., 2023), Hypergradient
based method (Sato et al., 2021), and AFTO (Jiao et al., 2024)) based on their applicability to TLL problems in Table 6. In
DTZO, the zeroth order cut takes center stage, driving the construction of cascaded polynomial approximations without
the need for gradients or sub-gradients. Notably, zeroth order cut is not only the backbone of DTZO but also opens the
door to tackling grey-box TLL problems, seamlessly handling nested functions that combine both black-box and white-box
elements. Discussions are provided as follows.

41



DTZO: Distributed Trilevel Zeroth Order Learning with Provable Non-Asymptotic Convergence

I.1. TLL with second and third-level zeroth order constraints

In this situation, the first order information at the first-level in TLL problems is accessible. Thus, we can use the exact
gradients to replace the zeroth order gradient estimator, i.e., Eq. (16)-(19) can be replaced by,

xt+1
1,j = xt

1,j − ηx1

(
∇x1,j

f1,j(x
t
1,j ,x

t
2,j ,x

t
3,j) + 2ϕj(x

t
1,j − zt

1)
)
, (117)

xt+1
2,j = xt

2,j − ηx2∇x2,jf1,j(x
t
1,j ,x

t
2,j ,x

t
3,j)− ηx2∇x2,jo({xt

2,j},{xt
3,j},zt

1, z
t
2, z

t
3), (118)

xt+1
3,j = xt

3,j − ηx3∇x3,jf1,j(x
t
1,j ,x

t
2,j ,x

t
3,j)− ηx3∇x3,jo({xt

2,j},{xt
3,j},zt

1, z
t
2, z

t
3). (119)

By using the gradient descent steps in Eq. (117)-(119), the TLL problems with second and third-level zeroth order constraints
can be effectively by the proposed framework.

I.2. TLL with first and third-level zeroth order constraints

In this situation, the first order information at the second-level in TLL problems is available. Thus, we can use the first
order information to generate outer layer cutting plane, e.g., ρ-cut (Jiao et al., 2024). By combining the outer layer first
order cutting plane with the inner layer zeroth order cut, the proposed framework is capable of constructing the cascaded
polynomial approximation. The generated outer layer ρ-cut can be expressed as,
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(120)

In Eq. (120), ρ > 0 is a parameter in ρ-weakly convex function, and ai, i = 1, 2, 3 is the boundness of variable xi,j , zi, as
discussed in Jiao et al. (2024). By using the outer layer first order cutting plane, the TLL problems with first and third-level
zeroth order constraints can be addressed by the proposed framework.

I.3. TLL with first and second-level zeroth order constraints

In this situation, the first order information at the third-level in TLL problems is accessible. Similarly, we can utilize the first
order information to generate the inner layer cutting plane, e.g., ρ-cut. Through combining the inner layer first order cutting
plane with the outer layer zeroth order cut, the proposed framework is capable of constructing the cascaded polynomial
approximation. The generated inner layer ρ-cut can be expressed as,
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By using the inner layer first order cutting plane in Eq. (121), the TLL problems with second and third-level zeroth order
constraints can be addressed by the proposed framework.
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I.4. Trade-off between gradient-free and gradient-based methods

The proposed framework is highly adaptable, accommodating both fully gradient-unavailable TLL and cases with partial
gradient access with minimal modifications. We further discuss and compare the trade-off between gradient-free and
gradient-based methods below.

1. Gradients at first-level are available. In this case, Eq. (16)-(19) can be replaced with gradient descent steps in
DTZO, which introduce less noise per iteration and improve convergence rate (i.e., O(1/ϵ)). However, Eq. (16)-(19)
do not rely on gradients, making them more applicable to scenarios where gradients are unavailable. This represents a
trade-off between convergence efficiency and applicability, which can be flexibly adjusted within DTZO.

2. Gradients at second-level are available. In this case, the outer layer zeroth order cut can be replaced by first order cut.
Since first order cut is generated based on gradients, it introduces less noise in the generation process and can thus
result in a superior polynomial relaxation. In contrast, zeroth order cut exhibits broader applicability, as its generation
does not depend on gradients. This represents a trade-off between outer layer polynomial relaxation and applicability,
which can be effectively controlled within DTZO.

3. Gradients at third-level are available. Similar to 2), there exists a trade-off between inner layer polynomial relaxation
and applicability. We can flexibly control this trade-off by exchanging the inner layer zeroth order and first order cuts.

J. Discussions about Cutting Plane Method and Gradient Estimator
J.1. Cutting Plane Method

Cutting plane method, also called polyhedral approximation (Bertsekas, 2015), is widely used in convex optimization
(Franc et al., 2011; Boyd & Vandenberghe, 2007) and distributed optimization (Bürger et al., 2013; Yang et al., 2014). The
rationale behind cutting plane method is to use the intersection of a finite number of half-spaces (e.g., P = {x|aTl x ≤
bl, l = 1, · · · , L}, where {x|aTl x ≤ bl} represent a half-space (Boyd & Vandenberghe, 2004)) to approximate the feasible
region of the original optimization problem (e.g., x ∈ X ) . The approximation can be gradually refined by generating
additional half-spaces (Bertsekas, 2015). Recently, cutting plane methods have proven effective in tackling distributed nested
optimization problems. By leveraging these methods, such problems can be transformed into decomposable optimization
problems, which greatly simplifies the design of distributed algorithms for nested optimization, as discussed in (Jiao
et al., 2023; 2024). In (Jiao et al., 2023), cutting plane methods are applied to solve bilevel optimization problems within
a distributed framework. Likewise, (Chen et al., 2024d) utilize the cutting plane method to tackle distributed bilevel
optimization challenges in downlink multi-cell systems. Building on this, (Jiao et al., 2024) further extend the approach to
address distributed trilevel optimization problems. However, existing cutting plane methods for nested optimization rely on
the first-order information to generate cutting planes, which are not available in zeroth-order optimization.

In this work, we propose a framework capable of generating zeroth order cuts for nested optimization problems without the
use of first order information. We theoretically demonstrate that the proposed zeroth order cuts are capable of constructing
the cascaded polynomial relaxation without relying on first order information, and this relaxation will be gradually tightened
as additional cuts are introduced. Additionally, it is worth mentioning that the proposed zeroth order cuts do not require the
convexity of the function and are also the first non-linear cuts in nested optimization. Compared to linear cutting planes,
nonlinear cuts usually offer better approximation capabilities for complex functions (Temlyakov, 2003), providing new
insights for the further development of cutting plane methods in nested optimization. Please note that simply combining the
existing algorithms can not achieve this goal. To further highlight the novelty of the proposed zeroth order cut, we compare
it with existing cutting plane methods used in nested optimization in Table 7.

J.2. The Choice of Gradient Estimator

It is worth noting that the proposed framework is versatile, allowing for the integration of various gradient estimators. For
instance, the mini-batch sampling-based gradient estimator (Liu et al., 2020; Duchi et al., 2015) can be employed to replace
the two-point gradient estimator, reducing variance. Specifically, with mini-batch sampling, Eq. (10), (12) (19), (20), and
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Table 7. Comparison of the existing cutting plane methods in nested optimization.

Cutting Plane Method Convex Non-convex Non-linear Gradient Free

(Jiao et al., 2023) ✓

(Chen et al., 2024d) ✓

(Jian et al., 2024) ✓

(Jiao et al., 2024) ✓ ✓

The Proposed Zeroth Order Cut ✓ ✓ ✓ ✓

(21) can be replaced by the following multi-point gradient estimators.
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where µin,p = [{µp
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drawn from N (0, I), and b represents the number of samples used in the multi-point gradient estimator.

K. Future Work
This study is the first work that considers how to address the trilevel zeroth order optimization problems. The proposed
framework is not only capable of addressing the single-level and bilevel zeroth order learning problems but can also be
applied to a broad class of TLL problems, e.g., TLL with partial zeroth order constraints. However, higher-level nested
learning problems, specifically those with more than three levels, are not considered in this work and will be addressed in
future research.
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