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ABSTRACT

Out-of-Distribution (OOD) detection, aiming to distinguish outliers from known
categories, has gained prominence in practical scenarios. Recently, the advent of
vision-language models (VLM) has heightened interest in enhancing OOD detec-
tion for VLM through few-shot tuning. However, existing methods mainly focus
on optimizing global prompts, ignoring refined utilization of local information
with regard to outliers. Motivated by this, we freeze global prompts and introduce
a novel coarse-to-fine tuning paradigm to emphasize regional enhancement with
local prompts. Our method comprises two integral components: global prompt
guided negative augmentation and local prompt enhanced regional regularization.
The former utilizes frozen, coarse global prompts as guiding cues to incorporate
negative augmentation, thereby leveraging local outlier knowledge. The latter
employs trainable local prompts and a regional regularization to capture local in-
formation effectively, aiding in outlier identification. We also propose regional-
related metric to empower the enrichment of OOD detection. Moreover, since our
approach explores enhancing local prompts only, it can be seamlessly integrated
with trained global prompts during inference to boost the performance. Compre-
hensive experiments demonstrate the effectiveness and potential of our method.
Notably, our method reduces average FPR95 by 5.17% against state-of-the-art
method in 4-shot tuning on challenging ImageNet-1k dataset, even outperforming
16-shot results of previous methods. Code will be available upon acceptance.

1 INTRODUCTION

Out-of-distribution (OOD) detection (Hendrycks & Gimpel, 2016; Liu et al., 2020; Jaeger et al.,
2022; Tao et al., 2022) aims to distinguish outliers, i.e., samples that do not belong to known in-
distribution (ID) classes. It is crucial for industries that require a high level of safety, such as face
recognition (Lopez-Lopez et al., 2022) and autonomous driving (Filos et al., 2020). Most previ-
ous methods in the field of OOD detection handle the problem using single-modal methods and
concentrate on post-hoc processing (Hendrycks & Gimpel, 2016; Wang et al., 2022) or leverag-
ing outliers (Hendrycks et al., 2018; Jiang et al., 2024). However, they suffer from computational
inefficiency or consuming data collection. Recently, as the emergence of vision-language mod-
els (Radford et al., 2021; Li et al., 2021) shows promising results in multi-modal tasks including
image caption (Li et al., 2022a), video understanding (Xu et al., 2021), and so on, it is promising to
exploit textual representations to improve performance of OOD detection given a vision-language
model (Radford et al., 2021) as a prior model. Considering that zero-shot undergoes a domain gap
between upstream and target distribution while full-tuning may pose threats to the learned represen-
tation, it is meaningful to explore few-shot learning for vision-language model in OOD detection, in
which the detector is prohibited from real outliers and only has access to several ID images.

The most challenging scene for OOD detection is that one hard OOD sample is similar to a known
class on the whole and only has subtle differences locally, which naturally requires the detector to
identify outliers through local outlier regions. However, existing research falls short of refining OOD
task via rich local information when subtle OOD samples are exhibited in certain regions, as is shown
in Fig. 1. Some methods merely focus on utilizing global features only (Ming et al., 2022) (blue
boxes in Fig. 1), which ignores local features (red boxes in Fig. 1) and inevitably brings about coarse
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Figure 1: Comparison of prompt learning for OOD detection task. Prompts with global optimization
may fail in challenging OOD samples as they are overall similar to ID samples and only have subtle
regional differences. For example, cat and tiger are generally similar (blue boxes) and only differ
in forehead (red box). Our approach with local outlier knowledge cares about region difference and
tackles the issue to some extent.

description. Others use the same prompts to match both global and local image features (Miyai et al.,
2023b;a), so the gap between them may lead to inaccurate local outlier identification. Consequently,
it is straightforward that enhancing regional information to empower the model with local outlier
knowledge could be significant to OOD detection.

Motivated by the above observations, we focus on how to explicitly exploit regional-related knowl-
edge, i.e., the learned knowledge is determined by the position of regions, about not only known
classes but also unknown samples, which has not been explored before. To tackle the issue, we
focus on enhancing local features solely and propose the extensible local prompts for fine local in-
formation utilization. Concretely, we decompose global and local prompts to exploit global and
local features, and term prompts that interact with global/local features as global/local prompts.
Then we propose two integral components: global prompt guided negative augmentation and local
prompt enhanced regional regularization. Global prompt is frozen to provide guidance for generat-
ing negative augmentation, which could facilitate the exploitation of local outlier knowledge. Fine
local prompt is designed for regional regularization to refine regional-related local prompts, which
captures the fine local information to better distinguish OOD inputs. Moreover, we also propose
corresponding regional-related evaluation metrics to leverage the power of local prompts.

Another advantage of our approach is that it orthogonally explores the benefits of local prompts
shown in Fig. 1 and uses hand-crafted global prompts, i.e., a photo of a {class}. Hence, it is ex-
tensible to numerous global prompt designing methods (Miyai et al., 2023a; Wang et al., 2023).
Therefore, we can extend it by seamlessly replacing coarse global prompts with trained ones during
inference to improve the performance.

Comprehensive experiments demonstrate the effectiveness of the proposed method. Specifically, our
results outperform the state-of-the-art methods in both OOD detection (5.17% reduction on FPR95)
and ID accuracy evaluation (1.02%) under 4-shot tuning by a large margin, exhibiting the superiority
and the potential of enhancing local prompts for OOD detection and ID classification ability. We
summarize our contributions as follows:

• We focus on enhancing local information with local prompts and propose a coarse-to-fine
few-shot tuning paradigm. Specifically, we propose effective negative augmentation and
regional regularization to learn local prompts with local outlier knowledge.

• We propose regional-related OOD score and ID classification metrics, which benefit from
enhanced local prompts in OOD detection. Moreover, our method is orthogonal to global
prompt optimization methods and is extensible to get notable performance when integrated
with trained local global prompts during inference.

• We conduct comprehensive experiments and achieve competitive results on various OOD
detection datasets, demonstrating the superiority of our method. Notably, our 4-shot results
on challenging ImageNet-1k even outperform 16-shot results of previous methods.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

2.1 OUT-OF-DISTRIBUTION DETECTION WITH VISION-LANGUAGE MODEL

Out-of-distribution detection has been widely studied in the past decades (Hendrycks et al., 2018;
Cheng et al., 2023; Shu et al., 2023; Zhu et al., 2023a). With the emergence of CLIP (Radford
et al., 2021), which learns outstanding visual and textual representations pre-trained on large-scale
image-text pairs and displays excellent ability in various downstream tasks, much attention has been
paid to transferring vision-language model to OOD detection task (Fort et al., 2021; Ming et al.,
2022; Esmaeilpour et al., 2022; Wang et al., 2023; Miyai et al., 2023a; Park et al., 2023; Bai et al.,
2024). For instance, MCM (Ming et al., 2022) adopts the visual and textual representations extracted
from CLIP encoders and applies softmax with temperature to better separate ID and OOD data.
ZOC (Esmaeilpour et al., 2022) generates pseudo unseen class labels with additional modules and
defines a novel confidence score accordingly. Clipn (Wang et al., 2023) enhances the discrimination
of OOD samples with extra encoder and data (Sharma et al., 2018).

2.2 MULTI-MODAL FEW-SHOT PROMPT LEARNING

Since vision-language model like CLIP (Radford et al., 2021) achieves superior performance in
numerous image-text tasks, many attempts have been made to explore few-shot tuning to leverage
the power of large pre-trained models. There are mainly two lines of approaches, namely Adapter
Learning (Zhang et al., 2021; Gao et al., 2023; Guo et al., 2023; Udandarao et al., 2023; Zhu et al.,
2023b) and Prompt Learning (Zhou et al., 2022b; Bahng et al., 2022). Both of them froze the pre-
trained encoders when fine-tuning a few additional parameters.

Prompt learning promotes the performance of vision-language model by enhancing the prompts
in both visual (Jia et al., 2022; Bahng et al., 2022) and textual (Zhou et al., 2022b;a) aspects. A
common practice is setting textual prompts learnable and forwarding them together with visual
inputs. CoOp (Zhou et al., 2022b) replaces the hand-crafted prompts with contextual learnable
embeddings and optimizes them during few-shot training. In our approach, we freeze global prompts
and fine-tune local prompts individually.

2.3 GLOBAL AND LOCAL INFORMATION

In Vision Transformer (Dosovitskiy et al., 2020), global tokens are specifically designed for image
classification task (Touvron et al., 2021; He et al., 2022). They represent overall characteristics of
images. Local tokens are utilized for dense prediction tasks including segmentation (Cheng et al.,
2022; Strudel et al., 2021), object detection (Chen et al., 2022; Meng et al., 2021), and so on. The
utilization of local features has been explored as well, such as pyramid features (Wang et al., 2021)
and window attention (Liu et al., 2021; Li et al., 2022b; Liu et al., 2022).

In the field of OOD detection, global features are primarily employed and numerous studies have
been conducted concerning local information (Miyai et al., 2023b;a; Zhang et al., 2023). GL-
MCM (Miyai et al., 2023b) takes all tokens into consideration and uses the sum of global and
local OOD scores to measure the confidence. LoCoOp (Miyai et al., 2023a) keeps global ID textual
embeddings away from the interference of ID-irrelevant regions. However, all existing approaches
take same prompts for all features. By contrast, our method directly enhances OOD detection with
ID-related areas and refines local prompts to leverage local outlier knowledge.

3 PRELIMINARY

3.1 PROBLEM DEFINITION

Few-shot out-of-distribution detection. Formally, out-of-distribution detection can be viewed as
a binary classification that the detector has to identify whether the input image is from ID or OOD
space. Labeled training data is composed of Din

train = {(xi, yi)}ni=1, where xi is sampled i.i.d. from
joint data distribution space PXYin and yi ∈ Y in. Y in = {1, · · · , C} is the label space of ID data
and C is the number of classes. We transfer the definition of few-shot learning in classification to
OOD detection to fine-tune given vision-language model instead of training from scratch. Under
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few-shot setting, a small proportion of images in each class (e.g., 1, 4, or 16 images) are extracted
for training. Yout is the label space of OOD data and there is no overlap between ID and OOD label,
i.e., Y in∩Yout = ∅. Typically, the model is unable to obtain any OOD data during training process.

The test dataset is a mixture of Din
test and Dout

test. When testing, OOD performance is evaluated by
discriminating which distribution each sample comes from. A discriminant function is calculated to
identify ID and OOD samples:

D(x) =

{
ID, S(x) ≥ γ

OOD, S(x) < γ
, (1)

where S(x) is the confidence score function measuring the uncertainty and γ is the threshold.

Prompt learning with CLIP. CLIP (Radford et al., 2021) is compromised of image encoder EI

and text encoder ET. Given an image I and a text T describing the corresponding image, they are
extracted into feature embeddings, respectively. In prompt learning, textual prompts can be hand-
crafted templates (Radford et al., 2021), e.g., “a photo of {class}” or learnable context words (Zhou
et al., 2022a), e.g., tc = [v1, · · · ,vL;vc], where vi, (i = 1, · · · , L) is the learnable embedding, and
L is the length of context words. vc (c ∈ {1, · · · , C}) is the embedding of class name. Features
of prompts are obtained from text encoder ET(tc) : R(L+1)×d → Rd. For simple notation, we use
tc (also t/t̂ in description below) to represent the features of prompts as text encoder is not the focus
of the paper.

Image is first split into several patches with an additional class token embedding x ∈ R(N+1)×d. N
and d denote the number of local tokens and hidden dimension, respectively. Both global and local
visual features are then extracted from image encoder [zg, zl] = EI(x) : R(N+1)×d → R(N+1)×d,
where global features zg and local features zl represents overall features and patch-wise regional
features, respectively.

In this paper, we denote global prompts and local prompts to hand-crafted/learnable prompts that
interact with overall local features and fine local features, respectively.

OOD detection with CLIP. The MCM score (Ming et al., 2022) is defined as the maximum of
similarity after softmax with temperature:

SMCM(x) = max
i

exp(sim(zg, ti)/T )∑C
j=1 exp(sim(zg, tj)/T )

, (2)

and GL-MCM score (Miyai et al., 2023b) considers local information. It applies softmax for local
features as well and the maximum is selected as local MCM score. Final OOD score is the sum of
MCM score and local MCM score:

SGL−MCM(x) = SMCM(x) + max
i,h

exp(sim(zl
h, ti)/T )∑C

j=1 exp(sim(zl
h, tj)/T )

, (3)

where zg represents global feature and zl
h (h ∈ {1, · · · , N}) represents all extracted local features.

4 METHODOLOGY

We propose a coarse-to-fine paradigm to strengthen OOD detection with local outlier knowledge.
We first present negative augmentation that leverages local and unknown outlier information. Then,
we describe local prompt enhancement along with their training regularization and a regional OOD
score for better regional information utilization. Finally, we extend our method to trained global
prompts to boost the performance. Detailed structures are shown in Fig. 2.

4.1 GLOBAL PROMPT GUIDED NEGATIVE AUGMENTATION

As it is costly and not always effective to rely solely on real outliers, one crucial problem for OOD
detection is how to leverage imaginary local outlier knowledge to the detector. We propose to syn-
thesize hard negative images to force the model to learn features with strong relation only to simulate
outlier situations while avoiding the requirement of real OOD samples. To this end, we apply a sim-
ple and straightforward random crop augmentation to empower the detector with unknown (i.e.,

4
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Figure 2: Detailed structure of the proposed regional enhancement framework. Our method consists
of global prompt guided negative augmentation and local prompt enhanced regional regularization.
We froze global prompts to select regional augmented samples and enhance local prompts to learn
regional-related representation that helps improve both ID accuracy and OOD detection.

OOD) information. Specifically, we randomly crop image input m times and use the hand-crafted
template with corresponding class name, i.e., tc = “a photo of {class}”, c = {1, · · · , C} as text in-
puts to calculate the image-text similarity with global features from image encoder. We then select
m1/m2 images with the largest/least similarity, respectively. Images with the largest similarity can
be seen as positive samples and those with the least similarity serve as hard negative samples. No-
tably, random crop is helpful to leverage local information in that local prompts can learn regional-
related outlier information through space translation by means of random crop. Effectiveness of
random crop is verified in Sec. 5.2.

Global prompts can be viewed as coarse guidance for negative augmentation standing for overall
representation and are frozen in our framework. Motivated by previous observations(Ming et al.,
2022; Miyai et al., 2023b), we simply use the basic global prompts during training and select aug-
mented images as they are fairly good for extracting global features. Concretely, the global prompts
are used to (1) guide the negative augmentation selection, which has been described above; (2) guide
the global OOD score calculation for evaluation, as shown in Sec. 4.3.

It is worth emphasizing that our approach is orthogonal to all existing global prompt optimization
strategies, i.e., global prompts are built without tuning in our structure (Miyai et al., 2023a), so dur-
ing inference, it is expected that extending the hand-crafted global prompts with carefully designed
ones can promote the performance. Concretely, we replace hand-crafted global prompts with trained
ones that have the same shape. Note that our main purpose is to decompose global and local prompts
and showcase the effectiveness of local outlier enhancement for OOD detection. Therefore, we do
not specifically select the template as it is not the focus of the paper.

4.2 LOCAL PROMPT ENHANCED REGIONAL REGULARIZATION

Once augmented inputs are decided, corresponding local features are then used to optimize local
prompts to identify ID and OOD samples from the perspective of regional enhancement. We aim at
utilizing the local features extracted from image encoder in a fine way to (1) learn regional-related
prompts that better characterize local similarity for both ID and OOD regions; (2) enhance detection
ability with refined local features. Specifically, we design local prompts t with learnable context
words to represent local textual information for each known class. Moreover, on account of the
existence of OOD regions, we build a few local negative prompts t̂ to handle possible local outliers.

Contrary to previous global prompt optimization methods, local prompts that work on local features
are expected to learn regional-related textual representations and be aware of outliers during training.
To this end, we enhance local prompts through regional regularization, which consists of contrastive
regularization and diversity regularization, to better distinguish between ID and OOD samples.
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Contrastive regularization. We propose regional contrastive regularization to enhance local textual
prompts for better local information utilization. It is composed of local loss and local negative loss.
Given a positive sample of training image, local loss is employed to learn regional information of
known classes:

Lpos(x, y) = −log
Tk{exp(sim(zl

h, ty)/T )}∑C
i=1 Tk{exp(sim(zl

h, ti)/T )}+
∑Nneg

i=1 Tk{exp(sim(zl
h, t̂i)/T )}

, (4)

where (x, y) stands for training image-label pairs, Tk(x) is the sum of k largest elements in x, k is
regional number and T is the temperature. We use cosine similarity as the similarity metric:

sim(ti, tj) =
ti · tj

∥ti∥ ∥tj∥
. (5)

Similarly, given a hard negative sample of the image denoted as x̃, local negative loss is defined to
make the model aware of outliers:

Lneg(x̃) = −log

∑Nneg

i=1 Tk{exp(sim(z̃l
h, t̂i)/T )}∑C

i=1 Tk{exp(sim(z̃l
h, ti)/T )}+

∑Nneg

i=1 Tk{exp(sim(z̃l
h, t̂i)/T )}

. (6)

Intuitively, contrastive regularization forces the model to focus on ID-related regions through ran-
dom crop, and keep away from outlier-related regions through negative augmentation. We demon-
strate the necessity of local negative loss to make margins for unknown categories in OOD detection
in Sec.5.2.
Diversity regularization. As local negative prompts are randomly initialized, more regularization
has to be imposed on them to ensure their diversity. Therefore, in addition to the proposed contrastive
regularization, we apply a diversity regularization on local negative prompts, as follows:

Lreg =
1

Nneg(Nneg − 1)/2

∑
1≤i<j≤Nneg

sim(t̂i, t̂j), (7)

where Nneg is the number of local negative prompts. Final Loss is a weighted sum of the above loss:

Ltotal = Lpos + λnegLneg + λregLreg, (8)

where λneg and λreg are the coefficients of the corresponding losses.

4.3 REGIONAL OOD SCORE

On consideration that regional information is especially enhanced during training, we propose
Regional-MCM score to enhance OOD score beyond simple MCM and GL-MCM:

SR−MCM(x) = SMCM(x) + T mean
k { exp(sim(zl

h, ti)/T )∑C
j=1 exp(sim(zl

h, tj)/T ) +
∑Nneg

j=1 exp(sim(zl
h, t̂j)/T )

},

(9)
where T mean

k (x) is the mean of k largest elements in x and k represents regional number. Intuitively,
Regional-MCM serves as a general form of GL-MCM that takes the k most similar regions into
consideration and additionally contains local negative prompts, which is helpful to consider more
than one certain region with high similarity and improve OOD detection ability. Effectiveness of the
score is verified in Sec. 5.2.

As the proposed OOD score is only applicable for OOD detection, we further propose a local-aware
score that assigns a score to each class and thus determines ID category with the largest score.
Specifically, ID classification takes both global and local features into consideration:

hg
i (x) = sim(zg, ti), (10)

hl
i(x) = T mean

k {exp(sim(zl
h, ti)/T )}, (11)

where hg
i (x), h

l
i(x) are global and local portions and i represents the category label. The score

attached to each category is measured by:

f(y = i|x) = hg
i (x) ∗ h

l
i(x), (12)

each sample is then classified corresponding to the maximum score.

6
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Table 1: Results when ImageNet-1k is used as ID data. We compare the methods in different tuning
manners. † represents the result by our re-implementation. Bold values represent the best results.

Method iNaturalist SUN Places Texture Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
Zero-shot
MCM 30.91 94.61 37.59 92.57 44.69 89.77 57.77 86.11 42.74 90.77
GL-MCM 15.18 96.71 30.42 93.09 38.85 89.90 57.93 83.63 35.47 90.83
Full-tuning
MSP 54.05 87.43 73.37 78.03 72.98 78.03 68.85 79.06 67.31 80.64
Energy 29.75 94.68 53.18 87.33 56.40 85.60 51.35 88.00 47.67 88.90
KNN 29.17 94.52 35.62 92.67 39.61 91.02 64.35 85.67 42.19 90.97
NPOS 16.58 96.19 43.77 90.44 45.27 89.44 46.12 88.80 37.93 91.22
Textual-OE 29.61 94.74 57.12 87.34 66.82 83.71 79.29 77.76 58.21 85.88
Few-shot 4-shot
CoOp 18.95 95.52 29.58 92.90 38.72 89.64 48.03 85.87 33.82 90.98
Ours 9.65 97.87 20.40 95.57 29.39 92.67 51.20 88.00 27.66 93.53
LoCoOp† 21.67 95.69 22.98 95.07 31.41 92.10 49.79 87.85 31.46 92.68
Ours+LoCoOp 12.81 97.29 19.34 95.85 27.53 92.97 45.51 89.99 26.29 94.03

16-shot
CoOp 14.60 96.62 28.48 92.65 36.49 89.98 43.13 88.03 30.67 91.82
Ours 8.71 98.10 23.97 94.85 32.50 92.32 47.93 89.04 28.27 93.58
LoCoOp 16.05 96.86 23.44 95.07 32.87 91.98 42.28 90.19 28.66 93.52
Ours+LoCoOp 8.63 98.07 23.23 95.12 31.74 92.42 34.50 92.29 24.52 94.48

5 EXPERIMENTS

Datasets. Following existing works (Ming et al., 2022; Miyai et al., 2023b;a), large scale ImageNet-
1K (Deng et al., 2009) along with a 100-category subset of it denoted as ImageNet-100 are used as
ID dataset and OOD dataset is a combination of iNaturalist (Van Horn et al., 2018), SUN (Xiao et al.,
2010), Places (Zhou et al., 2017) and Texture (Cimpoi et al., 2014). In addition, We also use two
semantically similar subsets of ImageNet-1k, i.e., ImageNet-10 and ImageNet-20, to evaluate near
OOD detection performance (Ming et al., 2022). Detailed information is provided in Appendix A.

Implementation details. We use CLIP-Base/16 as the backbone. Image encoder, text encoder, and
global prompts are frozen and only local prompts are learnable. We set one local prompt for each
known category (1000 in total for ImageNet-1k). λneg and λreg are 5 and 0.5, respectively. As the
stability of temperature T has been verified by previous research (Ming et al., 2022; Miyai et al.,
2023b), we set T to be 1 by default. More details are shown in Appendix B.

Evaluation metrics. We report the following metrics for evaluation: (1) the area under the receiver
operating characteristic curve (AUROC); (2) false positive rate of OOD samples when true positive
rate of ID samples is 95% (FPR95); (3) in-distribution data classification accuracy (ID accuracy).

5.1 MAIN RESULTS

ImageNet-1k as ID dataset. We report 4 and 16-shot results on four common OOD datasets using
ImageNet-1k as ID dataset. It can be seen in Tab. 1 that tuning local prompts only using hand-crafted
global prompts (Ours) can achieve competitive results, especially in datasets with challenging fine
local textures like iNaturalist. Concretely, we get impressive progress in 4-shot tuning (outperform-
ing by 3.80% on FPR95). In 16-shot setting, our approach gets competitive results as well. All
the results above strongly showcase the potential of regional enhancement for OOD detection as an
orthogonal direction to global prompt optimization methods. Experimental results of more shots are
shown in Appendix C.

ID accuracy. In addition to OOD performance, it is also meaningful to evaluate ID accuracy as it is
expected to ensure classification accuracy and separate outliers at the same time. However, weighing
too much about separating outliers may narrow the inter-class distance, thus harming accuracy. Con-
sequently, we evaluate ID accuracy for ImageNet-1k and the results shown in Tab. 2 conclude that
our method significantly surpasses previous methods (1.02% and 2.38%, respectively). It demon-
strates that the proposed regional enhancement is also beneficial to improve OOD separation while
increasing inter-class distance, which is of great significance for real application.
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Table 2: ID accuracy evaluation using
ImageNet-1k as ID data.

Method Tuning Manner ID accuracy
MCM zero-shot 67.01
GL-MCM 67.01
KNN full-tuning 79.64
NPOS 79.42
LoCoOp 4-shot 69.50
Ours 70.52
LoCoOp 16-shot 71.86
Ours 74.24

Table 3: Comparison results of near OOD detection tasks.
We report 16-shot results for few-shot methods. Our
method can achieve performance against other methods.

Method ID ImageNet-10 ImageNet-20 Average
OOD ImageNet-20 ImageNet-10

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MCM 5.00 98.71 12.51 97.70 8.75 98.21
GL-MCM 10.10 98.04 9.00 98.62 9.55 98.33
LoCoOp 11.20 97.49 12.00 97.79 11.60 97.64
Ours 3.90 99.06 6.20 98.84 5.05 98.95

Table 4: Experiments on ImageNet-100. 4-shot results are reported for few-shot tuning.

Method iNaturalist SUN Places Texture Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
MCM 18.13 96.77 36.45 94.54 34.52 94.36 41.22 92.25 32.58 94.48
LoCoOp† 44.94 93.31 30.70 94.70 34.31 93.93 55.92 90.01 41.47 92.99
Ours 6.99 98.05 24.34 96.03 26.04 95.49 36.32 93.67 23.42 95.81

LoCoOp Ours

FPR:8.63%FPR:19.44%

Figure 3: Comparison of density map on
iNaturalist. Ours are more separable.

Extensive to global prompts. Benefiting from the
convenient integration with well-trained global prompts,
we combine the advantage of trained global prompts
from LoCoOp (Miyai et al., 2023a) without further de-
sign (Ours + LoCoOp) and once again get substantial
improvements on all datasets. For example, we sur-
pass the state-of-the-art method by a large margin (5.17%
on FPR95 and 1.35% on AUROC), even against previ-
ous methods with 16 shots. Specifically, extending local
prompts to global prompts is helpful to datasets with ma-
jor global representations like Texture, verifying the compatibility and potential of local prompt op-
timization. It is notable that the extension process is seamless and can be integrated with any global
optimization prompts, strongly showing the extensibility of our approach. Density map in Fig. 3
also illustrates the superiority of our method. More visualization can be found in Appendix D.

Near OOD detection tasks. Near OOD task typically evaluates semantically similar categories and
is relatively more challenging. Following existing work (Ming et al., 2022), we conduct experiments
on ImageNet-10 vs. ImageNet-20 to verify the effectiveness of the proposed approach. Results in
Tab. 3 indicate that our method exceeds previous methods by a large margin. It can be observed that
previous few-shot method fails in near OOD tasks. We attribute it to the refinement of local prompts
by local outlier knowledge, which greatly assists in distinguishing semantically similar categories.
By contrast, relying solely on global prompts may confuse the distribution. Therefore, it underlines
that our local outlier enhancement approach is especially effective in semantically near OOD tasks.

ImageNet-100 as ID dataset. We also conduct experiments using ImageNet-100 as ID dataset.
We compare with other zero-shot and few-shot methods and results are reported in Tab. 4. The
substantial performance improvements (average 9.16% reduction on FPR95 and 1.33% promotion
on AUROC) strongly demonstrate the effectiveness and transferability of our approach.

Table 5: Comparison with ID-like.

Method iNaturalist SUN Places Texture Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
ID-like 8.98 98.19 42.03 91.64 44.00 90.57 25.27 94.32 30.07 93.68
Ours 12.81 97.29 19.34 95.85 27.53 92.97 45.51 89.99 26.29 94.03

Comparison with ID-like. We additionally compare with ID-like Bai et al. (2024), and the re-
sults shown in Tab. 5 reveal that our model achieves better average performance against ID-like,
demonstrating the utility of our local information enhancement strategy.

Comparison with NegLabel. NegLabel Jiang et al. (2024) designs a novel scheme for the OOD
score with negative labels. It leverages real outlier information with negative labels from extensive
corpus databases. This kind of knowledge helps to a great extent pointed out by OE Hendrycks et al.
(2018) and is inconsistent with real-world application, where negative categories are infinite.
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Table 6: Comparison with NegLabel.

Method iNaturalist SUN Places Texture Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
NegLabel (w outlier) 1.91 99.49 20.53 95.49 35.59 91.64 43.56 90.22 25.40 94.21
Ours (w/o outlier) 8.63 98.07 23.23 95.12 31.74 92.42 34.50 92.29 24.52 94.48

Table 7: Effectiveness of each component in loss function.

Loss iNaturalist SUN Places Texture Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
Baseline (Lpos) 11.64 97.59 26.81 94.59 34.50 91.59 50.46 87.84 30.85 92.90
+Lneg 9.84 97.88 24.37 94.97 32.84 91.94 50.02 88.32 29.27 93.27
+Lneg + Lreg 9.39 97.97 24.20 95.10 32.13 92.21 49.37 88.66 28.77 93.48

As can be seen from Tab. 6, we observe that (1) although without outlier, our model achieves better
average performance against NegLabel; (2) our method achieves better balance between different
kinds of OOD datasets, which strongly validates the effectiveness of incorporating local information
and strengthens its application in diverse and infinite read-world scenarios.

5.2 ABLATION STUDY

We conduct various and comprehensive ablation studies to investigate the effectiveness of each
component. We train a 4-shot model to showcase the function of components and hyper-parameters
unless otherwise stated. More studies about training time and coefficient are shown in Appendix C.

Effectiveness of loss components. We conduct experiments to analyse the effectiveness of each
loss component and results in Tab. 7 imply that local prompts optimization (baseline) achieves com-
parable results with global prompts optimization methods, strongly demonstrating the effectiveness
of our proposed regional enhancement strategy. Furthermore, taking hard negative samples together
with local negative prompts t̂ to optimize OOD-considered representation is beneficial to the dis-
tinction of outliers. Outcome without regularization loss is better in FPR95 but slightly inferior in
AUROC. Considering overall performance and the fact that the optimization of t̂ relies heavily on
the initialization without regularization, we reserve regularization loss for stability and convergence.

Influence of negative augmentation strategy. We conduct experiments to analyse the influence
of negative augmentation strategy. In Tab. 8, baseline does not employ augmentation. Cutout and
random crop are used as augmentation, respectively. It is concluded that improper augmentation
is unfavorable to detection ability. By contrast, random crop is helpful to enhance regional-related
representation and distinguish outliers, which confirms our analysis above.

Number of local negative prompts. The number of local negative prompts Nneg stands for local
outlier knowledge the model learns from negative augmentation. Results in Tab. 9 indicate that
the performance is positively related to Nneg. However, larger Nneg requires more computational
resources. Considering both computational cost and performance, the number 300 is selected.

OOD score strategy. We compare our proposed OOD score with existing scores (Ming et al.,
2022; Miyai et al., 2023b) on 16-shots. We also remove local negative prompts in our OOD score
to analyse their effectiveness. Results in Fig. 4 imply that our regional OOD score attains better
performance than existing strategy, displaying the strength of regional enhancement. Moreover, the
performance is further promoted when negative prompts are introduced. We attribute it to possible
outlier leverage through negative prompts.

2

12

22

32

42

iNaturalist SUN Places Texture

FPR95↓

MCM GL-MCM Ours (w/o LNP) Ours (w LNP)

90

92

94

96

98

100

iNaturalist SUN Places Texture

AUROC↑

MCM GL-MCM Ours (w/o LNP) Ours (w LNP)

Figure 4: Ablation study of different OOD score strategies. LNP denotes local negative prompts.
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Table 8: Influence of different negative augmentation strategies.
iNaturalist SUN Places Texture Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
Baseline 11.18 97.68 23.30 95.25 30.97 92.44 50.44 87.89 28.97 93.31
+cutout 17.47 96.64 26.17 94.73 34.38 91.84 54.84 86.88 33.21 92.52
+gaussian noise 11.32 97.59 25.70 94.39 34.99 91.71 51.06 88.15 30.76 92.96
+random crop 9.39 97.97 24.20 95.10 32.13 92.21 49.37 88.66 28.77 93.48

Table 9: Influence of different number of local negative prompts.

Nneg
iNaturalist SUN Places Texture Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
100 9.02 98.00 24.71 94.82 32.77 91.87 48.81 88.50 28.82 93.30
200 9.65 97.90 22.58 95.26 32.03 92.18 49.85 88.00 28.52 93.33
300 9.39 97.97 24.20 95.10 32.13 92.21 49.37 88.66 28.77 93.48

5.3 VISUALIZATION

Visualization of local prompts. We give a detailed explanation of local prompts and visualize the
regions that attract attention from local prompts and local negative prompts. Visualization is shown
in Fig. 5 in the order of original picture, ID-related, and several typical OOD-related areas. It implies
that local prompts concentrate on ID regions and local negative prompts are helpful to extract ID-
irrelevant, i.e., outlier areas corresponding to certain semantics. For instance, local negative prompts
successfully focus on sky, sea, and beach, respectively in pirate ship, which is beneficial to enhance
OOD detection ability through local and unknown knowledge leverage.

ID: white stork

ID: pirate ship

original local prompt local negative prompts

Figure 5: Visualization of ID and OOD related regions. Local prompts and local negative prompts successfully
focus on ID-related and OOD-related regions, respectively, which helps OOD detection.

Ground Truth: Icebreaker (OOD)

Global based method: Ocean liner (ID) Ours: Outlier

Ground Truth: Sunflower (OOD)

Global based method: Daisy (ID) Ours: Outlier

Ground Truth: Apple (OOD)

Global based method: Rose hip (ID) Ours: Outlier

Figure 6: Examples of outlier from SUN dataset that fails to be detected by previous global-based method, and
our method with local enhancement successfully discriminates them with subtle differences in certain regions.

Visualization of hard OOD samples. We showcase several hard OOD samples that previous
global-based method fails to detect, while our method with local enhancement successfully dis-
criminates the outlier. For example, in the first image, previous global-based method fails to detect
the outlier as it is similar to ID category ocean liner on the whole, with only subtle difference me-
chanical devices on the deck indicating that it is actually an icebreaker (also demonstrated by the
iceberg next to it). The same phenomenon are also observed other examples.

6 CONCLUSION

In this paper, we investigate the relationship between global and local prompts for few-shot OOD
detection. Concentrating on enhancing outlier knowledge for better local textual representation uti-
lization, we decompose global and local features using respective prompts. We use straightforward
negative augmentation to leverage local outlier knowledge and propose local prompts to enhance re-
gional information by means of regional regularization. We also propose regional-related evaluation
metric to enrich the detector with local outlier information. Moreover, our approach is extensible to
well-trained global prompts to get better performance. We conduct various experiments and superior
results underline the effectiveness of our method.
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APPENDIX

A DATASET DETAILS

ImageNet-10 contains 10 classes of ImageNet-1k, including military aircraft (n04552348), sports
car (n04285008), brambling (n01530575), Siamese cat (n02123597), impala (n02422699), Greater
Swiss Mountain Dog (n02107574), American bullfrog (n01641577), garbage truck (n03417042),
common sorrel horse (n02389026) and container ship (n03095699).

ImageNet-20 is a 20-class subset in ImageNet-1k. Concretely, they are schooner (n04147183),
canoe (n02951358), balloon (n02782093), tank (n04389033), missile (n03773504), high-speed
train (n02917067), starfish (n02317335), spotted salamander (n01632458), smooth newt (n0163067
0), newt (n01631663), zebra (n02391049), European green lizard (n01693334), Nile crocodile (n01
697457), Arctic fox (n02120079), grey wolf (n02114367), brown bear (n02132136), moped (n0378
5016), steam locomotive (n04310018), space shuttle (n04266014) and snowmobile (n04252077).

ImageNet-100 is the same 100-class subset of ImageNet-1k as MCM Ming et al. (2022) to have a
fair comparison with previous vision-language based OOD detection methods. Detail categories are
provided in https://github.com/deeplearning-wisc/MCM.

B TRAINING DETAILS

Number of learnable context words is 16. We use SGD optimizer to train the model with 30 epochs.
Learning rate is 2 × 10−3 with a cosine schedule and batch size is 256. m is set to 24 by default.
We empirically set positive/negative augmentation to be 8/1, which are discussed thoroughly below.
Training and testing k are 50 and 10, respectively in main results. We use one single NVIDIA A6000
to run all experiments. The reported results are averaged for three runs. Extra experimental results
are shown below.

C MORE EXPERIMENTAL RESULTS

Experiments of different shots. We use ImageNet-1k as ID dataset in the main experiment. For
training, we use different shots, i.e., numbers of images from each class, following few-shot setting.
For evaluation, we use validation set of ImageNet-1k, which is composed of 50000 images from
1000 categories. Results are shown in Tab. 10.

Influence of coefficient. Both λneg and λreg determine the importance of the corresponding loss.
We report average FPR95 and AUROC to show the trend when the coefficients vary. The results in
Tab. 11 indicate that the performance tends to be stable when the coefficients are in a wide range.
During the entire ablation process, the results are relatively robust when the ratio of the two corre-
sponding coefficients is approximately within [2, 10], with performance drop under extreme cases
(λneg = 0.1 and 50). For λneg = 50, the loss for local prompts is neglected, resulting in severe

Table 10: Few-shot experimental results on ImageNet-1k.

Method iNaturalist SUN Places Texture Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑
4-shot

CoOp 18.95 95.52 29.58 92.90 38.72 89.64 48.03 85.87 33.82 90.98
LoCoOp 21.67 95.69 22.98 95.07 31.41 92.10 49.79 87.85 31.46 92.68
Ours 9.65 97.87 20.40 95.57 29.39 92.67 51.20 88.00 27.66 93.53

8-shot
CoOp 15.23 96.69 27.78 93.08 35.93 90.22 48.26 85.91 31.80 91.47
LoCoOp 16.34 96.47 22.40 94.96 31.86 91.83 42.20 89.81 28.20 93.27
Ours 10.17 97.83 19.82 95.42 30.83 92.54 48.26 88.47 27.27 93.56

16-shot
CoOp 14.60 96.62 28.48 92.65 36.49 89.98 43.13 88.03 30.67 91.82
LoCoOp 16.05 96.86 23.44 95.07 32.87 91.98 42.28 90.19 28.66 93.52
Ours 8.71 98.10 23.97 94.85 32.50 92.32 47.93 89.04 28.27 93.58
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Table 11: Influence of different coefficient in loss function.

iNaturalist SUN Places Texture Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

λneg

0.1 17.64 95.97 27.18 94.76 34.45 91.41 48.82 86.89 32.02 92.25
2 9.47 97.97 24.11 94.99 32.28 92.07 47.94 88.86 28.45 93.47
5 9.39 97.97 24.20 95.10 32.13 92.21 49.37 88.66 28.77 93.48
10 10.19 97.83 23.46 95.26 31.59 92.31 49.57 88.81 28.70 93.55
50 34.09 92.06 42.34 88.63 50.88 83.52 62.47 85.70 47.44 87.48

λreg

0.2 9.83 97.88 24.60 94.92 32.65 92.10 49.82 88.63 29.22 93.38
0.5 9.39 97.97 24.20 95.10 32.13 92.21 49.37 88.66 28.77 93.48
1 11.24 97.67 25.87 94.77 33.54 91.89 48.38 88.97 29.75 93.32

Figure 7: Results on different values of k for training and inference.

performance drop. For λneg = 0.1, the local negative prompts are over-regularized by diversity
constraints. The effectiveness of the proposed loss can be further verified accordingly.

Regional number. Regional number k expresses the extent to which local prompts pay attention to
areas. As regional information is not always ID or OOD-related, the selection of regional number
k largely determines performance. During training, Regions are selected to emphasize suitable ID-
related regions (outlier regions when hard negative images) and learn regional-related local prompts.
During inference, k is relatively smaller to guarantee the confidence of the selected region for met-
ric calculation. We conduct various experiments on different values of k during both training and
testing. Curves shown in Fig. 7 illustrate that for both k during training and inference, larger k will
confuse confidence of the boundary between ID and OOD regions, while smaller k fails to extract
precise regional-related textual representations, which corresponds to our analysis. We underline
that varying k brings in subtle differences and even simplified outcome without careful selection of
k still achieves better results than previous approaches.

Extra training time. We extend the training time to analyse the benefits of longer training. It can
be seen in Tab. 12 that 30 epochs is sufficient to get superior representations in few-shot prompt
tuning and longer training time does not necessarily bring about the improvements of performance.
By contrast, LoCoOp Miyai et al. (2023a) requires 50 epochs and it indicates that our approach is
well and fast converged, which is in line with the purpose of few-shot learning.

Number of negative augmentation. The number of negative augmentation influences the perfor-
mance. It can be seen in Tab. 13 that setting negative augmentation to be 1 achieves obviously
better results. A potential reason for the phenomenon is that random crops of original images are
hard enough for the detector to learn local outlier information and too much negative augmentation
may confuse the learning process. Consequently, we choose the least similar image as the negative
augmentation.

Table 12: Influence of longer training time.

epoch iNaturalist SUN Places Texture Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

30 9.39 97.97 24.20 95.10 32.13 92.21 49.37 88.66 28.77 93.48
50 9.60 97.83 23.71 95.05 32.31 92.02 48.47 88.68 28.52 93.40
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Table 13: Influence of negative augmentation number.

N iNaturalist SUN Places Texture Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

1 9.39 97.97 24.20 95.10 32.13 92.21 49.37 88.66 28.77 93.48
8 10.31 97.80 25.18 94.96 33.36 92.06 51.32 87.64 30.04 93.12
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Figure 8: Density map of different OOD datasets measured by various methods.

D VISUALIZATION AND ANALYSIS

Visualization of heatmaps. we additionally include heatmaps maps of typical images to illustrate
the attention of our methods. It can be seen in Fig. 9 that our method accurately focuses on ID regions
despite the interference of complex background surroundings, e.g., tabby cat, lion and leonberg with
complex background of grassland, which showcases the effectiveness of pseudo background aug-
mentation serving as local outlier. Moreover, our method also captures multi-objects, e.g., the ships
on the sea (third picture on the first row), strongly validating the usefulness of local enhancement in
the framework.

More visualization. We visualize the density map of 4 OOD datasets, i.e., iNaturalist, SUN, Places
and Texture and compare them with typical existing methods. Fig. 8 exhibits that our approach
is capable of distinguishing ID and OOD samples with more confidence and has obviously less
overlap between them than previous zero-shot and few-shot methods. It strongly demonstrates the
effectiveness and potential of our local prompt based method.

Similarity of enhanced regions. We calculate the top-k average similarity of both ID-dataset and
OOD datasets with local prompts to qualitatively showcase the effectiveness of local enhancement.
It can be clearly seen in Tab. 14 that the method without local enhancement has no obvious boundary
between ID and OOD datasets (0.272 for top-50 and 0.276 for top-20), which may confuse the model
when detecting hard outlier samples where subtle difference occurs in certain regions of the image.
By contrast, our method appears to be more discriminant and has an obvious boundary between
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ID: tabby cat ID: fountain pen ID: liner (ship)

ID: lion ID: leonberg (dog) ID: minivan (car)

Figure 9: Visualization of heatmaps.

Table 14: The top-k average similarity of both ID-dataset and OOD datasets with local prompts.

K 10 20 50
w/o local enhancement

ID-dataset 0.297 0.286 0.272
OOD-datasets 0.280 0.276 0.261

w local enhancement
ID-dataset 0.312 0.306 0.282

OOD-datasets 0.273 0.266 0.249

them (0.282 for ID and 0.273 for OOD). It additionally demonstrates the core problem that current
method encounters and our method of refining local regions successfully addresses the issue to some
extent.

E LIMITATIONS

Training time. The primary limitation of our work is that it may require more training time due to
negative augmentation. However, as few shot tuning paradigm for vision-language model is efficient
and time-saving, it will not be the bottleneck of the model. Practically, we fine-tune CLIP on one
single NVIDIA A6000 and 4-shot tuning only needs 4 hours.

Joint training of both global and local prompts. In our work, we mainly concentrate on the effec-
tiveness of local prompts as an enhancement and set global prompts frozen/from existing methods.
We believe that exploiting the connection between global and local features is promising. Therefore,
we are in an effort to explore the advantage of training global and local prompts jointly.
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