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Abstract

This work introduces the Artificial Neuron-Astrocyte Network (ANAN), a novel
approach that incorporates artificial astrocytes into pre-trained Convolutional Neu-
ral Networks (CNN) to enhance performance without requiring additional training.
By dynamically modulating synaptic weights based on neuronal activity, astrocytes
allow the network to adapt to input data efficiently. The proposed approach only
requires optimizing four parameters, instead of the millions that are typically re-
quired in CNN fine-tuning. This offers a resource-saving alternative to traditional
fine-tuning methods. Experimental results demonstrate statistically significant
improvements in performance employing four different datasets, including one
balanced and one imbalanced biomedical dataset, as well as two balanced ones
encompassing natural images. Results in different application domains highlight
the potential of astrocytes to optimize network performance without the need of
going through traditional training cycles.

1 Introduction

Artificial neural networks (ANNs) emerged from trying to gain a deeper understanding of how
the brain works. The first computerized model of an artificial neuron was introduced by Warren
McCulloch and Walter Pitts in 1943 and, since then, ANNs have been constantly evolving and
improving their performance [1]. Neurons are an important part of the nervous system, but they are
not the only relevant cells. Santiago Ramón y Cajal, who can be considered as the father of modern
neuroscience, had already observed the presence of glial cells in his research. He noticed that these
cells are abundant and ubiquitous in the brain, and he hypothesized they may play an important role
[2]. Indeed, as science advanced, it was proven that astrocytes, a type of glial cell, actively participate
in information processing alongside neurons, in what is known today as the tripartite synapse [3].
Figure 1 provides an overview of the tripartite synapse, the main inspiration for this work. In a
tripartite synapse, an astrocyte modulates the transmission of information between a pre-synaptic
neuron and a post-synaptic one. These discoveries highlight the biological importance of astrocytes,
which were once thought to have a passive, supporting role of neurons (e.g., routine housekeeping
duties) [4].

It is worth noting that astrocyte activity happens on a different timescale than that of neurons, ranging
from seconds to hours [5]. Thus, neurons respond swiftly to stimuli, whereas astrocytes operate on
slower timescales [6] and they modulate both excitatory and inhibitory transmission between neurons
[7]. Another well-known property of astrocytes and glial cells is that the ratio between glia and
neurons increments as brain size does in the phylogenetic scale, suggesting a correlation between
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Figure 1: The tripartite synapse involves an astrocyte, a pre-synpatic neuron and a post-synaptic
one. An astrocyte with its prolongations wrapping multiple synapses is shown on the left; on the
right, a tripartite synapse schematic shows pre- and post-synaptic terminals. Astrocytes capture
neurotransmitters and release gliotransmitters.

these cells and cognition [8]. Exploring this idea, and given that astrocytes have been described as
affecting different behavioral aspects (like cognition) in mice, Windrem et al. [9], and Han et al. [10]
introduced human astrocytes into mice brains. The experimental results show that this leads to an
improvement of their cognitive abilities.

In this work, we propose a novel training-free approach in which we add artificial astrocytes to
a pre-trained Convolutional Neural Network (CNN). In the proposed Artificial Neuron-Astrocyte
Network (ANAN), artificial astrocytes modulate neuronal synapses by adjusting the weights based
on a neuronal activation threshold, reinforcing the positive (excitatory) and negative (inhibitory)
response. The proposed approach is tested on four different datasets across two different domains of
application (natural images and biomedical images). Balanced and imbalanced datasets were used to
assess the behavior of the proposed approach under different conditions. The ANAN is compared to
a base network that has been previously trained on each dataset. Results suggest that the addition of
artificial astrocytes post-training enhances the performance of CNNs.

This work attempts to replicate the biological phenomenon seen in the work by Windrem et al. [9], and
Han et al. [10]. Thus, the already trained neural network would correspond to the mouse brain, and the
new processing elements (i.e., artificial astrocytes) would simulate the behavior of human astrocytes.
Each input (i.e., an image) is passed multiple times to simulate the difference in timescale between
neurons and astrocytes. By comparing an already existing network with and without astrocytes added
after training, we aim to study whether the computational model is capable of reproducing the results
observed in the biological model (i.e., an improvement of cognitive abilities). The novelty of this
work lies in the introduction of astrocytes to deep models used for computer vision tasks without
requiring retraining, thus using less resources. Introducing these elements post-training allows the
CNN to generalize and adapt to a different domain of application.

2 Related work

In recent years, the field of neuroscience has become less neuron-centric, shifting its focus toward
the study of glial cells. Experiments have shown that the release of neurotransmitters is modulated
by glial cells, specifically astrocytes, in what is called the tripartite synapse. Since the discovery of
the tripartite synapse [3], methods have emerged attempting to translate this concept into in silico
models by incorporating astrocytes into classical ANNs. The first published works differ in the
ANN architecture employed, as well as in the quantity and location of the astrocytes. While Ikuta
et al. [11] incorporated one astrocytic layer in a multilayer perceptron (MLP), Mesejo et al. [12]
included one astrocyte per neuron in all of the neurons of an MLP. Landolsi and Marzouki [13]
employed a SONG-NET architecture and Porto-Pazos et al. [14] added the astrocytes to an MLP
using evolutionary algorithms. In their work, Porto-Pazos et al. [14] established that the improvement
in performance of the network is specifically due to astrocytes. Moreover, these authors show that
this improvement increases as the network complexity increases, and that the impact of the astrocytes
depends on the problem tested. In all these works, the ANNs were trained with the astrocytes already
incorporated [15].

While early research of astrocyte integration into neural networks was carried out using classical
models, recent methods have modeled more realistic astrocyte-neuron interactions in the brain.
One such example is the incorporation of astrocytes into spiking neural networks (SNNs). These
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networks are believed to be more biologically plausible and enhance processing efficiency compared
to traditional networks [16–19]. Moreover, several studies show that astrocytes that have been added
to deep learning SNN-like architectures can significantly improve performance in a variety of tasks.
For instance, He et al. [18] state that including astrocytes to update neuron states in SNNs increased
accuracy when using image, voice, and neural morphology datasets. Stasenko and Kazantsev [19]
found that astrocytes help suppress noise and improve image representation in SNNs, acting as a
buffer for processing information patterns. Similarly, Nazari et al. [17] demonstrated that combining
SNNs with astrocytes improved pattern recognition and facilitated information transmission. The
Blended Glial Cell’s Spiking Neural Network proposed by Tao et al. [16] incorporates astrocytes as
spatiotemporal information processing units, enhancing neuron and synapse plasticity. Their network,
tested in applications like Sudoku solving, showed superior accuracy and computational efficiency
compared to other solvers, emphasizing the benefits of adding astrocytes.

In addition to the above, other authors have created more complex architectures featuring astrocytes.
Han et al. [20] introduced AstroNet, which uses astrocytes to optimize neuronal connections and im-
prove accuracy. MA-Net, a more advanced version of the previous approach, modulates connections
during training, achieving state-of-the-art performance with fewer parameters [21]. Zimin et al. [22]
proposed a hybrid ANN that incorporates astrocyte-driven short-term memory, significantly improv-
ing performance in visual tasks compared to traditional models. The authors of [23] further showed
that neuron-astrocyte networks enhance associative memory capacity and efficiency, supporting the
crucial role of astrocytes in memory storage in an energy-based model. Finally, Kozachkov et al.
[24] hypothesized that neuron-astrocyte networks implement the core computation performed in the
transformer block in artificial intelligence (AI) (i.e., the normalization operation in the self-attention)
and provide a potential biological explanation of how transformers relate to the brain.

The majority of these studies design their own (complex) architecture to include astrocytes in ANNs.
All the models described in this section have a training phase in which the astrocytes are trained
while training the model. Astrocytes are shown to be problem dependent so, like ANNs, their training
phase may be costly in terms of time and memory. Training-free approaches are particularly attractive
in environments with limited resources, as the number of parameters to be optimized is much smaller.
Studies adding astrocytes to existing pre-trained networks are lacking. Hence, it would be interesting
to explore how astrocytes work in an already pre-trained model, mimicking the biological experiments
by Windrem et al. [9] and Han et al. [10], in which the addition of human astrocytes to mice increases
their cognitive abilities. To the best knowledge of the authors, no published work explores this
possibility. This work, thus, studies how adding astrocytes to a pre-trained network affects its
performance.

3 Materials and methods

3.1 Datasets

Four datasets were used to evaluate the performance of the proposed approach in binary classification.
The Cats&Dogs dataset contains images of cats and dogs. The dataset is not the classical, larger one,
but a reduced version of it that was obtained from Kaggle [25]. This dataset was originally assembled
from images retrieved from Google. The Fire dataset includes natural images with and without
wildfire. It was retrieved from Kaggle [26] and the photos were originally downloaded from Google.
The RFMID dataset comprises images related to various ophthalmic diseases [27]. In this work,
only the images corresponding to diabetic retinopathy (not healthy) and healthy individuals were
used. Hence, the problem was simplified from a multi-class classification to a binary classification
of healthy versus not healthy. The total number of images employed is shown in Table 1. Finally,
the RMNIST dataset was extracted from MedMNIST [28] but originally the data is from a study by
Liu et al. [29]. In this work, we only distinguish between healthy/not healthy, however originally the
dataset contained information pertaining to different diabetic retinopathy disease stages.

A summary of the characteristics of the four datasets is presented in Table 1. All the datasets employed
in this study are balanced except for the Fire dataset. Since we are using the already partitioned
test set made by the original authors, the ratio of test images varies slightly across datasets. The
Cats&Dogs and Fire test sets employed nearly 20% of the total number of images for testing, while
the RFMID and the RMNIST test sets encompassed 24.7% and 33.33% of the total number of images
respectively.
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Table 1: Binary Datasets Distribution

Cats&Dogs Fire RFMID RMNIST

Class 0 (%) 50.07 75.58 51.42 44.62
Class 1 (%) 49.93 24.42 48.58 55.38
# images 697 999 1031 1600

3.2 Base network

First, a traditional CNN was designed using TensorFlow [30], with the goal of having a baseline with
which to compare the proposed approach. The network architecture is shown in Figure 2. Slight
modifications were introduced to the base network to achieve better performance:

• The network used for the RFMID and RMNIST datasets includes an additional layer and
uses 5x5 filters instead of 3x3 due the nature of the images included in these datasets.

• The input image size varies across datasets: 224x224 pixels for the RFMID, RMNIST and
Fire datasets, and 128x128 pixels for the Cats&Dogs dataset.

Despite these variations, the overall architectures of the four models are quite similar. All CNN
models were trained using 10-fold cross-validation for a maximum of 100 epochs and a batch size
of 64, with ReLU as the activation function and Adam as the optimizer. The stopping criterion was
based on the loss; training was halted if the loss did not change by 0.01 units over 30 consecutive
epochs. After training, artificial astrocytes were added to the first convolutional layer of each network.

input_1
input: 224x224x3

output:224x224x3

Conv2D_1
input: 224x224x3

output: 220x220x32

MaxPooling2D_1
input: 220x220x32 

output:110x110x32

BatchNorm_1
input:110x110x32

output:110x110x32 

Conv2D_2
input: 110x110x32

output:106x106x64

MaxPooling2D_2
input:106x106x64 
output:53x53x64

BatchNorm_2
input: 53x53x64

output: 53x53x64

Conv2D_3
input: 53x53x64

output: 49x49x64

MaxPooling2D_3
input: 49x49x64

output: 24x24x64

BatchNorm_3
input: 49x49x64 

output: 49x49x64 

Conv2D_4
input: 24x24x64 

output: 20x20x128

MaxPooling2D_4
input: 20x20x128  

output: 10x10x128

BatchNorm_4
input: 10x10x128 

output: 10x10x128 

Dropout
input:10x10x128

output: 10x10x128 

Flatten
input: 10x10x128 

output: 12800

Dense_1
input: 12800
 output: 128

BatchNorm_5
input: 128 

output: 128 

Dense_2
input: 128
 output: 1

Figure 2: Convolutional Neural Network architecture used as a basis. The input layer is shown in
green, while the output layer is depicted in red.

3.3 Artificial Neuron-Astrocyte Network (ANAN)

3.3.1 General overview

Several studies mentioned in Section 2 show that astrocytes can filter noisy cues [31, 32, 19].
Additionally, the works by Windrem et al. [9] and Han et al. [10] suggest that adding human
astrocytes to mice enhances their cognitive capabilities. We sought to translate these biological
phenomena into a computational model by incorporating artificial astrocytes post-training, something
that, to the best knowledge of the authors, has not been done before. Thus, in this work, we added
artificial astrocytes to the first convolutional layer of the already trained CNN described in Section
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Another common CNN architecture is to stack two convolutional layers before
each pooling layer, as illustrated in Figure 5. This is strongly recommended as
stacking multiple convolutional layers allows for more complex features of the
input vector to be selected.

Fig. 5: A common form of CNN architecture in which convolutional layers are
stacked between ReLus continuously before being passed through the pooling
layer, before going between one or many fully connected ReLus.

It is also advised to split large convolutional layers up into many smaller sized
convolutional layers. This is to reduce the amount of computational complexity
within a given convolutional layer. For example, if you were to stack three con-
volutional layers on top of each other with a receptive field of 3⇥3. Each neuron
of the first convolutional layer will have a 3⇥3 view of the input vector. A neu-
ron on the second convolutional layer will then have a 5 ⇥ 5 view of the input
vector. A neuron on the third convolutional layer will then have a 7⇥ 7 view of
the input vector. As these stacks feature non-linearities which in turn allows us
to express stronger features of the input with fewer parameters. However, it is
important to understand that this does come with a distinct memory allocation
problem - especially when making use of the backpropagation algorithm.

The input layer should be recursively divisible by two. Common numbers in-
clude 32 ⇥ 32, 64 ⇥ 64, 96 ⇥ 96, 128 ⇥ 128 and 224 ⇥ 224.

Whilst using small filters, set stride to one and make use of zero-padding as to
ensure that the convolutional layers do not reconfigure any of the dimension-
ality of the input. The amount of zero-padding to be used should be calculated
by taking one away from the receptive field size and dividing by two.activation

CNNs are extremely powerful machine learning algorithms, however they can
be horrendously resource-heavy. An example of this problem could be in filter-
ing a large image (anything over 128 ⇥ 128 could be considered large), so if the
input is 227 ⇥ 227 (as seen with ImageNet) and we’re filtering with 64 kernels
each with a zero padding of then the result will be three activation vectors of
size 227 ⇥ 227 ⇥ 64 - which calculates to roughly 10 million activations - or an
enormous 70 megabytes of memory per image. In this case you have two op-
tions. Firstly, you can reduce the spatial dimensionality of the input images by
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CNNs are extremely powerful machine learning algorithms, however they can
be horrendously resource-heavy. An example of this problem could be in filter-
ing a large image (anything over 128 ⇥ 128 could be considered large), so if the
input is 227 ⇥ 227 (as seen with ImageNet) and we’re filtering with 64 kernels
each with a zero padding of then the result will be three activation vectors of
size 227 ⇥ 227 ⇥ 64 - which calculates to roughly 10 million activations - or an
enormous 70 megabytes of memory per image. In this case you have two op-
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fully-connected

Figure 3: Overview of the Artificial Neuron-Astrocyte Network (ANAN). Astrocytes are added to
the first convolutional layer of the base CNN and each of them modulates the pre-synaptic weights
(filters) associated with each kernel in this layer.
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3.2. An overview of the proposed approach - the Artificial Neuron-Astrocyte Network (ANAN) - is
depicted in Figure 3.

Subsequently, the steps followed to process an input (image) are described. Astrocytes modify the
base network, but this modification only lasts while the current image is presented. Thus, first, a copy
of the initial state of the network is saved (i.e., the CNN model with its weights). Next, an input
image is passed to the ANAN. Each image is presented during a number of iterations to the network.
During this time, if activated, the astrocytes modify the network’s weights. Finally, after obtaining the
prediction for the current input, the network’s weights are restored to their original values. Therefore,
the effect of the astrocytes is temporary. The process described is depicted in Figure 4.

a new stimulus
is presented

to the network
start end

backup of the
network’s
weights

astrocytic
modification of
neuronal weights

network’s
prediction

original 
weights are 
restored

Figure 4: Workflow showing the behavior of the ANAN for a single input which includes (from left
to right): (1) backing up the network’s weights, (2) presenting an image to the network, (3) modifying
the neuronal weights according to the astrocytic algorithm (described in more detail in Section 3.3.2),
(4) obtaining the network’s prediction for the input image, and (5) restoring the network to its original
state.

3.3.2 Astrocytic modulation

As previously mentioned, astrocytes act as modulators of neural transmission at the synaptic cleft,
similarly to their biological counterparts in tripartite synapses. They modify the pre-synaptic weights
of neurons (kernels) in the first convolutional layer. This modification can be either excitatory
(information transmission is potentiated) or inhibitory (information transmission is attenuated),
similarly to how the information is potentiated or inhibited along the neural pathways in the brain.
Furthermore, biological astrocytes operate on a slower timescale than neurons. To reflect this in our
computational model, a single stimulus (image) is passed to the network during a specific number of
iterations. During this time, the astrocytes monitor the output of the neurons in the first convolutional
layer. Depending on the number of times the post-synaptic neuron (kernel) is activated, the pre-
synaptic weights (filters) are updated. Below the exact process followed to update the weights is
described in detail.

The ANAN features the following astrocytic parameters: k,µ,a, and b.
• k is the number of iterations during which a single image is presented (simulating the slower

astrocytic communication).
• µ acts as the trigger that activates the astrocytic effect. It can have an excitatory (µ) or

inhibitory effect (−µ).
• a and b represent the values by which the weights are incremented or decreased, respectively.

These astrocytic parameters behave as described subsequently.

The artificial astrocytes monitor the neuron’s activity (i.e., the output or yj(t)), just as the biological
astrocytes in the tripartite synapse do, during k iterations. To do so, function u : R → Z is applied to
the neuron’s output. This function simulates the release of neurotransmitters by the biological neuron
and indicates whether the neuron has been activated or not, and it is defined as follows:

u(x) =

{
−1 x ≤ 0
1 x > 0

(1)

Afterward, the astrocyte modifies the pre-synaptic weights of the neuron when the trigger (activation
level) reaches a threshold µ or −µ, depending on whether it is positive (excitatory) or negative
(inhibitory). Function rj : N \ {0} → [−µ, µ] outputs the number of times a neuron has been
activated and is defined as:

rj(t) =

{
u(yj(t)) + rj(t− 1) t > 0, rj(t− 1) ∈ (−µ, µ)
rj(t− 1) t > 0, rj(t− 1) ∈ {−µ, µ}
u(yj(t)) otherwise

(2)

Once a neuron j reaches the activation level µ (or −µ), the astrocyte modifies its associated pre-
synaptic weights wi. Astrocytic adjustment of these pre-synaptic weights is defined as wi(t+∆t) =
wi(t) +∆wi(t), where ∆wi(t) = |wi(t)|z(t) and z : N \ {0} → R is a function defined as follows:
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z(t) =

{
a rj(t) = µ

−b rj(t) = −µ
1 otherwise

(3)

Hence, if the neuron is activated µ times, the pre-synaptic weights will be increased by a percentage
a, but they will be decreased by a percentage b if the neuron is activated −µ times. When a
neuron reaches the activation levels {−µ, µ}, the trigger value is maintained and does not reset
as a consequence of astrocytic excitation. Consequently, the astrocytic effect lasts all k iterations,
reinforcing the connection over time as described in ref. [12].

To sum up, the pre-synaptic weights are modified when the astrocyte is activated by a neuron firing.
In the next iteration, if the neuron keeps firing, it further activates the astrocyte and thus the weights
are modified again. Once the stimulus is not present anymore and before the next stimulus (image) is
presented, the weights are reset back to their original state.

3.3.3 Hyperparameter optimization

Four parameters (k, µ, b, a) determine the behavior of the astrocytes in the network, and the optimal
values were found through grid search, as they vary depending on the problem to solve. The range of
parameters employed for the grid search is chosen based on previous work by Porto-Pazos et al. [14]:

• For k: Values between 4 and 8 were tested.
• For µ: Values between 2 and 4 were tested.
• For a: Values between 1.05 and 1.50 were tested, with an increase of 0.15.
• For b: Values between 0.05 and 0.50 were tested, with an increase of 0.15.

4 Results

A grid search was performed to obtain the optimal configuration of the astrocytic parameters (k, µ, b,
a) of the ANAN, as described in the previous section. Table 2 displays the best parameters obtained
for each dataset.

Table 2: Best configuration of astrocytic parameters for each dataset.

Parameter Cats&Dogs Fire RFMID RMNIST

k 4 4 8 5
µ 2 2 3 4
a 1.05 1.50 1.05 1.05
b 0.30 0.50 0.30 0.05

The results obtained for each dataset used are presented in Table 3. This table allows comparing
the performance of the base CNN with the proposed approach (i.e., ANAN), using metrics such as
accuracy, F1-Score and and Binary-Cross-Entropy loss. Note that while the loss metric is generally
used in contexts in which a network is trained, in this case it is only used as a measure of each
model’s performance on the test set. The values shown in the table correspond to the application
of the base CNN and the ANAN to the test set for each dataset. Significance is shown where
appropriate in addition to performance metrics, highlighting the best value in bold. To calculate
statistical significance (i.e., p-values) between the performance of the base CNN and the ANAN, the
non-parametric Wilcoxon statistical test was used [33]. By comparing a network with and without
astrocytes, we are able to assess their impact on performance. It is worth noting that the addition of
astrocytes does not entail retraining the deep network.

The results show that for the Cats&Dogs dataset, the ANAN model achieved a significantly better
loss compared to the base CNN, with p<0.01, and although the F1-score was higher for the ANAN,
it was not statistically significant. For the Fire dataset, the accuracy and the F1-score were both
significantly better for the ANAN with p<0.05, while the loss was significantly worse with p<0.01.
For the RFMID dataset, the F1-score was significantly better for the ANAN with p<0.01, but the
loss was significantly worse for the ANAN with p<0.05. Finally, for the RMNIST, the ANAN model
was significantly better in terms of F1-score, with p<0.05, the accuracy was higher for the ANAN but
not significantly, and the loss was significantly worse for the ANAN. It is worth highlighting that the
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Table 3: Results obtained using a Convolutional Neural Network (CNN) and the proposed Artificial
Neuron-Astrocyte Network (ANAN) for four different datasets. Statistical significance levels are
shown with asterisks: ** p < 0.01, * p < 0.05 next to the best performing algorithm.

Cats&Dogs Fire RFMID RMNIST

Metric CNN ANAN CNN ANAN CNN ANAN CNN ANAN

Loss 16.127 1.354 ** 0.066 ** 0.168 0.529 * 0.610 1.243 ** 1.674
Accuracy 0.662 0.651 0.981 0.987 * 0.865 0.859 0.754 0.765
F1-Score 0.613 0.668 0.959 0.973 * 0.737 0.843 ** 0.765 0.785 *

base CNN was trained using the loss as a stopping criterion; hence, in general, we would expect the
loss values to be smaller for the base CNN as this model has been optimized for this metric. Unlike
the CNN, the ANAN does not go through a traditional training process.

The F1-Score provides a measure of a model’s performance in terms of precision and recall (i.e.,
the F1-Score is the harmonic mean of precision and recall). This is one of the preferred metrics to
evaluate the difference in network performance when using imbalanced datasets. Given the imbalance
observed in the Fire dataset, we decided to analyze the results obtained in terms of F1-Score further.
Figure 5 illustrates the differences in terms of F1-score and accuracy across all four datasets. While
accuracy values are quite similar between both approaches, we can see that the ANAN consistently
outperforms the CNN in terms of F1-score, with statistically significant improvements for three
datasets (RFMID, Fire and RMNIST), but not for the Cats&Dogs dataset. The later could be explained
by the wider range of values obtained for the base CNN.

Figure 5: Comparison between the base Convolutional Neural Network and the same network adding
astrocytes (i.e., the proposed approach, ANAN). F1-score and accuracy metrics are shown for the
different datasets used. Significance level is shown with asterisks: ** p < 0.01, * p < 0.05.

5 Conclusion and Future work

In this work, we propose a novel approach, the Artificial Neuron-Astrocyte Network (ANAN), that
introduces artificial astrocytes in the first convolutional layer of a pre-trained CNN. The proposed
approach was tested on four datasets, comparing the performance of a baseline CNN with the ANAN
in binary classification. Results highlight the potential of astrocytes to optimize network performance.
All images used in this work are publicly available and those of biomedical origin were de-identified
by the original authors, thus limiting any concerns that may arise regarding privacy and security.

The primary innovation of the proposed approach lies in the fact that it leverages a pre-trained
CNN and incorporates artificial astrocytes to enhance its performance without requiring additional
network training. These artificial astrocytes dynamically adjust the pre-synaptic weights of the
first convolutional layer based on the neuronal (kernel) activity observed over a specified period
of time (i.e., a number of iterations), doing so in a controlled, time-sensitive manner that modifies
the network’s behavior as it processes each input. This unique mechanism enables the network
to adapt to input data effectively, enhancing its performance without the extensive retraining that
traditional fine-tuning methods require. Results suggest that introducing artificial astrocytes improves
network performance in terms of F1-score across all the datasets used. Although the tests carried out
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here involve binary classification only to simplify the initial evaluation, the methodology could be
seamlessly applied in the future to multi-class classification. The core principles of astrocyte-driven
weight modulation remain consistent across various classification tasks, ensuring the framework’s
versatility.

Astrocytic weight modulation differs fundamentally from conventional fine-tuning in terms of com-
putational cost. Typically, fine-tuning involves optimizing a wide range of parameters, which can
be computationally intensive, and the number of variables can easily reach millions or even bil-
lions. In contrast, the ANAN utilizes a fixed set of four parameters for astrocytic modulation of the
weights, achieving good results with fewer variables to manage, thereby reducing computational
costs compared to traditional fine-tuning methods. This efficiency is a key benefit of the proposed
approach, aligning with the growing emphasis on sustainable AI practices [34] and which could offer
a streamlined and resource-efficient alternative. This may be particularly valuable for deploying
models in production settings, where fine-tuning is often costly. By leveraging a pre-trained CNN as
its foundation, the ANAN bypasses the additional training cycles typically required by traditional
methods, potentially limiting the amount of computational resources required and aligning with
eco-friendly AI practices. Approaches like this one may be the key to reducing the environmental
impact of deep learning models in future research, potentially offering a more sustainable path for AI
development.

Astrocytes, active in a context-dependent manner, can reconfigure neural pathways on demand
serving as the natural biological substrate for context representation in ANNs. They also represent a
slower information flow in the brain, integrating important information from various sources across
their extensive, non-overlapping networks [35]. As discussed in ref. [36], including this behavior
in ANN-like models might enable more accurate and robust modeling for complex tasks. This
could, in turn, open new avenues for these astrocyte-inspired networks in deep learning, representing
a significant advancement in promoting both efficiency and sustainability. Conversely, modeling
astrocytic behavior using computational models may yield discoveries in neuroscience, particularly
regarding the role of biological neuron-astrocyte networks in memory storage and consciousness,
and could also provide insights into the framework for biological astrocytic function proposed by
Murphy-Royal et al. [36].

Future work will include testing the proposed approach on multiple multi-class datasets across
different application domains, as well as employing more complex networks (e.g., VGG, ResNet,
ConvNeXT) as a basis. As noted by Porto-Pazos et al. [14], the benefits of astrocytes become
increasingly apparent as the complexity of neural architectures grows, mirroring the biological trend
where the proportion of glial cells per neuron increases with nervous system complexity [8]. This
suggests that the ANAN’s impact may be even more pronounced as deep learning models grow in
complexity. Moreover, refining the astrocytic parameter space could further reduce the time required
for the ANAN to converge, resulting in faster model convergence.

Another avenue of research will involve optimizing the position of astrocytes in the network as an
astrocytic parameter to achieve better performance, an area that, to the best knowledge of the authors,
has not yet been explored. Modeling astrocytes as an interconnected network as some researchers
have already done [18, 21, 17, 16] may possibly be the next step towards more biologically accurate
models. Furthermore, implementing astrocytes as a network for short-term memory buffering, as
suggested by Tsybina et al. [31] and Zimin et al. [37], could help improve performance. This could
eventually support or yield some interesting theories about how memories are stored in the brain, as
Robertson [38] proposes, suggesting that explicit memories could be stored and encoded in astrocyte
extensive tessellating domains within the neocortex. In addition to classification, the proposed
approach could be employed for other tasks such as regression, segmentation or reinforcement
learning. Finally, the idea behind the ANAN could also be extended to natural language processing,
real-time video analysis, or introduced in large language models, for example.
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