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ABSTRACT
Analyzing and grouping typical patient trajectories is crucial to understanding
their health state, estimating prognosis, and determining optimal treatment. The
increasing availability of electronic health records (EHRs) opens the opportu-
nity to support clinicians in their decisions with machine learning solutions. We
propose the Multi-scale Health-state Variational Auto-Encoder (MHealthVAE) to
learn medically informative patient representations and allow meaningful sub-
group detection from sparse EHRs. We derive a novel training objective to bet-
ter capture health information and temporal trends into patient embeddings and
introduce new performance metrics to evaluate the clinical relevance of patient
clustering results.

1 INTRODUCTION
Time series is a common data modality in medical applications (Sun et al., 2020). Analyzing and
clustering patient trajectories is crucial to understanding their health state, estimating their prognosis,
and determining optimal treatment. In fact, doctors implicitly perform such analysis: given historical
records, they match patients to the most similar cohort for the most suitable medicines and treatments
(Jia et al., 2020). Our goal is to perform this patient subgroup analysis from a data-driven approach.

Clustering or learning representations of time series are well-studied tasks, with recent works on
time series k-means (Astakhova et al., 2015), dynamic time warping (Giannoula et al., 2018), and
deep learning-based methods (Ma et al., 2019b) for time series analysis. Still, medical time se-
ries pose additional challenges due to their often sparse nature, with many variables missing and
evolving over different timescales (Sun et al., 2020). These characteristics of EHR challenge con-
ventional representation learning methods, making it even harder to provide medically informative
and clustering-friendly embeddings. Additionally, there are no well-established metrics to quantita-
tively evaluate patient clustering results and their medical meaningfulness.

Our contributions are as follows: 1) we propose the Multi-scale Health-state Variational Auto-
Encoder (MHealthVAE), a novel scalable representation learning architecture for sparse medical
time series; 2) we introduce the masked multi-scale reconstruction loss that helps learn medically
informative embeddings; 3) we propose new clinically-relevant metrics to evaluate clustering results.
Our results show that MHealthVAE improves clustering performance over prior work.

2 RELATED WORKS

Extensions of conventional clustering methods for time-series typically propose different similar-
ity measures for the space of time series, including Euclidean distance (Javed et al., 2020) or dy-
namic time warping (Giannoula et al., 2018; Xing et al., 2010). Scalable variants of DTW include
miniDTW (Cai et al., 2021) and fastDTW (Salvador & Chan, 2007). These metrics allow to cluster
trajectories using conventional algorithms such as K-means (MacQueen, 1967), hierarchical clus-
tering (Aghabozorgi et al., 2015; Das et al., 2008), or probabilistic approaches (Rigon et al., 2020).
Although these methods are easy to implement, they are not designed to deal with data missingness
and heterogeneous timescales of variation in multivariate time-series (Javed et al., 2020).
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Deep-learning-based approaches are often more scalable in terms of sequence length and input di-
mensionality (Alqahtani et al., 2021). These models map time-series to lower-dimensional spaces
for clustering. Unsupervised embeddings of time-series can be obtained with variational autoen-
coders (VAE) (Kingma & Welling, 2013; Fortuin et al., 2018) or recurrent networks such as LSTM
(Staudemeyer & Morris, 2019), VaDER (de Jong et al., 2019) and transformers (Zerveas et al., 2020;
Vaswani et al., 2017). Training can be further regularized with different clustering-friendly objec-
tives (Fortuin et al., 2018; Ma et al., 2019a), or by leveraging weak supervision with contrastive
loss (Yèche et al., 2021). Such embedding-based methods are often efficient, flexible, and address
the limitations of classical approaches but remain brittle to data missingness. In the following, we
present an approach to obtain clustering-friendly and medically-informative representations of pa-
tient trajectories. Further details on related works in included in Appendix A.

3 METHODS
Consider the EHR of a group of patients where each record contains hundreds of distinct variables.
We denote the acquired sequence for each patient as X = {x1, · · · , xT }, xt ∈ Rp, where p is
the number of variables. Data processing details including imputation and sequence padding are
provided in Appendix C.1.
3.1 ARCHITECTURE DESIGN

The MHealthVAE consists of a Multi-scale Convolutional Auto-Encoder (MCAE) and a full-
trajectory VAE. As illustrated in Figure 1a, this model performs a two-phase representation learning:
first timepoint representation and then sequence representation. Clustering and downstream tasks are
performed on these embeddings. Implementation details are included in Appendix C.2.
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Figure 1: MHealthVAE workflow and its masked multi-scale reconstruction loss.
Timepoint Representation. The timepoint embedding learns a sequence of latent health states
capturing the patient’s current status, recent past, and future trends. The MCAE uses a dilated
causal temporal convolutional network (TCN) as its encoder (Bai et al., 2018), mapping X ∈ RT×p

to a sequence of timepoint representations Z ∈ RT×q . The causal structure of this architecture
ensures each timepoint representation zt only accesses past information, allowing computation in
an online manner at test time. In addition, the different kernels and the dilation patterns of the TCN
architecture fit different weights and timescales of variation for each input variable.

The decoder of MCAE is a transpose TCN that maps each zt to reconstruct a k-hour neighborhood
centered around xt, as illustrated in Figure 5c. By reconstructing this sequence {xt− , · · · , xt+},
where t− = t− k/2 and t+ = t+ k/2, from zt, we enforce zt to capture a recent history and to be
predictive a near future. As a compact representation of the local patient state, the latent sequence
{zt}Tt=0 can also be used in downstream tasks such as organ failure prediction (see Appendix D).

Sequence Representation and Clustering. Before clustering, a VAE maps the latent sequence
{zt}Tt=0 to a full-trajectory representation w ∈ Rm. We propose different regularizations to ensure
this sequence-embedding space is medically meaningful and clustering-friendly. Clustering is done
in this space using K-means (MacQueen, 1967), assigning each patient a subgroup where we expect
them to share high-level similarities such as length of stay (LOS), survival rate, and trajectory trends.

3.2 OBJECTIVE FUNCTION

Our training objective is designed to jointly train the two-stage representation learning pipeline for
optimal clustering performance. We formulate our loss function as L = Ltcn + λLvae + βLsil,
where Ltcn is a masked multi-scale reconstruction loss, Lvae is the full trajectory ELBO, and Lsil is
a clustering regularizer (all defined below). During training, hyperparameters {α, β} are scheduled
to shift emphasis on different model elements. More details are included in Appendix C.3
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The timestep representation learning model maps zt to a sequence {x̂t− , . . . , x̂t, . . . , x̂t+}. We
design our loss such that the reconstruction x̂τ is more accurate for a small |τ − t|, by scaling the
reconstruction loss of each term by a Gaussian weight Φ(τ) = N (τ ; t, σ). We set 6σ = k such
that the 99% percentile covers the full k-hour window. Additionally, to modulate for missingness
in the trajectory, we also multiply our loss by a presence mask Ω(t) = {α if xt imputed, 1 else},
such that reconstructions of true and imputed values are scaled by 1 and hyperparameter α ∈ (0, 1]
respectively. Overall, this defines our masked timepoint reconstruction loss Ltcn as follows, for a
given patient trajectory:

Ltcn =
∑
t

1

ΣΩ(t)

k/2∑
τ=−k/2

Ω(t+ τ)Φ(τ)|xt+τ − x̂t+τ (zt)|2 (1)

where ΣΩ(t) =
∑

τ Ω(t+ τ) is a normalizing term.

The full trajectory representation learning loss Lvae is the traditional ELBO loss (Kingma &
Welling, 2013): Lvae = Eqϕ(Z|X)[log pθ(X|Z)] − DKL(qϕ(Z|X)||pθ(Z)). We amend it such
that the reconstruction part, log pθ(X|Z), is only computed on xt and zt for t less than the patient’s
LOS. This prevents the VAE from learning on padded time points beyond actual trajectory.

Finally, to ensure the full-trajectory embedding to be clustering-friendly, we added an additional
Silhouette loss for regularization. The Silhouette score quantifies how good a clustering result is
based on intra-cluster and inter-cluster distances (Rousseeuw, 1987). Since higher Silhouette score
means better clustering, the regularizor is defined to be Lsil = −S, where S is the Silhouette score.

4 EXPERIMENTAL DETAILS
Datasets. Our experiments concern two datasets: one is the high-resolution ICU dataset (HiRID,
Hyland et al. (2020)), where 12 most available and useful variables are selected for a patient cohort
undergone cardiac surgeries. The other is a synthetic dataset that is designed to be of the same
variables and the same degree of missingness as HiRID. This dataset is constructed to be of 5 clusters
where each subgroup share similar trends in variables. More details are included in Appendix B.

Comparison Baselines. Using K-Means, we compared MHealthVAE with some baseline models
including clustering on the LOS, on the raw data, and using DTW. To demonstrate the impact of our
novel loss function, we also studied MHealthVAE with plain reconstruction loss (denoted TCN+AE
in Table 1a). We additionally experiment with recurrent models including LSTM, VaDER, and
Transformers; however, due to the high degree of missingness (15% available), these models do not
bring advantages in clustering. SOM-VAE is also related yet more focused on representation for
clustering each time point (Fortuin et al., 2018) and is hence not included here for full trajectory
clustering. See Appendix D for more information.

Evaluation Metrics. Traditional clustering metrics such as K-means loss (Ma et al., 2019a) and
Silhouette scores (Rousseeuw, 1987) are not inforamtive about patients’ health states or prognosis.
Hence, we introduce three metrics to evaluate patient clustering: 1) LOS difference: generally, pa-
tients’ health state is correlated with their LOS; this metric quantifies LOS distribution differences
across clusters. 2) Survival Rate Difference: survival rate is a crucial indicator of prognosis; this
metric measures survival rate differences across clusters over a certain period τ . 3) Trajectory Dif-
ference: it characterizes how different trajectories of each cluster are. In the synthetic dataset, we
also evaluated the clustering accuracy and pairwise clustering accuracy. More detailed definitions
of these metrics are in Appendix C.4.
5 EXPERIMENTAL RESULTS
5.1 SYNTHETIC DATASET CLUSTERING

As in Table 1a, only using LOS for clustering renders poor performance in all metrics except LOS
difference, which is also beyond the true metric. This shows LOS difference itself is not enough
for evaluation although it is informative from a medical perspective. Clustering using pure DTW
distance or VaDER gives relatively poor performance. The employment of MHealthVAE architec-
ture brings a noticeable improvement of 8% compared to clustering on raw trajectories. Adding the
multi-scale reconstruction loss, we obtain almost full identification of all clusters. Note that except
clustering on the LOS, Table 1a demonstrates good correlation between clustering accuracy and the
three metrics that we proposed. It also shows the advantage of MHealthVAE in correctly grouping
patient subclasses despite the high missingness.
5.2 REAL-WORLD DATA CLUSTERING
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Table 1: Clustering performance results, in comparison to baselines based on DTW (Giannoula
et al., 2018), TCN (Bai et al., 2018) and VaDER (de Jong et al., 2019).

(a) Synthetic dataset.

Accuracy (%) Pairwise Acc. (%) Silhouette LOS Diff. Traj. Diff.

Ground Truth - - 0.20 5.53 122.09
LOS 48.6± 1.4 72.2± 0.1 −0.04± 0.01 9.4 ± 0.01 58.7± 0.70
Raw 86.2± 4.7 84.6± 3.5 0.05± 0.02 4.2± 0.07 57.9± 2.8
DTW 48.2 ± 0.1 68.9 ± 0.1 0.01 ± 0.01 1.67 ± 0.01 118.98 ± 0.10
TCN + AE 94.0± 0.9 95.8± 1.2 0.14± 0.01 3.94± 0.29 112.98± 2.48
VaDER 41.6 ± 0.1 48.2 ± 0.1 -0.06 ± 0.01 3.79 ± 0.01 40.17 ± 0.13

MHealthAE (Ours) 99.1 ± 0.1 99.1 ± 0.2 0.19 ± 0.01 5.27± 0.38 118.25 ± 3.66
(b) HiRID dataset (Hyland et al., 2020).

LOS Diff. Silhouette Surv. 3m (%) Surv. 1y (%) Surv. 5y (%) Traj. Diff.

LOS 10.85 - 20.97 23.49 24.78 37.92
Raw 1.22 0.04 12.24 13.97 33.65 44.28
DTW 1.27 - 6.39 8.56 10.32 28.28
TCN + AE 0.2 -0.04 1.59 1.58 15.55 19.93
VaDER 0.03 0.65 1.01 1.31 1.24 2.23

MHealthAE (Ours) 3.71 0.014 18.47 20.91 26.47 48.51

(a) Length of stay across clusters.

(b) Survival rate across clusters.
Figure 2: Cluster visualizations.

With hyper-parameter tuning (see Appendix D), we clus-
tered patients in HiRID into 5 groups. As shown in Ta-
ble 1b, clustering on LOS renders good metrics although
at the cost of putting > 99% of patients (LOS below 2
days) into one cluster. It is true that patients who stay
longer than 3 days have higher death rates; however, this
clustering fails to identify subgroups in the majority of
patients. Moreover, LOS itself does not bring advan-
tages to capturing useful representations of patient tra-
jectories. Excluding clustering on LOS, our model dis-
plays better statistics in all metrics. Note that HiRID data
have much higher variance; different normalization fac-
tors have resulted in a much smaller Silhouette score of
HiRID clustering compared to synthetic data clustering.

Apart from good statistics, MHealthVAE renders sub-
groups of medical differences. Figure 2b demonstrates
prognosis differences between groups: cluster 3 is the
sickest group where patients are continuously lost in the
first 5 years. Cluster 0 are ones that are initially sick
yet recovered after 1 year. Although survival curves do
not distinguish the other three healthier groups, inspec-
tions of mean cluster trends demonstrate differences in
many variables: the trends in dimensions such as heart
rate, lactate level, and arterial pressure agrees with the
health conditions in each subgroup (see Appendix D).
Additionally, each cluster also has slightly different LOS
distributions (see Figure 2a). These all indicate that MHealthVAE indeed picked up health-state in-
formation in its embedding w.

Besides full-trajectory embedding being medically informative, the latent sequence {zt}Tt=0 also en-
codes health states: prediction of circulatory failure using {zt}Tt=0 renders higher accuracy, AUPRC,
and recall compared to prediction using raw sequence (see Appendix D). Generally, our model is
capable of inferring health-related information (survival rate included) even if the model is not ex-
plicitly given those inputs.
5.3 CONCLUSION
The MHealthVAE learns meaningful patient representations and clusters from medical time series
even under high missingness and with heterogeneous timescales of variation. In future work, we
hope to explore disentangling trajectory representations in terms of human interpretable dimensions.
This work should help build accurate, interpretable, and reliable models for medical applications.
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Type Method Objective Modeling Pros Cons

DTW Evaluate time series similarities Defined DTW metric on time series Simple implementation Slow computation

VaDER
Learn a variational latent space for

clustering
Use implicit imputation and VAE to obtain the

latent space for clustering Deal with missing values
Potential degradation if data is

very sparse.

DTCR
Learn a clustering friendly

embedding
Use an auto-encoder augmented by fake-

sample classification and K-Means loss
Clustering friendly latent

space
The auxiliary classification may
not be medically informative

SOM-VAE
Learn a latent space that smoothly

characterize health transitions.
Train auto-encoder that is regularized by self-

organizing map.
Interpretable

representation of patients
No explicit handling of missing

values.

NCL
Learn representation that boosts

online monitoring
Used neighborhood contrastive learning for

time point classification Useful for event prediction
Representation not primarily

targeted for clustering

Time Series
Clustering

Representa
tion

Learning

Figure 3: Overview of works related to medical time series clustering and representation learning
including dynamic time warping (Giannoula et al., 2018), VaDER (de Jong et al., 2019), DTCR (Ma
et al., 2019b), SOM-VAE (Fortuin et al., 2018), and contrastive loss (Yèche et al., 2021).

A ADDITIONAL RELATED WORKS

In section 2, we mentioned some works related to medical time series clustering. Figure 3 is a
summarized analysis of the five most relevant methods. Despite their respective advantages or
disadvantages, the performance of all methods above can be largely impaired by the presence of
missing values. There are many ways that help impute missing values: forward filling, using addi-
tional imputing neural network (de Jong et al., 2019; Park et al., 2022), or taking presence features
as additional input to the representation learning networks (Tomašev et al., 2019). Still, inherent
missingness in medical data makes it difficult to evaluate the real-world performance of different
imputation techniques; the downstream unsupervised tasks such as clustering makes it even harder
to evaluate the algorithm as a whole. To some extent, existing methods lack effective means to deal
with sparsity and high missingness in EHR.

B DATASET DETAILS

Table 2: Variables selected in HiRID dataset with their normal/abnormal range.

Variable Name Abbreviation Normal Range Abnormal Range

Glasgow Comma Score GCS 11 ± 2 5 ± 2
Heart Rate HR 70 ± 10 110 ± 20
Mean Arterial Pressure MAP 70 ± 10 50 ± 5
Carbon Monoxide CO 5 ± 0.5 3 ± 0.3
Venous Oxygen Saturation SVO2 0.7 ± 0.1 0.5 ± 0.2
Central Venous Pressure ZVD 8 ± 2 15 ± 3
Arterial Lactate a-Lac 1 ± 1 10 ± 5
Oxygen Saturation SPO2 0.95 ± 0.05 0.8 ± 0.07
Respiratory Rate Res Rate 16 ± 2 32 ± 5
Fraction of Inspired Oxygen fiO2 0.21 ± 0.04 0.8 ± 0.2
Base Excess a-BE 0 ± 2 -10 ± 5
Hemoglobin Hb 14.5 ± 2 8 ± 4

HiRID Dataset. Our experiments are based on two datasets, a HiRID dataset of real patients’ stays
in ICU (Hyland et al., 2020). More specifically, we selected a subset of 10018 patients who had just
undergone cardiac surgeries. Among all the variables of their EHR, we selected 12 variables that
are most available and also most indicative of a patient’s health conditions such as heart rate, SPO2,
and Glasgow comma scale. More details on the selected variables are listed in Table 2. The length
of stay (LOS) of these patients varies much, where healthier ones usually stay in ICU for no longer
than 24 hours while sicker ones could stay for weeks.

Synthetic Dataset. In addition to running experiments on this real-world HiRID dataset, we con-
structed a synthetic dataset with the same variables as the HiRID dataset. Synthetic patients are
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generated with the same LOS distribution; the same degree of missingness in each variable is pre-
served as in the real dataset. Moreover, by consulting medical experts, each variable’s scale and
variance reflect a patient’s health conditions: we assign abnormally high or low values in each vari-
able to indicate that a patient is suffering and assign normal values if a patient is in good condition
(see Table 2). By constructing different transitions from healthy to unhealthy or vice versa, we de-
signed 5 clusters of patients. More specifically, we designed cluster 0 to be a healthy group where
patient LOS is shorter and trajectory starts within the normal range. Cluster 1 is the diseased group
where LOS is higher and all variables are within the abnormal range (see Figure 4). Cluster 2 is a
group that transitions from diseased to healthy, where patients’ LOS is relatively short. Cluster 3
and 4 are patients who are initially healthy but got diseased later. Cluster 4 is different from cluster 3
in that the transition is slower and their health deterioration is severer. In Figure 4, we demonstrated
the variable trends of 4 variables.

(a) MAP. (b) HR.

(c) a-Lac. (d) fiO2.

Figure 4: Synthetic dataset variable demo. Each cluster’s mean trajectory and 95% confidence
interval are plotted.
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C IMPLEMENTATION DETAILS

C.1 DATA PREPROCESSING

The raw patient records require some elementary preprocessing to become usable for learning. Con-
sider the EHRs of a group of patients where each record contains hundreds of distinct variables.
Since these variables are of drastically different scales, they are first normalized per variable using
the mean and variance computed on all available time points. As the measure of variables or test
results could happen at arbitrary time, each variable are resampled temporally to 5 minute grids,
where the data points that are missing are imputed by forward filling. Finally, these sequences are
zero padded or cropped to a fixed length T of 7 days. Further data processing such as data augmen-
tation (Weldon et al., 2021) and other types of imputation (de Jong et al., 2019) could be performed;
we do not introduce them here.

C.2 ARCHITECTURE DETAILS

For the encoder structure of MCAE, we employed a 5-layer dilated causal temporal convolutional
network as introduced by Bai et al. (2018). We set the dilation factor as 2 and a kernel size of 12.
As for the decoder, we used a transpose TCN. The specific architecture is demonstrated in Figure 5.
The basic building block is transpose convolutional block that consists of two transpose convolution
operation with Leaky ReLU as activation (see Figure 5a). To upsample a latent embedding, Trans-
pose TCN first use a linear layer to map time point representation zt to larger dimensions. Then, it
unsqueeze and upsample the output to be of same dimension as the original sequence {xt}Tt=0. 5-
layer of transpose convolutional block follows, mapping the upsampled sequence to a reconstruction
(see Figure 5b).
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(b) Transpose TCN structure.
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(c) Time point decoder pipeline.

Figure 5: Transpose TCN architecture

As for the full-trajectory VAE, we employ a simple 5-layer Bayesian VAE (Kingma & Welling,
2013). Note that the latent sequences {zt}Tt=0 are flattened before they are used by VAE.

C.3 TRAINING DETAILS

Hyperparameters. There are several hyper-parameters related to the model. The first is the pres-
ence mask parameter α that mask out the missing dimensions at different time point. For our exper-
iment, by hyperparameter tuning on a designed synthetic dataset, we set α = 0.2. We set k = 24
in the timepoint representation learning pipeline, so that each zt is trained to reconstruct a 24-hour
window N̂24(xt) ∈ R∆T24×p of the original time series. Another parameter is the Gaussian distri-
bution used in loss calculation (see Equation (1)). By parameter tuning, the variance σ was set such
that 6σ = k correspond to 24 hour.

Loss Computation. During training, the Silhouette loss is computed as part of the loss function.
Note that this Silhouette score is not computed in for batches, but computed for the full dataset’s
clustering. This could be computationally intensive if the dataset size is large. To overcome this
complexity, one could compute the expected Silhouette loss on random subsets of a fixed size.
Since our HiRID dataset is relatively small, where we focused on 10,000 patients undergone cardiac
surgeries, this loss computation is still feasible.
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Loss Scheduling. The training is scheduled to be of two phases. In the first part, we jointly train
MCAE and the full-trajectory VAE using the full loss function L = Ltcn + λLvae + βLsil. This
ensures that the latent sequence {zt}Tt=0 encodes health state information and could also be well-
separated in full-trajectory embedding space. In the second phase, we fix the parameters in MCAE
and only train the VAE. Here, to avoid weights of VAE being stuck in local minimas, we re-initialize
the weights of VAE and train on loss Lvae + βLsil.

C.4 EXPERIMENTAL DETAILS

In Section 4, we mentioned three metrics that we used to evaluate the medically-meaningfulness of
clustering results. We formally define these metrics as follows.

LOS Difference: By splitting the patients’ LOS range into 50 equally sized bins, we are able to
calculate the empirical LOS distribution of a cluster c ∈ C. Denote this empirical LOS distribution
as P̂c. We hence define the LOS difference as

DLOS(C) :=
2

|C| × (|C| − 1)

∑
c̸=c′∈C

KL(P̂c||P̂c′) (2)

Survival Rate Difference: Assume cluster c ∈ C has a survial rate up until time τ of p(τ)c . The
survival rate difference is defined as

Dsurv(C) := medianc̸=c′∈C |p(τ)c − p
(τ)
c′ | (3)

Trajectory Difference: for each cluster c, a mean trajectory Xc is calculated. Then, the trajectory
difference is defined as the trimmed mean over all |Xc −Xc′ |, c, c′ ∈ C, c ̸= c′. This metric reflects
how far the clusters are separated from each other.

Pairwise Clustering Accuracy: given ground truth cluster labels, a pair of patients is pairwise
correctly clustered if they are assigned to the same cluster when they have the same ground truth
label; they are also correctly clustered if they are assigned different labels when their ground truth
labels are different. The pairwise clustering accuracy is the proportion of correctly clustered patient
pairs.

D ADDITIONAL RESULTS

D.1 SYNTHETIC DATASET RECONSTRUCTION RESULTS

In the main text, we claimed that our model is capable of capturing useful information from trajec-
tories with high missingness. This could be demonstrated by the following example. Recall that
the Synthetic dataset was generated by adding 84% of missingness to ground truth trajectories (see
Appendix B. We fed the MHealthVAE with these synthetic trajectories with 16% of available time
points and tested how well the reconstruction fits the underlying ground-truth trajectories. Figure 6
is an example of a synthetic patient on ZVD after normalization. It could be seen that given a sparse
input trajectory (X missing), the MHealthVAE is able to reconstruct a variable patient trajectory that
possesses a similar trend as the ground truth trajectory (X true). On average across all samples in the
Synthetic dataset, the L2 distance of Synthetic trajectories against ground truth is 85.77. On the con-
trary, the reconstructed sequences have an average distance against the ground truth of 78.80. This
proves that our model indeed learned useful information from input sequences of huge missingness.

D.2 HIRID CLUSTERING RESULTS

In Section 5, we mentioned that we implemented some recurrent structures including LSTM and
Transformers. These results are not listed in the main text since recurrent networks cannot learn
too much useful information in a dataset where 85% of data are forward-filled values. Since little
variance is present in the trajectories, without proper incentives, LSTMs and Transformers do not
render good clustering results under unsupervised settings. The complete result is listed in Table 3.
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Figure 6: Demonstration of sequence reconstruction from input sequence with missingness.

Table 3: Clustering performance results. DTW (Giannoula et al., 2018), TCN (Bai et al., 2018),
VaDER (de Jong et al., 2019)

(a) Synthetic dataset.

Accuracy (%) Pairwise Acc. (%) Silhouette LOS Diff. Traj. Diff.

Ground Truth - - 0.20 5.53 122.09
LOS 48.6± 1.4 72.2± 0.1 −0.04± 0.01 9.4 ± 0.01 58.7± 0.70
Raw 86.2± 4.7 84.6± 3.5 0.05± 0.02 4.2± 0.07 57.9± 2.8
DTW 48.2 ± 0.1 68.9 ± 0.1 0.01 ± 0.01 1.67 ± 0.01 118.98 ± 0.10
AE Latent 86.7± 0.7 85.7± 1.7 0.07± 0.04 5.06± 0.47 108.5± 5.2
TCN + AE 94.0± 0.9 95.8± 1.2 0.14± 0.01 3.94± 0.29 112.98± 2.48
LSTM + AE 45 ± 2.9 50.9 ± 3.3 -0.08 ± 0.01 1.43 ± 1.47 33.37 ± 5.76
VaDER 41.6 ± 0.1 48.2 ± 0.1 -0.06 ± 0.01 3.79 ± 0.01 40.17 ± 0.13
Transformer + AE 97.8 ± 0.8 97.9 ± 1.3 0.17 ± 0.01 5.53 ± 0.04 117.25 ± 0.53

MHealthAE (Ours) 99.1 ± 0.1 99.1 ± 0.2 0.19 ± 0.01 5.27± 0.38 118.25 ± 3.66
(b) HiRID dataset (Hyland et al., 2020).

LOS Diff. Silhouette Surv. 3m (%) Surv. 1y (%) Surv. 5y (%) Traj. Diff.

LOS 10.85 - 20.97 23.49 24.78 37.92
Raw 1.22 0.04 12.24 13.97 33.65 44.28
DTW 1.27 - 6.39 8.56 10.32 28.28
AE Latent 0.45 0.018 6.56 7.26 5.05 46.09
TCN + AE 0.2 -0.04 1.59 1.58 15.55 19.93
LSTM + AE 0.03 0.33 0.87 1.07 3.69 1.53
VaDER 0.03 0.65 1.01 1.31 1.24 2.23
Transformer + AE 0.29 0.728 0.61 0.83 1.36 3.25

MHealthAE (Ours) 3.71 0.014 18.47 20.91 26.47 48.51

As mentioned in Section 5.2, the number of clusters, 5, used in HiRID patient clustering is a result
of hyper-parameter tuning. Table 4 is a comparison of clustering metrics given different number of
clusters. 5 clusters is better at most metrics.

As shown in Section 5.2, MHealthVAE performs well in discovering subgroups within the cardiac
surgery patient cohort. A cluster population distribution is plotted in Figure 7a. Here, we see that
MHealthVAE identifies two subgroups of smaller populations: cluster 0 and cluster 3 are the ones
of sicker patients. For the healthier clusters, cluster 1, 2, and 4, although no noticeable differences
were displayed from survival rate (see Figure 2b), we do notice distinct trends in their health-related
variables. Take arterial lactate (a-Lac) as an example, Figure 8c illustrates different trends of a-Lac
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Table 4: Cluster performance for different number of clusters based on MHealthVAE.

N Cluster LOS Diff. Silhouette Surv. 3m (%) Surv. 1y (%) Surv. 5y (%) Traj. Diff.

3 1.63 0.88 16.25 16.43 16.51 13.61
4 4.07 0.76 10.73 11.84 20.16 2.24
5 3.71 0.014 18.47 20.91 26.47 48.51
6 2.80 0.44 11.76 11.58 12.19 28.73

in the 5 identified subgroups. For cluster 0 and 3 (sicker patients), the lactate level is higher than
any other subgroups, indicating that the patients are undergoing circulatory issues after their cardiac
surgeries. This partially explains the high death rate seen in the two groups. For healthier groups,
we notice lower lactate level, which is in concordance with their quick recovery and good prognosis
outcomes. Other variables of different clusters also display trend differences as shown in Figure 8.
This proves that the model is indeed clustering patients in a medically meaningful and interpretable
manner.

(a) Cluster population distribution. (b) Visualization of full-trajectory embedding.

Figure 7: MHealthVAE cluster visualizations.

Figure 7b is a visualization of full trajectory embeddings of patients projected onto two PCA com-
ponents. These clusters appear to be compact yet well separated in the latent space. This is a result
of the two regularizers that we introduced: a KL regularization in Lvae for the compactness and a
Silhouette loss for the well-separateness.

D.3 CIRCULATORY FAILURE PREDICTION

Table 5: Circularatory failure prediction using different input sequences.

Test Acc. (%) AUC Recall AUPRC Ave. Precision

Original Series 92.03 ± 0.72 0.929 ± 0.003 0.667 ± 0.011 0.798 ± 0.003 0.664 ± 0.006
TCN 90.74 ± 0.55 0.936 ± 0.003 0.729 ± 0.013 0.822 ± 0.005 0.672 ± 0.011
LSTM 96.23 ± 0.37 0.500 ± 0.000 0.500 ± 0 0.500 ± 0.000 0.500 ± 0.000

MHealthVAE (Ours) 93.10 ± 0.56 0.948 ± 0.001 0.723 ± 0.025 0.831 ± 0.010 0.709 ± 0.005

In addition to clustering on HiRID dataset to identify subtly different patient subgroups, we per-
formed a downstream task, circulatory failure prediction, on the latent trajectory {zt}Tt=0 to show
that it is a more compressed representation of the original patient trajectories. We first trained three
auto-encoders based on TCN, LSTM, and MHealthVAE to encode the original trajectories into latent
sequences (5 dimensions per timepoint). These sequences are passed to an MLP classifier to predict
if circulatory failure is about to happen. We compared the results to classification using the origi-
nal trajectory (12 variables per timepoint) as a baseline. A comparison of the classification results
is shown in Table 5. Comparing the original series and encoded sequence, we see that MHealth-
VAE encoded latent sequence brings an advantage in failure prediction in terms of all metrics. This

12



Published as a conference paper at ICLR 2023

(a) MAP (b) HR

(c) a-Lac. (d) fiO2.

Figure 8: Visualization of common subgroups found by different methods. The four variables’
cluster mean and 95% confidence intervals are plotted for the first 7 days (2016 recorded data points)
within ICU stay.

shows that our encoded sequence is a more compressed representation of a patient’s health condition
without much loss of information.

Note that a circulatory failure is a rare event: only 4% of the time points are positive for failures.
In particular, the MLP classifies every timepoint from the LSTM-encoded sequence as negative of
failures, rendering the best accuracy and the worst AUPRC. By inspection, we noticed that the la-
tent sequence embedded by LSTM is of little variation. We believe this is because of the extensive
forward-filling used in EHR imputation: since only 15% of the time points are available, the se-
quences are mostly filled with padding values, leaving little variation for the LSTM to learn. One
can train recurrent structures including LSTM and Transformers better in a supervised setting; yet,
in an unsupervised way, our MHealthVAE brings an embedding that is generic to downstream tasks.
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