

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GSDISTILL: A UNIFIED PARADIGM FOR GEOMETRY- AND SEMANTICS-AWARE DOCUMENT PRETRAINING

Anonymous authors

Paper under double-blind review

ABSTRACT

We introduce a unified pretraining paradigm for document understanding, grounded in a probability-theoretic formulation of multi-positive alignment and hierarchical self-distillation, which operate as complementary principles under a single objective. Unlike prior modular approaches, our framework redefines document pretraining as multi-positive, layout- and semantics-aware stochastic alignment rather than a collection of heuristic recipes. The model employs two complementary alignment heads: a semantic head, aligning page-level embeddings with OCR-derived text spans, and a geometric head, aligning representations with compact “box-text” descriptors that capture class type and structural layout. Both heads are trained with a multi-positive InfoNCE objective that supports one-to-many correspondences, alleviating the text-body bias of single-positive CLIP-style training and delivering markedly improved zero-shot document retrieval accuracy. To further strengthen representation quality, we incorporate a teacher-student self-distillation module with local-global hybrid regularization, enforcing patch-level consistency, global invariance, and embedding diversity. The resulting backbone produces layout-aware, language-grounded document representations that not only accelerate convergence and achieve competitive state-of-the-art results on layout detection benchmarks but also produce structured, consistent page-level embeddings that are naturally compatible with large language models, opening a path to advanced document reasoning and question-answering (QA).

1 INTRODUCTION

Document understanding is at the intersection of natural language processing and computer vision and is the foundation of various widely applied applications, including information extraction, semantic retrieval, and layout analysis. Traditional approaches have a tendency to divide this task into specialized modules.

Document retrieval models, i.e., retrieval-augmented generation (Lewis et al., 2020) and dense passage retrieval (Karpukhin et al., 2020), are targeted at modeling semantic similarity between queries and text passages for enabling efficient search in large document collections.

Page layout detection systems, e.g., DocLayout-YOLO (Zhao et al., 2024) and LayoutLM series (Xu et al., 2020b;a; Huang et al., 2022), operate on document pages as structured images. They identify text blocks, tables, figures, and headers, and encode them with geometric context beneficial for downstream tasks.

Vision encoder pretraining for documents has produced specialized models that integrate text, layout, and visual cues at the page level. Architectures such as LayoutLMv3 (Huang et al., 2022), DocFormer (Appalaraju et al., 2021), and LiLT (Wang et al., 2022) exemplify this line of work, yielding strong representations for form understanding, document classification, and QA.

Despite these advances, most methods remain tied to specific goals and have limited transferability between tasks. Performance on a given domain does not carry over to others, largely due to either narrow pretraining goals or highly specialized architectures. More general adaptability in retrieval and layout-focused tasks is therefore an open and urgent challenge.

In this work, we propose a conceptual shift in document pretraining: we move beyond fragmented recipes toward a principled unification of **semantics**, **geometry**, and **self-distillation**. Our framework operationalizes this shift by coupling dual-head multi-positive contrastive learning with hierarchical vision self-distillation under a single probabilistic objective. The resulting pretrained model learns representations that are both layout-aware and language-grounded with smooth transferability to a wide range of downstream tasks without task-specific supervision. Moreover, this single model can work as a “one-stop” backbone for document intelligence through effortless adaptations to retrieval and layout analysis.

Our contributions can be summarized as the following:

- **Unified pretraining objective:** We formalize document pretraining as **multi-positive stochastic alignment**, where semantic and geometric signals are jointly optimized under dual heads. This reconceptualization establishes a new family of pretraining objectives rather than an incremental extension of CLIP-style training.
- **Integration of vision self-distillation:** We extend recent advances in self-distillation, specifically iBOT Zhou et al. (2021) and DINOv2 and DINOv3 (Oquab et al., 2023; Siméoni et al., 2025), which enforce patch- and page-level invariances in the vision backbone. These invariances strengthen the ability of the backbone to capture structural regularities while simultaneously improving the semantic grounding of document representations.
- **Layout detection:** We conduct evaluations on DocLayNet (Pfitzmann et al., 2022), PubLayNet (Zhong et al., 2019), and additional benchmark datasets. Our results show that fine-tuning only the detection head that is added to the pretrained backbone achieves performance that can level with or exceed current state-of-the-art systems.
- **Generalization under Subsampled Positives:** Our multi-positive InfoNCE loss enables strong zero-shot transfer in document retrieval, avoiding the characteristic long-context forgetting problem in single-pair contrastive models.
- **Flexible, scalable, and reproducible framework:** We implement the pretraining recipe in HuggingFace (Wolf et al., 2020) and Ultralytics (Jocher et al., 2023) frameworks with DeepSpeed Rasley et al. (2020) ZeRO-3 CPU-offloading optimization enabled for efficient training at scales. Our framework supports flexible combinations of self-distillation, masked patch prediction, and both single- and multi-positive training, with or without embedding-level regularization.

Overall, our work establishes a **general-purpose**, **layout-** and **language-aware** backbone that unifies retrieval and structural analysis within a single pretraining paradigm. More than an incremental recipe, it advances a design principle for document pretraining: modality-specific signals (semantics and geometry) must be decoupled yet jointly optimized under multi-positive alignment. This principle, coupled with hierarchical self-distillation, provides a scalable foundation for the next generation of document intelligence systems.

2 RELATED WORKS

2.1 MULTI-POSITIVE CONTRASTIVE LEARNING

Multi-positive contrastive learning (MPCL) extends the standard InfoNCE loss by allowing each anchor to align with multiple valid positives, mitigating the limitations of single-positive (SP) formulations. By averaging gradients across structured sets of positives, MPCL yields more stable supervision, alleviates semantic underfitting, and improves optimization dynamics. Its benefits have been demonstrated across domains: in NLP, SupMPN (Dehghan & Amasyali, 2022) leverages multiple hard positives and negatives for stronger sentence embeddings; in multilingual learning, MPCL (Zhao et al., 2023) exploits parallel translations for robust cross-lingual retrieval; in vision, multi-positive extensions (Liang et al., 2024) improve convergence and benchmarks such as CIFAR-10 (Krizhevsky & Hinton, 2009) and Tiny ImageNet (Le & Yang, 2015); in sensor-based activity recognition, MPSQCL (Ren et al., 2024) combines augmented views with quantum-boosted encoders; and in pose understanding and hierarchical retrieval, GenPoCCL (Inayoshi et al., 2024) and Hierarchical MPCL (Kavimandan et al., 2025) demonstrate domain-specific gains. While promising in noisy

108 and multimodal settings, MPCL remains unexplored for document pretraining, where one-to-many
 109 alignment is particularly relevant for capturing both semantic and structural cues.
 110

112 2.2 SELF-DISTILLATION IN VISION MODELS

114 Self-distillation achieves strong representations without external supervision by enforcing consistency
 115 between a teacher and student network. Methods such as DINO (Caron et al., 2021; Oquab
 116 et al., 2023; Siméoni et al., 2025) and iBOT (Zhou et al., 2021) couple global invariance with patch-
 117 level prediction, producing robust and transferable features. Although widely validated on natural
 118 image benchmarks, systematic application to document understanding is limited, despite the do-
 119 main’s need for fine-grained layout sensitivity and holistic semantic coherence.
 120

121 2.3 DOCUMENT RETRIEVAL

123 Dense retrieval models such as DPR (Karpukhin et al., 2020), ColBERT Khattab & Zaharia (2020),
 124 and large-scale retrievers (Lewis et al., 2020) have advanced text search, while multimodal con-
 125 trastive learning, notably CLIP (Radford et al., 2021), demonstrated powerful image-text alignment.
 126 However, SP-based objectives assume each document anchor corresponds to a single canonical span,
 127 typically dominated by body text. This overlooks alternative signals—captions, headers, tables, and
 128 figures—leading to biased supervision and under-representation of secondary but important fea-
 129 tures. Document retrieval therefore demands multi-span, multi-positive alignment strategies to fully
 130 capture page-level semantics.
 131

132 2.4 LAYOUT DETECTION

134 Layout analysis remains a foundational task in document intelligence. Datasets such as PubLayNet
 135 (Zhong et al., 2019), DocLayNet (Pfitzmann et al., 2022), and DocBank (Li et al., 2020) have spurred
 136 progress from R-CNN based detectors to efficient YOLO variants (Zhao et al., 2024; Xu et al.,
 137 2020b;a; Kim et al., 2022). While these systems achieve strong detection and segmentation, they are
 138 largely specialized to local element classification. Their representations are not readily transferable
 139 to higher-level document understanding tasks such as retrieval or QA.
 140

141 3 HIGH-LEVEL ARCHITECTURE

144 Figure 1 shows the proposed pretraining framework. The architecture is modular in nature and
 145 integrates multi-positive contrastive learning, self-distillation, and regularization within a unified
 146 training paradigm for learning document representations.
 147

148 The base of the framework is a Vision Transformer (ViT) encoder that processes raw document
 149 inputs and is the shared basis for downstream tasks. Two heads complement the ViT: a *semantic*
 150 *head* that projects page embeddings into alignment with text spans such as OCR tokens, captions,
 151 and section headings, and a *geometric head* that projects into alignment with layout descriptors
 152 from bounding boxes. The two heads are trained on content-based and layout-based multi-positive
 153 contrastive losses, respectively, to ensure the learned representation is semantically coherent and
 layout-aware.

154 To further stabilize training and reduce representation collapse, we generalize KoLeo regulariza-
 155 tion (Sablayrolles et al., 2018) to KoLeo-hybrid regularization, balancing global embedding disper-
 156 sion and local semantic preservation.
 157

158 Meanwhile, the teacher-student self-distillation module provides additional supervision. The teacher
 159 network is updated as an exponential moving average of the student, offering stable targets for mul-
 160 tiple augmented views of a page. The student is trained to align these targets through a *multi-scale*
 161 *consistency loss*, which enforces invariance over global and local views, and a *patch-level masked*
 162 *prediction loss*, which encourages recovery of fine-grained structural cues. Together, these tasks
 163 encourage the encoder to learn both hierarchical content semantics and spatial layout regularities.
 164

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

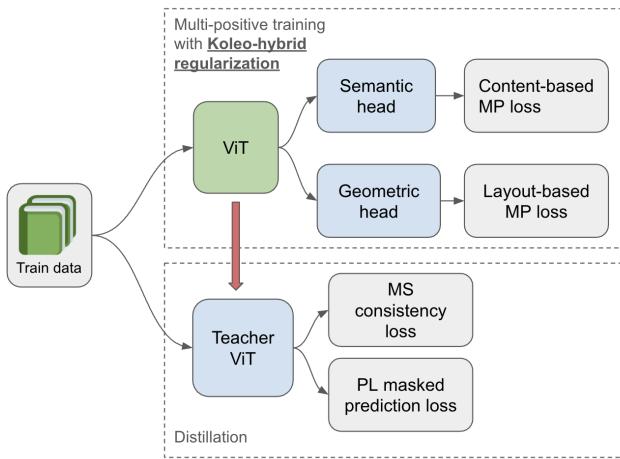


Figure 1: Overview of the proposed pretraining framework. The model integrates **multi-positive contrastive learning (MPCL)** (Section 4.1), implemented with dual semantic and geometric heads and enhanced through **KoLeo-hybrid regularization** (Section 4.5), to jointly encode content and layout information. In parallel, a **self-distillation module** with a teacher-student ViT enforces cross-view consistency via **multi-scale consistency loss** (Section 4.3) and **patch-level masked prediction loss** (Section 4.4). Together, these objectives encourage the model to acquire semantically coherent, layout-aware, and transferable representations that support a broad spectrum of document understanding tasks.

4 OBJECTIVE LOSS FUNCTION

Our pretraining framework is directed by a combined objective that blends **dual-head multi-positive contrastive learning (MPCL)**, **self-distillation**, and **regularization**. Our framework design explicitly encodes the semantic content and geometric structure of documents, along with enforcing cross-view consistency. The result is a set of powerful and transferable representations that go beyond localized detection and generalize to a broad variety of document understanding tasks.

4.1 MULTI-POSITIVE CONTRASTIVE LEARNING

Let $h_p \in \mathbb{R}^d$ denote the embedding of a document page, and let $\{z_1, z_2, \dots, z_K\}$ represent a set of K semantically consistent positives. Depending on the head, these positives correspond to:

- **Semantic head:** OCR text spans, titles, and captions ($z_i^{\text{sem}} = f_{\text{sem}}(t_i)$).
- **Geometric head:** box-text descriptors encoding class type and bounding box coordinates ($z_i^{\text{geom}} = f_{\text{geom}}(b_i)$).

In contrast to standard InfoNCE, which assumes a single positive, MPCL distributes supervision across all valid matches. The objective for anchor h_p is:

We first define the *multi-positive contrastive loss (MPCL)* for a page representation h_p and its set of K positive spans $\{z_i\}_{i=1}^K$:

$$\mathcal{L}_{\text{MPCL}}(h_p, \{z_i\}) = -\log \frac{\sum_{i=1}^K \exp(\text{sim}(h_p, z_i)/\tau)}{\sum_{i=1}^K \exp(\text{sim}(h_p, z_i)/\tau) + \sum_{j=1}^N \exp(\text{sim}(h_p, n_j)/\tau)},$$

where $\text{sim}(\cdot, \cdot)$ denotes cosine similarity, τ is the temperature hyperparameter, and $\{n_j\}_{j=1}^N$ are negatives sampled from the batch or a memory bank. Unlike the standard SP loss, this formulation aggregates evidence across multiple valid alignments (e.g., captions, OCR spans, section headers), thereby:

- **Stabilizing gradients:** Averaging over multiple positives reduces variance in the learning signal and mitigates the risk of noisy or ambiguous correspondences dominating the update, see Figures A1 and A2 in the Appendix for the curves of gradient norms and loss curves at training.
- **Balancing supervision across elements:** By treating multiple valid alignments as equally weighted positives, the model avoids over-emphasizing dominant regions (e.g., long paragraphs or large visual blocks) at the expense of smaller but semantically important elements such as captions, equations, or footnotes. This balanced training signal ensures that representations capture both major structures and subtle details, leading to embeddings that are less biased by element size and more faithful to the full semantic variety of a document page.

4.2 DUAL-HEAD EXTENSION

We treat the dual-head MPCL not as an ad-hoc extension, but as a **structural necessity**. When semantic and geometric cues are fused directly, they often compete and degrade retrieval; when decoupled under multi-positive alignment, they instead provide complementary supervision. This motivates the dual-head objective:

$$\mathcal{L}_{\text{dual}} = \mathcal{L}_{\text{sem}}(h_p, \{z_i^{\text{sem}}\}) + \mathcal{L}_{\text{geom}}(h_p, \{z_i^{\text{geom}}\}).$$

Here, \mathcal{L}_{sem} aligns the page embedding with semantic positives (e.g., OCR text spans, captions, headers), while $\mathcal{L}_{\text{geom}}$ aligns it with geometric positives (e.g., layout boxes, structural anchors). This separation ensures that the learned representation remains both **semantically coherent** and **geometrically grounded**, a property essential for document understanding and broadly applicable to any setting with heterogeneous alignments.

4.3 MULTI-SCALE CONSISTENCY SELF-DISTILLATION

Beyond the dual-head contrastive objectives, we incorporate **self-distillation** to enhance representation quality. Following DINOv3 (Siméoni et al., 2025), we maintain a momentum-encoder teacher that produces stable targets for both global and local views, while the student is trained for consistency across multiple augmentations. Formally, given global views $\{v_g\}$ and local crops $\{v_\ell\}$, the teacher outputs y_g, y_ℓ and the student predicts p_g, p_ℓ . The distillation loss is:

$$\mathcal{L}_{\text{distill}} = \sum_{v \in \{v_g, v_\ell\}} \text{CE}(p_v, y_v),$$

where CE is cross-entropy. Teacher parameters are updated as an exponential moving average (EMA) of the student, providing stable supervision.

In contrast to classical DINO, where the teacher supervises only global crops, we extend the teacher to also predict local views, following the iBOT paradigm. This design enforces multi-scale consistency: at the global level, it aligns page-level structures such as layout topology and topic arrangement, while at the local level, it strengthens representations of finer-grained regions including text lines, tables, figures, and captions. By jointly aligning global and local signals, the model acquires hierarchy-aware features that are robust to distortions and partial observations, a property particularly beneficial for downstream layout analysis and multimodal alignment in complex documents. Ablation results from Table A1 in the Appendix demonstrates the effectiveness of our choice.

4.4 PATCH-LEVEL MASKED PREDICTION

To complement global and local consistency, we adopt the **iBOT masked prediction objective**. Let \mathcal{M} be the set of masked patches, and let p_m and y_m denote the student prediction and teacher target for $m \in \mathcal{M}$. The loss is:

$$\mathcal{L}_{\text{ibot}} = \frac{1}{|\mathcal{M}|} \sum_{m \in \mathcal{M}} \text{CE}(p_m, y_m),$$

This objective enforces patch-level consistency, encouraging recovery of fine-grained structural cues beyond the holistic page embedding and complementing global-local self-distillation.

270 For document understanding, patch-level prediction strengthens representations of localized structures such as text lines, tables, figures, and captions. By training the model to restore masked content, it becomes more robust to noise, partial page views, and irregular layouts, which are frequent in scanned and multilingual documents.

275 4.5 KOLEO-HYBRID REGULARIZATION

277 A key challenge in dual-head MPCL is avoiding representation collapse under strong alignment pressures. To address this, we introduce a **KoLeo-Hybrid regularizer** that balances global uniformity with local semantic coherence. Unlike prior uses of KoLeo (Sablayrolles et al., 2018) in vision-only self-supervised learning, our adaptation is tailored for document pretraining: semantic neighborhoods are constructed through multi-view page augmentations, ensuring intra-page consistency while maintaining inter-page discrimination.

283 Formally, the loss is:

$$284 \quad \mathcal{L}_{\text{KoLeo-H}} = \alpha \cdot \log \mathbb{E}_{i \neq j} [\exp(\text{sim}(\bar{h}_i, \bar{h}_j))] + \beta \cdot \frac{1}{|\mathcal{P}|} \sum_{(u,v) \in \mathcal{P}} (1 - \text{sim}(\bar{h}_u, \bar{h}_v)), \quad (1)$$

287 where \bar{h} denotes L_2 -normalized embeddings and \mathcal{P} denotes the set of semantically related pairs. The coefficients α and β control the trade-off between dispersion and preservation. We apply this regularizer to **both semantic and geometric embeddings**, so that each head maintains globally diverse geometry while preserving local coherence within its modality. This hybridization allows the model to resist collapse, retain task-relevant semantic and structural structure, and scale robustly under multi-positive alignment.

294 4.6 FULL OBJECTIVE

296 The final pretraining objective is a weighted sum of all components:

$$298 \quad \mathcal{L} = \lambda_1 \mathcal{L}_{\text{sem}} + \lambda_2 \mathcal{L}_{\text{geom}} + \lambda_3 \mathcal{L}_{\text{distill}} + \lambda_4 \mathcal{L}_{\text{ibot}} + \lambda_5 \mathcal{L}_{\text{KoLeo-H}},$$

300 where λ_i are tunable coefficients controlling the trade-off.

301 This composite formulation ensures that the model learns **multi-positive, layout-aware, semantically faithful, and structurally consistent** document representations, enabling a single backbone to support detection and retrieval, see Table A2 in the Appendix for details on training hyperparameters.

306 5 PRETRAINING DATA FORMAT

309 Our pretraining framework requires data representations that express both the **semantic content** and the **structural geometry** of documents. To this end, each page of a document is divided into 310 three complementary modalities: raw image views, text spans retrieved via OCR and captions, and 311 box-text descriptors that encode geometric structure.

313 5.1 PAGE IMAGES AND VIEWS

315 The page image serves as the primary visual input to the backbone. For self-distillation, we follow 316 the DINOv3 recipe and generate multiple augmented views of each page:

- 318 • **Global views:** resized crops covering the entire page, preserving holistic context.
- 319 • **Local views:** random smaller crops that emphasize specific regions such as tables, figures, 320 or headers.

322 These views are incorporated into the dataset alongside the original page, ensuring that both global 323 and local perspectives are explicitly available during training. They are then used for the teacher-student consistency loss (Section 4.3), the patch-level consistency loss (Section 4.4), and the hybrid

regularization (Section 4.5). This design enforces invariance at the global level while preserving sensitivity to fine-grained layout cues, resulting in representations that are robust, semantically rich, and layout-aware.

5.2 SEMANTIC SUPERVISION FROM OCR AND CAPTIONS

To obtain element-level text supervision, we perform OCR with Gemini-2.0-flash (DeepMind, 2024) on each page and extract all text spans (paragraphs, headers, footnotes, etc.), as well as any surrounding captions for figures and tables. We encode each text element t_i with a text encoder $f_{\text{sem}}(\cdot)$ into an embedding z_i . The resulting set of positives $\{z_1^{\text{sem}}, z_2^{\text{sem}}, \dots, z_K^{\text{sem}}\}$ forms the target distribution for the **semantic head** in our multi-positive contrastive loss.

5.3 GEOMETRIC SUPERVISION FROM BOX-TEXT DESCRIPTORS

In addition to textual contents, we construct lightweight **box-text descriptors** of geometric layout attributes. For each region annotation b_i (e.g., paragraph, table, figure, caption), we have a short text string summarizing its *type* (class label) and geometric attributes (coordinates). These descriptors are fed to the same text encoder to generate geometric embeddings $z_1^{\text{geom}}, \dots, z_K^{\text{geom}}$. The **geometric head** maps the page embedding to this set under the same multi-positive contrastive framework, learning structural relationships between regions.

5.4 PRETRAINING TUPLE

Overall, as portrayed in Figure 2, each page is represented as a structured tuple:

$$\mathcal{D} = \{I_p, \{v_g\}_{j=1}^G, \{v_{\ell_j}\}_{j=1}^L, \{t_i\}_{i=1}^K, \{b_i\}_{i=1}^K\},$$

where I_p is the original page image, $\{v_g\}$ denotes the set of global and local augmented views derived from I_p , $\{t_i\}$ are textual spans, and $\{b_i\}$ are box-text descriptors. During training, $\{v_g, v_{\ell_j}\}$ provide inputs for regularized self-distillation, while $\{t_i\}$ and $\{b_i\}$ serve as multi-positive sets for the semantic and geometric contrastive heads. This unified data format enables a single backbone to jointly learn visual, semantic, and structural representations of documents, ensuring consistency across both global context and fine-grained layout cues. Due to limited resources, we managed to collect and annotate 600K such tuples.

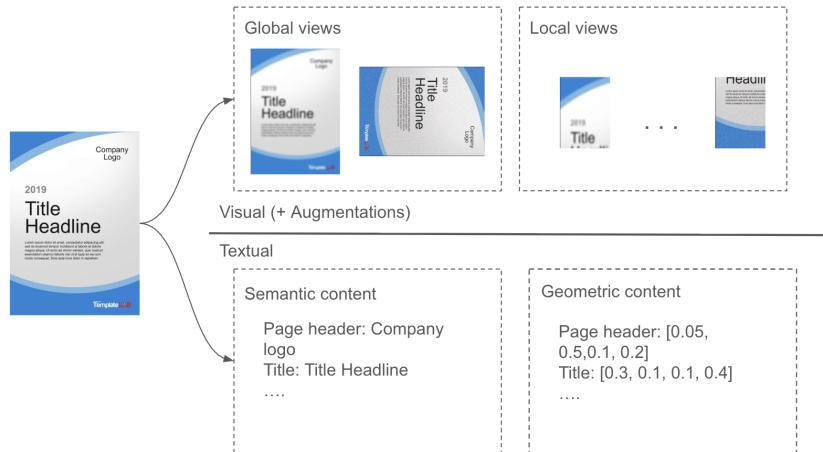


Figure 2: Illustration of the pretraining tuple \mathcal{D} . Each document page is represented by (i) the raw page image I_p , (ii) global and local augmented visual views $\{v_g, v_{\ell_j}\}$ used for self-distillation, (iii) semantic spans $\{t_i\}$ such as headers, titles, and captions, and (iv) geometric descriptors $\{b_i\}$ encoding bounding-box coordinates and region types. This unified representation provides a consistent input format for contrastive heads and distillation objectives, enabling the backbone to jointly learn visual, semantic, and structural cues.

378

6 EXPERIMENTS

380 We evaluate our pretrained backbone on three complementary axes: (1) fine-tuning for document
 381 layout detection, (2) subsampled document retrieval accuracy, and (3) ablations on the effect of
 382 multi-positive contrastive learning. All experiments are conducted on widely used document under-
 383 standing benchmarks.

384

385 6.1 LAYOUT DETECTION

387 We assess our pretrained backbone (ViT-24, 70.2M) on PubLayNet and DocLayNet using head-
 388 only finetuning (5.7M parameters). The backbone is frozen, and only detection heads are optimized.
 389 Despite the reduced active parameter size and the lack of task-specific supervision, Table 1 shows

390 Table 1: Comparison of layout detection performance (mAP@50 and mAP@[50:95]) on PubLayNet
 391 and DocLayNet. Baseline SOTA numbers are taken from prior literature; DocLayout-YOLO results
 392 from Zhao et al. (2024); YOLO-DocLayNet results from YOLO-DocLayNet (2025); Hybrid ap-
 393 proach results from Shehzadi et al. (2024).

395 Dataset	396 Model	397 Trainable Params (M)	398 mAP@50	399 mAP@[50:95]
397 PubLayNet	398 ViT-24 (YOLOv10, head-only finetune)	5.7	97.9	94.0
	Hybrid Approach	≈55.0	98.8	97.3
400 DocLayNet	YOLO-DocLayNet (YOLOv12n)	2.6	-	75.6
	401 ViT-24 (YOLOv10, head-only finetune)	5.7	93.7	81.1
	YOLO-DocLayNet (YOLOv12s)	9.3	-	78.2
	DocLayout-YOLO (YOLOv10m++)	≈18.0	93.4	79.7
	Hybrid Approach	≈55.0	93.5	81.6
	YOLO-DocLayNet (YOLOv12x)	59.1	-	79.4

405 that our approach matches state-of-the-art detectors that are far larger and exceeds detectors that
 406 have around the same number of trainable parameters. Notably, a single epoch already yields strong
 407 results (84.1 mAP@50 on PubLayNet, 79.0 mAP@50 on DocLayNet; see Figure A3), with further
 408 gains from additional epochs. These results highlight the transferability of the dual-head pretraining
 409 to layout-aware detection.

410

411 6.2 SUB-SAMPLED DOCUMENT RETRIEVAL

412 In real retrieval settings,

413 Table 2: Document retrieval accuracy (%) with subsampled crops. Multi-positive training provides
 414 a clear advantage when only a single crop is available. As more crops are provided at inference,
 415 the gap narrows, and both methods converge. For the SP, crops are concatenated according to the
 416 original reading order. The results are obtained from 1,000 randomly sampled document pages that
 417 are not included in the 600K pretraining dataset.

420 Method	421 1 Crop	422 5 Crops	423 8 Crops
422 SP (Full Objective)	45.2	61.8	66.3
423 MPCL (Full Objective)	54.6	68.1	71.2

425 supervision is often limited to captions, headers, or a few OCR spans rather than full text.

426 Formal proofs, grounded in probability theory, of how MPCL can increase retrieval accuracy are
 427 given in Sections S3 and S4 of the Appendix. CLIP-style one-to-one alignment tends to overfit
 428 dominant body text, neglecting secondary signals. By contrast, multi-positive contrastive learning
 429 aligns page embeddings with all consistent cues, improving robustness under sparse supervision. As
 430 shown in Table 2, this advantage is most pronounced when only limited signals are available, while
 431 performance gap tends to shrink once the full page semantics are increasingly accessible.

432 6.3 ABLATION STUDIES
433434 We conduct ablation experiments to disentangle the contributions of semantic and geometric MPCL,
435 self-distillation, and regularization. Table 3 reports results across seven configurations, from SP
436 baselines to the complete system. MPCL is the primary driver of retrieval gains: semantic MPCL
437438 Table 3: Ablation study on the contributions of MPCL, geometric alignment, self-distillation, and
439 regularization.
440

441 Configuration	442 Detection mAP (DocLayNet)	443 Retrieval mAP (1 Crop)
444 SP (semantic)	445 62.7	44.7
445 SP (semantic + geometric)	446 78.3	44.1
446 SP (semantic geometric)	447 65.3	42.9
447 MPCL (semantic only)	448 62.1	52.9
448 MPCL (semantic + geometric)	449 78.8	52.7
449 MPCL (dual-head) + distill	450 79.4	53.1
450 MPCL (dual-head) + distill + ibot	451 80.3	53.7
451 MPCL (dual-head) + distill + ibot + KoLeo-H	452 81.1	54.6

452 outperforms its SP counterpart (52.9 vs. 44.7). Geometric alignment consistently boosts detection
453 (78.8 vs. 62.1 with MPCL; 78.3 vs. 62.7 with SP) but slightly reduces retrieval, reflecting a trade-off
454 between spatial localization and text alignment. The failure of the concatenated variant highlights
455 a key paradigm: naive fusion collapses retrieval, while dual-head MPCL preserves complementary
456 structure. Adding self-distillation further improves stability and performance (79.4 detection, 53.1
457 retrieval), and ibot enhances patch-level consistency (+0.9 detection, +0.6 retrieval). Finally, KoLeo-
458 Hybrid regularization ensures diversity under strong alignment pressures, yielding the best results:
459 81.1 detection and 54.6 retrieval.
460461
462 7 CONCLUSION
463464
465 In conclusion, we introduce a pretraining paradigm for document understanding that combines dual-
466 head multi-positive contrastive learning, self-distillation, and hybrid regularization. The approach
467 produces layout-aware, language-grounded representations that deliver improved zero-shot docu-
468 ment retrieval and achieve competitive state-of-the-art detection performance with faster conver-
469 gence. Beyond detection, the backbone provides a versatile foundation for OCR pipelines and for
470 integration with large language models to perform more complex document understanding tasks
471 such as reasoning and QA, establishing multi-positive alignment as a general paradigm for multi-
472 modal document pretraining. Beyond detection and retrieval, this principle opens the door to OCR
473 pipelines and LLM-based reasoning, providing a transferable design foundation rather than a task-
474 specific recipe.
475476
477 LIMITATIONS AND FUTURE WORK
478479 While our framework establishes a new paradigm, it has limitations. First, evaluation is restricted
480 to PubLayNet and DocLayNet, leaving downstream reasoning and QA tasks for future work. Sec-
481 ond, our pretraining data (600K tuples) is modest compared to billion-scale vision-language models,
482 and scaling remains an open challenge. Third, OCR-based supervision inherits biases from current
483 systems, limiting robustness in low-resource or multilingual settings. Addressing these limitations
484 offers a natural path forward and will strengthen the generality of the paradigm. In addition, while
485 our analysis is probability-theoretic, our training framework remains deterministic. We leave explo-
486 ration of truly probabilistic approaches to future work

486 LLM USAGE STATEMENT

487

488 We acknowledge the use of large language models (LLMs) solely for text polishing and language
 489 refinement. All ideas, experiments, and analyses presented in this work are entirely the authors'
 490 own.

491

492 REPRODUCIBILITY STATEMENT

493

494 To ensure transparency and reproducibility, we will release our complete codebase, including data
 495 preprocessing scripts, training configurations, and the end-to-end training pipeline. The repository
 496 will be made publicly available on GitHub and will include detailed documentation, environment
 497 setup instructions, and example runs. This will enable other researchers to replicate our experiments
 498 and extend our framework for future studies.

499

500 ETHICS STATEMENT

501

502 This work complies with the ICLR Code of Ethics.¹ Our experiments use a combination of publicly
 503 available benchmarks (PubLayNet, DocLayNet) and self-annotated data. No human subjects or
 504 personally identifiable information are involved. We acknowledge that dataset biases may persist
 505 and encourage future work to examine fairness and representational balance. Code and training
 506 pipelines will be released to ensure reproducibility.

507

508 REFERENCES

509

510 Srikanth Appalaraju, Bhavan Jasani, Bhargava Urala Kota, Yusheng Xie, and R Manmatha. Doc-
 511 former: End-to-end transformer for document understanding. In *Proceedings of the IEEE/CVF
 512 international conference on computer vision*, pp. 993–1003, 2021.

513

514 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
 515 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of
 516 the IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.

517

518 Google DeepMind. Introducing gemini 2.0: our new ai model for the agen-
 519 tive era. [https://blog.google/technology/google-deepmind/
 520 google-gemini-ai-update-december-2024/](https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/), December 2024. Accessed: 2025-09-
 521 18.

522

523 Somaiyeh Dehghan and Mehmet Fatih Amasyali. Supmpn: supervised multiple positives and neg-
 524 atives contrastive learning model for semantic textual similarity. *Applied Sciences*, 12(19):9659,
 525 2022.

526

527 Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and Furu Wei. Layoutlmv3: Pre-training for
 528 document ai with unified text and image masking. In *Proceedings of the 30th ACM international
 529 conference on multimedia*, pp. 4083–4091, 2022.

530

531 Sho Inayoshi, Aji Resindra Widya, Satoshi Ozaki, Junji Otsuka, and Takeshi Ohashi. Multi positive
 532 contrastive learning with pose-consistent generated images. *arXiv preprint arXiv:2404.03256*,
 533 2024.

534

535 Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics yolo. [https://github.com/
 536 ultralytics/ultralytics](https://github.com/ultralytics/ultralytics), 2023. Version 8.3.

537

538 Vladimir Karpukhin, Barlas Onguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
 539 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In *EMNLP
 540 (1)*, pp. 6769–6781, 2020.

541

542 Kshitij Kavimandan, Angelos Nalmpantis, Emma Beauxis-Aussalet, and Robert-Jan Sips. Hi-
 543 erarchical multi-positive contrastive learning for patent image retrieval. *arXiv preprint
 544 arXiv:2506.13496*, 2025.

¹<https://iclr.cc/public/CodeOfEthics>

540 Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contextualized
 541 late interaction over bert. In *Proceedings of the 43rd International ACM SIGIR conference on*
 542 *research and development in Information Retrieval*, pp. 39–48, 2020.

543 Geewook Kim, Teakgyu Hong, Moonbin Yim, JeongYeon Nam, Jinyoung Park, Jinyeong Yim,
 544 Wonseok Hwang, Sangdoo Yun, Dongyoon Han, and Seunghyun Park. Ocr-free document un-
 545 derstanding transformer. In *European Conference on Computer Vision*, pp. 498–517. Springer,
 546 2022.

547 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
 548 nical Report TR-2009, University of Toronto, 2009.

549 Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015.

550 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 551 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
 552 ation for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 553 9459–9474, 2020.

554 Minghao Li, Yiheng Xu, Lei Cui, Shaohan Huang, Furu Wei, Zhoujun Li, and Ming Zhou. Docbank:
 555 A benchmark dataset for document layout analysis. *arXiv preprint arXiv:2006.01038*, 2020.

556 Zhehao Liang, Yanqing Luo, Marvin Beese, and David Jacob Drexlin. Multiple positive
 557 views in self-supervised learning, 2024. URL <https://openreview.net/forum?id=WGP2pHtLtn>.

558 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 559 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaeldin El-Nouby, et al. Dinov2: Learning
 560 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

561 B Pfitzmann, C Auer, M Dolfi, AS Nassar, and PWJ Staar. Doclaynet: A large humanannotated
 562 dataset for document-layout analysis. URL: <https://arxiv.org/abs/2206.106217>, 2022.

563 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 564 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 565 models from natural language supervision. In *International conference on machine learning*, pp.
 566 8748–8763. PMLR, 2021.

567 Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
 568 mizations enable training deep learning models with over 100 billion parameters. In *Proceedings*
 569 *of the 26th ACM SIGKDD international conference on knowledge discovery & data mining*, pp.
 570 3505–3506, 2020.

571 Yanhui Ren, Di Wang, Lingling An, Shiwen Mao, and Xuyu Wang. Multi-positive sample quantum
 572 contrastive learning for human activity recognition. In *GLOBECOM 2024-2024 IEEE Global*
 573 *Communications Conference*, pp. 3992–3997. IEEE, 2024.

574 Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, and Hervé Jégou. Spreading vectors for
 575 similarity search. *arXiv preprint arXiv:1806.03198*, 2018.

576 Tahira Shehzadi, Didier Stricker, and Muhammad Zeshan Afzal. A hybrid approach for document
 577 layout analysis in document images. In *International Conference on Document Analysis and*
 578 *Recognition*, pp. 21–39. Springer, 2024.

579 Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
 580 Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, et al. Dinov3. *arXiv*
 581 *preprint arXiv:2508.10104*, 2025.

582 Jiapeng Wang, Lianwen Jin, and Kai Ding. Lilt: A simple yet effective language-independent layout
 583 transformer for structured document understanding. *arXiv preprint arXiv:2202.13669*, 2022.

584 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 585 Pierrick Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
 586 natural language processing. In *Proceedings of the 2020 conference on empirical methods in*
 587 *natural language processing: system demonstrations*, pp. 38–45, 2020.

594 Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Floren-
595 cito, Cha Zhang, Wanxiang Che, et al. Layoutlmv2: Multi-modal pre-training for visually-rich
596 document understanding. *arXiv preprint arXiv:2012.14740*, 2020a.
597

598 Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou. Layoutlm: Pre-
599 training of text and layout for document image understanding. In *Proceedings of the 26th*
600 *ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 1192–1200,
601 2020b.

602 YOLO-DocLayNet. Yolo-doclaynet: Yolo models trained on doclayment for document layout anal-
603 ysis. <https://github.com/ppaannggg/yolo-doclaynet>, 2025. Accessed: 2025-
604 09-23.

605 Kaiyan Zhao, Qiyu Wu, Xin-Qiang Cai, and Yoshimasa Tsuruoka. Leveraging multi-lingual
606 positive instances in contrastive learning to improve sentence embedding. *arXiv preprint*
607 *arXiv:2309.08929*, 2023.

608 Zhiyuan Zhao, Hengrui Kang, Bin Wang, and Conghui He. Doclayout-yolo: Enhancing document
609 layout analysis through diverse synthetic data and global-to-local adaptive perception. *arXiv*
610 *preprint arXiv:2410.12628*, 2024.

611 Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Publaynet: largest dataset ever for document
612 layout analysis. In *2019 International conference on document analysis and recognition (ICDAR)*,
613 pp. 1015–1022. IEEE, 2019.

614 Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot:
615 Image bert pre-training with online tokenizer. *arXiv preprint arXiv:2111.07832*, 2021.

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A APPENDIX
649
650
651652 S1 MORE ABLATION RESULTS AND HYPERPARAMETERS
653
654
655
656
657658 Table A1: Ablation study on the contributions of global and local supervision vs. global supervision
659 alone in self-distillation
660

Configuration	Detection mAP (DocLayNet)	Retrieval mAP (1 Crop)
MPCL (dual-head) + distill (global) + ibot + KoLeo-H	80.8	54.0
MPCL (dual-head) + distill (global+local) + ibot + KoLeo-H	81.1	54.6

665
666
667
668
669
670
671 Table A2: Training hyperparameters used in our experiments.

Category	Parameter	Value
Core	Text model name	Qwen3-Embedding-0.6B
	Projection dimension	256
	Logit scale init	$\log(1/0.07)$
	Image pooling	Mean
	Freeze vision	False
	Freeze text	True
	Disable MP	True/False
	Single-CLIP mode	True/False
	Distillation enabled	True/False
Multi-Positive Loss	λ_1	1
	λ_2	1
	MP temperature	0.07
	MP normalize	True
Self-distill/ iBOT	Self-distill output dim	65,536
	Self-distill hidden dim	2048
	λ_3	0.7
	λ_4	0.7
	λ_5	0.02
	$t_{\text{stu},\text{img}}$	0.1
	$t_{\text{tea},\text{img}}$	0.04
	$t_{\text{stu},\text{patch}}$	0.1
	$t_{\text{tea},\text{patch}}$	0.04
	Sinkhorn iterations	3
	Momentum (base)	0.996
	Momentum (end)	0.9995

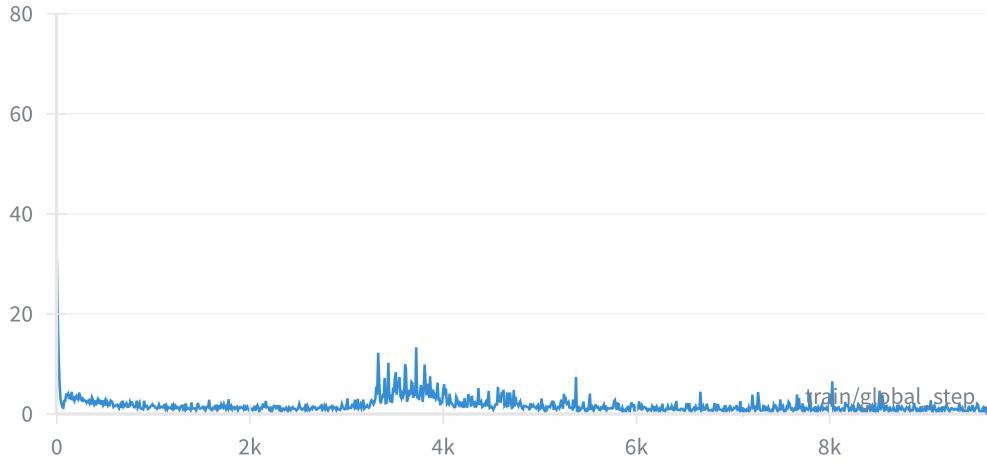
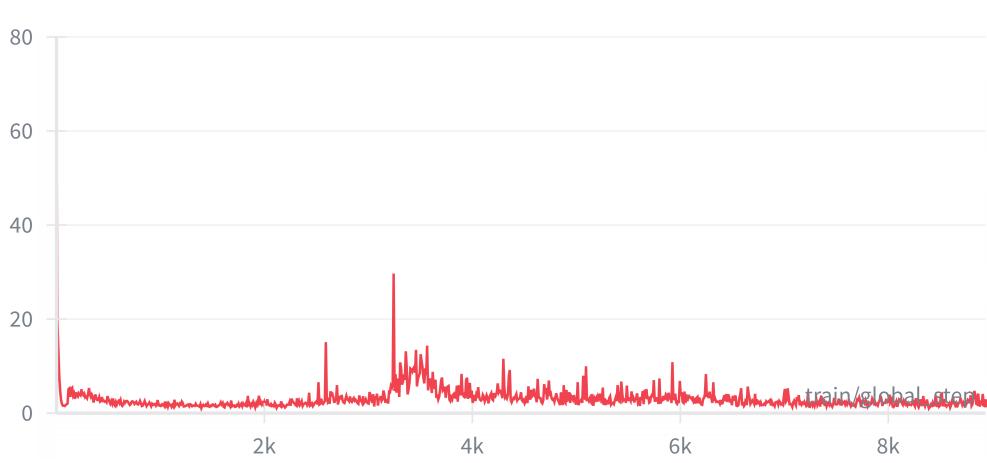
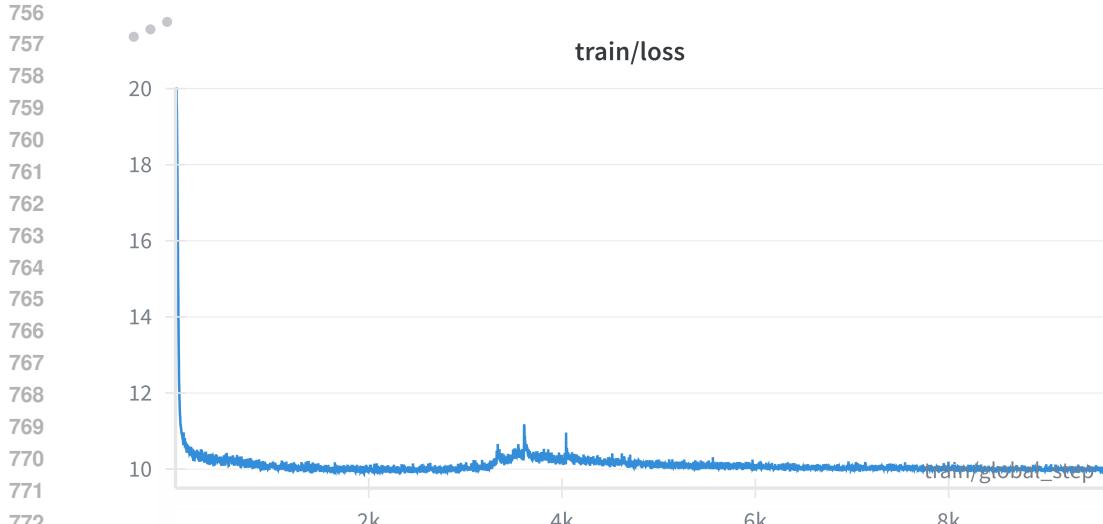
702 S2 TRAINING LOGS
703
704
705
706707 train/grad_norm
708711
712
713
714
715
716
717
718
719
720
721
722
723
724
(a) Multi-positive contrastive learning (MPCL). The gradient norm of the full-stack loss remains smoother and
more stable across training.725 train/grad_norm
726731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
(b) SP objective. The gradient norm of the full-stack loss shows higher variance and less stability.

Figure A1: Gradient norms of the full-stack loss under different training objectives. **(a)** Multi-positive training yields smoother and more stable optimization dynamics, while **(b)** SP training exhibits noisier gradients. These results highlight the stabilizing effect of multi-positive supervision.

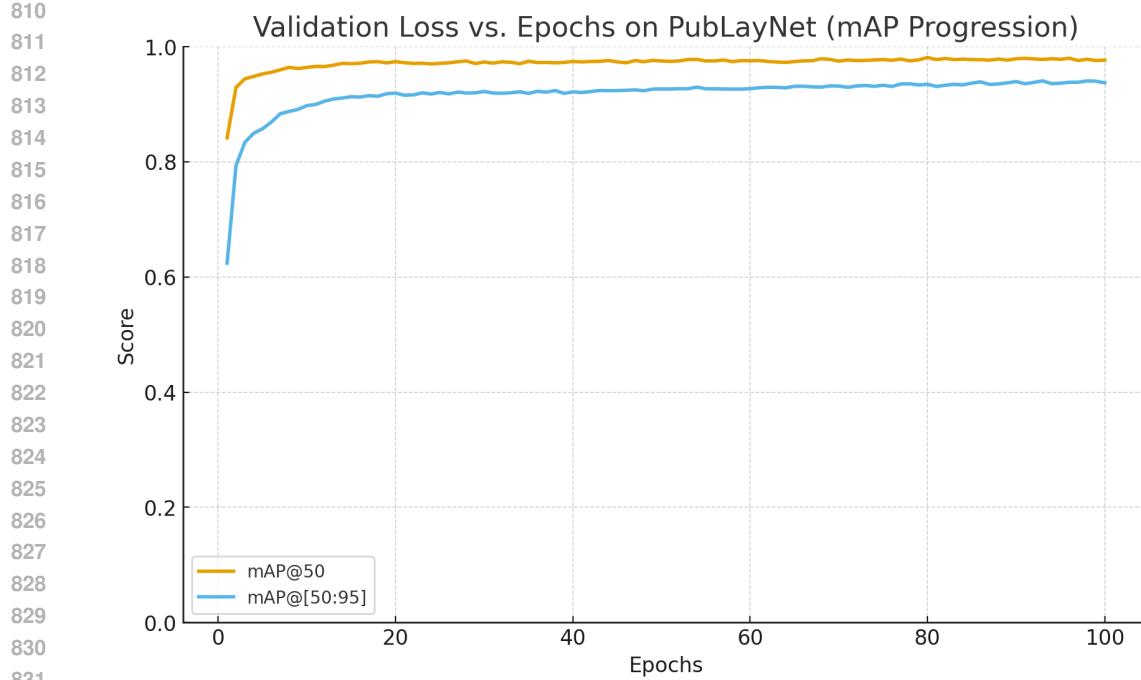


(a) Multi-positive contrastive learning (MPCL). The loss curve of the full-stack objective converges smoothly with reduced oscillations.

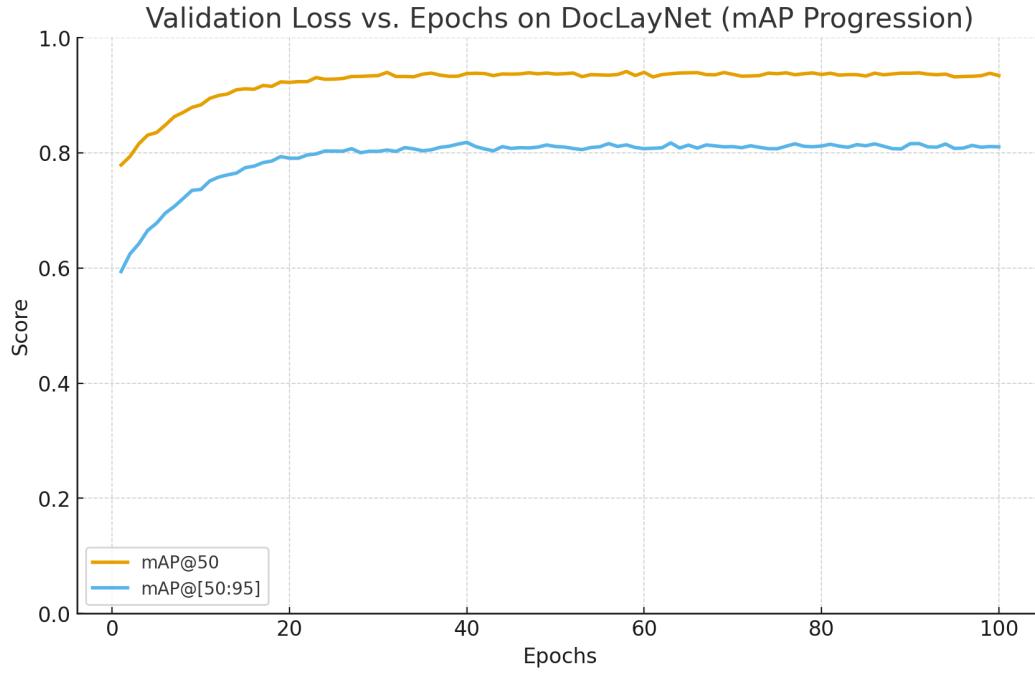
(b) SP objective. The loss curve of the full-stack objective exhibits higher variance and slower stabilization.

Figure A2: Training loss of the full-stack objective under different contrastive formulations. **(a)** Multi-positive training yields smoother convergence and reduced variance, while **(b)** the SP objective converges less stably. These results mirror the gradient norm analysis (Figure A1) and further highlight the stabilizing effect of multi-positive supervision.

The gap (MPCL loss being smaller) between the MPCL and SP loss curves are explained and proved in Lemma 5.



(a) Validation performance on PubLayNet with head-only finetuning. Remarkably, a single epoch is sufficient to reach high detection accuracy, with subsequent training yielding smoother convergence toward the final mAP scores.



(b) Validation performance on DocLayNet with head-only finetuning. Even after one epoch, the model achieves strong baseline accuracy, though convergence is slower and exhibits larger variance compared to PubLayNet.

Figure A3: Head-only finetuning results on the 75M pre-trained backbone. In both **(a)** PubLayNet and **(b)** DocLayNet, a single epoch of training already produces competitive mAP scores, highlighting the strength of the pre-trained backbone. Additional epochs refine convergence: smoother and faster on PubLayNet, more fluctuating yet ultimately strong on DocLayNet.

864 **S3 A PROBABILISTIC SKETCH: MPCL IMPROVES RETRIEVAL PROBABILITY**
865866 **Goal.** We aim to show that *multi-positive contrastive learning (MPCL)* increases the probability
867 of retrieving a correct document relative to *SP contrastive learning (SP)*.
868869 **Setup.** Let a query (anchor) be q and candidate documents score via $s(d) = \text{sim}(q, d)$. The
870 relevant set is $P = \{p_1, \dots, p_m\}$ with i.i.d. scores $S_i = s(p_i) \sim F_p$, and the irrelevant set is
871 $N = \{n_1, \dots, n_K\}$ with i.i.d. scores $Z_j = s(n_j) \sim F_n$. Write $M_p^{(m)} = \max_{1 \leq i \leq m} S_i$ and
872 $M_n = \max_{1 \leq j \leq K} Z_j$.
873874 **Lemma 1** (Hit probability identity). *For any $m \geq 1$,*
875

876
$$\Pr(\text{hit} \mid m) = \Pr\{M_p^{(m)} > M_n\} = \mathbb{E}[1 - F_p(M_n)^m]. \quad (2)$$

877

878 *Proof.* By the law of total probability,
879

880
$$\Pr(M_p^{(m)} > M_n) = \mathbb{E}\left[\Pr(M_p^{(m)} > M_n \mid M_n)\right].$$

881

882 Conditioning on $M_n = t$ and using independence of positives and negatives,
883

884
$$\Pr(M_p^{(m)} > t \mid M_n = t) = 1 - \Pr(M_p^{(m)} \leq t).$$

885

886 Since S_i are i.i.d. with CDF F_p , $\Pr(M_p^{(m)} \leq t) = [F_p(t)]^m$. Substituting and taking expectation
887 over M_n yields equation 2. \square
888889 **Lemma 2** (Order-statistic advantage). *For any CDFs F_p, F_n and $m \geq 1$,*
890

891
$$\mathbb{E}[1 - F_p(M_n)^m] \geq \mathbb{E}[1 - F_p(M_n)], \quad (3)$$

892 with strict inequality unless $F_p(M_n) \in \{0, 1\}$ almost surely.
893

894 *Proof.* For $a \in [0, 1]$ and $m \geq 1$, one has $a^m \leq a$. Applying this inside the expectation in equation 2
895 proves the claim. \square 896 **Theorem 1** (MPCL improves retrieval probability). *Suppose that the positive scores under MPCL
897 stochastically dominate those under SP, $F_p^{\text{MPCL}} \leq F_p^{\text{SP}}$, and the negative scores are stochastically
898 dominated, $F_n^{\text{MPCL}} \geq F_n^{\text{SP}}$. Then*
899

900
$$\Pr_{\text{MPCL}}\{M_p^{(m)} > M_n\} \geq \Pr_{\text{SP}}\{M_p^{(1)} > M_n\}.$$

901

902 *Proof.* By Lemma 1, hit probability is
903

904
$$\Pr(\text{hit} \mid m) = \mathbb{E}[g_{F_p}(M_n)], \quad g_{F_p}(t) = 1 - [F_p(t)]^m, \quad F_{M_n}(t) = [F_n(t)]^K.$$

905

906 (i) By monotonicity in F_p , if $F_p^{\text{MPCL}} \leq F_p^{\text{SP}}$, then by Lemma 2, $g_{F_p^{\text{MPCL}}}(t) \geq g_{F_p^{\text{SP}}}(t)$ pointwise,
907 and thus
908

909
$$\int g_{F_p^{\text{MPCL}}} dF_{M_n} \geq \int g_{F_p^{\text{SP}}} dF_{M_n}.$$

910

911 (ii) By monotonicity in F_n , note that $g_{F_p}(t)$ is nonincreasing in t . If $F_n^{\text{MPCL}} \geq F_n^{\text{SP}}$, then
912

913
$$F_{M_n}^{\text{MPCL}}(t) \geq F_{M_n}^{\text{SP}}(t).$$

914

915 By the standard property of stochastic order, integration against a nonincreasing function preserves
916 the inequality:
917

918
$$\int g_{F_p} dF_{M_n}^{\text{MPCL}} \geq \int g_{F_p} dF_{M_n}^{\text{SP}}.$$

919

920 (iii) Combining (i) and (ii), starting from $(F_p^{\text{SP}}, F_n^{\text{SP}})$ and moving along the path
921

922
$$(F_p^{\text{SP}}, F_n^{\text{SP}}) \rightarrow (F_p^{\text{MPCL}}, F_n^{\text{SP}}) \rightarrow (F_p^{\text{MPCL}}, F_n^{\text{MPCL}}),$$

923

924 yields
925

926
$$\Pr_{\text{MPCL}}\left\{\max_i S_i > \max_j Z_j\right\} \geq \Pr_{\text{SP}}\left\{\max_i S_i > \max_j Z_j\right\}.$$

927

□

The two monotonicity assumptions are natural consequences of how MPCL modifies the learning dynamics relative to SP. First, if $F_p^{\text{MPCL}}(t) \leq F_p^{\text{SP}}(t)$ holds pointwise, then positive scores under MPCL are stochastically larger, meaning that true matches are less likely to receive low scores and more likely to achieve higher values. This reflects the intended effect of multi-positive training, which avoids penalizing alternative valid positives and therefore shifts the entire positive distribution to the right. Second, if $F_n^{\text{MPCL}}(t) \geq F_n^{\text{SP}}(t)$, then negative scores under MPCL are stochastically smaller, concentrating their mass at lower values and thus weakening the hardest competing negatives. This effect arises because MPCL alleviates false negatives, allowing the model to push genuine negatives further away. Together, these assumptions encode the intuitive separation that MPCL is designed to achieve, positives shift upward, negatives shift downward, and provide the stochastic dominance conditions under which improvements in retrieval probability follow directly.

S4 MONOTONICITY PROPERTIES AND BASELINE ADVANTAGES OF MPCL

Lemma 3 (Top-1 hit monotonicity in the number of positives). *Let $S_1, \dots, S_m \stackrel{iid}{\sim} F_p$ be positive scores and $Z_1, \dots, Z_K \stackrel{iid}{\sim} F_n$ be negative scores, independent of $\{S_i\}$. Write $M_n = \max_{1 \leq j \leq K} Z_j$ and*

$$\text{hit}_m = \Pr\{\max_{1 \leq i \leq m} S_i > M_n\}.$$

Then hit_m is nondecreasing in m . Moreover, if $\Pr\{F_p(M_n) \in (0, 1)\} > 0$ (i.e., the setting is nondegenerate), the inequality is strict: $\text{hit}_{m+1} > \text{hit}_m$ for all $m \geq 1$.

Proof. By Lemma 1, we have

$$\text{hit}_m = \mathbb{E}[1 - F_p(M_n)^m].$$

According to Lemma 2, hit_m is nondecreasing in m , and strictly increasing whenever $\Pr\{F_p(M_n) \in (0, 1)\} > 0$. \square

A direct result from Lemma 3 is the following:

Corollary 1 (MPCL baseline advantage under identical marginals). *Suppose $F_p^{\text{MPCL}} = F_p^{\text{SP}}$ and $F_n^{\text{MPCL}} = F_n^{\text{SP}}$. Then for any $m \geq 2$,*

$$\Pr(\text{hit}_m^{\text{MPCL}}) \geq \Pr(\text{hit}_1^{\text{SP}}),$$

with strict inequality in any nondegenerate setting where $\Pr\{F_p(M_n) \in (0, 1)\} > 0$.

Lemma 4 (Softmax “win” probability is monotone in m). *Let*

$$\pi_m = \mathbb{E}\left[\frac{\sum_{i=1}^m e^{S_i/\tau}}{\sum_{i=1}^m e^{S_i/\tau} + \sum_{j=1}^K e^{Z_j/\tau}}\right], \quad \tau > 0.$$

Then π_m is nondecreasing in m , with strict increase whenever $\Pr\{\sum_{j=1}^K e^{Z_j/\tau} > 0\} > 0$ and $\Pr\{e^{S/\tau} > 0\} = 1$.

Proof. For any realization, write $A_m = \sum_{i=1}^m e^{S_i/\tau}$ and $B = \sum_{j=1}^K e^{Z_j/\tau} \geq 0$. Adding one more positive term $c = e^{S_{m+1}/\tau} > 0$ gives

$$\frac{A_m + c}{A_m + B + c} - \frac{A_m}{A_m + B} = \frac{cB}{(A_m + B)(A_m + B + c)} \geq 0,$$

with strict inequality whenever $B > 0$. Taking expectations preserves (strict) inequality, hence $\pi_{m+1} \geq \pi_m$ (strict if $B > 0$ with positive probability). \square

Lemmas 3 and 4, together with Corollary 1, formalize an important structural property of MPCL: retrieval performance improves monotonically with the number of positives, irrespective of whether the marginal score distributions differ from those of SP. This observation highlights that the benefits of multi-positive training are two-fold. Firstly, the stochastic dominance assumptions model distributional effects, positives pushed to the right and negatives to the left, ensuring improved separation in expectation. On the other hand, even without such distributional gains, aggregation over multiple

972 valid positives yields a combinatorial advantage: the maximum of m independent draws stochastically
 973 dominates a single draw, and the softmax normalization similarly increases as more positive
 974 terms are included.

975 These observations imply that MPCL improves upon the “baseline” gain over SP irrespective of how
 976 much the score distributions shift during training. The monotonicity lemmas guarantee retrieval
 977 probability and softmax win probability are nondecreasing functions of m , establishing training
 978 objective robustness. Meanwhile, the corollary identifies that distributional shifts, if they exist,
 979 only reinforce this intrinsic advantage. Practically, this means the observed gains of MPCL can be
 980 understood as the superposition of structural gains from multi-positive aggregation and distributional
 981 gains from false negative mitigation.

983 S5 MPCL vs. SP LOSS CURVES

985 **Lemma 5** (MPCL vs. SP under coupling). *Fix an encoder and a batch with positives $\{S_i\}_{i=1}^m$ and negatives $\{Z_j\}_{j=1}^K$. Let the SP positive S be drawn uniformly from $\{S_i\}_{i=1}^m$ (coupling). Then*
 986 *pointwise,*
 987

$$989 \log\left(1 + \frac{\sum_j e^{Z_j/\tau}}{\sum_i e^{S_i/\tau}}\right) \leq \log\left(1 + \frac{\sum_j e^{Z_j/\tau}}{e^{\max_i S_i/\tau}}\right) \leq \log\left(1 + \frac{\sum_j e^{Z_j/\tau}}{e^{S/\tau}}\right).$$

991 Taking expectations yields $\mathbb{E}[\mathcal{L}_{\text{MPCL}}] \leq \mathbb{E}[\mathcal{L}_{\text{max}}] \leq \mathbb{E}[\mathcal{L}_{\text{SP}}]$.

993 *Proof.* Since $\sum_i e^{S_i/\tau} \geq e^{\max_i S_i/\tau}$, the middle term is larger than the left denominator, so the log
 994 decreases. Also $e^{\max_i S_i/\tau} \geq e^{S/\tau}$, so the right-hand log is largest. \square
 995

996 **Remark 1.** Lemma 5 assumes a coupling where MPCL and SP are evaluated on the same encoder
 997 outputs. This provides a structural inequality: $\mathbb{E}[\mathcal{L}_{\text{MPCL}}] \leq \mathbb{E}[\mathcal{L}_{\text{SP}}]$. In practice, pretraining
 998 modifies the encoder differently under each objective, so their score distributions diverge. Nevertheless,
 999 the observed training curves consistently show lower MPCL losses, suggesting that the structural
 1000 advantage persists even after accounting for distributional shifts.

1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025