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ABSTRACT

We introduce a unified pretraining paradigm for document understanding,
grounded in a probability-theoretic formulation of multi-positive alignment and
hierarchical self-distillation, which operate as complementary principles under
a single objective. Unlike prior modular approaches, our framework redefines
document pretraining as multi-positive, layout- and semantics-aware stochastic
alignment rather than a collection of heuristic recipes. The model employs two
complementary alignment heads: a semantic head, aligning page-level embed-
dings with OCR-derived text spans, and a geometric head, aligning representations
with compact “box-text” descriptors that capture class type and structural layout.
Both heads are trained with a multi-positive InfoNCE objective that supports one-
to-many correspondences, alleviating the text-body bias of single-positive CLIP-
style training and delivering markedly improved zero-shot document retrieval ac-
curacy. To further strengthen representation quality, we incorporate a teacher-
student self-distillation module with local-global hybrid regularization, enforcing
patch-level consistency, global invariance, and embedding diversity. The result-
ing backbone produces layout-aware, language-grounded document representa-
tions that not only accelerate convergence and achieve competitive state-of-the-art
results on layout detection benchmarks but also produce structured, consistent
page-level embeddings that are naturally compatible with large language models,
opening a path to advanced document reasoning and question-answering (QA).

1 INTRODUCTION

Document understanding is at the intersection of natural language processing and computer vision
and is the foundation of various widely applied applications, including information extraction, se-
mantic retrieval, and layout analysis. Traditional approaches have a tendency to divide this task into
specialized modules.

Document retrieval models, i.e., retrieval-augmented generation (Lewis et al., 2020) and dense
passage retrieval (Karpukhin et al., 2020), are targeted at modeling semantic similarity between
queries and text passages for enabling efficient search in large document collections.

Page layout detection systems, e.g., DocLayout-YOLO (Zhao et al., 2024) and LayoutLM series
(Xu et al., 2020b;a; Huang et al., 2022), operate on document pages as structured images. They
identify text blocks, tables, figures, and headers, and encode them with geometric context beneficial
for downstream tasks.

Vision encoder pretraining for documents has produced specialized models that integrate text,
layout, and visual cues at the page level. Architectures such as LayoutLMv3 (Huang et al., 2022),
DocFormer (Appalaraju et al., 2021), and LiLT (Wang et al., 2022) exemplify this line of work,
yielding strong representations for form understanding, document classification, and QA.

Despite these advances, most methods remain tied to specific goals and have limited transferability
between tasks. Performance on a given domain does not carry over to others, largely due to either
narrow pretraining goals or highly specialized architectures. More general adaptability in retrieval
and layout-focused tasks is therefore an open and urgent challenge.
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In this work, we propose a conceptual shift in document pretraining: we move beyond fragmented
recipes toward a principled unification of semantics, geometry, and self-distillation. Our frame-
work operationalizes this shift by coupling dual-head multi-positive contrastive learning with hier-
archical vision self-distillation under a single probabilistic objective. The resulting pretrained model
learns representations that are both layout-aware and language-grounded with smooth transferabil-
ity to a wide range of downstream tasks without task-specific supervision. Moreover, this single
model can work as a “one-stop” backbone for document intelligence through effortless adaptations
to retrieval and layout analysis.

Our contributions can be summarized as the following:

• Unified pretraining objective: We formalize document pretraining as multi-positive
stochastic alignment, where semantic and geometric signals are jointly optimized under
dual heads. This reconceptualization establishes a new family of pretraining objectives
rather than an incremental extension of CLIP-style training.

• Integration of vision self-distillation: We extend recent advances in self-distillation,
specifically iBOT Zhou et al. (2021) and DINOv2 and DINOv3 (Oquab et al., 2023;
Siméoni et al., 2025), which enforce patch- and page-level invariances in the vision back-
bone. These invariances strengthen the ability of the backbone to capture structural regular-
ities while simultaneously improving the semantic grounding of document representations.

• Layout detection: We conduct evaluations on DocLayNet (Pfitzmann et al., 2022), Pub-
LayNet (Zhong et al., 2019), and additional benchmark datasets. Our results show that
fine-tuning only the detection head that is added to the pretrained backbone achieves per-
formance that can level with or exceed current state-of-the-art systems.

• Generalization under Subsampled Positives: Our multi-positive InfoNCE loss enables
strong zero-shot transfer in document retrieval, avoiding the characteristic long-context
forgetting problem in single-pair contrastive models.

• Flexible, scalable, and reproducible framework: We implement the pretraining recipe
in HuggingFace (Wolf et al., 2020) and Ultralytics (Jocher et al., 2023) frameworks with
DeepSpeed Rasley et al. (2020) ZeRO-3 CPU-offloading optimization enabled for effi-
cient training at scales. Our framework supports flexible combinations of self-distillation,
masked patch prediction, and both single- and multi-positive training, with or without
embedding-level regularization.

Overall, our work establishes a general-purpose, layout- and language-aware backbone that uni-
fies retrieval and structural analysis within a single pretraining paradigm. More than an incremental
recipe, it advances a design principle for document pretraining: modality-specific signals (semantics
and geometry) must be decoupled yet jointly optimized under multi-positive alignment. This princi-
ple, coupled with hierarchical self-distillation, provides a scalable foundation for the next generation
of document intelligence systems.

2 RELATED WORKS

2.1 MULTI-POSITIVE CONTRASTIVE LEARNING

Multi-positive contrastive learning (MPCL) extends the standard InfoNCE loss by allowing each
anchor to align with multiple valid positives, mitigating the limitations of single-positive (SP) for-
mulations. By averaging gradients across structured sets of positives, MPCL yields more stable
supervision, alleviates semantic underfitting, and improves optimization dynamics. Its benefits have
been demonstrated across domains: in NLP, SupMPN (Dehghan & Amasyali, 2022) leverages mul-
tiple hard positives and negatives for stronger sentence embeddings; in multilingual learning, MPCL
(Zhao et al., 2023) exploits parallel translations for robust cross-lingual retrieval; in vision, multi-
positive extensions (Liang et al., 2024) improve convergence and benchmarks such as CIFAR-10
(Krizhevsky & Hinton, 2009) and Tiny ImageNet (Le & Yang, 2015); in sensor-based activity recog-
nition, MPSQCL (Ren et al., 2024) combines augmented views with quantum-boosted encoders; and
in pose understanding and hierarchical retrieval, GenPoCCL (Inayoshi et al., 2024) and Hierarchi-
cal MPCL (Kavimandan et al., 2025) demonstrate domain-specific gains. While promising in noisy
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and multimodal settings, MPCL remains unexplored for document pretraining, where one-to-many
alignment is particularly relevant for capturing both semantic and structural cues.

2.2 SELF-DISTILLATION IN VISION MODELS

Self-distillation achieves strong representations without external supervision by enforcing consis-
tency between a teacher and student network. Methods such as DINO (Caron et al., 2021; Oquab
et al., 2023; Siméoni et al., 2025) and iBOT (Zhou et al., 2021) couple global invariance with patch-
level prediction, producing robust and transferable features. Although widely validated on natural
image benchmarks, systematic application to document understanding is limited, despite the do-
main’s need for fine-grained layout sensitivity and holistic semantic coherence.

2.3 DOCUMENT RETRIEVAL

Dense retrieval models such as DPR (Karpukhin et al., 2020), ColBERT Khattab & Zaharia (2020),
and large-scale retrievers (Lewis et al., 2020) have advanced text search, while multimodal con-
trastive learning, notably CLIP (Radford et al., 2021), demonstrated powerful image-text alignment.
However, SP-based objectives assume each document anchor corresponds to a single canonical span,
typically dominated by body text. This overlooks alternative signals—captions, headers, tables, and
figures—leading to biased supervision and under-representation of secondary but important fea-
tures. Document retrieval therefore demands multi-span, multi-positive alignment strategies to fully
capture page-level semantics.

2.4 LAYOUT DETECTION

Layout analysis remains a foundational task in document intelligence. Datasets such as PubLayNet
(Zhong et al., 2019), DocLayNet (Pfitzmann et al., 2022), and DocBank (Li et al., 2020) have spurred
progress from R-CNN based detectors to efficient YOLO variants (Zhao et al., 2024; Xu et al.,
2020b;a; Kim et al., 2022). While these systems achieve strong detection and segmentation, they are
largely specialized to local element classification. Their representations are not readily transferable
to higher-level document understanding tasks such as retrieval or QA.

3 HIGH-LEVEL ARCHITECTURE

Figure 1 shows the proposed pretraining framework. The architecture is modular in nature and
integrates multi-positive contrastive learning, self-distillation, and regularization within a unified
training paradigm for learning document representations.

The base of the framework is a Vision Transformer (ViT) encoder that processes raw document
inputs and is the shared basis for downstream tasks. Two heads complement the ViT: a semantic
head that projects page embeddings into alignment with text spans such as OCR tokens, captions,
and section headings, and a geometric head that projects into alignment with layout descriptors
from bounding boxes. The two heads are trained on content-based and layout-based multi-positive
contrastive losses, respectively, to ensure the learned representation is semantically coherent and
layout-aware.

To further stabilize training and reduce representation collapse, we generalize KoLeo regulariza-
tion (Sablayrolles et al., 2018) to KoLeo-hybrid regularization, balancing global embedding disper-
sion and local semantic preservation.

Meanwhile, the teacher-student self-distillation module provides additional supervision. The teacher
network is updated as an exponential moving average of the student, offering stable targets for mul-
tiple augmented views of a page. The student is trained to align these targets through a multi-scale
consistency loss, which enforces invariance over global and local views, and a patch-level masked
prediction loss, which encourages recovery of fine-grained structural cues. Together, these tasks
encourage the encoder to learn both hierarchical content semantics and spatial layout regularities.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Overview of the proposed pretraining framework. The model integrates multi-positive
contrastive learning (MPCL) (Section 4.1), implemented with dual semantic and geometric heads
and enhanced through KoLeo-hybrid regularization (Section 4.5), to jointly encode content and
layout information. In parallel, a self-distillation module with a teacher-student ViT enforces cross-
view consistency via multi-scale consistency loss (Section 4.3) and patch-level masked prediction
loss (Section 4.4). Together, these objectives encourage the model to acquire semantically coherent,
layout-aware, and transferable representations that support a broad spectrum of document under-
standing tasks.

4 OBJECTIVE LOSS FUNCTION

Our pretraining framework is directed by a combined objective that blends dual-head multi-positive
contrastive learning (MPCL), self-distillation, and regularization. Our framework design explic-
itly encodes the semantic content and geometric structure of documents, along with enforcing cross-
view consistency. The result is a set of powerful and transferable representations that go beyond
localized detection and generalize to a broad variety of document understanding tasks.

4.1 MULTI-POSITIVE CONTRASTIVE LEARNING

Let hp ∈ Rd denote the embedding of a document page, and let {z1, z2, . . . , zK} represent a set of
K semantically consistent positives. Depending on the head, these positives correspond to:

• Semantic head: OCR text spans, titles, and captions (zsem
i = fsem(ti)).

• Geometric head: box-text descriptors encoding class type and bounding box coordinates
(zgeom

i = fgeom(bi)).

In contrast to standard InfoNCE, which assumes a single positive, MPCL distributes supervision
across all valid matches. The objective for anchor hp is:

We first define the multi-positive contrastive loss (MPCL) for a page representation hp and its set of
K positive spans {zi}Ki=1:

LMPCL(hp, {zi}) = − log

∑K
i=1 exp(sim(hp, zi)/τ)∑K

i=1 exp(sim(hp, zi)/τ) +
∑N

j=1 exp(sim(hp, nj)/τ)
,

where sim(·, ·) denotes cosine similarity, τ is the temperature hyperparameter, and {nj}Nj=1 are
negatives sampled from the batch or a memory bank. Unlike the standard SP loss, this formulation
aggregates evidence across multiple valid alignments (e.g., captions, OCR spans, section headers),
thereby:
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• Stabilizing gradients: Averaging over multiple positives reduces variance in the learning
signal and mitigates the risk of noisy or ambiguous correspondences dominating the update,
see Figures A1 and A2 in the Appendix for the curves of gradient norms and loss curves at
training.

• Balancing supervision across elements: By treating multiple valid alignments as equally
weighted positives, the model avoids over-emphasizing dominant regions (e.g., long para-
graphs or large visual blocks) at the expense of smaller but semantically important elements
such as captions, equations, or footnotes. This balanced training signal ensures that repre-
sentations capture both major structures and subtle details, leading to embeddings that are
less biased by element size and more faithful to the full semantic variety of a document
page.

4.2 DUAL-HEAD EXTENSION

We treat the dual-head MPCL not as an ad-hoc extension, but as a structural necessity. When
semantic and geometric cues are fused directly, they often compete and degrade retrieval; when
decoupled under multi-positive alignment, they instead provide complementary supervision. This
motivates the dual-head objective:

Ldual = Lsem(hp, {zsem
i }) + Lgeom(hp, {zgeom

i }).

Here, Lsem aligns the page embedding with semantic positives (e.g., OCR text spans, captions,
headers), while Lgeom aligns it with geometric positives (e.g., layout boxes, structural anchors).
This separation ensures that the learned representation remains both semantically coherent and
geometrically grounded, a property essential for document understanding and broadly applicable
to any setting with heterogeneous alignments.

4.3 MULTI-SCALE CONSISTENCY SELF-DISTILLATION

Beyond the dual-head contrastive objectives, we incorporate self-distillation to enhance representa-
tion quality. Following DINOv3 (Siméoni et al., 2025), we maintain a momentum-encoder teacher
that produces stable targets for both global and local views, while the student is trained for consis-
tency across multiple augmentations. Formally, given global views {vg} and local crops {vℓ}, the
teacher outputs yg, yℓ and the student predicts pg, pℓ. The distillation loss is:

Ldistill =
∑

v∈{vg,vℓ}

CE(pv, yv) ,

where CE is cross-entropy. Teacher parameters are updated as an exponential moving average
(EMA) of the student, providing stable supervision.

In contrast to classical DINO, where the teacher supervises only global crops, we extend the teacher
to also predict local views, following the iBOT paradigm. This design enforces multi-scale consis-
tency: at the global level, it aligns page-level structures such as layout topology and topic arrange-
ment, while at the local level, it strengthens representations of finer-grained regions including text
lines, tables, figures, and captions. By jointly aligning global and local signals, the model acquires
hierarchy-aware features that are robust to distortions and partial observations, a property particu-
larly beneficial for downstream layout analysis and multimodal alignment in complex documents.
Ablation results from Table A1 in the Appendix demonstrates the effectiveness of our choice.

4.4 PATCH-LEVEL MASKED PREDICTION

To complement global and local consistency, we adopt the iBOT masked prediction objective. Let
M be the set of masked patches, and let pm and ym denote the student prediction and teacher target
for m ∈ M. The loss is:

Libot =
1

|M|
∑

m∈M
CE(pm, ym),

This objective enforces patch-level consistency, encouraging recovery of fine-grained structural cues
beyond the holistic page embedding and complementing global–local self-distillation.
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For document understanding, patch-level prediction strengthens representations of localized struc-
tures such as text lines, tables, figures, and captions. By training the model to restore masked con-
tent, it becomes more robust to noise, partial page views, and irregular layouts, which are frequent
in scanned and multilingual documents.

4.5 KOLEO-HYBRID REGULARIZATION

A key challenge in dual-head MPCL is avoiding representation collapse under strong alignment
pressures. To address this, we introduce a KoLeo-Hybrid regularizer that balances global uni-
formity with local semantic coherence. Unlike prior uses of KoLeo (Sablayrolles et al., 2018) in
vision-only self-supervised learning, our adaptation is tailored for document pretraining: semantic
neighborhoods are constructed through multi-view page augmentations, ensuring intra-page consis-
tency while maintaining inter-page discrimination.

Formally, the loss is:

LKoLeo-H = α · log Ei̸=j

[
exp

(
sim(h̄i, h̄j)

)]
+ β · 1

|P|
∑

(u,v)∈P

(
1− sim(h̄u, h̄v)

)
, (1)

where h̄ denotes L2-normalized embeddings and P denotes the set of semantically related pairs.
The coefficients α and β control the trade-off between dispersion and preservation. We apply this
regularizer to both semantic and geometric embeddings, so that each head maintains globally
diverse geometry while preserving local coherence within its modality. This hybridization allows
the model to resist collapse, retain task-relevant semantic and structural structure, and scale robustly
under multi-positive alignment.

4.6 FULL OBJECTIVE

The final pretraining objective is a weighted sum of all components:

L = λ1Lsem + λ2Lgeom + λ3Ldistill + λ4Libot + λ5LKoLeo-H,

where λi are tunable coefficients controlling the trade-off.

This composite formulation ensures that the model learns multi-positive, layout-aware, semanti-
cally faithful, and structurally consistent document representations, enabling a single backbone
to support detection and retrieval, see Table A2 in the Appendix for details on training hyperparam-
eters.

5 PRETRAINING DATA FORMAT

Our pretraining framework requires data representations that express both the semantic content
and the structural geometry of documents. To this end, each page of a document is divided into
three complementary modalities: raw image views, text spans retrieved via OCR and captions, and
box-text descriptors that encode geometric structure.

5.1 PAGE IMAGES AND VIEWS

The page image serves as the primary visual input to the backbone. For self-distillation, we follow
the DINOv3 recipe and generate multiple augmented views of each page:

• Global views: resized crops covering the entire page, preserving holistic context.

• Local views: random smaller crops that emphasize specific regions such as tables, figures,
or headers.

These views are incorporated into the dataset alongside the original page, ensuring that both global
and local perspectives are explicitly available during training. They are then used for the teacher-
student consistency loss (Section 4.3), the patch-level consistency loss (Section 4.4), and the hybrid
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regularization (Section 4.5). This design enforces invariance at the global level while preserving
sensitivity to fine-grained layout cues, resulting in representations that are robust, semantically rich,
and layout-aware.

5.2 SEMANTIC SUPERVISION FROM OCR AND CAPTIONS

To obtain element-level text supervision, we perform OCR with Gemini-2.0-flash (DeepMind, 2024)
on each page and extract all text spans (paragraphs, headers, footnotes, etc.), as well as any surround-
ing captions for figures and tables. We encode each text element ti with a text encoder fsem(·) into
an embedding zi. The resulting set of positives {zsem

1 , zsem
2 , . . . , zsem

K } forms the target distribution
for the semantic head in our multi-positive contrastive loss.

5.3 GEOMETRIC SUPERVISION FROM BOX-TEXT DESCRIPTORS

In addition to textual contents, we construct lightweight box-text descriptors of geometric layout
attributes. For each region annotation bi (e.g., paragraph, table, figure, caption), we have a short text
string summarizing its type (class label) and geometric attributes (coordinates). These descriptors
are fed to the same text encoder to generate geometric embeddings zgeom

1 , . . . , zgeom
K . The geometric

head maps the page embedding to this set under the same multi-positive contrastive framework,
learning structural relationships between regions.

5.4 PRETRAINING TUPLE

Overall, as portrayed in Figure 2, each page is represented as a structured tuple:

D = {Ip, {vgj}Gj=1, {vℓj}Lj=1, {ti}Ki=1, {bi}Ki=1},

where Ip is the original page image, {vj} denotes the set of global and local augmented views
derived from Ip, {ti} are textual spans, and {bi} are box-text descriptors. During training, {vg, vℓ}
provide inputs for regularized self-distillation, while {ti} and {bi} serve as multi-positive sets for
the semantic and geometric contrastive heads. This unified data format enables a single backbone
to jointly learn visual, semantic, and structural representations of documents, ensuring consistency
across both global context and fine-grained layout cues. Due to limited resources, we managed to
collect and annotate 600K such tuples.

Figure 2: Illustration of the pretraining tuple D. Each document page is represented by (i) the raw
page image Ip, (ii) global and local augmented visual views {vg, vℓ} used for self-distillation, (iii)
semantic spans {ti} such as headers, titles, and captions, and (iv) geometric descriptors {bi} encod-
ing bounding-box coordinates and region types. This unified representation provides a consistent
input format for contrastive heads and distillation objectives, enabling the backbone to jointly learn
visual, semantic, and structural cues.
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6 EXPERIMENTS

We evaluate our pretrained backbone on three complementary axes: (1) fine-tuning for document
layout detection, (2) subsampled document retrieval accuracy, and (3) ablations on the effect of
multi-positive contrastive learning. All experiments are conducted on widely used document under-
standing benchmarks.

6.1 LAYOUT DETECTION

We assess our pretrained backbone (ViT-24, 70.2M) on PubLayNet and DocLayNet using head-
only finetuning (5.7M parameters). The backbone is frozen, and only detection heads are optimized.
Despite the reduced active parameter size and the lack of task-specific supervision, Table 1 shows

Table 1: Comparison of layout detection performance (mAP@50 and mAP@[50:95]) on PubLayNet
and DocLayNet. Baseline SOTA numbers are taken from prior literature; DocLayout-YOLO results
from Zhao et al. (2024); YOLO-DocLayNet results from YOLO-DocLayNet (2025); Hybrid ap-
proach results from Shehzadi et al. (2024).

Dataset Model Trainable Params (M) mAP@50 mAP@[50:95]

PubLayNet ViT-24 (YOLOv10, head-only finetune) 5.7 97.9 94.0
Hybrid Approach ≈55.0 98.8 97.3

DocLayNet

YOLO-DocLayNet (YOLOv12n) 2.6 - 75.6
ViT-24 (YOLOv10, head-only finetune) 5.7 93.7 81.1
YOLO-DocLayNet (YOLOv12s) 9.3 - 78.2
DocLayout-YOLO (YOLOv10m++) ≈18.0 93.4 79.7
Hybrid Approach ≈55.0 93.5 81.6
YOLO-DocLayNet (YOLOv12x) 59.1 - 79.4

that our approach matches state-of-the-art detectors that are far larger and exceeds detectors that
have around the same number of trainable parameters. Notably, a single epoch already yields strong
results (84.1 mAP@50 on PubLayNet, 79.0 mAP@50 on DocLayNet; see Figure A3), with further
gains from additional epochs. These results highlight the transferability of the dual-head pretraining
to layout-aware detection.

6.2 SUB-SAMPLED DOCUMENT RETRIEVAL

In real retrieval settings,

Table 2: Document retrieval accuracy (%) with subsampled crops. Multi-positive training provides
a clear advantage when only a single crop is available. As more crops are provided at inference,
the gap narrows, and both methods converge. For the SP, crops are concatenated according to the
original reading order. The results are obtained from 1, 000 randomly sampled document pages that
are not included in the 600K pretraining dataset.

Method 1 Crop 5 Crops 8 Crops

SP (Full Objective) 45.2 61.8 66.3
MPCL (Full Objective) 54.6 68.1 71.2

supervision is often limited to captions, headers, or a few OCR spans rather than full text.

Formal proofs, grounded in probability theory, of how MPCL can increase retrieval accuracy are
given in Sections S3 and S4 of the Appendix. CLIP-style one-to-one alignment tends to overfit
dominant body text, neglecting secondary signals. By contrast, multi-positive contrastive learning
aligns page embeddings with all consistent cues, improving robustness under sparse supervision. As
shown in Table 2, this advantage is most pronounced when only limited signals are available, while
performance gap tends to shrink once the full page semantics are increasingly accessible.
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6.3 ABLATION STUDIES

We conduct ablation experiments to disentangle the contributions of semantic and geometric MPCL,
self-distillation, and regularization. Table 3 reports results across seven configurations, from SP
baselines to the complete system. MPCL is the primary driver of retrieval gains: semantic MPCL

Table 3: Ablation study on the contributions of MPCL, geometric alignment, self-distillation, and
regularization.

Configuration Detection mAP (DocLayNet) Retrieval mAP (1 Crop)

SP (semantic) 62.7 44.7
SP (semantic + geometric) 78.3 44.1
SP (semantic ∥ geometric) 65.3 42.9
MPCL (semantic only) 62.1 52.9
MPCL (semantic + geometric) 78.8 52.7
MPCL (dual-head) + distill 79.4 53.1
MPCL (dual-head) + distill + ibot 80.3 53.7
MPCL (dual-head) + distill + ibot + KoLeo-H 81.1 54.6

outperforms its SP counterpart (52.9 vs. 44.7). Geometric alignment consistently boosts detection
(78.8 vs. 62.1 with MPCL; 78.3 vs. 62.7 with SP) but slightly reduces retrieval, reflecting a trade-off
between spatial localization and text alignment. The failure of the concatenated variant highlights
a key paradigm: naive fusion collapses retrieval, while dual-head MPCL preserves complementary
structure. Adding self-distillation further improves stability and performance (79.4 detection, 53.1
retrieval), and ibot enhances patch-level consistency (+0.9 detection, +0.6 retrieval). Finally, KoLeo-
Hybrid regularization ensures diversity under strong alignment pressures, yielding the best results:
81.1 detection and 54.6 retrieval.

7 CONCLUSION

In conclusion, we introduce a pretraining paradigm for document understanding that combines dual-
head multi-positive contrastive learning, self-distillation, and hybrid regularization. The approach
produces layout-aware, language-grounded representations that deliver improved zero-shot docu-
ment retrieval and achieve competitive state-of-the-art detection performance with faster conver-
gence. Beyond detection, the backbone provides a versatile foundation for OCR pipelines and for
integration with large language models to perform more complex document understanding tasks
such as reasoning and QA, establishing multi-positive alignment as a general paradigm for multi-
modal document pretraining. Beyond detection and retrieval, this principle opens the door to OCR
pipelines and LLM-based reasoning, providing a transferable design foundation rather than a task-
specific recipe.

LIMITATIONS AND FUTURE WORK

While our framework establishes a new paradigm, it has limitations. First, evaluation is restricted
to PubLayNet and DocLayNet, leaving downstream reasoning and QA tasks for future work. Sec-
ond, our pretraining data (600K tuples) is modest compared to billion-scale vision-language models,
and scaling remains an open challenge. Third, OCR-based supervision inherits biases from current
systems, limiting robustness in low-resource or multilingual settings. Addressing these limitations
offers a natural path forward and will strengthen the generality of the paradigm. In addition, while
our analysis is probability-theoretic, our training framework remains deterministic. We leave explo-
ration of truly probabilistic approaches to future work

9
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LLM USAGE STATEMENT

We acknowledge the use of large language models (LLMs) solely for text polishing and language
refinement. All ideas, experiments, and analyses presented in this work are entirely the authors’
own.

REPRODUCIBILITY STATEMENT

To ensure transparency and reproducibility, we will release our complete codebase, including data
preprocessing scripts, training configurations, and the end-to-end training pipeline. The repository
will be made publicly available on GitHub and will include detailed documentation, environment
setup instructions, and example runs. This will enable other researchers to replicate our experiments
and extend our framework for future studies.

ETHICS STATEMENT

This work complies with the ICLR Code of Ethics.1 Our experiments use a combination of publicly
available benchmarks (PubLayNet, DocLayNet) and self-annotated data. No human subjects or
personally identifiable information are involved. We acknowledge that dataset biases may persist
and encourage future work to examine fairness and representational balance. Code and training
pipelines will be released to ensure reproducibility.

REFERENCES

Srikar Appalaraju, Bhavan Jasani, Bhargava Urala Kota, Yusheng Xie, and R Manmatha. Doc-
former: End-to-end transformer for document understanding. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 993–1003, 2021.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Google DeepMind. Introducing gemini 2.0: our new ai model for the agen-
tic era. https://blog.google/technology/google-deepmind/
google-gemini-ai-update-december-2024/, December 2024. Accessed: 2025-09-
18.

Somaiyeh Dehghan and Mehmet Fatih Amasyali. Supmpn: supervised multiple positives and neg-
atives contrastive learning model for semantic textual similarity. Applied Sciences, 12(19):9659,
2022.

Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and Furu Wei. Layoutlmv3: Pre-training for
document ai with unified text and image masking. In Proceedings of the 30th ACM international
conference on multimedia, pp. 4083–4091, 2022.

Sho Inayoshi, Aji Resindra Widya, Satoshi Ozaki, Junji Otsuka, and Takeshi Ohashi. Multi positive
contrastive learning with pose-consistent generated images. arXiv preprint arXiv:2404.03256,
2024.

Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics yolo. https://github.com/
ultralytics/ultralytics, 2023. Version 8.3.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP
(1), pp. 6769–6781, 2020.

Kshitij Kavimandan, Angelos Nalmpantis, Emma Beauxis-Aussalet, and Robert-Jan Sips. Hi-
erarchical multi-positive contrastive learning for patent image retrieval. arXiv preprint
arXiv:2506.13496, 2025.

1https://iclr.cc/public/CodeOfEthics

10

https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://iclr.cc/public/CodeOfEthics


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd International ACM SIGIR conference on
research and development in Information Retrieval, pp. 39–48, 2020.

Geewook Kim, Teakgyu Hong, Moonbin Yim, JeongYeon Nam, Jinyoung Park, Jinyeong Yim,
Wonseok Hwang, Sangdoo Yun, Dongyoon Han, and Seunghyun Park. Ocr-free document un-
derstanding transformer. In European Conference on Computer Vision, pp. 498–517. Springer,
2022.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical Report TR-2009, University of Toronto, 2009.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
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preprint arXiv:2508.10104, 2025.

Jiapeng Wang, Lianwen Jin, and Kai Ding. Lilt: A simple yet effective language-independent layout
transformer for structured document understanding. arXiv preprint arXiv:2202.13669, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

11

https://openreview.net/forum?id=WGP2pHtLtn
https://openreview.net/forum?id=WGP2pHtLtn


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Floren-
cio, Cha Zhang, Wanxiang Che, et al. Layoutlmv2: Multi-modal pre-training for visually-rich
document understanding. arXiv preprint arXiv:2012.14740, 2020a.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou. Layoutlm: Pre-
training of text and layout for document image understanding. In Proceedings of the 26th
ACM SIGKDD international conference on knowledge discovery & data mining, pp. 1192–1200,
2020b.

YOLO-DocLayNet. Yolo-doclaynet: Yolo models trained on doclaynet for document layout anal-
ysis. https://github.com/ppaanngggg/yolo-doclaynet, 2025. Accessed: 2025-
09-23.

Kaiyan Zhao, Qiyu Wu, Xin-Qiang Cai, and Yoshimasa Tsuruoka. Leveraging multi-lingual
positive instances in contrastive learning to improve sentence embedding. arXiv preprint
arXiv:2309.08929, 2023.

Zhiyuan Zhao, Hengrui Kang, Bin Wang, and Conghui He. Doclayout-yolo: Enhancing document
layout analysis through diverse synthetic data and global-to-local adaptive perception. arXiv
preprint arXiv:2410.12628, 2024.

Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Publaynet: largest dataset ever for document
layout analysis. In 2019 International conference on document analysis and recognition (ICDAR),
pp. 1015–1022. IEEE, 2019.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot:
Image bert pre-training with online tokenizer. arXiv preprint arXiv:2111.07832, 2021.

12

https://github.com/ppaanngggg/yolo-doclaynet


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

S1 MORE ABLATION RESULTS AND HYPERPARAMETERS

Table A1: Ablation study on the contributions of global and local supervision vs. global supervision
alone in self-distillation

Configuration Detection mAP (DocLayNet) Retrieval mAP (1 Crop)

MPCL (dual-head) + distill (global) + ibot + KoLeo-H 80.8 54.0
MPCL (dual-head) + distill (global+local) + ibot + KoLeo-H 81.1 54.6

Table A2: Training hyperparameters used in our experiments.

Category Parameter Value

Core

Text model name Qwen3-Embedding-0.6B
Projection dimension 256
Logit scale init log(1/0.07)

Image pooling Mean
Freeze vision False
Freeze text True
Disable MP True/False
Single-CLIP mode True/False
Distillation enabled True/False

Multi-Positive Loss

λ1 1
λ2 1
MP temperature 0.07
MP normalize True

Self-distill/ iBOT

Self-distill output dim 65,536
Self-distill hidden dim 2048
λ3 0.7
λ4 0.7
λ5 0.02
tstu,img 0.1
ttea,img 0.04
tstu,patch 0.1
ttea,patch 0.04
Sinkhorn iterations 3
Momentum (base) 0.996
Momentum (end) 0.9995
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S2 TRAINING LOGS

(a) Multi-positive contrastive learning (MPCL). The gradient norm of the full-stack loss remains smoother and
more stable across training.

(b) SP objective. The gradient norm of the full-stack loss shows higher variance and less stability.

Figure A1: Gradient norms of the full-stack loss under different training objectives. (a) Multi-
positive training yields smoother and more stable optimization dynamics, while (b) SP training
exhibits noisier gradients. These results highlight the stabilizing effect of multi-positive supervision.
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(a) Multi-positive contrastive learning (MPCL). The loss curve of the full-stack objective converges smoothly
with reduced oscillations.

(b) SP objective. The loss curve of the full-stack objective exhibits higher variance and slower stabilization.

Figure A2: Training loss of the full-stack objective under different contrastive formulations. (a)
Multi-positive training yields smoother convergence and reduced variance, while (b) the SP objec-
tive converges less stably. These results mirror the gradient norm analysis (Figure A1) and further
highlight the stabilizing effect of multi-positive supervision.

The gap (MPCL loss being smaller) between the MPCL and SP loss curves are explained and proved
in Lemma 5.
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(a) Validation performance on PubLayNet with head-only finetuning. Remarkably, a single epoch is sufficient
to reach high detection accuracy, with subsequent training yielding smoother convergence toward the final mAP
scores.

(b) Validation performance on DocLayNet with head-only finetuning. Even after one epoch, the model achieves
strong baseline accuracy, though convergence is slower and exhibits larger variance compared to PubLayNet.

Figure A3: Head-only finetuning results on the 75M pre-trained backbone. In both (a) PubLayNet
and (b) DocLayNet, a single epoch of training already produces competitive mAP scores, highlight-
ing the strength of the pre-trained backbone. Additional epochs refine convergence: smoother and
faster on PubLayNet, more fluctuating yet ultimately strong on DocLayNet.
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S3 A PROBABILISTIC SKETCH: MPCL IMPROVES RETRIEVAL PROBABILITY

Goal. We aim to show that multi-positive contrastive learning (MPCL) increases the probability
of retrieving a correct document relative to SP contrastive learning (SP).

Setup. Let a query (anchor) be q and candidate documents score via s(d) = sim(q, d). The
relevant set is P = {p1, . . . , pm} with i.i.d. scores Si = s(pi) ∼ Fp, and the irrelevant set is
N = {n1, . . . , nK} with i.i.d. scores Zj = s(nj) ∼ Fn. Write M

(m)
p = max1≤i≤m Si and

Mn = max1≤j≤K Zj .
Lemma 1 (Hit probability identity). For any m ≥ 1,

Pr(hit | m) = Pr{M (m)
p > Mn} = E

[
1− Fp

(
Mn

)m]
. (2)

Proof. By the law of total probability,

Pr(M (m)
p > Mn) = E

[
Pr(M (m)

p > Mn | Mn)
]
.

Conditioning on Mn = t and using independence of positives and negatives,

Pr(M (m)
p > t | Mn = t) = 1− Pr(M (m)

p ≤ t).

Since Si are i.i.d. with CDF Fp, Pr(M (m)
p ≤ t) = [Fp(t)]

m. Substituting and taking expectation
over Mn yields equation 2.

Lemma 2 (Order-statistic advantage). For any CDFs Fp, Fn and m ≥ 1,
E[1− Fp(Mn)

m] ≥ E[1− Fp(Mn)] , (3)
with strict inequality unless Fp(Mn) ∈ {0, 1} almost surely.

Proof. For a ∈ [0, 1] and m ≥ 1, one has am ≤ a. Applying this inside the expectation in equation 2
proves the claim.

Theorem 1 (MPCL improves retrieval probability). Suppose that the positive scores under MPCL
stochastically dominate those under SP, FMPCL

p ≤ F SP
p , and the negative scores are stochastically

dominated, FMPCL
n ≥ F SP

n . Then

Pr
MPCL

{
M (m)

p > Mn

}
≥ Pr

SP

{
M (1)

p > Mn

}
.

Proof. By Lemma 1, hit probability is

Pr(hit | m) = E[gFp
(Mn)], gFp

(t) = 1− [Fp(t)]
m, FMn

(t) = [Fn(t)]
K .

(i) By monotonicity in Fp, if FMPCL
p ≤ F SP

p , then by Lemma 2, gFMPCL
p

(t) ≥ gFSP
p

(t) pointwise,
and thus ∫

gFMPCL
p

dFMn ≥
∫

gFSP
p

dFMn .

(ii) By monotonicity in Fn, note that gFp(t) is nonincreasing in t. If FMPCL
n ≥ F SP

n , then

FMPCL
Mn

(t) ≥ F SP
Mn

(t).

By the standard property of stochastic order, integration against a nonincreasing function preserves
the inequality: ∫

gFp
dFMPCL

Mn
≥

∫
gFp

dF SP
Mn

.

(iii) Combining (i) and (ii), starting from (F SP
p , F SP

n ) and moving along the path

(F SP
p , F SP

n ) → (FMPCL
p , F SP

n ) → (FMPCL
p , FMPCL

n ),

yields

Pr
MPCL

{
max

i
Si > max

j
Zj

}
≥ Pr

SP

{
max

i
Si > max

j
Zj

}
.
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The two monotonicity assumptions are natural consequences of how MPCL modifies the learning
dynamics relative to SP. First, if FMPCL

p (t) ≤ F SP
p (t) holds pointwise, then positive scores un-

der MPCL are stochastically larger, meaning that true matches are less likely to receive low scores
and more likely to achieve higher values. This reflects the intended effect of multi-positive training,
which avoids penalizing alternative valid positives and therefore shifts the entire positive distribution
to the right. Second, if FMPCL

n (t) ≥ F SP
n (t), then negative scores under MPCL are stochastically

smaller, concentrating their mass at lower values and thus weakening the hardest competing nega-
tives. This effect arises because MPCL alleviates false negatives, allowing the model to push genuine
negatives further away. Together, these assumptions encode the intuitive separation that MPCL is
designed to achieve, positives shift upward, negatives shift downward, and provide the stochastic
dominance conditions under which improvements in retrieval probability follow directly.

S4 MONOTONICITY PROPERTIES AND BASELINE ADVANTAGES OF MPCL

Lemma 3 (Top-1 hit monotonicity in the number of positives). Let S1, . . . , Sm
iid∼ Fp be positive

scores and Z1, . . . , ZK
iid∼ Fn be negative scores, independent of {Si}. Write Mn = max1≤j≤K Zj

and
hitm = Pr

{
max1≤i≤m Si > Mn

}
.

Then hitm is nondecreasing in m. Moreover, if Pr{Fp(Mn) ∈ (0, 1)} > 0 (i.e., the setting is
nondegenerate), the inequality is strict: hitm+1 > hitm for all m ≥ 1.

Proof. By Lemma 1, we have
hitm = E[ 1− Fp(Mn)

m ] .

According to Lemma 2, hitm is nondecreasing in m, and strictly increasing whenever Pr{Fp(Mn) ∈
(0, 1)} > 0.

A direct result from Lemma 3 is the following:
Corollary 1 (MPCL baseline advantage under identical marginals). Suppose FMPCL

p = F SP
p and

FMPCL
n = F SP

n . Then for any m ≥ 2,

Pr(hitMPCL
m ) ≥ Pr(hitSP1 ),

with strict inequality in any nondegenerate setting where Pr{Fp(Mn) ∈ (0, 1)} > 0.
Lemma 4 (Softmax “win” probability is monotone in m). Let

πm = E

[ ∑m
i=1 e

Si/τ∑m
i=1 e

Si/τ +
∑K

j=1 e
Zj/τ

]
, τ > 0.

Then πm is nondecreasing in m, with strict increase whenever Pr{
∑K

j=1 e
Zj/τ > 0} > 0 and

Pr{eS/τ > 0} = 1.

Proof. For any realization, write Am =
∑m

i=1 e
Si/τ and B =

∑K
j=1 e

Zj/τ ≥ 0. Adding one more
positive term c = eSm+1/τ > 0 gives

Am + c

Am +B + c
− Am

Am +B
=

cB

(Am +B)(Am +B + c)
≥ 0,

with strict inequality whenever B > 0. Taking expectations preserves (strict) inequality, hence
πm+1 ≥ πm (strict if B > 0 with positive probability).

Lemmas 3 and 4, together with Corollary 1, formalize an important structural property of MPCL:
retrieval performance improves monotonically with the number of positives, irrespective of whether
the marginal score distributions differ from those of SP. This observation highlights that the benefits
of multi-positive training are two-fold. Firstly, the stochastic dominance assumptions model distri-
butional effects, positives pushed to the right and negatives to the left, ensuring improved separation
in expectation. On the other hand, even without such distributional gains, aggregation over multiple
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valid positives yields a combinatorial advantage: the maximum of m independent draws stochasti-
cally dominates a single draw, and the softmax normalization similarly increases as more positive
terms are included.

These observations imply that MPCL improves upon the “baseline” gain over SP irrespective of how
much the score distributions shift during training. The monotonicity lemmas guarantee retrieval
probability and softmax win probability are nondecreasing functions of m, establishing training
objective robustness. Meanwhile, the corollary identifies that distributional shifts, if they exist,
only reinforce this intrinsic advantage. Practically, this means the observed gains of MPCL can be
understood as the superposition of structural gains from multi-positive aggregation and distributional
gains from false negative mitigation.

S5 MPCL VS. SP LOSS CURVES

Lemma 5 (MPCL vs. SP under coupling). Fix an encoder and a batch with positives {Si}mi=1

and negatives {Zj}Kj=1. Let the SP positive S be drawn uniformly from {Si}mi=1 (coupling). Then
pointwise,

log
(
1 +

∑
j eZj/τ∑
i e

Si/τ

)
≤ log

(
1 +

∑
j eZj/τ

emaxi Si/τ

)
≤ log

(
1 +

∑
j eZj/τ

eS/τ

)
.

Taking expectations yields E[LMPCL] ≤ E[Lmax] ≤ E[LSP].

Proof. Since
∑

i e
Si/τ ≥ emaxi Si/τ , the middle term is larger than the left denominator, so the log

decreases. Also emaxi Si/τ ≥ eS/τ , so the right-hand log is largest.

Remark 1. Lemma 5 assumes a coupling where MPCL and SP are evaluated on the same encoder
outputs. This provides a structural inequality: E[LMPCL] ≤ E[LSP]. In practice, pretraining modi-
fies the encoder differently under each objective, so their score distributions diverge. Nevertheless,
the observed training curves consistently show lower MPCL losses, suggesting that the structural
advantage persists even after accounting for distributional shifts.
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