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Abstract—Elastography ultrasound imaging is increasingly
important in the diagnosis of thyroid cancer and other diseases,
but its reliance on specialized equipment and techniques limits
widespread adoption. This paper proposes a novel multimodal
ultrasound diagnostic pipeline that expands the application of
elastography ultrasound by translating B-ultrasound (BUS) im-
ages into elastography images (EUS). Additionally, to address the
limitations of existing image-to-image translation methods, which
struggle to effectively model inter-sample variations and accu-
rately capture regional-scale structural consistency, we propose a
BUS-to-EUS translation method based on hierarchical structural
consistency. By incorporating domain-level, sample-level, patch-
level, and pixel-level constraints, our approach guides the model
in learning a more precise mapping from BUS to EUS, thereby
enhancing diagnostic accuracy. Experimental results demonstrate
that the proposed method significantly improves the accuracy
of BUS-to-EUS translation on the MTUSI dataset and that
the generated elastography images enhance nodule diagnostic
accuracy compared to solely using BUS images on the STUSI
and the BUSI datasets. This advancement highlights the potential
for broader application of elastography in clinical practice. The
code is available at https://github.com/HongchengHan/HSC-T.

Index Terms—Medical image translation, elastograghy ultra-
sound, hierarchical structural consistency, thyroid cancer

I. INTRODUCTION

Ultrasound imaging, known for being non-invasive and cost-
effective, is the primary method for thyroid examination [1].
Elastography, an advancing technique, improves the assess-
ment of soft tissue biomechanics. As a result, combining B-
ultrasound (BUS) with elastography (EUS) is increasingly em-
phasized in thyroid diagnostics [2], [3]. However, elastography
requires high-end equipment and skilled operation, limiting its
use with portable BUS-only devices and in patients or settings
where applying pressure is difficult.
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Fig. 1. Overall design of HSC-Translator. (a) Multimodal ultrasound thyroid
nodule diagnostic pipeline based on BUS-to-EUS translation. (b) Illustration
of hierarchical structural consistency constraints. The sample-level and patch-
level constraints are proposed to address the limitations of GAN loss and pixel-
wise L2 loss in modeling inter-sample relationship and capturing regional-
scare structural information.

To address these issues, we propose a novel multimodal
ultrasound thyroid nodule diagnostic pipeline based on B-
ultrasound-to-elastography translation. As Fig.1(a) shows, it
involves training a model with paired B-ultrasound (BUS) and
real elastography (R-EUS) images from high-end equipment
to enable it to learn the cross-modal mapping knowledge, then
applying this model to obtain generated elastography images
(G-EUS) in BUS-only scenarios. Combining BUS images and
G-EUS images allows for improved diagnostic efficiency.

Developing an accurate and efficient translation model
is crucial for implementing advanced diagnostic pipelines.
Current medical image translation methods [4], [5], typically
using encoder-decoder networks or diffusion models with
GAN Loss and pixel-level L1 or L2 losses, have shown
success in tasks like CT-to-MRI translation. However, they
face significant limitations in translating BUS to EUS. First,



these methods commonly focus on reducing the distribution
differences between generated and real images, neglecting
inter-sample consistency and key feature differences crucial
for diagnostic tasks. Second, due to the limited receptive field,
pixel-level losses struggle to accurately capture the regional-
scale local structural information essential for recognizing the
attributes of nodules.

In response to these challenges, we propose HSC-Translator
(HSC-T), a novel BUS-to-EUS translation approach that lever-
ages multi-level losses to establish hierarchical structural
consistency constraints, as shown in Fig. 1(b). Our method
demonstrates superior proficiency in discerning both inter-
sample consistency and distinctiveness of features through
sample-wise cross-modal matching, thereby augmenting the
diagnostic utility for thyroid nodule assessment. Furthermore,
HSC-T enhances the representation of local structural details
by adaptive patch-wise contrasting, resulting in enhanced
precision in the translation from BUS to EUS. These advance-
ments significantly elevate the diagnostic efficacy of the G-
EUS in the context of thyroid nodule characterization. The
main contributions of this study are as follows:

• We introduce an innovative multimodal ultrasound diag-
nostic workflow for thyroid nodules, which learns cross-
modal mappings from paired BUS and EUS images. This
approach enables the generation of virtual EUS from
BUS in hardware-constrained scenarios, thus enhancing
diagnostic information.

• Our novel BUS-to-EUS translation method leverages
hierarchical structural consistency learning to improve
inter-sample consistency, preserve local structural details,
and achieve more accurate translation.

• The proposed method demonstrates superior performance
compared to competing methods in BUS-to-EUS trans-
lation on the MTUSI dataset, and significantly enhances
nodule diagnostic accuracy by generating G-EUS images
on the STUSI and the BUSI datasets.

II. RELATED WORK

A. Elastography Ultrasound

Elastography ultrasound (EUS) is plays an increasingly im-
portant role in clinical diagnosis by complementing traditional
B-ultrasound (BUS). Qian et al. [2] combined BUS, EUS, and
Doppler data to create a deep-learning-based breast cancer
diagnosis system, which significantly improved alignment
with BI-RADS guidelines. Qin et al. [3] demonstrated that
integrating BUS with EUS greatly enhances the accuracy of
thyroid nodule diagnosis compared to using BUS alone. Zhou
et al. [6] highlighted the importance of EUS in diagnosing lung
diseases, particularly in evaluating COVID-19 pneumonia. Xu
et al. [7] showed that EUS videos provide reliable diagnosis
of intrathoracic lymph nodes, improving clinical outcomes.
Additionally, Shao et al. [8] used shear wave elastography
(S-WAVE) to extract multimodal time series features for
breast cancer detection, demonstrating its ability to accurately
differentiate between malignant and benign breast lesions. This

growing body of work underscores the clinical significance
of EUS in improving diagnostic precision across a range of
conditions.

Elastography ultrasound offers clinical benefits but is lim-
ited by its reliance on high-end equipment and expert skill
[9]. Since B-ultrasound (BUS) also captures some soft tissue
biomechanics [10], translating BUS into elastography ultra-
sound (EUS) presents a promising solution to these limitations.

B. Medical Image Modality Conversion

In response to the imperative of cost reduction, damage
mitigation, and addressing the modality insufficiency in med-
ical imaging, and driven by the advancements in computer
vision’s image synthesis methods [11]–[13], image-to-image
translation technology is progressively being employed for
modality conversion of medical images [14], [15]. For ex-
ample, Kromrey et al. [16] achieved virtual elastography for
liver fibrosis by deriving the shear modulus from diffusion-
weighted MRI. Özbey et al. [17] enhanced multi-contrast MRI
and MRI-CT translation with adversarial diffusion models,
improving performance through adversarial learning. Yao et
al. [4] utilized conditional GANs (cGANs) for converting
B-ultrasound to elastography, significantly improving breast
cancer diagnosis accuracy. Bharti et al. [18] introduced QEM-
CGAN to resolve training instability, lack of diversity, and
mode collapse in medical image translation using evolutionary
computation and multiobjective optimization.

Current medical image translation methods focus on do-
main distribution or pixel-level errors but often overlook
inter-sample feature relationships, crucial for BUS-to-EUS
translation [19]. Pixel-level constraints, with limited receptive
fields, fail to capture regional structural information needed for
identifying nodule characteristics [20]. To improve BUS-to-
EUS translation, enhancing both sample-level and patch-level
feature learning is essential.

III. METHODOLOGY

A. Framework of HSC-Translator

Existing cGAN-based methods focus on minimizing overall
distribution differences between generated and real data but
overlook individual sample discrepancies, compromising the
consistency of key personalized features. Pixel-level L1/L2
constraints, limited by their receptive field, also fail to capture
regional feature consistency, leading to suboptimal outcomes
and limiting the clinical use of G-EUS translated from BUS.

To address these issues, we propose HSC-Translator (HSC-
T) for BUS-to-EUS translation. HSC-T incorporates hierarchi-
cal structural consistency constraints at domain, sample, patch,
and pixel levels to improve both sample-wise and region-wise
consistency. The framework, shown in Fig. 2, consists of two
stages.

In the first stage, the translator is trained on paired BUS
and EUS data, guided by hierarchical structural consistency
constraints through the cross-modal matching (CMM), adap-
tive patch contrast (APC), and conditional adversarial (CA)
modules. As shown in Fig. 2(b), the BUS input is processed
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Fig. 2. Framework of HSC-Translator. (a) Input images. BUS(xB) is the input B-ultrasound image and R-EUS(xE ) indicates the corresponding real
elastography image. (b) Translator. An image-to-image translation network constructed using a CNN-Transformer-combined encoder GEnc and a transpose-
convolution-based decoder GDec. zB is the extracted feature map and G-EUS(x̂E ) is the generated elastography image. (c) Cross-modal matching module. The
extracted feature maps zB and zE are utilized to conduct sample-wise matching between B-ultrasound and elastography by calculating LSample, modeling
the inter-sample relationships. (d) Adaptive patch contrast module. It performs patch-wise contrast between xE and x̂E by calculating LPatch, enhancing
the capture of regional-scale features, the patch partition is obtained by pixel clustering, p⃝ denotes the process of partitioning an image into patches. (e)
Conditional adversarial module. The adversarial discriminator is introduced to establish domain-level constraint LDomain and the L2 error between xE and
x̂E is used to establish pixel-level constraint LPixel. (f) Overall loss function. The hierarchical structural consistency loss function LHSC is the weighted
sum of LDomain, LSample, LPatch and LPixel. (g) G-EUS-assisted diagnosis. The trained translator is applied to generate G-EUS images from portable
device BUS images to assist the nodule diagnosis, the nodule classification network is constructed by two CNN encoders and a MLP classifier, c⃝ indicates
concatenation.

by an encoder-decoder translator, where the encoder generates
a latent representation, and the decoder produces G-EUS.
The CMM module ensures sample-level consistency (Fig.
2(c)) by minimizing the distance between paired BUS and
EUS samples while maximizing it between non-corresponding
pairs, enhancing the translator’s ability to capture unique
sample features. The APC module (Fig. 2(d)) enforces region-
wise consistency between G-EUS and R-EUS by performing
patch contrast based on adaptive patch partitioning from pixel
clustering. The CA module (Fig. 2(e)) imposes domain- and
pixel-level constraints using a discriminator and pixel-wise L2
loss. Finally, the objectives of CMM, APC and CA modules
are combined into the overall loss function of HSC-T (Fig.
2(f)), optimizing BUS-to-EUS translation.

In the second stage, as Fig. 2(g) shows, the trained translator
is applied to generate G-EUS from BUS without the need for
paired elastography images. This synthetic G-EUS data serves
as an additional input to a two-stream classification network,
which consists of two CNN feature encoders (both based on
ResNet-34 [21]) and an MLP classifier. The integration of
G-EUS significantly enhances the diagnostic performance by
providing complementary elasticity information.

B. Sample-wise Cross-modal Matching

The cross-modal matching module is proposed to minimize
the distance between each BUS sample and its corresponding
EUS while maximizing the distance from non-corresponding
EUS samples, thereby guiding the translator to effectively
learn and distinguish the unique features of each pair of
samples.

As Fig. 2(c) shows, first, the feature encoder GE
Enc is

constructed to obtain the latent representation of the elas-
tography, which shares an identical structure with the feature
encoder GEnc in the translator. The feature maps of the input
BUS and the EUS are calculated by zB = GEnc(xB) and
zE = GE

Enc(xE). Then, they are converted to the query
vector q and the key vector k by global pooling operation,
respectively. Sample-wise cross-modal matching is achieved
by the contrast calculating between q and k. Due to the large
number of samples in the training dataset, the contrast calcula-
tion is conducted within a mini-batch to ensure computational
efficiency. Sample-wise structural consistency loss LSample is
calculated as

LSample = −log
exp(q · k+/τ)∑N
i=1 exp(q · ki/τ)

, (1)



where N indicates the number of samples in the mini-batch,
q means the feature vector of the input BUS, ki indicates the
feature vector of the i-th EUS in the mini-batch, and the k+
represents the feature vector of the EUS that is associated
with the input BUS. A scaling coefficient τ is introduced to
normalize the value of q ·k within an appropriate range, which
is set to 0.05.

To address the challenge of maintaining consistent feature
extraction during end-to-end training, where the separate pa-
rameter updates of encoder GE

Enc and GEnc through gradi-
ent backpropagation can lead to optimization instability and
increased computational overhead, momentum update [22] is
employed for optimizing the parameters of the two encoders.
The parameters of GE

Enc and GEnc at the t-th step are
calculated by

θt = θt−1 − ηt
∂L
∂θ

, (2)

θEt = mθEt−1 + (1−m)θt, (3)

where θt and θEt are the parameters of GEnc and GE
Enc,

separately. ηt is the learning rate. L indicates the overall loss
and m is the momentum coefficient, which is set to 0.99.

Sample-wise cross-modal matching establishes the inter-
sample correlations between different samples, thereby en-
hancing the model’s attention to salient sample-specific fea-
tures and improving the accuracy and clinical applicability of
the elastography generated from B-ultrasound images.

C. Adaptive Patch-wise Contrast

Pixel-level L1 and L2 losses in cGANs evaluate errors
independently for each pixel, missing inter-pixel relationships
and often failing to capture regional-scale features needed
for accurate BUS-to-EUS translation. To address this, we
propose an adaptive patch contrast module that improves inter-
pixel relationship modeling, enhancing structural consistency
between G-EUS and R-EUS.

As Fig. 2(d) shows, first, pixel clustering based on simple
linear iterative clustering (SLIC) [23] is performed to the
R-EUS xE to obtain the adaptive patch partition P(xE) =
{p1, p2, ..., pn}, the number of patches n is set to 16. Second,
G-EUS and R-EUS are divided into patches according to the
partition P(xE). Compared to the square divided patches, the
patches obtained through adaptive pixel clustering not only
consider the positional relationship but also incorporate pixel
correlation, thereby augmenting the semantic and perceptual
significance when assessing local structural consistency be-
tween G-EUS and R-EUS. Then, each patch of G-EUS and
R-EUS is flattened and resized to a uniform size. Subsequently,
the flattened patches of G-EUS and R-EUS are fed into two
multi-layer perceptrons (MLP) respectively, to obtain the latent
representations for patch-wise contrast learning, the patch-
level loss is calculated by

LPatch = −log
exp(u · v+/τ)∑n
i=1 exp(u · vi/τ)

, (4)

where n indicates the number of patches, u represents the
feature vector of one of the patches in G-EUS, vi indicates the
feature vector of the i-th patch in R-EUS, and v+ represents
the feature vector of the patch in R-EUS that is located at the
same position as u. τ is the scaling coefficient introduced to
normalize the value of u ·v within an appropriate range, which
is set to 0.05.

The adaptive patch-wise contrast not only enhances cross-
pixel correlation through pixel-clustering but also guides the
model in extracting personalized structural information from
each patch of EUS through patch-wise contrast learning,
thereby improving the preservation of patch-level consistency,
which is essential for accurate BUS-to-EUS translation.

D. Conditional Adversarial Module
To establish domain-level constraints and pixel-level con-

straints, we introduce the conditional adversarial module,
as Fig.2(e) shows. The R/G discriminator incorporates a
lightweight CNN classifier designed to accurately differentiate
between R-EUS images and G-EUS images, performing adver-
sarial learning with the translator via a gradient reversal layer.
It supervises the translation model to generate EUS images that
are indistinguishable from real data, ensuring the domain-wise
distribution consistency of G-EUS images and R-EUS images
in terms of color, texture, structure, etc. The domain-level loss
is calculated by

LDomain =ExE∼PREUS
[logD(xE)]+

ExB∼PBUS
[log(1−D(G(xB)))],

(5)

where D indicates the domain discriminator, and G represents
the translator, thereby x̂E = G(xB).

Subsequently, for preserving pixel-level structural informa-
tion, L2 loss to narrow the pixel-wise Euclidean distance
between G-EUS images and the corresponding R-EUS images,
The pixel-level loss is calculated by

LPixel =
1

h× w
∥x̂E − xE∥2, (6)

where h and w represent the height and the width of the image.

E. Hierarchical Structural Consistency Loss
The proposed HSC-T supervises the translator’s learn-

ing process through hierarchical structural consistency con-
straints, with the final optimization target depicted in Fig.
2(f). Domain-level loss LDomain, sample-level loss LSample,
patch-level loss LPatch, and pixel-level loss LPixel are estab-
lished using the CA module, the CMM module and the APC
module, respectively. To integrate the structural consistency
constraints across all four levels effectively, the overall loss
function LHSC is defined as a weighted sum of LDomain,
LSample, LPatch and LPixel, expressed as

LHSC = LDomain+λ1LSample+λ2LPatch+λ3LPixel, (7)

where λi(i = 1, 2, 3) are hyper-parameters used to harmonize
the influence of four components on optimization, they are set
to λ1 = 0.4, λ2 = 0.8, λ3 = 0.4.



TABLE I
INFORMATION OF THE MTUSI, THE STUSI AND THE BUSI DATASETS.

Dataset Device Age Number of samples
Benign Malignant Overall

MTUSI(ours) XBH-1 14-88 1372 1335 2707
STUSI(ours) XBH-2 24-79 505 387 892
BUSI [24] BYH-1 25-75 487 210 697

IV. EXPERIMENTS

A. Experimental Setup

1) Data Preparation: As Table I shows, to evaluate BUS-
to-EUS translation performance, the MTUSI dataset was cu-
rated with 2707 paired BUS and EUS images from 2707
patients, including 1372 benign and 1335 malignant nodules.

Additionally, two other datasets were used to assess the
impact of G-EUS on diagnostic accuracy. The STUSI dataset
contains 824 BUS images (509 benign, 315 malignant) from
devices without EUS capability. The BUSI dataset includes
780 breast nodule BUS images, comprising 133 normal tis-
sues, 487 benign nodules, and 210 malignant ones.

Malignant cases in the MTUSI and the STUSI include
thyroid papillary carcinoma, micro-papillary carcinoma, and
micro-follicular papillary carcinoma, some with calcification.
Benign cases include cystic degeneration, thyroid nodules, and
follicular tumors, with a portion also exhibiting calcification.

2) Implementation Details: The datasets were split into
training, validation, and testing sets (5:2:3 ratio), with con-
sistent proportions of benign and malignant samples. Three-
fold cross-validation was performed to ensure model stability,
using different partitioning strategies for each experiment. In
the image translation experiments, the sizes of input BUS
images and output EUS images were set to 256× 256. In the
nodule diagnosis experiments, the sizes of BUS images and
G-EUS images were set to 224 × 224. RMSProp optimizer
is used for optimization, the initial learning rate was set
to 0.001, the momentum was set to 0.95, and the weight
decay was set to 1e-5. Random rotation, random cropping,
and vertical and horizontal flipping were performed on the
input B-ultrasound images and the corresponding ground truth
elastography images for data augmentation in training.

3) Evaluation Metrics: For image translation evaluation,
two full-reference metrics are used: structural similarity index
(SSIM) and peak signal-to-noise ratio (PSNR). SSIM assesses
image similarity in terms of luminance, contrast, and structure,
simulating human visual perception. PSNR measures image
quality by comparing the signal-to-noise ratio between real
and generated EUS images. Nodule diagnosis performance is
evaluated using accuracy (Acc.) and F1 score. Higher Acc.
indicates better overall classification, while F1 provides a
balance between sensitivity and precision.

B. Results on BUS-to-EUS Translation

The proposed method is compared with recent influential
work in the field of image-to-image translation and medical
image modal conversion, including GAN-based methods [4],
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Fig. 3. Distribution of SSIM for each sample on the MTUSI dataset under
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horizontal line inside the box) indicates the central tendency of the data, the
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[11], [12], [14], [25] and also diffusion model-based methods
[13], [17]. The quantitative results of various methods in the
B-ultrasound-to-elastography translation task on the MTUSI
dataset are presented in Table II and Fig. 3.

The results in Table II are presented in the format of
mean ± std., which represents the mean value and standard
deviation of the results obtained through cross-validation. The
HSC-Translator outperforms existing methods in SSIM and
PSNR metrics for both benign and malignant nodules, high-
lighting its effectiveness in improving BUS-to-EUS translation
accuracy. Diffusion-based methods, DDPM [13] and SynDiff
[17], perform relatively weakly, indicating the limitations of
diffusion models in BUS-to-EUS mapping. The V-EUS [4]
method ranks second, showing strong performance and sug-
gesting that models for breast and thyroid ultrasound images
can generalize across modality conversion tasks.

Additionally, Fig. 3 shows the distribution of SSIM indica-
tors for each sample on the MTUSI dataset under different
BUS-to-EUS translation methods. The proposed approach
demonstrates superior performance and stability in the BUS-
to-EUS translation task, as evidenced by its higher mean and
median SSIM values, along with a narrower range between
samples.

The qualitative results of a few samples are visualized and
presented in Fig. 4. Compared to the competitive methods,
the EUS generated by the proposed approach better preserves
the overall structural information of the input B-ultrasound
image and exhibits local structural details that closely resemble
those of real EUS. It demonstrates that the proposed approach
effectively enhances the model’s capacity to acquire more
robust structural consistency information, leading to improved
accuracy in BUS-to-EUS translation.



TABLE II
QUANTITATIVE RESULTS OF B-ULTRASOUND-TO-ELASTOGRAPHY TRANSLATION THROUGH DIFFERENT METHODS ON THE MTUSI DATASET.

Method Benign Malignant Overall
SSIM (%) ↑ PSNR ↑ SSIM (%) ↑ PSNR ↑ SSIM (%) ↑ PSNR ↑

Pix2Pix [11] 79.46±4.15 22.54±1.39 79.21±4.07 23.75±1.13 79.34±4.11 23.35±1.12
AttGAN [25] 79.88±2.64 23.76±0.65 81.11±2.72 23.89±0.65 80.48±2.68 23.82±0.65
MedGAN [14] 84.24±4.57 25.88±1.34 84.17±4.66 25.64±1.35 84.20±4.61 25.76±1.35
SAGAN [12] 82.40±4.56 24.34±1.23 84.65±4.51 24.83±1.23 83.51±4.54 24.58±1.23
DDPM [13] 76.94±3.11 23.92±0.90 78.86±3.14 23.86±0.91 77.89±3.12 23.89±0.91
V-EUS [4] 84.85±3.02 25.41±0.63 83.64±3.03 26.21±0.62 84.25±3.03 25.81±0.63
SynDiff [17] 79.70±3.96 23.93±1.12 81.62±4.02 23.82±1.13 80.64±3.99 23.87±1.12
HSC-T(ours) 86.88±2.75 26.22±0.74 86.21±2.79 26.86±0.76 86.55±2.77 26.53±0.75

Source Reference HSC-T(ours) SynDiff V-EUS DDPM SAGAN MedGAN AttGAN Pix2Pix

Fig. 4. Visualization of the EUS images translated from BUS through variant methods. The first left column displays the source BUS images, while the second
column exhibits the corresponding reference R-EUS images. Subsequent columns present the EUS images obtained through various translation methods.

TABLE III
RESULTS OF NODULE DIAGNOSIS BASED ON TWO-STREAM NETWORK USING BUS AND THE G-EUS GENERATED BY DIFFERENT TRANSLATION

METHODS ON THE MTUSI, THE STUSI AND THE BUSI DATASETS.

Method MTUSI → MTUSI MTUSI → STUSI∗ STUSI → STUSI BUSI → BUSI
Acc.(%) ↑ F1(%) ↑ Acc.(%) ↑ F1(%) ↑ Acc.(%) ↑ F1(%) ↑ Acc.(%) ↑ F1(%) ↑

w/o EUS 75.0±1.9 74.8±1.9 71.3±2.0 69.8±1.8 72.8±2.8 68.7±2.2 88.5±0.9 81.3±1.1
w/ R-EUS 89.8±2.4 89.7±2.3 - - - - - -
Pix2Pix [11] 77.2±2.2 76.3±2.2 72.4±2.6 69.4±2.4 77.2±3.0 75.5±3.1 90.4±0.9 85.2±1.3
AttGAN [25] 77.4±2.1 76.9±2.2 76.9±3.0 74.6±3.2 79.1±2.5 75.2±2.7 91.4±1.5 86.6±1.4
MedGAN [14] 84.3±2.5 83.7±2.5 82.1±2.7 79.8±2.9 83.6±1.8 81.4±2.0 93.3±1.3 89.4±1.6
SAGAN [12] 81.6±1.9 81.1±1.9 81.0±2.2 78.1±2.3 81.3±2.4 78.4±2.4 93.3±2.0 89.1±1.5
DDPM [13] 79.9±2.0 79.3±2.1 73.1±2.4 70.5±2.4 75.5±2.6 70.7±3.0 89.5±1.7 83.8±1.6
V-EUS [4] 85.6±1.9 85.2±2.1 81.7±2.0 80.2±1.9 84.7±1.9 82.8±2.2 94.7±1.2 91.5±1.6
SynDiff [17] 78.9±2.4 78.4±2.4 74.3±2.1 69.9±2.2 77.6±2.3 73.9±2.8 89.0±1.2 83.0±1.3
HSC-T(ours) 87.7±2.0 87.4±2.0 85.1±2.3 83.2±2.2 86.6±1.9 84.7±2.0 95.2±1.1 92.4±0.9
* X → Y indicates training on the training set of dataset X and evaluating on the testing set of dataset Y. Therefore, MTUSI → STUSI represents a group

of cross-dataset experiments.

C. Results on G-EUS-assisted Nodule Diagnosis

Nodule diagnosis experiments were conducted to assess the
impact of the generated EUS on diagnostic accuracy. The
diagnostic network was trained with BUS and the G-EUS
generated by different methods. To control for the network’s
structure, a baseline (no EUS) was tested by using BUS
images in both branches. The another control (with R-EUS)
compared the diagnostic efficacy of real versus generated EUS.
Additionally, the cross-dataset experiments were performed to
evaluate generalizability by training on the MTUSI and testing
on the STUSI.

The nodule diagnosis performance of various translation
methods is shown in Table.III. The introduction of G-EUS ef-
fectively enhances the diagnostic accuracy compared to solely
utilizing B-ultrasound images, with the degree of improvement
being positively correlated with the image translation effect
demonstrated in Table II. HSC-T yields a 13.2%↑ increase
in Acc. and a 16.0%↑ enhancement in F1 score on the
STUSI dataset, while achieving a 6.7%↑ improvement in Acc.
and an 11.1%↑ boost in F1 score on the BUSI dataset,
which outperforms the other methods. Additionally, the G-
EUS generated by the proposed HSC-T exhibits a substantial
enhancement in diagnostic performance that is comparable
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Fig. 5. Confusion matrices of the nodule diagnosis results on the MTUSI
dataset when training the diagnosis network without EUS, with R-EUS and
with the G-EUS generated by HSC-T.
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Fig. 6. RoC curves of G-EUS-assisted nodule diagnosis through various
BUS-to-EUS translation methods on the STUSI and the BUSI datasets. (a)
Results on the STUSI dataset. (b) Results on the BUSI dataset. The value in
parentheses in the legend represents the area under the curve (AUC).

to the contribution achieved through direct utilization of R-
EUS for diagnosis and exhibits significant generalizability in
the experiments across the MTUSI and the STUSI datasets.
Through t-tests conducted in four experimental groups, the p-
values of the accuracy of the diagnostic model based on HSC-
T compared to the diagnostic model without the use of EUS
are 0.0013, 0.0014, 0.0021, 0.0012, respectively, which means
the improvement in diagnostic performance brought by the G-
EUS generated by HSC-T is statistically significant. Moreover,
as depicted in Fig. 5, the confusion matrices further validate
the potential of HSC-T in addressing the issue of missing
modality within clinical practice.

Furthermore, the receiver operating characteristic (RoC)
curves of G-EUS-assisted nodule diagnosis through various
BUS-to-EUS translation methods are shown in Fig. 6, HSC-T
achieves the highest AUC. The above findings suggest that the
G-EUS generated by the proposed method can significantly
enhance the diagnostic efficacy of single-mode ultrasound
equipment for thyroid and breast nodules.

D. Ablation Analysis

To investigate the impact of the proposed CMM module and
APC module, ablation analysis was conducted on the MTUSI
dataset by individually removing the CMM module and APC
module from the model. The results are presented in Table IV,
where the check mark (✓) indicates that the corresponding
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Fig. 7. Discussion on loss bias coefficients. (a) SSIM of the model with
different λ1 and λ2 in BUS-to-EUS translation on the MTUSI dataset when
λ3 = 0.4. The size of each circle represents the SSIM performance of the
model under the corresponding coefficients, with larger sizes and darker colors
indicating higher SSIM values. (b) The impact of λ3 on the SSIM performance
when λ1 = 0.4 and λ2 = 0.8.

TABLE IV
ABLATION ANALYSIS RESULTS OF EACH MODULE IN THE PROPOSED

METHOD ON THE MTUSI DATASET.

Module Overall translation performance
CA CMM APC SSIM (%) ↑ PSNR ↑

78.48±2.41 21.93±0.77
✓ 82.12±2.90 24.20±0.94
✓ ✓ 84.92±3.27 26.05±1.15
✓ ✓ 84.48±2.38 25.73±0.65

✓ ✓ 82.02±2.30 24.33±0.79
✓ ✓ ✓ 86.55±2.77 26.53±0.75

module is included in the model. Compared to the baseline,
the inclusion of the CMM module resulted in an improvement
of 2.80%↑ in SSIM and 1.85↑ in PSNR. Similarly, the
inclusion of the APC module led to an enhancement of 2.36%↑
in SSIM and 1.53↑ in PSNR. Notably, when both modules
were combined, there was a significant increase of 4.43%↑
on SSIM and 2.33↑ on PSNR. These findings demonstrate
that both the CMM module and the APC module effectively
improve translation from BUS images to EUS images.

Moreover, we also attempted to eliminate the CA module.
However, this led to a significant decline in performance. This
observation represents the effectiveness of using cGAN as the
baseline for BUS-to-EUS translation. Based on the learning
paradigm of cGAN, the proposed CMM and APC modules
enhance the performance of image-to-image translation.

E. Discussion on Loss Bias Coefficients

The model’s bias towards sample-level, patch-level, and
pixel-level consistency is controlled by λ1, λ2, and λ3 in the
loss function LHSC . To evaluate the effect of the proposed
CMM module, APC module and CA module, these parameters
were varied during training to examine their impact on model
performance on BUS-to-EUS translation.

The results for 49 (7×7) different combinations of λ1

and λ2 are displayed in Fig. 7(a). Initially, increasing these
values improves the structural similarity index (SSIM), but
excessively large values lead to performance degradation. A



significant discrepancy between λ1 and λ2 also causes a
noticeable drop in SSIM, showing that focusing too much
on either sample-level or patch-level consistency negatively
affects translation. Additionally, when both parameters are too
high, domain-level and pixel-level consistency are neglected,
further reducing performance. The optimal performance is
observed when λ1 = 0.4 and λ2 = 0.8, indicating that this
combination strikes the best balance between sample- and
patch-level consistency for BUS-to-EUS translation.

To further explore the role of pixel-level constraints, Fig.
7(b) presents the impact of varying λ3, which governs pixel-
level consistency while fixing λ1 = 0.4 and λ2 = 0.8. SSIM
drops significantly when λ3 is either too small or too large. A
small λ3 weakens the pixel-level constraint, while a large one
causes overfitting by prioritizing pixel-level consistency over
other levels. The optimal setting for λ3 is 0.4.

V. CONCLUSION

In this study, we propose a novel approach for translating
B-ultrasound (BUS) images into elastography (EUS) images
to assist in the diagnosis of thyroid nodules. Our experi-
mental results demonstrate that the proposed HSC-Translator
effectively enhances the learning of structural consistency at
different levels between BUS and EUS images. This leads
to a significant improvement in the performance of BUS-to-
EUS translation compared to existing methods. Additionally,
when applied to portable single-modal ultrasound devices,
the generated elastography (G-EUS) images produced by
the HSC-Translator provide more biomechanical properties
information and enhance the accuracy of thyroid cancer di-
agnosis compared to using BUS data alone. The ability to
generate high-quality G-EUS images from BUS using our
method shows promise for improving diagnostic capabilities in
resource-limited settings, where access to high-end ultrasound
equipment may be restricted.
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