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ABSTRACT

Typical datasets used in graph classification tasks only contain a few thousand
graphs which rarely exceed hundreds of nodes. Graph homomorphism densities
are permutation-invariant features that can be directly computed from graph data,
and their approximation scales naturally to large graphs. We propose the use of
efficient data structures for approximate set membership in the context of a sam-
pling algorithm for graph homomorphism density which enables the use of large-
scale datasets containing larger graphs. To validate our findings, we compare this
method with existing approaches used for graph homomorphism features in syn-
thetic experiments.

1 INTRODUCTION

In current machine learning research focused on graph classification methods, experiments are con-
ducted on a handful of small, well-documented, datasets which most often are graphs representing
molecules as studied in biochemistry applications or graphs representing users and their interactions
obtained from social network analysis. Unlike modern datasets used in mature application domains
of machine learning such as computer vision with the ImageNet database (14.2M images, 20K
categories) (Deng et al., 2009) or natural language processing with large Wikipedia corpora (40B
characters) (Guo et al., 2020), the datasets commonly used in graph classification, such as those
referenced in the TUDataset collection (Morris et al., 2020), are small. For example, biochemistry
datasets such as NCI1, ENZYMES, PROTEINS, D&D (Wale et al., 2008; Borgwardt et al., 2005;
Dobson & Doig, 2003) or social network datasets such as COLLAB, REDDIT-BINARY, or IMDB-
BINARY (Yanardag & Vishwanathan, 2015) contain no more than a few thousands of graphs, each
being no larger than a few hundred nodes. Recent work on creating larger datasets has been under-
taken with the Open Graph Benchmark (Hu et al., 2020) offering significantly larger datasets (100K
molecules) which however contain similarly small graphs.

Small datasets cause many practical problems: (1) they penalize machine learning models that re-
quire large training data (2) they make cross-validation difficult since validation and test sets become
too small to carry enough statistical power (3) they make it impossible to study model scaling with
additional data or larger data. In graph classification tasks in particular, small datasets cast doubt on
the ability of models to generalize to larger graphs with similar structure.

Current models for graph classification use either computed features e.g. all approaches commonly
found in graph kernels or learned features obtained by a variety of graph neural network architec-
tures (Wu et al., 2020). Graph kernels, because of their inherently quadratic nature, have rarely
been studied at scale, save for a few that admit clever reformulations (Kriege et al., 2020). On the
other hand, many graph neural networks have been trained on large artificial graph datasets such as
direct conversion of MNIST or CIFAR10 images into graphs (Dwivedi et al., 2020). However, these
graphs retain geometric properties such as locality that make them qualitatively different from data
that is inherently topological such as social networks for example.

This paper attempts to make graph classification possible at scale with large datasets containing
graphs of all sizes. For this we focus on: (1) using homomorphism statistics as base topological
feature descriptors for graphs, (2) leveraging efficient approximations available for homomorphism
densities, and (3) identifying the adequate data structures to obtain a highly scalable implementation.
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2 GRAPH HOMOMORPHISM STATISTICS ARE FEATURE DESCRIPTORS

A graph morphism is a mapping from the node set of a pattern graph F to the node set of a target
graph G. Graph morphisms that preserve adjacency, i.e. all edges uv ∈ E(F ) are mapped to
edges f(u)f(v) ∈ E(G), are called homomorphisms. Graph homomorphisms that also preserve
non-adjacency are called isomorphisms. We write that G1

∼= G2 if and only if there exists an
isomorphism between G1 and G2. This is a natural way to express that two graphs are identical up
to a permutation.

The existence of an homomorphism indicates the presence of a given pattern in a graph in a weaker
sense that an isomorphism does. To obtain a global understanding of a graph it can be interesting
to count how many patterns are present, which gives rise to the problem of finding the number
of homomorphism from F to G which is denoted hom(F,G) also called homomorphism number.
This intuition is formalized by a theorem of Lovász which shows that, by combining homomorphism
statistics from multiple pattern graphs, it is possible to uniquely identify graphs up to isomorphism.
We write homF (G) = (hom(F,G))F∈F to gather multiple homomorphism numbers from pattern
graphs into a single vector which can be thought of as a feature descriptor.

Theorem 1. (Lovász (1967)) Given two undirected graphs G1 and G2 with at most n nodes. De-
noting by Gn the set of all simple graphs with at most n nodes, we have:

G1
∼= G2 ⇐⇒ homGn(G1) = homGn(G2).

This theorem has been extended to show that graphs whose hom-vectors are close in the sense of
a vector norm are also close in terms of cut-distance (Lovász, 2012). In practice, if we want to
distinguish graphs from a dataset, it is not necessary to look at all their homomorphism statistics
like in Theorem 1. Instead, a few patterns carry most of the information which is similar to graphlet
kernels which use subgraph isomorphism statistics (Shervashidze et al., 2009). This is a fortunate
situation considering the computational complexity of problems related to homomorphisms.

Despite homomorphisms being less demanding than isomorphisms, the task of finding an homomor-
phism from a pattern to a graph is already NP-hard from being related to clique-finding. In terms of
computational complexity, computing hom(F,G) is #P-hard which is the equivalent of NP-hardness
for counting problems. However, there are cases where it is possible to count homomorphisms effi-
ciently. Indeed, Dı́az et al. (2002) give a slice-wise polynomial algorithm parameterized by tw(F )
the treewidth of the pattern graph F with a runtime of O(tw(F ) · kntw(F )+1). Note that tw(F )
ranges from a minimum of 1 for trees to values such as k for k-by-k grids to a maximum of n − 1
for a complete graph on n nodes. This turns out to be the best possible algorithm which matches
computational complexity lower bounds established by Grohe (2007). Furthermore, even if we relax
our assumptions and allow for a multiplicative approximation of hom(F,G), the problem remains
as difficult as counting homomorphisms exactly (Bulatov & Živný, 2020).

Following this line of work, NT & Maehara (2020) have introduced the GHC framework based
on homomorphism numbers where the family of patterns F is an hyper-parameter. They compute
exact homomorphism numbers relative to patterns that have low treewidth and use the resulting
permutation-invariant vector embeddings as input to traditional classifiers. Their approach has been
found to be competitive with both direct embeddings used in combination with graph kernel methods
as well as learned graph embeddings obtained via message-passing graph neural networks and has
provably high representational power.

The situation is identical for the homomorphism density t(F,G) which is a normalized number of
homomorphisms from F to G defined as follows: t(F,G) = hom(F,G)/nk where n and k are
the number of nodes of G and F respectively. Homomorphism densities are as difficult to compute
exactly and it is similarly hard to obtain multiplicative approximations of them.

3 SGHD: SAMPLE GRAPH HOMOMORPHISM DENSITY

The only remaining way to work around the limitations established by previous results in com-
putational complexity is to relax even further the problem and allow additive approximation. By
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interpreting homomorphism density as being the probability for a random graph morphism to be an
homomorphism, it is possible to use a sampling argument to compute an ε-additive approximation
of the homomorphism density t(F,G) in time O

(
(k log n+ l) · ε−2 log δ−1

)
. This is achieved by

Algorithm 1 which we call sGHD for sample graph homomorphism density.

The sGHD algorithm operates by computing an empirical mean: the first step consists in generating
graph morphisms uniformly at random. The second step consists in computing the ratio of ho-
momorphisms in the sample. Each morphism can be seen as a coin flip landing on heads when the
morphism is an homomorphism and tails otherwise. In essence the sGHD algorithm is estimating the
bias of that coin. Applying Chernoff bounds gives use a conservative guarantee that O(ε−2 log δ−1)
random morphisms will suffice to compute an ε-additive approximation.

Algorithm 1 sGHD
Require: G an undirected graph on n nodes, F a pattern graph on k nodes and l edges, ε > 0 the

requested additive precision, 1− δ ∈ (0, 1) the desired confidence.
Ensure: t̄ such that P(|t(F,G)− t̄| > ε) ≤ δ

1: N ← O(ε−2 log δ−1)
2: for i = 1 to N do
3: fi ∼ (U(0, n− 1))[k]
4: end for
5: t̄← 1

N

∑N
i=1

∏
uv∈E(F ) 1E(G)(fi(u)fi(v))

6: return t̄

It is possible to extend the approach of NT & Maehara to approximate homomorphism densities with
no significant loss in classification accuracy. The main advantage comes from the inherent scalability
of Algorithm 1 which does not depend on the size of the target graphG outside of the initial pseudo-
random number generation required to sample morphisms uniformly at random. Furthermore, the
algorithm does not depend on the treewidth of F . Due to the efficiency of PRNG implementations,
the practical running time of Algorithm 1 amounts to O

(
|E(F )| ε−2 log δ−1

)
which is close to

constant for small pattern graphs and fixed precision. While Algorithm 1 is already efficient, we
propose to speed up the computation of the homomorphism test implemented via the expression∑N

i=1

∏
uv∈E(F ) 1E(G)(fi(u)fi(v)) by focusing on membership queries for the target graph G.

4 APPROXIMATE MEMBERSHIP

The problem of set membership is one of the fundamental building blocks in the study of data
structures. A wealth of data structures and algorithms provide various trade-offs and guarantees
going from sequential search in an unsorted array, to tries, and hash tables. Of particular note is
perfect hashing which allows for constant-time set membership queries at the cost of linear space
(the space required to represent a perfect hashing function is proportional to the size of the set). In
some way, this space complexity is optimal and cannot be improved upon.

Surprisingly, a simple probabilistic data structure, the Bloom filter (Bloom, 1970), allows to imple-
ment set membership close to this optimal space complexity. Each element of the set is represented
by no more than a dozen of bits and the membership query is realized in constant time by applying
a few hash functions to the element to be queried. Bloom filters are implemented via an array of
bits which are filled at indices corresponding to the outputs of the different hash functions. The
randomness of this data structure is solely contained in the choice of hash functions and is perfectly
deterministic once the hash functions have been chosen.

Bloom filters alleviate the need to store the elements themselves unlike e.g. hash tables and other
traditional data structures. This convenience in the specific context of the set membership problem
comes at the cost of a false positive rate. Indeed, when a Bloom filter returns that an element is not
in the set, that answer is always truthful. However a positive answer does not guarantee that the
element is actually in the set.

With regards to computing the sample homomorphism density, each graphG can thus be compressed
into a Bloom filter containing information about its edges. In practice this means that each edge,
usually represented by a pair of unsigned integers each coded over 32, 64, or 128 bits is compressed
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Figure 1: Running time of homomorphism density algorithms w.r.t. K3 → G(n, log2 n/n)

down to a constant dozen of bits, regardless of the number of nodes of G. Furthermore, each ho-
momorphism test corresponds to computing grouped queries which must all return true. Since the
queries are independent, this implies a lower false positive rate for the grouped query than its con-
stituent queries. Finally, the Bloom filter associated with G is constructed once as a read-only data
structure which can be queried repeatedly in parallel when computing the sample homomorphism
density of G with regards to queries representing the edge set of some pattern graph F .

There exist many variants of the Bloom filter which may support less operations or instead display
additional properties. We note in particular cuckoo filters (Fan et al., 2014) which leverage the
properties of cuckoo hashing to lower the number of memory accesses required for each membership
query. More recently, XOR filters (Graf & Lemire, 2020), have been proposed to focus entirely on
the set membership problem from the point of view of a static set which does not change over time.
This specialization allows for a lower amount of bits per key which enables faster querying than
most alternatives, albeit at the cost of a slower construction.

5 EXPERIMENTAL EVALUATION

We describe experiments which attempt to compare two currently available approaches to compute
graph homomorphism features. The first method is the C++ implementation of the algorithm of Dı́az
et al. (2002) given by the homlib library of NT & Maehara (2020). This algorithm includes a tree
decomposition routine together with a dynamic programming algorithm to compute homomorphism
numbers. Obtaining homomorphism densities is done by dividing by nk which is the cardinality of
all morphisms from a pattern graph F with k nodes to a target graph G with n nodes. The second
method is our implementation of Algorithm 1 with two variants: exact edge membership queries
to an adjacency list and approximate queries to a Bloom filter representing the edge set of G. Our
implementation is written in the Rust programming language (Matsakis & Klock, 2014) and will be
made available as a library at a later date. Our experiments use Erdős-Rényi random graphs G(n, p)
to control the presence of subgraphs via the edge density p. This allows us to manipulate the target
homomomorphism density for many small pattern graphs. Furthermore, this method allows us to
generate families of graphs of varying sizes which retain common properties.

The homlib library implements graphs using adjacency lists and as such demonstrates great per-
formance on smaller graphs. However, its running time is highly dependent on the density of the
target graph. Consider for example a random graphG(1000, 9× 10−3) (disconnected w.h.p.) which
contains very few triangles, for which homlib computes an exact triangle density of 7.9× 10−7

in only 8ms. The running time drastically increases to 102ms for G(1000, 4× 10−2) (connected
w.h.p.) which has a notably larger density of 6.4× 10−5. More importantly, the running time
of homlib scales linearly with the size of G as shown in Figure 1. Surprisingly, increasing the
treewidth parameter of the pattern graph F , from triangle to K5 the complete graph over 5 nodes,
incurs at most a linear increase in the running time which does not match the worst-case time com-
plexity.
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For the sample homomorphism density implementation of Algorithm 1 we set a requested additive
error of±1× 10−2 (this is not 1% error) and±5× 10−3 with 95% confidence, i.e. no more than 5%
of the sample densities exceed the error bound. In practice it is clear this theoretical error bound is
extremely conservative. For example if we consider a graph G(400, 0.05) with approximately 4000
edges, the exact triangle homomorphism density is 1.26× 10−4 which should be well below the
“detection threshold” of ±1× 10−2 obtained by the Chernoff bounds. However, the sample homo-
morphism density correctly identifies the order of magnitude with a sample density of 1.94× 10−4.

In the case of our implementation of Algorithm 1 using Bloom filters we select a 1% false positive
rate. Compared to the standard implementation, the Bloom filter variant seems entirely agnostic to
the size of G. Surprisingly, we observe a behavior that is comparable to homlib in the sense that
lower density is associated with shorter running time. We notice that low density in the target graph
results in a higher frequency of negative membership queries which short-circuit the entire group
query. As described by its theoretical time complexity, the most important factor influencing the
running time of Algorithm 1 is the requested additive error ε. Figure 1 reveals that a fixed additive
error of ε = ±1× 10−2 results in running times ranging from 30ms to 60ms while raising the
precision to ε = ±5× 10−3 increases the running time to values ranging from 100ms to 200ms. We
underline that this additional cost is needed when the target density becomes small. For example,
the triangle homomorphism density of a random graph G(n, log2 n) with n = 105 is 2.1× 10−8

which cannot be detected (the sample density is 0) with a precision of ε = ±1× 10−2. However,
a slightly better precision with ε = ±5× 10−3 gives a coarse approximation of this value which is
“only” off by 2 orders of magnitude. This detection threshold can also be used as an implicit filter
discarding low-frequency patterns. Finally, we observe like with homlib that the size of F has
very little impact on the running time.

We have conducted additional experiments with cuckoo filters and XOR filters which reproduce the
known tradeoffs between fast filter construction and fast filter querying. However the cuckoo filter
implementation we have tested was slower approximately by 10% to 20% on both construction and
querying than Bloom filters while XOR filters were up to 30% faster than Bloom filters at the cost
of more than double the construction time.

6 CONCLUSION

We propose the use of approximate set membership data structures to scale up the computation
of sample graph homomorphism densities and demonstrate in experiments that this approach is
scalable and appropriate for graphs of varying connectivity. In particular, this paves the way towards
on-demand feature generation in the context of feature representation learning where the family of
patterns is the representation to be learned. More generally, this approach enables the use of much
larger datasets containing larger and more diverse graphs in graph classification tasks. We hope that
this efficient method for feature generation encourages the creation of larger datasets which would
contribute to the study of machine learning models for graph classification at scale.
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