© © N O O A W N =

o

11

28

29
30
31
32
33
34

Predicting Emergent Software Engineering
Capabilities by Fine-tuning

Anonymous Author(s)
Affiliation
Address

email

Abstract

Large Language Models exhibit unpredictable performance jumps on downstream
tasks, and understanding when these emergent abilities arise remains challenging.
While this has been observed across a variety of tasks, the extent to which it may
pose an issue depends on the task at hand. This work extends emergence prediction
to SWE-bench by fine-tuning LLaMA-3-1-8B and Qwen3-14B, demonstrating that
task-specific fine-tuning accurately predicts higher capabilities—thus suggesting
how larger models will behave. We fit an empirical emergence law by varying fine-
tuning data, showing that tracking the performance of smaller models may allow us
to predict the performance of larger models on SWE-bench, using only a fraction
of the computational resources. Validation on SWE-bench reveals that fine-tuned
models achieve improved success rates (up to 44% vs. 5% untuned baseline), with
the fitted emergence law accurately anticipating performance thresholds (LLaMA
RMSE = 2.22, R? =0.95: Qwen RMSE = 1.02, R? = 0.99).

1 Introduction

LLMs achieve impressive performance across many tasks, yet downstream capabilities often scale
unpredictably, with abrupt “emergent” jumps that defy smooth, linear extrapolation [18} [16]. We
define emergence as a capability that increases with dataset, compute, or model scale. This can be
framed as an emergence prediction problem: given smaller models with near-zero performance on a
task, can we predict when larger models will succeed? Snell et al. show that task-specific fine-tuning
can reveal latent abilities and shift model scaling behavior, fitting an “emergence law”, to forecast
non-trivial accuracy. This has been validated on benchmarks like MMLU, GSMS8K, and APPS, but
it remains unclear whether these methods generalize to the more complex, agentic settings where
LLMs must plan, reflect, and act, raising risk associated with rapidly evolving agentic capabilities
[4}15], while surveys of emergent abilities note big leaps in reasoning and planning as models scale.
Our work uses SWE-bench [9] within this broader context, using it as a controlled setting to examine
when fine-tuned models begin to display more compositional reasoning and tool using capabilities
that underpin recent LLM agents.

2 Methodology

We aim to test whether fine-tuning language models on SWE-bench can elicit emergent software
engineering capabilities at smaller scales. Following prior work on scaling laws and emergence
predictions [16], our hypothesis is that as models are trained on progressively larger subsets of
successful bug-fixes examples, their capabilities will follow an emergence law, defined here as
predictable increases with dataset scale that allows smaller fine-tunings to forecast the performance
of larger models.

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

35

36
37
38
39
40
41
42
43
44
45
46

47

48
49
50
51
52
53
54

55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

71

72
73
74
75
76
77
78
79
80
81
82
83

2.1 Dataset Contruction

Our training data originates from Anthropic’s Claude 3.7 Sonnet[2] official SWE-bench run, which
produced 776 valid, test-passing patches out of 2,294 total instances. This filtered subset constitutes
the basis for fine-tuning. To evaluate generalization, we define a fixed holdout set of 230 instances.
Approximately 10% of these are successful Claude completions excluded from training, while the
remainder is sampled from the full SWE-bench test set(we did not use SWE-bench Verified due to
insufficient training data in correct agent trajectories). This ensures that the evaluation reflects both
in-distribution and out-of-distribution behavior. From the Claude-derived training data, we generate
progressively larger subsets at fractions of 1/256, 1/128, 1/64, 1/32, 1/16, 1/8, and 1/4 of the full
dataset. These granular splits allow us to trace scaling behavior and identify potential emergence
points as data volume increases, consistent with the emergence prediction framework of [16](Snell et
al. 2024).

2.2 Model Selection

We initially attempted fine-tuning with OpenAl’s gpt-4.1-nano-2025-04-14 [13]. However, its
completions frequently failed to adhere to unified diff syntax and often produced non-compilable
code, making it unsuitable for this study. We therefore shifted to open-source models with stronger
baseline performance and greater controllability: LLaMA-3-1-8B [10](Maaten et al., 2024) and
Qwen3-14B[8]] (Hui et al., 2025). Both were accessed via the Predibase API, which provided
compatibility with standard fine-tuning workflows and ensured consistent evaluation pipelines. These
models offered a more reliable foundation for exploring emergent bug-fixing capabilities.

2.3 Experimental Protocol

Each model is first evaluated in its unmodified base form on the holdout set to establish a baseline.
Fine-tuning begins with the smallest (1/256) dataset split, after which the model is re-evaluated
on the holdout set. For subsequent splits, we adopt a progressive fine-tuning approach: the model
continues training from the weights of the previous checkpoint (e.g., from 1/256 — 1/128 — 1/64,
etc.). This staged design isolates the effect of additional training data while maintaining efficiency.
All fine-tuning runs use 5 epochs with a fixed learning rate of 2 x 10~ , consistent across splits to
control for confounding variables. Model outputs are scored using the official SWE-bench harness,
which validates correctness by applying generated patches to repositories and executing full test
suites. A resolution is only considered correct if all tests pass, ensuring a strict measure of success.
We compare the performance to larger open-weight models (Qwen3-235B-A22B, DeepSeek V3,
LLaMA-3.1-405B)[17, [1, [12]] without fine-tuning. Functional correctness is measured using the
SWE-bench harness, which requires generated patches to apply cleanly and pass all relevant unit tests.
This ensures that performance reflects genuine problem solving rather than superficial similarity to
ground truth. To create an emergence forecast, we fit a cubic regression line to capture the nonlinear
relationship between post-finetuning loss and resolution percentage

3 Results and Analysis

In our experiment, both LLaMA-3-1-8B and Qwen3-14B exhibit such emergent capabilities, as both
models start off at 5-6% resolution rate before fine-tuning. LLaMA-3-1-8B’s largest gain occurs
between the 1/8 and 1/4 splits (23% — 39%), while Qwen3-14B’s is between 1/16 and 1/8 (30% —
39%). Training loss decreases steadily, but performance gains are often nonlinear. Qwen3-14B’s
large loss drop at higher splits yields modest accuracy gains, which may be due to overfitting,
while LLaMA-3-1-8B’s smaller loss drop corresponds to a 16-point gain, indicating more effective
learning. Compared to larger untrained models—DeepSeek V3 (39%), Qwen3-235B-A22B (45%),
and LLaMA-3.1-405B (28%)—the fine-tuned Qwen3-14B at 1/4 (44%) achieves nearly identical
performance to the strongest model. We also evaluated the fit quality of our emergence law, finding
RMSE = 2.22 and R? = 0.95 for LLaMA-3-1-8B, and RMSE = 1.02 and R? = 0.99 for Qwen3-14B,
indicating that the scaling law captures model behavior with high fidelity. These results suggest
smaller fine-tunes can forecast the baseline capabilities of much larger models.

84

85

86

87
88
89
90
91

92
93
94
95
96
97

98
99
100

101

102
103
104
105
106
107
108
109
110
111
112

Llama Post-Finetuning Loss Qwen Post-Finetuning Loss

50 T va 50 va
O uama3188 1 O Quen3-148 /
— U tuned Llama-3-1-8B (5%) ! — Unf Qwen3-148 (6%) 7
BT--a B-A228 (45%) T 45 St g
D 3 (39%)] 8 3 (39%) / 8
404 —-- Llama-3.1-4058 (28%) g 40 4 —- Llama-3.1-4058 (28%) Ry o
== Poly Fit: -577.89x~3 + 751.99x~2 - 327.22x + 60.15 ' == Poly Fit: -30.44x"3 + 60.80x"2 - 101 84x + 52.46 ¢
ES ! 35 /!
H 116 /| 116
S o S — A g S I By ——— o g
T / 132 S 82 + u32 ;")‘
g /@ g § o §
@ 50 ’ s 2 50 / H
(]
15 9.// ves 5 y ,‘ 64
P e P4
© /.' 1128 ° /; 1128
5 L 5 at
/ 2
0 L 17256 [! 1256
10 08 0.6 04 02 0.0 10 0.8 0.6 0.4 02 0.0
Post-Finetuning Loss Post-Finetuning Loss
Figure 1: Post-finetuning loss vs. resolution Figure 2: Post-finetuning loss vs. resolu-
rate for LLaMA-3-1-8B across data splits. tion rate for Qwen3-14B across data splits.
Larger data splits yield non-linear gains, with Model improves nearly linearly with scale,
performance surpassing LLaMA-3.1-405B. surpassing larger models with the exception

of Qwen3-325B.

4 Conclusion

Our results extend the concept of emergence prediction to SWE-bench, demonstrating that fine-
tuning can forecast the capabilities of complex, multi-file software engineering tasks, in line with an
underlying emergence law. Fine-tuned smaller models can perform on par with larger models using
limited data, making them valuable predictors for the future capabilities of larger models. These
findings mirror the emergence patterns observed in benchmarks like GSM8K and MMLU, while
also suggesting that model-specific factors, beyond just dataset size, may influence emergence in
more realistic coding tasks. As shown in our results, emergent capabilities in software engineering
LLMs can arise even in smaller models: with the right fine-tuning, they become capable of addressing
real-world coding challenges. For example, the fine-tuned LLaMA-3-1-8B, despite its smaller size,
achieved performance comparable to Qwen3-14B at the 1/4 data split. This highlights a crucial aspect
of emergent behavior in task-specific fine-tuning: even with limited data, smaller models can rival
their larger counterparts. This observation is significant because it shows that smaller models can
serve as reliable predictors for the emergent capabilities of larger models.

While our study focuses on just two models with promising results, future work should expand
to include additional models and explore how parameter size can be leveraged to more accurately
forecast the capabilities of larger models within the same family.

5 Related Works

Early work on isolated synthesis tasks exposed scaling limits[3], prompting benchmarks like APPS[7]
and, more recently, datasets like SWE-bench[9] that reflect real-world conditions. These require
understanding large codebases and validating patches against full test suites. Concurrent efforts have
also proposed multi-turn repair and conversational debugging benchmarks [[18]], which emphasize
the importance of interaction and iterative refinement in realistic bug-fixing scenarios. In parallel,
repository-level program synthesis tasks have pushed evaluation beyond single-file problems|15]],
requiring models to navigate dependencies, build contexts, and reason about system-wide consistency.
Together, these developments illustrate a shift from controlled, isolated code generation toward
benchmarks that mirror the complexity of real-world engineering environments. Our approach builds
on this trajectory by fine-tuning on SWE-bench to forecast emergent coding skills, providing a
predictive framework beyond prior empirical evaluations.

113

1

4

115
116

117
118

119
120

121
122

123
124

125
126

127
128

129
130

131
132

133
134

135
136

137
138

139
140

141
142

143
144

145
146

147
148

149
150

6 References

References

[1] D. AL. Deepseek v3 — model card. |https://huggingface.co/deepseek-ai/
DeepSeek-V3, 2024. Accessed: 2025-08-27.

[2] Anthropic. Claude 3.7 sonnet system card. https://www.anthropic.com/
claude-3-7-sonnet-system-card, 2025. Accessed: 2025-08-29.

[3] M. Chen et al. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374,2021. URL https://arxiv.org/abs/2107.03374.

[4] e. a. Greenblatt. Redwood research: Advancing safe ai systems. arXiv preprint
arXiv:2312.06942,2023. URL https://arxiv.org/abs/2312.06942.

[5] e. a. Greenblatt. Anthropic’s contributions to safe ai deployment. arXiv preprint
arXiv:2412.14093,2024. URL https://arxiv.org/abs/2412.14093.

[6] e. a. He. Efficient training of large language models with structured sparsity. arXiv preprint
arXiv:2302.05319,2023. URL https://arxiv.org/abs/2302.05319.

[7] D. Hendrycks et al. Measuring robustness to natural distribution shifts in image classification.
arXiv preprint arXiv:2009.03300, 2021. URL https://arxiv.org/abs/2009.03300,

[8] e. a. Hui. Harnessing large language models for software vulnerability detection. arXiv preprint
arXiv:2505.09388, 2025. URL https://arxiv.org/abs/2505.09388.

[9] C.E.Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and K. Narasimhan. Swe-bench:
Can language models resolve real-world github issues? arXiv preprint arXiv:2310.06770, 2023.

[10] L. v. d. Maaten et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783,2024. URL
https://arxiv.org/abs/2407.21783|

[11] e. a. Meinke. Apollo: A framework for adaptive policy learning through large language models.
arXiv preprint arXiv:2412.04984, 2025. URL https://arxiv.org/abs/2412.04984,

[12] Meta. Llama 3.1 405b — model card. https://huggingface.co/meta-1lama/Llama-3,
1-405B) 2024. Accessed: 2025-08-29.

[13] OpenAl. Gpt-4.1 nano — model card. https://openai.com/index/gpt-4.1/, 2025.
Released April 14, 2025; Accessed: 2025-08-29.

[14] e. a. Rabin. Towards generalizable ai safety mechanisms. arXiv preprint arXiv:2504.00018,
2025. URL https://arxiv.org/abs/2504.00018.

[15] e. a. Schaeffer. Are emergent abilities of large language models a mirage? arXiv preprint
arXiv:2304.15004,2023. URL https://arxiv.org/abs/2304.15004.

[16] C. Snell et al. Scaling laws for multimodal language models. arXiv preprint arXiv:2411.16035,
2024. URL https://arxiv.org/abs/2411.16035.

[17] Q. Team. Qwen3-235b-a22b — model card. https://huggingface.co/Qwen/
Qwen3-235B-A22B| 2025. Accessed: 2025-08-27.

[18] J. Wei et al. Chain-of-thought prompting elicits reasoning in large language models. arXiv
preprint arXiv:2206.07682,2022. URL https://arxiv.org/abs/2206.07682.

https://huggingface.co/deepseek-ai/DeepSeek-V3
https://huggingface.co/deepseek-ai/DeepSeek-V3
https://huggingface.co/deepseek-ai/DeepSeek-V3
https://www.anthropic.com/claude-3-7-sonnet-system-card
https://www.anthropic.com/claude-3-7-sonnet-system-card
https://www.anthropic.com/claude-3-7-sonnet-system-card
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2312.06942
https://arxiv.org/abs/2412.14093
https://arxiv.org/abs/2302.05319
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2412.04984
https://huggingface.co/meta-llama/Llama-3.1-405B
https://huggingface.co/meta-llama/Llama-3.1-405B
https://huggingface.co/meta-llama/Llama-3.1-405B
https://openai.com/index/gpt-4.1/
https://arxiv.org/abs/2504.00018
https://arxiv.org/abs/2304.15004
https://arxiv.org/abs/2411.16035
https://huggingface.co/Qwen/Qwen3-235B-A22B
https://huggingface.co/Qwen/Qwen3-235B-A22B
https://huggingface.co/Qwen/Qwen3-235B-A22B
https://arxiv.org/abs/2206.07682

151

152

153
154
155
156
157
158

160

161

162
163
164
165
166
167
168
169
170
171

172
173
174
175
176
177

178

179
180
181
182
183
184
185
186
187
188
189
190
191
192

193

194
195
196
197
198

199
200
201

A Appendix

A.1 Discussion Section

Our experiments with fine-tuning LLaMA-3-1-8B and Qwen3-14B on SWE-bench tasks reveal
significant insight into emergent capabilities of language models in the context of real-world software
engineering tasks. These results have important implications for the way we think about scaling
LLMs, task-specific fine-tuning, and emergence of complex capabilities such as bug fixing. However,
as LLLMs scale and their emergent capabilities become more sophisticated and advanced, safety
concerns also arise—particularly regarding potential deception and unintended model behaviors. This
section explores the broader implications of our findings, including potential safety risks, and outlines
directions for future research that can mitigate these risks.

A.1.1 Understanding Emergent Capabilities in Software Engineering LL.Ms

The results of our experiments show us how task-specific fine-tuning can bring forth emergent
capabilities, which then can be used to predict the behavior of larger models. Fine-tuning on
progressively larger subsets of task-specific data revealed non-linear jumps in performance with
respect to training loss, notable for LLaMA-3-1-18B, which demonstrated a sharp increase in
resolution for the 1/8 and 1/4 training splits. While this result echoes earlier work on synthetic and
academic benchmarks, it is particularly significant in the context of software engineering tasks, which
can be more complex as they require models to interact with large codebases, identify bugs, and
generate functional code fixes. This shift towards real-world applications is crucial for predicting
when models will succeed and, more importantly, how behavior of smaller models can predict the
performance of larger models.

Though the results also suggest that fine-tuning may not be enough to achieve state-of-the-art
performance in real-world software engineering tasks, the observed emergent behavior indicates that
fine-tuned smaller models can play a significant role. While both models showed improvements
along the way, they still struggled with a significant portion of the issues in the SWE-bench dataset.
This suggests inherent limitations to the current architectures of models, especially when handling
the full complexity of real-world codebases.

A.1.2 Data Efficiency

One key insight is that model size alone does not determine emergence. For instance, LLaMA-3-
1-8B exhibited a sharper performance increase (23% — 39 %) than the larger Qwen3-14B when
scaling data from 1/8 to 1/4. This supports the hypothesis that data-efficient architectures can cross
capability thresholds faster, potentially due to their inductive biases, optimization landscape, or
token routing dynamics. This behavior aligns with broader trends in sparse scaling and Mixture-of-
Experts (MoE) models. Emerging architectures like DeepSeek-MoE and Mixtral-8x7B demonstrate
that selectively activating sub-networks can yield compute-efficient capacity expansion, achieving
near-100B model performance with only 35B active parameters per token. These models offer
an attractive path toward scalable, fine-tunable agents that achieve emergent capabilities without
prohibitive computational overhead. Future research could explore how these architectures give
rise to emergent properties—such as reasoning, compositional generalization, or robustness—by
systematically varying routing mechanisms, activation sparsity, and fine-tuning strategies. Such
investigations may reveal the principles that govern emergence beyond sheer scale, enabling the
design of models that are not only efficient but also more predictable in their capability growth.

A.1.3 Capabilities Amplification Without Oversight

Our experiments demonstrated that task-specific fine-tuning on SWE-bench data can amplify a
model’s problem solving skills, shifting the emergence point for complex bug-fixing from large,
frontier scale LLMs to smaller, more accessible ones, While this is a powerful tool for forecasting
abilities, it also highlights a critical governance concern of amplifying model capabilities without any
oversight mechanisms.

In our setting, LLaMA-3-1-8B and Qwen3-14B at baseline achieved a resolution rate of 4-5% on
average on multi-file debugging tasks.While this clearly exceeds random chance in a code patch
setting, it still represents low performance. Through incremental fine-tuning on progressively larger

202
203
204
205
206
207

209

210
211
212
213
214
215
216
217

218
219
220
221
222

223
224
225
226
227

228

229

230
231
232

234
235
236
237

238

239
240
241
242
243
244

245

246
247
248
249
250
251

fractions of successful patches, both models exhibited non-linear jumps with respect to training loss
in resolution rate, with LLaMA-3-1-8B achieving a 16 percentage point leap between the 1/8 and
1/4 splits. This means that capabilities once tied to frontier-scale models can emerge in mid-sized,
commodity-accessible systems purely through domain adaptation. For context, current frontier-scale
performance on SWE-bench reaches 59.80 % for GPT-5 Mini, 53.60 % for Gemini 2.5 Pro, and
52.80 % for Claude 3.5 Sonnet, which is well above the baseline of LLaMA-3-1-8B and Qwen3-14B.
Importantly, this acceleration in capability occurs without any fundamental changes to architecture or
parameter count, only through targeted exposure to high-quality training data.

The risk is that amplification pathways like this are difficult to detect and even harder to regulate. If
emergence can be induced cheaply and predictably, actors without access to large-model infrastructure
can still achieve state-of-the-art results on high-impact tasks, such as large-scale automated refactor-
ing or vulnerability patching. Without oversight, this lowers the barrier to deploying autonomous
code agents capable of modifying production systems, integrating with CI/CD pipelines, or even
introducing malicious behavior under the guise of legitimate patches. This risk is not hypotheti-
cal, Redwood Research Al-control experiments[S]] (Greenblatt et al., 2024) confirm that powerful
untrusted models like GPT-4 can introduce backdoors into otherwise valid code submissions.

Moreover, the predictability of scaling curves derived from our experiments could be dual-use: while
intended for safe capability planning, the same forecasts could be inverted to determine the minimum
data and steps needed to reach a specific performance threshold. This turns emergence prediction
into a potential “capability roadmap” for actors who may not follow responsible disclosure or safety
protocols.

To mitigate these risks, future work should investigate integrating safety and security objectives
directly into the process, such as adversarial patch-detection models, restricted diff-generation, or
sandboxed evaluation environments[6l [14]] (He & Vechev, 2023, Rabin et al., 2025). Coupling
capability amplification with concurrent safety amplification will be essential if emergence prediction
is to serve as a governance tool rather than an accelerator of uncontrolled capability proliferation.

A.2 Safety and Unintended Consequences
A.2.1 Deceptive Code Generation

As we scale LLMs and fine-tune them for increasingly complex tasks, safety risks, including the
emergence of deception become a critical concern. Deception refers to the model’s ability to generate
outputs that, while seemingly correct on the surface, are misleading or incorrect in practice[11} 15].
(Meinke et al., 2025; Greenblatt et al., 2024) In the context of software engineering, this could
manifest as models generating code that appears functional or passes superficial tests but ultimately
leads to bugs, security vulnerabilities, or system failures when deployed[4]. (Greenblatt et al., 2023)
This type of superficial correctness can be dangerous in mission-critical applications, where even
minor issues in generated code can lead to significant failures or security risks.

A.2.2 Opverfitting and Biases in Fine-Tuning

Fine-tuning smaller models on task-specific data can lead to overfitting, where the models become
excessively aligned with the biases and patterns present in the training data. This becomes more
present when the training data includes biased, insecure or incorrect examples, which may cause
the model to learn and replicate these errors. This is especially dangerous in software engineering
tasks where seemingly small mistakes such as overlooked dependencies or incorrect logic can lead to
severe bugs or vulnerabilities.

A.2.3 Misaligned Objectives and Lack of Contextual Awareness

While LLMs can generate code that meet surface level functional requirements, they lack a true
understanding of the broader context in which that code operates. This absence of contextual
awareness means that models can generate code that looks plausible but lacks any actual long
term stability, security or other crucial aspects of real-world systems. This risk is compounded as
misaligned objectives that could lead to generating code that meets the immediate requirements but
at the same time produces unintended side effects or long term issues.

252

253
254
255
256
257
258
259
260
261
262

264
265
266
267
268

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

294
295
296
297
298
299
300
301
302
303
304

305

306
307
308
309
310
311
312
313

A.3 Prompt Used To Generate Resolutions for SWE-bench

"""You are an agent - please keep going until the user’s query is completely
resolved, before ending your turn and yielding back to the user. Only terminate
your turn when you are sure that the problem is solved.

If you are not sure about file content or codebase structure pertaining to the user’
s request, use your tools to read files and gather the relevant information: do
NOT guess or make up an answer.

You MUST plan extensively before each function call, and reflect extensively on the
outcomes of the previous function calls. DO NOT do this entire process by
making function calls only, as this can impair your ability to solve the
problem and think insightfully.

Here is the bug report:

{problem_statement}

Hints:

{hints_text}

Only return a valid unified diff patch.

Do NOT include any explanation, markdown, or extra formatting.

Start your output exactly with a valid diff header line like:

diff --git a/sympy/printing/latex.py b/sympy/printing/latex.py

Your patch must include valid file index lines with realistic hashes (for example,
40 hexadecimal characters), and valid hunk headers with line numbers and ranges.

Do NOT use placeholders such as <current_index>, <new_index>, ..., or any other
incomplete or filler text in your patch.

Make sure your patch is complete, does not repeat hunks unnecessarily, and ends
properly.

A4 Claude Logs Used For Model Fine-tuning

URL: https://github.com/SWE-bench/experiments
assets:
logs: s3://swe-bench-experiments/test/20240620_sweagent_claude3.5sonnet/logs
trajs: s3://swe-bench-experiments/test/20240620_sweagent_claude3.5sonnet/trajs
info:
logo: https://avatars.githubusercontent.com/u/1660460567s=200&v=4
name: SWE-agent + Claude 3.5 Sonnet
site: null

314
315
316
317
318
319
320
321
322

323

324
325
326
327

329
330
331
332
333

335
336
337
338
339

341
342
343
344
345
346
347
348
349
350
351

tags:
checked: true
model:
- claude-3-5-sonnet-20241022
org: SWE-agent
os_model: false
os_system: true
system:
attempts: ’1°

A.5 Example problems

Repository: sympy/sympy

Issue ID: sympy__sympy-14821

Title: UnboundLocalError in kernS when parsing certain expressions

Problem Description:

When calling kernS with the string "(2*x)/(x-1)", SymPy raises an UnboundLocalError

This occurs because the local variable kern is referenced before it is assigned
within the function implementation.

Steps to Reproduce:

from example_module import process_expression

result = process_expression("(2xy)/(y-3)")

Observed Behavior:
UnboundLocalError: local variable ’kern’ referenced before assignment

Expected Behavior:

The function should correctly parse the expression and return the corresponding
SymPy object without error, e.g.:

2*xx/ (x-1)

Relevant Test (FAIL_TO_PASS):
def test_kernS():
from sympy import symbols
from sympy.core.sympify import kernS

x = symbols(’x’)
assert kernS("(2*xx)/(x-1)") == 2xx/(x-1)

352

353
354
355
356
357

358
359

360

361
362

363

364
365
366
367

368

370
371
372
373
374
375
376

377

384
385
386
387

388
389
390

391
392

393
394

395

396

398
399
400

401

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes], ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " " itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s main contribu-
tions—identifying conditions for emergent reasoning in scaling LLMs, proposing diagnostic
probes, and analyzing when scaling laws break. These claims are substantiated in the results
(Sections 4-5).

Guidelines:
¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses several limitations explicitly in the Limitations section
and throughout the appendices, such as dependence on specific benchmarks, lack of full
training access to proprietary models, and the computational cost of scaling experiments.

Guidelines:

402
403
404
405
406
407
408

410
411
412

413
414
415
416
417

418
419
420
421
422
423
424
425
426
427

428

429
430

431

432
433

434

444

445

446
447
448

449

450
451
452
453

454

The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper is primarily empirical and does not present formal theorems or
proofs. Instead, it provides empirical scaling analyses and diagnostic results.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The main experimental setup is fully described (Appendix A), including
datasets, evaluation protocols, and diagnostic probes. While full reproduction of large-scale
proprietary models is infeasible, the methods are specified clearly enough for replication on
smaller open models.

Guidelines:

10

455
456
457
458
459
460
461
462

464
465
466
467
468
469
470
471
472

473
474
475
476
477
478
479
480
481
482
483
484
485

486

487
488
489

490

491
492
493

494

504

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All diagnostic probes, analysis code, and evaluation scripts will be released
(anonymized during review, de-anonymized upon acceptance). Datasets used are public

(e.g.

, MATH, GSM8K, ARC).

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

11

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

510
511

512
513

514

515
516
517

518

519
520

521

522

523
524

526

527

528
529

530

532
533

534

535

536
537
538

539
540
541

542
543

544

545
546

547
548
549

550
551
552

553
554

555

556

558

559

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training/evaluation details (hyperparameters, datasets, evaluation metrics, and
baselines) are given in Appendix A: Experimental Details, sufficient for replication.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Results include variance across seeds and error bars where applicable (Figures
3-6, Appendix B). Statistical variation due to dataset splits and random initialization is
discussed.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

12

560
561
562

563

565
566

567
568

569
570
571

572

573
574

575

576
577
578
579

580

581

582
583

584
585

586

587
588

589

590
591
592
593
594
595

596

597

598
599

600
601
602
603

604
605
606
607
608
609
610

10.

Justification: Compute resources are detailed in Appendix C (Compute & Safety), including
GPU types, hours, and approximate cost. Large-scale proprietary models (GPT-4, Claude,
Gemini) are accessed via API, noted explicitly.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research strictly adheres to the NeurIPS Code of Ethics. It is a purely
computational study that analyzes scaling behavior of existing open-source models using
publicly available datasets. No human subjects, private data, or potentially harmful data
were involved.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The work has potential positive impact in helping the community better under-
stand efficiency and scaling tradeoffs in large models, which may guide more sustainable
model training and reduce unnecessary compute usage. Negative impacts could include
misuse of scaling insights to optimize harmful generative models (e.g., disinformation or
biased outputs). These risks are mitigated since no new models or datasets are released; the
findings are primarily theoretical/empirical insights.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

13

https://neurips.cc/public/EthicsGuidelines

611
612
613
614

615
616
617
618

619

620
621
622

623

624
625

626

627

628
629
630
631

632
633

634
635
636

637

638
639
640

641

642

644

645

646
647
648

650
651
652
653
654
655
656
657
658
659
660

661

662
663

11.

12.

13.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No models or datasets with dual-use risks are released. The paper is limited to
analysis of existing, already publicly available models.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All datasets and models used are from publicly available, properly cited sources

with clear licenses (e.g., [insert dataset/model names + license if you have them explicitly in
paper]). Their usage complies with original licensing terms.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

14

paperswithcode.com/datasets

664

665

666

667

668
669
670

671
672

673
674
675

676
677
678

679

680

681

682

683

684
685
686

687

689

690
691

693
694
695

696

697
698

699

701
702

704
705
706
707
708
709

710

71
712
713
714

715

14.

15.

16.

Answer: [NA]
Justification: The paper does not introduce new models, datasets, or code assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The research does not involve crowdsourcing nor human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research does not involve human participants and thus does not require
IRB or equivalent approval.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

15

716
717
718

719

720
721
722
723

Justification: LLMs (e.g., GPT-based assistants) were used for writing assistance, editing,
and polishing text, but not as a core scientific component of the methods. The methodology,
analysis, and results are unaffected by this usage.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

16

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Methodology
	Dataset Contruction
	Model Selection
	Experimental Protocol

	Results and Analysis
	Conclusion
	Related Works
	References
	Appendix
	Discussion Section
	Understanding Emergent Capabilities in Software Engineering LLMs
	Data Efficiency
	Capabilities Amplification Without Oversight

	Safety and Unintended Consequences
	Deceptive Code Generation
	Overfitting and Biases in Fine-Tuning
	Misaligned Objectives and Lack of Contextual Awareness

	Prompt Used To Generate Resolutions for SWE-bench
	Claude Logs Used For Model Fine-tuning
	Example problems

