

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GENERATE ANY SCENE: SCENE GRAPH DRIVEN DATA SYNTHESIS FOR VISUAL GENERATION TRAINING

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advances in text-to-vision generation excel in visual fidelity but struggle with compositional generalization and semantic alignment. Existing datasets are noisy and weakly compositional, limiting models’ understanding of complex scenes, while scalable solutions for dense, high-quality annotations remain a challenge. We introduce GENERATE ANY SCENE, a data engine that systematically enumerates scene graphs representing the combinatorial array of possible visual scenes. GENERATE ANY SCENE dynamically constructs scene graphs of varying complexity from a structured taxonomy of objects, attributes, and relations. Given a sampled scene graph, GENERATE ANY SCENE translates it into a caption for text-to-image or text-to-video generation; it also translates it into a set of visual question answers that allow automatic evaluation and reward modeling of semantic alignment. Using GENERATE ANY SCENE, we first design a self-improving framework where models iteratively enhance their performance using generated data. *SDv1.5* achieves an average **4%** improvement over baselines and surpassing fine-tuning on CC3M. Second, we also design a distillation algorithm to transfer specific strengths from proprietary models to their open-source counterparts. Using fewer than 800 synthetic captions, we fine-tune *SDv1.5* and achieve a **10%** increase in TIFA score on compositional and hard concept generation. Third, we create a reward model to align model generation with semantic accuracy at a low cost. Using GRPO algorithm, we fine-tune SimpleAR-0.5B-SFT and surpass CLIP-based methods by **+5%** on DPG-Bench. Finally, we apply these ideas to the downstream task of content moderation where we train models to identify challenging cases by learning from synthetic data.

1 INTRODUCTION

Despite the high-fidelity of modern generative models (text-to-image and text-to-video), we are yet to witness wide-spread adoption (1 2 3 4 5). Controllability remains out of reach (6). Generated content appears realistic but often falls short of semantic alignment (7 8 9 10). Users prompt models with a specific concept in mind. For example, when prompted to generate a scene of a “A black dog chasing after a rabbit that is eating the grass, in Van Gogh’s style, with starlight lightening”, some models are likely to generate an image of a dog but might miss the rabbit or get the style incorrect.

We hypothesize that these limitations stem not only from architectural bottlenecks but more fundamentally from the lack of structured, compositionally rich training data (3), especially those with uncommon compositions. Popular datasets such as LAION (11) and CC3M (12) predominantly consist of web-crawled image-caption pairs, which are inherently noisy, weakly compositional, and biased toward single-object, coarse-grained descriptions. Such datasets lack explicit grounding of object-attribute relations and multi-object interactions, restricting models’ ability to generalize to complex visual scenes. Efforts to enhance caption quality (3 13) have demonstrated that enhancing the compositional density and semantic richness of captions can significantly improve generative performance. Nevertheless, manual curation of such dense compositional annotations is labor-intensive, while automatic annotation methods (e.g., via MLMs) suffer from hallucination and semantic noise.

Constructing a compositional dataset requires that we first define *the space of the visual content*. Scene graphs are one such representation of the visual space (14; 15; 16; 17; 18), grounded in cognitive science (19). A scene graph represents objects in a scene as individual nodes in a graph.

054 Each object is modified by attributes, which describe its properties. For example, attributes can
 055 describe the material, color, size, and location of the object in the scene. Finally, relationships are
 056 edges that connect the nodes. They define the spatial, functional, social, and interactions between
 057 objects (20). For example, in a living room scene, a “table” node might have attributes like “wooden”
 058 or “rectangular” and be connected to a “lamp” node through a relation: “on top of”. This systematic
 059 scene graph structure provides simple yet effective ways to define and model the scene. As such,
 060 scene graphs are an ideal foundation for systematically defining the compositional space of visual
 061 content in text-to-vision generation.

062 We introduce GENERATE ANY SCENE, a system capable of efficiently enumerating the space of
 063 scene graphs representing a wide range of visual scenes. GENERATE ANY SCENE composes scene
 064 graphs of any structure using a rich taxonomy of visual elements, translating each scene graph into an
 065 input caption and visual question answers to evaluate the output image or video. In particular, we first
 066 construct a rich taxonomy of visual concepts consisting of 28,787 objects, 1,494 attributes, 10,492
 067 relations, 2,193 scene attributes from various sources. Based on these assets, GENERATE ANY
 068 SCENE can synthesize an almost infinite number of scene graphs of varying complexity (21). Besides,
 069 GENERATE ANY SCENE allows configurable scene graph generation. For example, evaluators can
 070 specify the complexity level of the scene graph to be generated or provide a seed scene graph to be
 071 expanded. By automating these steps, our system ensures both scalability and adaptability, providing
 072 researchers and developers with diverse, richly detailed scene graphs and corresponding captions
 073 tailored to their specific needs. We also conduct comprehensive text-to-vision evaluations using our
 074 generated captions, as detailed in Appendix A.

075 We show that GENERATE ANY SCENE can allow generation models to self-improve. Our diverse
 076 captions can facilitate a framework to iteratively improve *Text-to-Vision generation* models using
 077 their own generations. Given a model, we generate multiple images, identify the highest-scoring one,
 078 and use it as new fine-tuning data to improve the model itself. We fine-tune *SDv1.5* (22) and achieve
 079 an average of 4% performance boost compared with original models, and this method is even better
 080 than fine-tuning with the same amount of real images and captions from the Conceptual Captions
 CC3M over different benchmarks.

081 We also use GENERATE ANY SCENE to design targeted distillation algorithms. Using our evaluations,
 082 we identify limitations in open-sourced models that their proprietary counterparts excel at. Next,
 083 we distill these specific capabilities from proprietary models. For example, *DaLL-E 3* (3) excels
 084 particularly in generating composite images with multiple parts. We distill this capability into *SDv1.5*,
 085 effectively bridging the gap between *DaLL-E 3* and *SDv1.5*. After targeted fine-tuning, *SDv1.5*
 086 achieves a 10% increase in TIFA score (23) for compositional tasks and hard concept generation.

087 Then we propose a low-cost scene graph-based reward model for RLHF (24) in text-to-image
 088 generation. By leveraging synthetic scene graphs generated by GENERATE ANY SCENE, we generate
 089 exhaustive question-answer pairs that cover all objects, attributes, and relationships in the caption.
 090 Our method enables fine-grained, compositional reward modeling without manual annotation or
 091 heavy LLM inference. With GRPO (25), we fine-tune SimpleAR-0.5B-SFT (26) using a scene graph
 092 reward model, achieving better compositional alignment than CLIP-based methods (27) (+5% on
 093 DPG-Bench (28)).

094 Finally, we apply GENERATE ANY SCENE to the downstream application of content moderation.
 095 Content moderation is a vital application, especially as *Text-to-Vision generation* models improve.
 096 A key challenge lies in the limited diversity of existing training data. To address this, we leverage
 097 GENERATE ANY SCENE to generate diverse and compositional captions, creating synthetic training
 098 data that complements existing datasets. By retraining a ViT-T (29) detector with our enriched dataset,
 099 we enhance its detection performance, particularly in cross-model and cross-dataset scenarios.

101 2 GENERATE ANY SCENE

103 In this section, we present GENERATE ANY SCENE (Figure 1), a data engine that systematically
 104 synthesizes diverse scene graphs in terms of both structure and content and translates them into
 105 corresponding captions.

107 **Scene graph.** A scene graph is a structured representation of a visual scene, where objects are
 represented as nodes, their attributes (such as color and shape) are properties of those nodes, and the

108 relationships between objects (such as spatial or semantic connections) are represented as edges. In
 109 recent years, scene graphs have played a crucial role in visual understanding tasks, such as those
 110 found in Visual Genome (14) and GQA (30) for visual question answering (VQA). Their utility
 111 has expanded to various *Text-to-Vision generation* tasks. For example, the DSG (31) and DPG (10)
 112 benchmarks leverage scene graphs to evaluate how well generated images align with captions.

113 **Taxonomy of visual elements.** To construct a scene graph, we use three main metadata types:
 114 **objects**, **attributes**, and **relations**. We further introduce **scene attributes** that capture global visual
 115 contexts, such as art style, to facilitate comprehensive caption synthesis. The statistics and source of
 116 our metadata are shown in Table 1. Additionally, we build a hierarchical taxonomy that categorizes
 117 metadata into distinct levels and types, enabling fine-grained analysis. This structure supports precise
 118 content synthesis, from broad concepts like “flower” to fine-grained instances such as “daisy.”

119
 120 Table 1: Summary of the quantities and sources of visual elements. Details are in Appendix B.

121 Metadata Type	122 Number	123 Source
123 Objects	124 28,787	125 WordNet (32)
124 Attributes	125 1,494	126 Wikipedia (33), etc.
125 Relations	126 10,492	127 Synthetic Visual Genome (34)
126 Scene Attributes	127 2,193	128 Places365 (35), etc.

127 2.1 GENERATING DATA WITH SCENE GRAPHS

128 **Step 1: Scene graph structure enumeration.** Our engine pre-computes a library of directed scene-
 129 graph topologies subject to user-specified *structural constraints*: complexity (total number of objects,
 130 relations, and attributes) (36), average node degree, and number of connected components. We first
 131 sample the number of object nodes and then systematically enumerate feasible edge sets and attribute
 132 attachments that satisfy these constraints. We provide 3 optional controls: (i) *degree-profile* bounds
 133 per-node in/out-degree, (ii) *seed-graph preservation* embeds a user-provided seed graph as a subgraph
 134 of each enumerated structure, and (3) *commonsense plausibility filtering* prunes implausible contents
 135 while retaining compositional diversity (See Appendix H.1). All enumerations are performed once
 136 per parameter tuple and cached for fast querying.

137 **Step 2: Populate the scene graph structure with metadata.** Given a generated scene graph
 138 structure, the next step involves populating the graph with metadata. For each object node, attribute
 139 node, and relation edge, we sample the corresponding content from our metadata. This process is
 140 highly customizable and controllable: users can define the topics and types of metadata to include,
 141 for instance, by selecting only commonsense metadata or specifying relationships between particular
 142 objects. By determining the scope of metadata sampling, we can precisely control the final content of
 143 the captions and easily extend the diversity and richness of scene graphs by adding new metadata.

144 **Step 3: Sample scene attributes.** We also include scene attributes that describe aspects such as the
 145 art style, viewpoint, time span (for video), and 3D attributes (for 3D content). These scene attributes
 146 are sampled directly from our metadata, creating a list that provides contextual details to enrich the
 147 description of the visual content.

148 **Step 4: Translate scene graph to caption.** We introduce a deterministic and programmatic algorithm
 149 that converts scene graphs with scene attributes into captions. It traverses scene graphs by converting
 150 objects/attributes/relations into descriptive text in topological order, while tracking each object’s
 151 references to ensure coherence. Programmatic grammar rules are employed (e.g., disambiguating
 152 identical objects with “the first/second” and skipping already mentioned objects) to prevent duplication
 153 and misreference, resulting in clear captions. We also provide LLM paraphrasing as an optional
 154 step to diversify wording; however, our studies (see Appendix A.3) show that paraphrasing does not
 155 materially affect results. We adopt the programmatic caption converter as the default for its speed
 156 and low hallucination rate.

157 **Step 5: Convert scene graph to a series of question-answer pairs.** Given a synthetic scene graph,
 158 GENERATE ANY SCENE automatically enumerates exhaustive QA pairs using templates that query
 159 object attributes (e.g., What color is the sphere?), spatial relations (e.g., What is to the left of the
 160 cube?), and other compositional elements. Each answer maps directly to an object, attribute, or edge,
 161 ensuring full coverage of the graph at minimal cost. This enables both VQA-based evaluation of

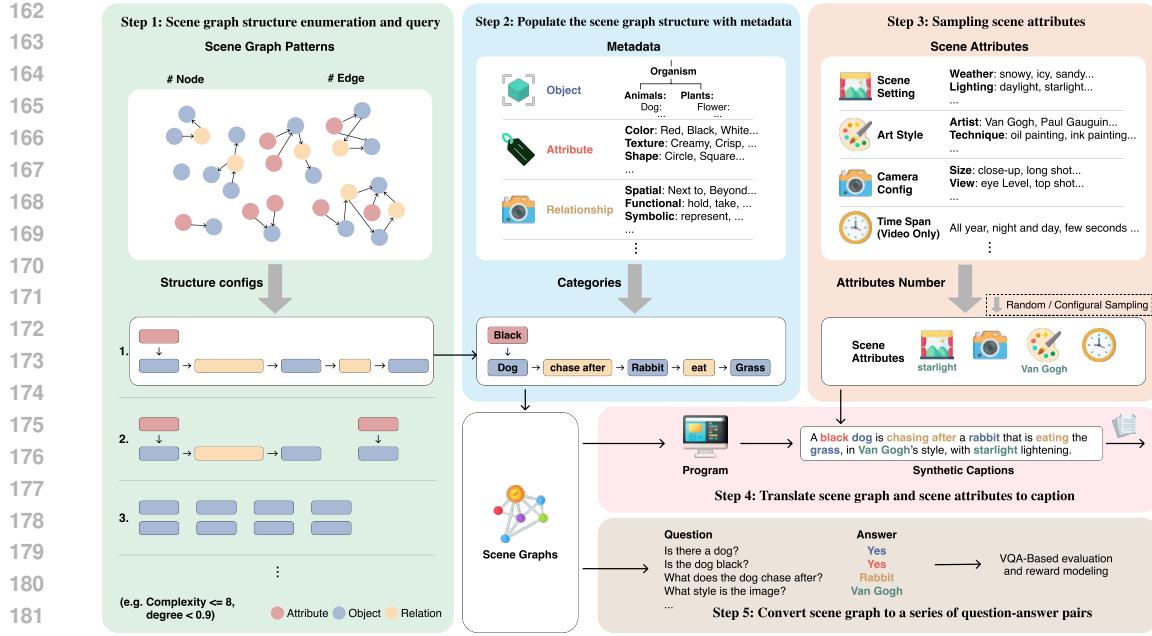


Figure 1: The generation pipeline of GENERATE ANY SCENE. **Step 1:** Enumerate diverse scene graph structures under user-defined constraints. **Step 2:** Populate structures with sampled objects, attributes, and relations. **Step 3:** Sample scene attributes such as style, perspective, or time span. **Step 4:** Translate scene graph and attributes into coherent captions. **Step 5:** Automatically generate QA pairs covering all elements for evaluation and reward modeling.

generated images and the construction of fine-grained reward models without manual labeling or costly LLM inference.

3 SELF-IMPROVING MODELS WITH SYNTHETIC CAPTIONS

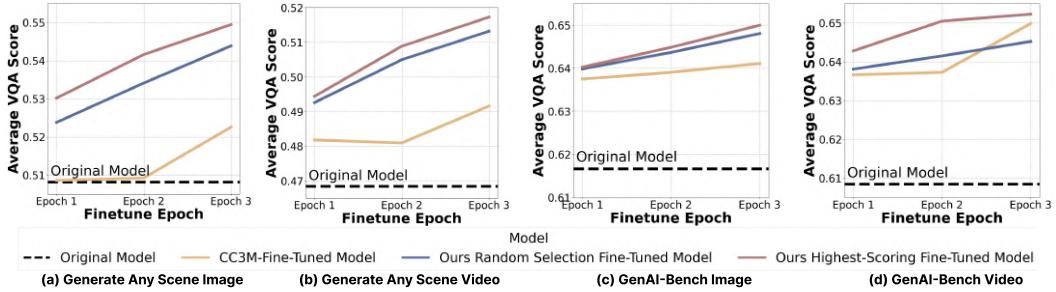


Figure 2: **Results for Self-Improving Models.** Average VQA score of *SDv1.5* fine-tuned on different data across 1K GENERATE ANY SCENE image/video evaluation set and GenAI-Bench image/video benchmark (37).

With GENERATE ANY SCENE, we develop a self-improvement framework to improve generative capabilities. By generating scalable compositional captions from scene graphs, GENERATE ANY SCENE expands the textual and visual space, allowing for a diversity of synthetic images that extend beyond real-world scenes. Our goal is to utilize these richly varied synthetic images to further boost model performance.

Iterative self-improving framework. Inspired by DreamSync (38), we designed an iterative self-improving framework using GENERATE ANY SCENE with *SDv1.5* as the baseline model. With

216
 217 **Table 2: Quality and diversity comparison on**
 218 **GenAI-Bench.** Fine-tuning with GENERATE
 219 ANY SCENE captions improves global semantic
 220 fidelity and perceptual quality without reducing
 221 generation diversity.

	SDv1.5	CC3M-FT	GAS-FT
CLIPScore	0.3167	0.3196	0.3206
ImageReward	0.2056	0.3842	0.3927
LPIPS	0.7297	0.7356	0.7329

222
 223
 224
 225
 226
 227 **Table 3: Generalization to unseen compositions.** On a 400-caption test set containing
 228 only unseen combinations of seen elements, the
 229 model fine-tuned with GENERATE ANY SCENE
 230 achieves the best compositional generalization.

	SDv1.5	CC3M-FT	GAS-FT
VQAScore	0.5823	0.6044	0.6109
CLIPScore	0.2876	0.2927	0.2938
ImageReward	0.4861	0.2602	-0.2497

228 *VQA Score*, which shows strong correlation with human evaluations on compositional images (39),
 229 we guide the model’s improvement throughout the process. Specifically, GENERATE ANY SCENE
 230 generates $3 \times 10K$ captions across three epochs. For each caption, *SDv1.5* generates 8 images, and
 231 the image with the highest *VQA Score* is selected. From each set of 10K optimal images, we then
 232 select the top 25% (2.5K image-caption pairs) as the training data for each epoch. In subsequent
 233 epochs, we use the fine-tuned model from the prior iteration to generate new images. We employ
 234 LoRA (40) for parameter-efficient fine-tuning.

235 **Baselines.** We conduct comparative experiments with the CC3M dataset, which comprises high-
 236 quality and diverse real-world image-caption pairs (12). We randomly sample $3 \times 10K$ captions from
 237 CC3M, applying the same top-score selection strategy for iterative fine-tuning of *SDv1.5*. Additionally,
 238 we include a baseline using random-sample fine-tuning strategy to validate the advantage of our
 239 highest-scoring selection-based strategy. We evaluate our self-improving pipeline on *Text-to-Vision*
 240 *generation* benchmarks, including GenAI Bench (37). For the *Text-to-Video* *generation* task, we use
 241 *Text2Video-Zero* as the baseline model, substituting its backbone with the original *SDv1.5* and our
 242 fine-tuned *SDv1.5* models.

243 **Fine-tuning with our synthetic captions can surpass high-quality real-world image-caption**
 244 **data.** Our results show that fine-tuning with GENERATE ANY SCENE-generated synthetic data
 245 consistently outperforms CC3M-based fine-tuning across *Text-to-Vision* *generation* tasks (Figure 2),
 246 achieving the highest gains with our highest-scoring selection strategy. This highlights GENERATE
 247 ANY SCENE’s scalability and compositional diversity, enabling models to effectively capture com-
 248 plex scene structures. In Table 2, we further evaluate *SDv1.5*, the CC3M-finetuned model, and the
 249 model finetuned with GENERATE ANY SCENE captions on additional metrics from GenAI-Bench.
 250 Fine-tuning with GENERATE ANY SCENE yields higher CLIPScore and ImageReward while preserv-
 251 ing LPIPS, demonstrating that our method not only strengthens compositional alignment but also
 252 improves global semantic fidelity and perceptual quality without reducing generation diversity. In
 253 Table 3, we additionally evaluate whether our self-improving framework enhances combinatorial
 254 generalization. We extract all objects, attributes, and relations from the CC3M fine-tuning data and
 255 retain the metadata sampled by GENERATE ANY SCENE. Using the same element set as in the
 256 fine-tuning data, we synthesize 200 CC3M-element-based and 200 GENERATE ANY SCENE-element-
 257 based captions while excluding all seen combinations, forming a 400-caption test set of unseen
 258 compositions. The model fine-tuned with GENERATE ANY SCENE achieves the highest VQAScore,
 259 CLIPScore, and ImageReward, indicating stronger compositional generalization than both *SDv1.5*
 260 and the CC3M-finetuned baseline. Additional experiment settings and results are in Appendix C.

4 DISTILLING TARGETED CAPABILITIES

261 Although self-improving with GENERATE ANY SCENE shows clear advantages over high-quality
 262 real-world datasets, its efficiency is inherently limited by the model’s own generation capabilities. To
 263 address this, we leverage the taxonomy and systematical generation capabilities within GENERATE
 264 ANY SCENE to identify specific strengths of proprietary models (*DaLL-E 3*), and distill these
 265 capabilities into open-source models. More details are in Appendix D.

266 We evaluate multiple models using GENERATE ANY SCENE controllably generated captions and
 267 observe that *DaLL-E 3* achieves *TIFA Score 1.5* to 2 times higher than those of other models. As
 268 shown in Figure 4a, when comparing *TIFA Score* across captions with varying numbers of elements

Figure 3: **Examples for Distilling Capabilities.** Examples of images generated by *DaLL-E 3*, the original *SDv1.5*, and the fine-tuned versions. The left four captions demonstrate fine-tuning with multi-object captions generated by GENERATE ANY SCENE for better compositionality, while the right two columns focus on understanding hard concepts.

(objects, relations, and attributes), *DaLL-E 3* **counterintuitively** maintains consistent performance regardless of element count. The performance of other models declines as the element count increases, which aligns with expected compositional challenges. We suspect that these differences are primarily due to *DaLL-E 3*’s advanced capabilities in compositionality and **understanding hard concepts**, which ensures high faithfulness across diverse combinations of element types and counts.

Distilling compositionality from DaLL-E 3. When analyzing model outputs from our synthetic captions, we find that *DaLL-E 3* tends to produce straightforward combinations of multiple objects (Figure 3). In contrast, open-source models like *SDv1.5* often omit objects from the captions, despite being capable of generating each one individually. This difference suggests that *DaLL-E 3* may benefit from training data emphasizing multi-object presence, even without detailed layout or object interaction. Such training likely underpins *DaLL-E 3*’s stronger performance on metrics like *TIFA Score* and *VQA Score* that prioritize object inclusion. To effectively distill these compositional abilities into *SDv1.5*, we employ GENERATE ANY SCENE for targeted synthesis of 778 multi-object captions, paired with images generated by *DaLL-E 3*, for finetuning *SDv1.5*.

Distilling hard concepts understanding from DaLL-E 3. Figure 3 shows that *DaLL-E 3* is capable not only of handling multi-object generation but also of understanding and generating rare and hard concepts, such as a specific species of flower. We attribute this to its training with proprietary real-world data. Using the taxonomy of GENERATE ANY SCENE, we evaluate both models on 10K GENERATE ANY SCENE captions that broadly cover the taxonomy. For each concept, we gather all captions in which it appears and average their generation scores to obtain a concept-level score for each model. Comparing these concept-level scores lets us identify the 81 concepts where *SDv1.5* shows the largest gap relative to *DaLL-E 3*; the full list is provided in Appendix D. For distilling, we increase the sampling frequency of these hard concepts and generate 778 captions incorporating these hard concepts with other elements, and use *DaLL-E 3* to produce corresponding images.

Baselines. For the baseline, we randomly synthesize 778 captions using GENERATE ANY SCENE paired with *DaLL-E 3*-generated images to fine-tune the model. To evaluate model improvements, we generate another 1K multi-object captions and 1K hard-concept captions separately.

Targeted caption synthesis via GENERATE ANY SCENE enables effective distillation of compositional abilities and hard concept understanding. We analyze images generated by *SDv1.5* before and after fine-tuning on high-complexity captions (Figure 3). Surprisingly, with fewer than 1K LoRA fine-tuning steps, *SDv1.5* effectively learns *DaLL-E 3*’s capability to arrange and compose multiple objects within a single image. Quantitatively, Figure 4b shows a 10% improvement in *TIFA Score*

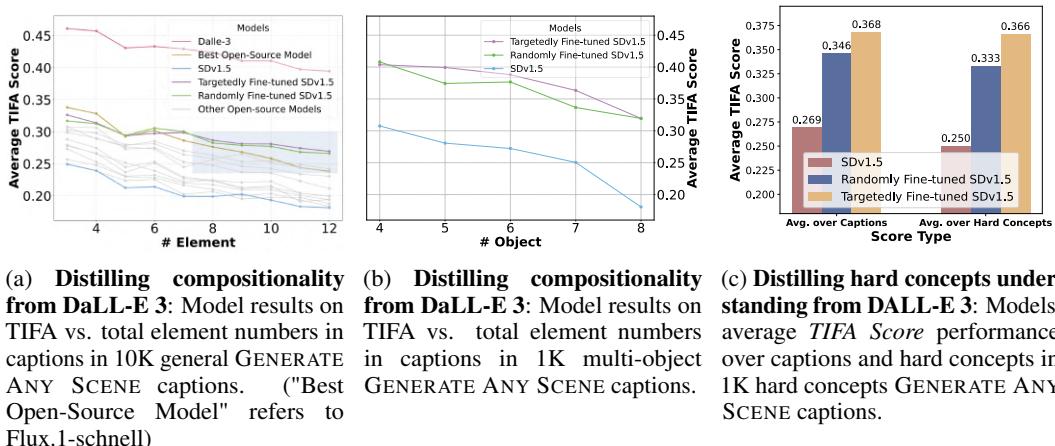
324 after targeted fine-tuning, surpassing the performance of the randomly fine-tuned model. On a broader
 325 set of 10K GENERATE ANY SCENE-generated captions, the targeted fine-tuned model consistently
 326 outperforms randomly fine-tuned and original counterparts across complex scenes (Figure 4a). These
 327 results confirm not only the effectiveness but also the scalability and efficiency of GENERATE ANY
 328 SCENE. Also, the results in Figure 4c show that our targeted fine-tuning with hard concepts leads to
 329 improved model performance, reflected in higher average scores across captions and increased scores
 330 for each challenging concept.

332 5 REINFORCEMENT LEARNING WITH A SYNTHETIC REWARD FUNCTION

334 Reinforcement Learning with Human Feedback (RLHF) has become an increasingly popular fine-
 335 tuning strategy in text-to-image generation (41, 42, 26). However, defining an effective reward model
 336 that accurately captures semantic alignment for text-to-image generation remains an open challenge.
 337 Existing reward models like CLIP offer only coarse-grained image-text similarity signals, which fall
 338 short in assessing compositional correctness and lack interpretability. Alternative approaches have
 339 explored using visual question answering (VQA) as a proxy for evaluating semantic alignment, aiming
 340 for finer-grained assessments, yet require either labor-intensive datasets with dense annotations or
 341 large volumes of contextually relevant questions via advanced LLMs. Leveraging its structured scene
 342 graph synthesis capabilities, GENERATE ANY SCENE offers a scalable alternative by producing
 343 exhaustive semantic queries with negligible overhead, enabling low-cost, compositional reward
 344 modeling (Sec 2.1).

345 **Experiment setup.** Building on this scene graph-based reward modeling strategy, we adopt Group
 346 Relative Policy Optimization (GRPO) as our reinforcement learning algorithm. We fine-tune the
 347 SimpleAR-0.5B-SFT model for one epoch using 10K captions generated by GENERATE ANY SCENE,
 348 each paired with their scene graph-derived QA sets. For reward evaluation, we use Qwen2.5-VL-3B, a
 349 lightweight open-source vision-language model, to answer these QA pairs given the model-generated
 350 images. The reward is computed as the accuracy across all questions. This fine-grained, scene
 351 graph-aligned reward provides precise feedback on compositional faithfulness. As a baseline, we
 352 compare against SimpleAR-0.5B-RL, trained with CLIP-based rewards on 11K captions from real
 353 world datasets for one epoch. We evaluate our scene graph-based reward model on three benchmarks:
 354 DPG-Bench (10), GenEval (9), and GenAI-Bench (37). More details are in Appendix E.

355 **GENERATE ANY SCENE rewards outperform CLIP.** As shown in Table 4, our method outperforms
 356 both SFT and CLIP-RL models and achieves a significant improvement, demonstrating superior
 357 compositional faithfulness driven by explicit scene graph rewards. Importantly, this performance gain
 358 is directly enabled by the GENERATE ANY SCENE engine, which constructs explicit scene graphs
 359 to generate compositional captions. GENERATE ANY SCENE provides a structured and cognitively



378 **Figure 4: Results for Distilling Capabilities.** The left two figures show the results for **Distilling**
 379 **compositionality**, while the rightmost figure shows the results for **Distilling hard concepts under-**
 380 **standing from DALL-E 3**.

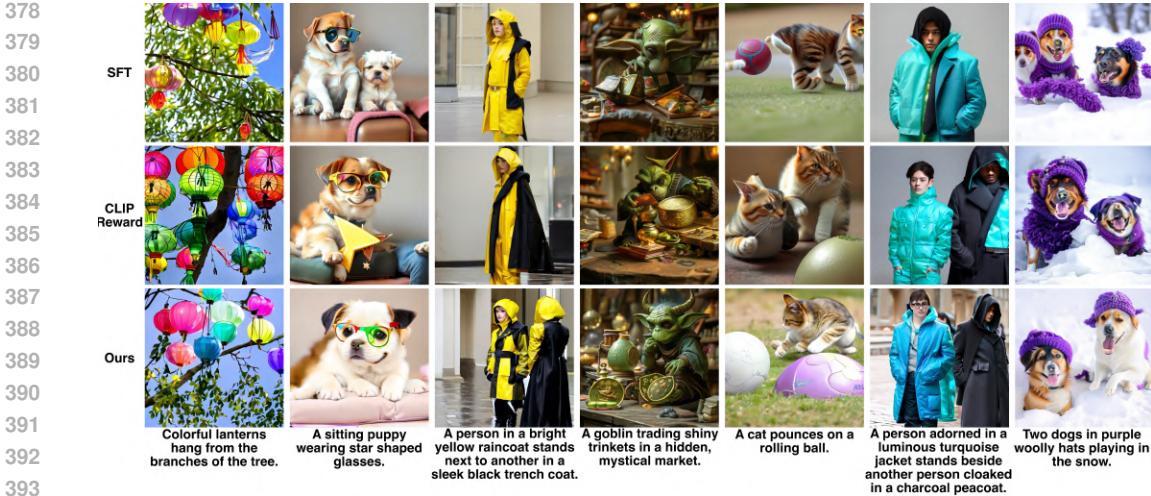


Figure 5: **Comparison of generated images.** Our reward model enables image generation with better semantic alignment, realism, and visual quality than baselines.

aligned visual representation, from which we derive exhaustive QA pairs with minimal additional cost. Combined with lightweight VLM judge, this approach offers a scalable, low-cost solution for semantic-level reward modeling.

Table 4: Evaluation on the DPG, GenEval and GenAI benchmark. GRPO training with our reward model outperforms both SFT baseline and CLIP-RL models. TO: two objects, P: position, CA: color attribute.

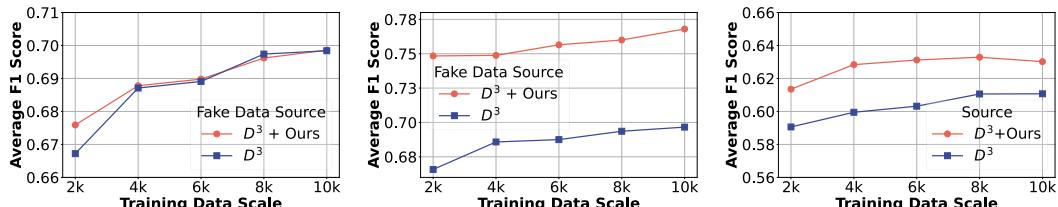
Method	DPG-Bench			GenEval				GenAI-Bench		
	Global	Relation	Overall	TO	P	CA	Overall	Basic	Advanced	All
SimpleAR-0.5B-SFT	85.02	86.59	78.48	0.73	0.22	0.23	0.53	0.74	0.60	0.66
SimpleAR-0.5B-RL (Clip)	86.64	88.51	79.66	0.82	0.26	0.38	0.59	0.75	0.60	0.67
SimpleAR-0.5B-RL (Ours)	88.46	90.13	80.50	0.81	0.31	0.38	0.61	0.75	0.61	0.68

6 IMPROVING GENERATED-CONTENT DETECTION

Advances in *Text-to-Vision generation* underscore the need for effective content moderation (43). Major challenges include the lack of high-quality and diverse datasets and the difficulty of generalizing detection across models *Text-to-Vision generation* (44; 45). GENERATE ANY SCENE addresses these issues by enabling scalable, systematical generation of compositional captions, increasing the diversity and volume of synthetic data. This approach enhances existing datasets by compensating for their limited scope—from realistic to imaginative-and variability.

Experiment setup. To demonstrate GENERATE ANY SCENE’s effectiveness in training generated content detectors, we used the D^3 dataset (46) as a baseline. We sampled 5K captioned real and SDv1.4-generated image pairs from D^3 and generated 5K additional images with GENERATE ANY SCENE captions. We trained a ViT-T (47) model with a single-layer linear classifier, and compared models trained with samples solely from D^3 against those trained with samples GENERATE ANY SCENE and D^3 .

GENERATE ANY SCENE improves generated content detectors. We evaluate the detector’s generalization on the GenImage (48) validation set and images generated using GENERATE ANY SCENE captions. Figure 6 demonstrates that combining GENERATE ANY SCENE-generated images with real-world captioned images consistently enhances detection performance, particularly across cross-model scenarios and diverse visual scenes. More details are in Appendix F.



(a) **In-domain testing (Same Model - SD v1.4):** Detection results on images generated by SD v1.4 using the GenImage dataset.

(b) **In-domain testing (cross-model):** Average detection results on images generated by multiple models using our captions.

(c) **Out of domain:** Average detection results on images generated by multiple models using captions from the GenImage dataset.

Figure 6: **Results for Application 4: Generated content detector.** Comparison of detection performance across different data scales using D^3 alone versus the combined $D^3 + \text{GENERATE ANY SCENE}$ training set in cross-model and cross-dataset scenarios.

7 COMPREHENSIVE EVALUATION WITH GENERATE ANY SCENE

Beyond showcasing GENERATE ANY SCENE in model training, we also show that GENERATE ANY SCENE is a valuable resource for comprehensive and compositional evaluation. Specifically, we synthesize 10K captions for text-to-image, 10K for text-to-video, and 1K for text-to-3D, covering diverse scene structures and content topics. We evaluate 12 text-to-image, 9 text-to-video, and 5 text-to-3D models. Evaluations combine GENERATE ANY SCENE synthetic scene graphs with existing metrics (e.g., CLIP Score [49], VQA Score [39], TIFA Score [23, 31]) to assess semantic similarity, faithfulness, and human preference alignment. Our key findings include: (1) DiT-backbone text-to-image models align more closely with input captions than UNet-backbone models. (2) Text-to-video models struggle with balancing dynamics and consistency, while both text-to-video and text-to-3D models show notable gaps in human preference alignment. Except for aggregating quantitative results, we also leverage GENERATE ANY SCENE’s controllable captioning to evaluate models on fine-grained factors: perplexity, scene complexity, commonsense reasoning, and content category variation for case study.

Overall, GENERATE ANY SCENE yields stable, human-aligned rankings across T2I/T2V/T2-3D. Through broad, controllable coverage of objects, attributes, relations, and categories, it serves as a compositional stress test that reliably exposes plausibility gaps, category brittleness, and long-tail concept failures in current models (see Appendix A).

8 RELATED WORK

Text-to-Vision generation models. *Text-to-Image generation* advances are driven by diffusion models and LLMs. Some open-source models [22, 50, 51, 52, 53, 54] use UNet backbones to refine images iteratively. In parallel, Diffusion Transformers (DiTs) architectures [55, 56, 57, 58] have emerged as a better alternative in capturing long-range dependencies and improving coherence. Proprietary models like DALL-E 3 [3] and Imagen 3 [59] still set the state-of-the-art. Based on *Text-to-Image generation* method, *Text-to-Video generation* models typically utilize time-aware architectures to ensure temporal coherence across frames [60, 61, 62, 63, 64, 65, 66, 67]. In *Text-to-3D generation*, recent proposed models [4, 68, 69, 70, 71] integrate the diffusion models with Neural Radiance Fields (NeRF) rendering to generate diverse 3D objects. Recent studies [26, 42, 72, 73] have also explored the integration of image generation into a unified multimodal language model (MLM) framework based on auto-regressive transformer architectures, demonstrating promising improvements in both performance and efficiency.

Synthetic captions for Text-to-Vision generation. Captions for *Text-to-Vision generation* models vary greatly in diversity, complexity, and compositionality. This variation makes it challenging and costly to collect large-scale and diverse captions written by humans. Consequently, synthetic captions have been widely used for both training [74, 38, 75, 76, 8, 77, 78, 79] and evaluation purposes [7]. For example, training methods like LLM-Grounded Diffusion [74] leverage LLM-

486 generated captions to enhance the model’s understanding and alignment with human instruction. For
 487 evaluation, benchmarks such as T2I-CompBench (7) and T2V-CompBench (8) utilize benchmarks
 488 generated by LLMs. However, LLMs are hard to control and may introduce exhibit systematic bias.
 489 In this work, we propose a programmatic scene graph-based data engine that can generate infinitely
 490 diverse captions for improving *Text-to-Vision generation* models.
 491

492 **Finetuning techniques for *Text-to-Vision generation*.** To accommodate the diverse applications
 493 and personalization needs in text-to-vision models, numerous fine-tuning techniques have been
 494 developed. LoRA (40) reduces fine-tuning costs via low-rank weight updates, while Textual Inver-
 495 sion (80, 81) introduces new word embeddings for novel concepts without altering core parameters.
 496 DreamBooth (82) adapts models to specific subjects or styles using a few personalized images, and
 497 DreamSync (83) enables models to self-improve by learning from their own high-quality outputs.
 498 Recently, RLHF (26, 41, 42) in *Text-to-Vision generation* has shown promise as an efficient fine-
 499 tuning strategy. In this work, we use several fine-tuning techniques with GENERATE ANY SCENE to
 500 improve *Text-to-Vision generation* models.
 501

9 CONCLUSION

502 We present GENERATE ANY SCENE, a system leveraging scene graph programming to generate
 503 diverse and compositional synthetic captions for *Text-to-Vision generation* tasks. It extends beyond
 504 existing real-world caption datasets to include comprehensive scenes and even implausible scenarios.
 505 To demonstrate the effectiveness of GENERATE ANY SCENE, we explore four applications: (1)
 506 self-improvement by iteratively optimizing models, (2) distillation of proprietary model strengths into
 507 open-source models, (3) a scene-graph-based efficient reward model within the GRPO, and (4) robust
 508 content moderation with diverse synthetic data. GENERATE ANY SCENE highlights the importance
 509 of synthetic data in improving *Text-to-Vision generation*, and addresses the need to systematically
 510 define and scalably produce the space of visual scenes.
 511

540 REFERENCES
541

[1] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators. 2024. *URL https://openai.com/research/video-generation-models-as-world-simulators*, 3, 2024.

[2] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

[3] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer Science. https://cdn.openai.com/papers/dall-e-3.pdf*, 2(3):8, 2023.

[4] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation. *Advances in Neural Information Processing Systems*, 36, 2024.

[5] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James T. Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart- α : Fast training of diffusion transformer for photorealistic text-to-image synthesis. *ArXiv*, abs/2310.00426, 2023.

[6] Bohao Peng, Jian Wang, Yuechen Zhang, Wenbo Li, Ming-Chang Yang, and Jiaya Jia. Controlnext: Powerful and efficient control for image and video generation. *arXiv preprint arXiv:2408.06070*, 2024.

[7] Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A comprehensive benchmark for open-world compositional text-to-image generation. *ArXiv*, abs/2307.06350, 2023.

[8] Kaiyue Sun, Kaiyi Huang, Xian Liu, Yue Wu, Zihan Xu, Zhenguo Li, and Xihui Liu. T2v-compbench: A comprehensive benchmark for compositional text-to-video generation. *ArXiv*, abs/2407.14505, 2024.

[9] Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework for evaluating text-to-image alignment. *Advances in Neural Information Processing Systems*, 36:52132–52152, 2023.

[10] Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models with llm for enhanced semantic alignment. *arXiv preprint arXiv:2403.05135*, 2024.

[11] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale dataset for training next generation image-text models. *Advances in neural information processing systems*, 35:25278–25294, 2022.

[12] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 2556–2565, 2018.

[13] Zejian Li, Chenye Meng, Yize Li, Ling Yang, Shengyuan Zhang, Jiarui Ma, Jiayi Li, Guang Yang, Changyuan Yang, Zhiyuan Yang, et al. Laion-sg: An enhanced large-scale dataset for training complex image-text models with structural annotations. *arXiv preprint arXiv:2412.08580*, 2024.

[14] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language and vision using crowdsourced dense image annotations. *International journal of computer vision*, 123:32–73, 2017.

[15] Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma, Michael Bernstein, and Li Fei-Fei. Image retrieval using scene graphs. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3668–3678, 2015.

[16] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and Felix Heide. Neural scene graphs for dynamic scenes. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2856–2865, 2021.

[17] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene graphs. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 1219–1228, 2018.

[18] Jingwei Ji, Ranjay Krishna, Li Fei-Fei, and Juan Carlos Niebles. Action genome: Actions as compositions of spatio-temporal scene graphs. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10236–10247, 2020.

594 [19] Irving Biederman. Recognition-by-components: a theory of human image understanding. *Psychological*
 595 *review*, 94(2):115, 1987.

596

597 [20] Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-Fei. Visual relationship detection with language
 598 priors. In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
 599 October 11–14, 2016, Proceedings, Part I 14*, pages 852–869. Springer, 2016.

600

601 [21] Jieyu Zhang, Weikai Huang, Zixian Ma, Oscar Michel, Dong He, Tanmay Gupta, Wei-Chiu Ma, Ali
 602 Farhadi, Aniruddha Kembhavi, and Ranjay Krishna. Task me anything. In *Advances in neural information
 603 processing systems*, 2024.

604

605 [22] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
 606 image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer
 607 Vision and Pattern Recognition (CVPR)*, pages 10684–10695, June 2022.

608

609 [23] Yushi Hu, Benlin Liu, Jungo Kasai, Yizhong Wang, Mari Ostendorf, Ranjay Krishna, and Noah A Smith.
 610 Tifa: Accurate and interpretable text-to-image faithfulness evaluation with question answering, 2023.

611

612 [24] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang,
 613 Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke E.
 614 Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano, Jan Leike, and Ryan J.
 615 Lowe. Training language models to follow instructions with human feedback. *ArXiv*, abs/2203.02155,
 616 2022.

617

618 [25] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
 619 Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in
 620 open language models, 2024.

621

622 [26] Junke Wang, Zhi Tian, Xun Wang, Xinyu Zhang, Weilin Huang, Zuxuan Wu, and Yu-Gang Jiang.
 623 Simplear: Pushing the frontier of autoregressive visual generation through pretraining, sft, and rl. *arXiv
 624 preprint arXiv:2504.11455*, 2025.

625

626 [27] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
 627 Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
 628 transferable visual models from natural language supervision, 2021.

629

630 [28] Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models with
 631 llm for enhanced semantic alignment, 2024.

632

633 [29] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 634 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and
 635 Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale, 2021.

636

637 [30] Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning and
 638 compositional question answering. In *Proceedings of the IEEE/CVF conference on computer vision and
 639 pattern recognition*, pages 6700–6709, 2019.

640

641 [31] Jaemin Cho, Yushi Hu, Roopal Garg, Peter Anderson, Ranjay Krishna, Jason Baldridge, Mohit Bansal,
 642 Jordi Pont-Tuset, and Su Wang. Davidsonian scene graph: Improving reliability in fine-grained evaluation
 643 for text-to-image generation. *ArXiv*, abs/2310.18235, 2023.

644

645 [32] George A Miller. Wordnet: a lexical database for english. *Communications of the ACM*, 38(11):39–41,
 646 1995.

647

648 [33] Wikipedia Contributors. Lists of colors. https://en.wikipedia.org/wiki/Lists_of_colors, 2024. Accessed: 2024-11-09.

649

650 [34] Jae Sung Park, Zixian Ma, Linjie Li, Chenhao Zheng, Cheng-Yu Hsieh, Ximing Lu, Khyathi Chandu,
 651 Quan Kong, Norimasa Kobori, Ali Farhadi, Yejin Choi, and Ranjay Krishna. Synthetic visual genome. In
 652 *CVPR*, 2025.

653

654 [35] Alejandro López-Cifuentes, Marcos Escudero-Vinolo, Jesús Bescós, and Álvaro García-Martín. Semantic-
 655 aware scene recognition. *Pattern Recognition*, 102:107256, 2020.

656

657 [36] Madeleine Grunde-McLaughlin, Ranjay Krishna, and Maneesh Agrawala. Agqa: A benchmark for
 658 compositional spatio-temporal reasoning. In *Proceedings of the IEEE/CVF Conference on Computer
 659 Vision and Pattern Recognition*, pages 11287–11297, 2021.

648 [37] Baiqi Li, Zhiqiu Lin, Deepak Pathak, Jiayao Emily Li, Xide Xia, Graham Neubig, Pengchuan Zhang,
 649 and Deva Ramanan. Genai-bench: A holistic benchmark for compositional text-to-visual generation. In
 650 *Synthetic Data for Computer Vision Workshop@ CVPR 2024*, 2024.

651 [38] Jiao Sun, Deqing Fu, Yushi Hu, Su Wang, Royi Rassin, Da-Cheng Juan, Dana Alon, Charles Herrmann,
 652 Sjoerd van Steenkiste, Ranjay Krishna, and Cyrus Rashtchian. Dreamsync: Aligning text-to-image
 653 generation with image understanding feedback. *ArXiv*, abs/2311.17946, 2023.

654 [39] Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and Deva
 655 Ramanan. Evaluating text-to-visual generation with image-to-text generation. *ArXiv*, abs/2404.01291,
 656 2024.

657 [40] J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
 658 Chen. Lora: Low-rank adaptation of large language models. *ArXiv*, abs/2106.09685, 2021.

659 [41] Lixue Gong, Xiaoxia Hou, Fanshi Li, Liang Li, Xiaochen Lian, Fei Liu, Liyang Liu, Wei Liu, Wei Lu,
 660 Yichun Shi, et al. Seedream 2.0: A native chinese-english bilingual image generation foundation model.
 661 *arXiv preprint arXiv:2503.07703*, 2025.

662 [42] Dongzhi Jiang, Ziyu Guo, Renrui Zhang, Zhuofan Zong, Hao Li, Le Zhuo, Shilin Yan, Pheng-Ann
 663 Heng, and Hongsheng Li. T2i-r1: Reinforcing image generation with collaborative semantic-level and
 664 token-level cot. *arXiv preprint arXiv:2505.00703*, 2025.

665 [43] Gan Pei, Jiangning Zhang, Menghan Hu, Zhenyu Zhang, Chengjie Wang, Yunsheng Wu, Guangtao Zhai,
 666 Jian Yang, Chunhua Shen, and Dacheng Tao. Deepfake generation and detection: A benchmark and
 667 survey. *arXiv preprint arXiv:2403.17881*, 2024.

668 [44] Tianyi Wang, Xin Liao, Kam Pui Chow, Xiaodong Lin, and Yinglong Wang. Deepfake detection: A
 669 comprehensive survey from the reliability perspective. *ACM Computing Surveys*, 2024.

670 [45] Achhardeep Kaur, Azadeh Noori Hoshyar, Vidya Saikrishna, Selena Firmin, and Feng Xia. Deepfake
 671 video detection: challenges and opportunities. *Artificial Intelligence Review*, 57(6):1–47, 2024.

672 [46] Lorenzo Baraldi, Federico Cocchi, Marcella Cornia, Alessandro Nicolosi, and Rita Cucchiara. Contrasting
 673 deepfakes diffusion via contrastive learning and global-local similarities. *arXiv preprint arXiv:2407.20337*,
 674 2024.

675 [47] Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan. Tinyvit:
 676 Fast pretraining distillation for small vision transformers. In *European conference on computer vision*,
 677 pages 68–85. Springer, 2022.

678 [48] Mingjian Zhu, Hanting Chen, Qiangyu Yan, Xudong Huang, Guanyu Lin, Wei Li, Zhijun Tu, Hailin
 679 Hu, Jie Hu, and Yunhe Wang. Genimage: A million-scale benchmark for detecting ai-generated image.
 680 *Advances in Neural Information Processing Systems*, 36, 2024.

681 [49] Tuhin Chakrabarty, Kanishk Singh, Arkadiy Saakyan, and Smaranda Muresan. Learning to follow
 682 object-centric image editing instructions faithfully. *ArXiv*, abs/2310.19145, 2023.

683 [50] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna,
 684 and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. *arXiv
 685 preprint arXiv:2307.01952*, 2023.

686 [51] Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground
 687 v2. 5: Three insights towards enhancing aesthetic quality in text-to-image generation. *arXiv preprint
 688 arXiv:2402.17245*, 2024.

689 [52] Pablo Pernias, Dominic Rampas, Mats L Richter, Christopher J Pal, and Marc Aubreville. Würstchen:
 690 An efficient architecture for large-scale text-to-image diffusion models. *arXiv preprint arXiv:2306.00637*,
 691 2023.

692 [53] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
 693 image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer
 694 Vision and Pattern Recognition (CVPR)*, pages 10684–10695, June 2022.

695 [54] DeepFloyd Lab at StabilityAI. DeepFloyd IF: a novel state-of-the-art open-source text-to-image model
 696 with a high degree of photorealism and language understanding. <https://www.deepfloyd.ai/deepfloyd-if>, 2023. Retrieved on 2023-11-08.

702 [55] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi,
 703 Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution
 704 image synthesis. In *Forty-first International Conference on Machine Learning*, 2024.

705 [56] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James Kwok,
 706 Ping Luo, Huchuan Lu, et al. Pixart- \backslash alpha: Fast training of diffusion transformer for photorealistic
 707 text-to-image synthesis. *arXiv preprint arXiv:2310.00426*, 2023.

708 [57] Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping Luo,
 709 Huchuan Lu, and Zhenguo Li. Pixart- \backslash sigma: Weak-to-strong training of diffusion transformer for 4k
 710 text-to-image generation. *arXiv preprint arXiv:2403.04692*, 2024.

711 [58] Black Forest Labs. Flux.1: Advanced text-to-image models, 2024. Accessed: 2024-11-10.

712 [59] Jason Baldridge, Jakob Bauer, Mukul Bhutani, Nicole Brichtova, Andrew Bunner, Kelvin Chan, Yichang
 713 Chen, Sander Dieleman, Yuqing Du, Zach Eaton-Rosen, et al. Imagen 3. *arXiv preprint arXiv:2408.07009*,
 714 2024.

715 [60] Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh Agrawala,
 716 Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffusion models without
 717 specific tuning. *arXiv preprint arXiv:2307.04725*, 2023.

718 [61] Fu-Yun Wang, Zhaoyang Huang, Xiaoyu Shi, Weikang Bian, Guanglu Song, Yu Liu, and Hongsheng Li.
 719 Animatelcm: Accelerating the animation of personalized diffusion models and adapters with decoupled
 720 consistency learning. *arXiv preprint arXiv:2402.00769*, 2024.

721 [62] Levon Khachatryan, Andranik Mojsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang Wang,
 722 Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models are zero-shot
 723 video generators. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages
 724 15954–15964, 2023.

725 [63] Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang. Modelscope
 726 text-to-video technical report. *arXiv preprint arXiv:2308.06571*, 2023.

727 [64] Tianxing Wu, Chenyang Si, Yuming Jiang, Ziqi Huang, and Ziwei Liu. Freeinit: Bridging initialization
 728 gap in video diffusion models. In *European Conference on Computer Vision*, pages 378–394. Springer,
 729 2025.

730 [65] Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying Shan.
 731 Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In *Proceedings of
 732 the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 7310–7320, 2024.

733 [66] Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi
 734 Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models with an expert
 735 transformer. *arXiv preprint arXiv:2408.06072*, 2024.

736 [67] Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou,
 737 Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all, March 2024.

738 [68] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
 739 diffusion. *arXiv preprint arXiv:2209.14988*, 2022.

740 [69] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh, and Greg Shakhnarovich. Score jacobian
 741 chaining: Lifting pretrained 2d diffusion models for 3d generation. In *Proceedings of the IEEE/CVF
 742 Conference on Computer Vision and Pattern Recognition*, pages 12619–12629, 2023.

743 [70] Gal Metzger, Elad Richardson, Or Patashnik, Raja Giryes, and Daniel Cohen-Or. Latent-nerf for shape-
 744 guided generation of 3d shapes and textures. In *Proceedings of the IEEE/CVF Conference on Computer
 745 Vision and Pattern Recognition*, pages 12663–12673, 2023.

746 [71] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten Kreis,
 747 Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d content creation. In
 748 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 300–309,
 749 2023.

750 [72] Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie,
 751 Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified multimodal understanding
 752 and generation. *arXiv preprint arXiv:2410.13848*, 2024.

756 [73] Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and Chong
 757 Ruan. Janus-pro: Unified multimodal understanding and generation with data and model scaling. *arXiv*
 758 preprint arXiv:2501.17811, 2025.

759 [74] Long Lian, Boyi Li, Adam Yala, and Trevor Darrell. Llm-grounded diffusion: Enhancing prompt
 760 understanding of text-to-image diffusion models with large language models. *Trans. Mach. Learn. Res.*,
 761 2024, 2023.

762 [75] Jialu Li, Jaemin Cho, Yi-Lin Sung, Jaehong Yoon, and Mohit Bansal. Selma: Learning and merging
 763 skill-specific text-to-image experts with auto-generated data. *ArXiv*, abs/2403.06952, 2024.

765 [76] Rui Zhao, Hangjie Yuan, Yujie Wei, Shiwei Zhang, Yuchao Gu, Lin Hao Ran, Xiang Wang, Zhangjie
 766 Wu, Junhao Zhang, Yingya Zhang, and Mike Zheng Shou. Evolvedirector: Approaching advanced
 767 text-to-image generation with large vision-language models, 2024.

768 [77] Dong Huk Park, Samaneh Azadi, Xihui Liu, Trevor Darrell, and Anna Rohrbach. Benchmark for
 769 compositional text-to-image synthesis. In *NeurIPS Datasets and Benchmarks*, 2021.

770 [78] Song Wen, Guian Fang, Renrui Zhang, Peng Gao, Hao Dong, and Dimitris Metaxas. Improving
 771 compositional text-to-image generation with large vision-language models. *ArXiv*, abs/2310.06311, 2023.

773 [79] Xindi Wu, Dingli Yu, Yangsibo Huang, Olga Russakovsky, and Sanjeev Arora. Conceptmix: A com-
 774 positional image generation benchmark with controllable difficulty. *ArXiv*, abs/2408.14339, 2024.

775 [80] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for
 776 editing real images using guided diffusion models. *2023 IEEE/CVF Conference on Computer Vision and*
 777 *Pattern Recognition (CVPR)*, pages 6038–6047, 2022.

778 [81] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, and Daniel
 779 Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual inversion.
 780 *ArXiv*, abs/2208.01618, 2022.

782 [82] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dream-
 783 booth: Fine tuning text-to-image diffusion models for subject-driven generation. *2023 IEEE/CVF*
 784 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 22500–22510, 2022.

785 [83] Spencer Sterling. zeroscope_v2_576w, 2023. Accessed: 2024-11-10.

786 [84] Y.C. Guo, Y.T. Liu, R. Shao, C. Laforte, V. Voleti, G. Luo, C.H. Chen, Z.X. Zou, C. Wang, Y.P. Cao, and
 787 S.H. Zhang. threestudio: A unified framework for 3d content generation. <https://github.com/threestudio-project/threestudio>, 2023.

790 [85] Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-a-pic:
 791 An open dataset of user preferences for text-to-image generation, 2023.

792 [86] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
 793 Imagereward: Learning and evaluating human preferences for text-to-image generation, 2023.

794 [87] Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing Wu,
 795 Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for video generative
 796 models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages
 797 21807–21818, 2024.

798 [88] Kling AI. Kling ai text-to-video. <https://klingai.com/text-to-video/new>, 2025. Ac-
 799 cessed May 23, 2025.

800 [89] Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming
 801 Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang, Jixuan
 802 Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi Zhang, Pandeng Li,
 803 Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing Wang, Tianyi
 804 Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng Zhou, Wente Wang, Wenting
 805 Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan Kou, Yangyu Lv, Yifei Li, Yijing Liu,
 806 Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao
 807 Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and
 808 advanced large-scale video generative models. *arXiv preprint arXiv:2503.20314*, 2025.

809 [90] Meshy AI. Meshy ai – text-to-3d, image-to-3d, and text-to-texture 3d model generator. <https://www.meshy.ai>, 2025. Accessed May 23, 2025.

810 [91] Jiacheng Liu, Wenya Wang, Dianzhuo Wang, Noah A. Smith, Yejin Choi, and Hannaneh Hajishirzi. Vera:
 811 A general-purpose plausibility estimation model for commonsense statements, 2023.

812 [92] Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li. Human
 813 preference score v2: A solid benchmark for evaluating human preferences of text-to-image synthesis.
 814 *arXiv preprint arXiv:2306.09341*, 2023.

815 [93] Giuseppe Vecchio and Valentin Deschaintre. Matsynth: A modern pbr materials dataset. In *Proceedings
 816 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 22109–22118, 2024.

817 [94] Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. Material recognition in the wild with the
 818 materials in context database. In *Proceedings of the IEEE conference on computer vision and pattern
 819 recognition*, pages 3479–3487, 2015.

820 [95] Jia Xue, Hang Zhang, Kristin Dana, and Ko Nishino. Differential angular imaging for material recognition.
 821 In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 764–773,
 822 2017.

823 [96] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing
 824 textures in the wild. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 825 pages 3606–3613, 2014.

826 [97] Zhe Xu, Dacheng Tao, Ya Zhang, Junjie Wu, and Ah Chung Tsoi. Architectural style classification using
 827 multinomial latent logistic regression. In *Computer Vision–ECCV 2014: 13th European Conference,
 828 Zurich, Switzerland, September 6–12, 2014, Proceedings, Part I 13*, pages 600–615. Springer, 2014.

829 [98] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 830 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-to-
 831 image diffusion models with deep language understanding. *Advances in neural information processing
 832 systems*, 35:36479–36494, 2022.

833 [99] Babak Saleh and Ahmed Elgammal. Large-scale classification of fine-art paintings: Learning the right
 834 metric on the right feature. *arXiv preprint arXiv:1505.00855*, 2015.

835 [100] Colby Crawford. 1000 cameras dataset. <https://www.kaggle.com/datasets/crawford/1000-cameras-dataset>. 2018. Accessed: 2024-11-09.

836 [101] Zijie J. Wang, Evan Montoya, David Munechika, Haoyang Yang, Benjamin Hoover, and Duen Horng Chau.
 837 DiffusionDB: A large-scale prompt gallery dataset for text-to-image generative models. *arXiv:2210.14896
 838 [cs]*, 2022.

839 [102] Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12M: Pushing web-scale
 840 image-text pre-training to recognize long-tail visual concepts. In *CVPR*, 2021.

841 [103] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
 842 In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.

843 [104] Jaemin Cho, Abhay Zala, and Mohit Bansal. Dall-eval: Probing the reasoning skills and social biases of
 844 text-to-image generation models. In *ICCV*, 2023.

845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 **A EVALUATING *Text-to-Vision generation* MODELS WITH GENERATE ANY
865 SCENE**

867 **A.1 EXPERIMENT SETTINGS**

869 **Models.** We conduct experiments on 12 *Text-to-image* models (54, 50, 22, 51, 52, 55, 56, 57, 58, 3), 9
870 *Text-to-Video* models (63, 83, 62, 60, 61, 64, 67, 66, 65), and 5 *Text-to-3D* models (68, 71, 69, 4, 70).

- 872 • For *Text-to-Image generation*, we select a range of open-source models, including those
873 utilizing UNet backbones, such as *DeepFloyd IF* (54), *SDv2.1* (22), *SDXL* (50), *Playground*
874 v2.5 (51), and *Wuerstchen v2* (52), as well as models with DiT backbones, including *SD3*
875 *Medium* (55), *PixArt- α* (56), *PixArt- Σ* (57), *FLUX.1-schnell* (58), *FLUX.1-dev* (58), and
876 *FLUX 1*. Closed-source models, such as *DaLL-E 3* (3) and *FLUXI.1 PRO* (58), are also
877 assessed to ensure a comprehensive comparison. All models are evaluated at a resolution of
878 1024 \times 1024 pixels.
- 879 • For *Text-to-Video generation*, we select nine open-source models: *ModelScope* (63),
880 *ZeroScope* (83), *Text2Video-Zero* (62), *CogVideoX-2B* (66), *VideoCrafter2* (65), *Ani-*
881 *mateLCM* (61), *AnimateDiff* (60), *FreeInit* (64), and *Open-Sora 1.2* (67). We standardize
882 the frame length to 16 across all video models for fair comparisons.
- 883 • For *Text-to-3D generation*, we evaluate five recently proposed models: *SJC* (69), *Dream-*
884 *Fusion* (68), *Magic3D* (71), *Latent-NeRF* (70), and *ProlificDreamer* (4). We employ the
885 implementation and configurations provided by ThreeStudio (84) and generate videos by
886 rendering from 120 viewpoints. To accelerate inference, we omit the refinement stage. For
887 *Magic3D* and *DreamFusion*, we respectively use *DeepFloyd IF* and *SDv2.1* as their 2D
888 backbones.

889 **Metrics.** Across all *Text-to-Vision generation* tasks, we use *Clip Score* (49) (semantic similarity),
890 *VQA Score* (39) (faithfulness), *TIFA Score* (23, 31) (faithfulness), *Pick Score* (85) (human preference),
891 and *ImageReward Score* (86) (human preference) as general metrics:

- 892 • *Clip Score*: Assesses semantic similarity between images and text.
- 893 • *VQA Score* and *TIFA Score*: Evaluate faithfulness by generating question-answer pairs and
894 measuring answer accuracy from images.
- 895 • *Pick Score* and *ImageReward Score*: Capture human preference tendencies.

896 We also use metrics in VBench (87) to evaluate *Text-to-Video generation* models on fine-grained
897 dimensions, such as consistency and dynamics, providing detailed insights into video performance.

898 For *Text-to-Video generation* and *Text-to-3D generation* tasks:

- 902 • We calculate *Clip Score*, *Pick Score*, and *ImageReward Score* on each frame, then average
903 these scores across all frames to obtain an overall video score.
- 904 • For *VQA Score* and *TIFA Score*, we handle *Text-to-Video generation* and *Text-to-3D genera-*
905 *tion* tasks differently:
 - 907 ○ In *Text-to-Video generation* tasks, we uniformly sample four frames from the 16-frame
908 sequence and arrange them in a 2 \times 2 grid image.
 - 909 ○ For *Text-to-3D generation* tasks, we render images at 45-degree intervals from nine
910 different viewpoints and arrange them in a 3 \times 3 grid.

911 This sampling approach optimizes inference speed without affecting score accuracy (39).

912 **Synthetic captions.** We evaluate our *Text-to-Image generation* and *Text-to-Video generation* models
913 on 10K randomly generated captions, with scene graph complexity ranging from 3 to 12 and scene
914 attributes from 0 to 5, using unrestricted metadata. The captions exhibit an average graph degree of
915 1.15, with values spanning from 0.0 to 0.8. The mean number of connected components per scene
916 graph is 3.51, ranging from 1 to 11. For *Text-to-3D generation* models, due to their limitations in
917 handling complex captions and time-intensive generation, we restrict scene graph complexity to 1-3,
918 scene attributes to 0-2, and evaluate on 1K captions.

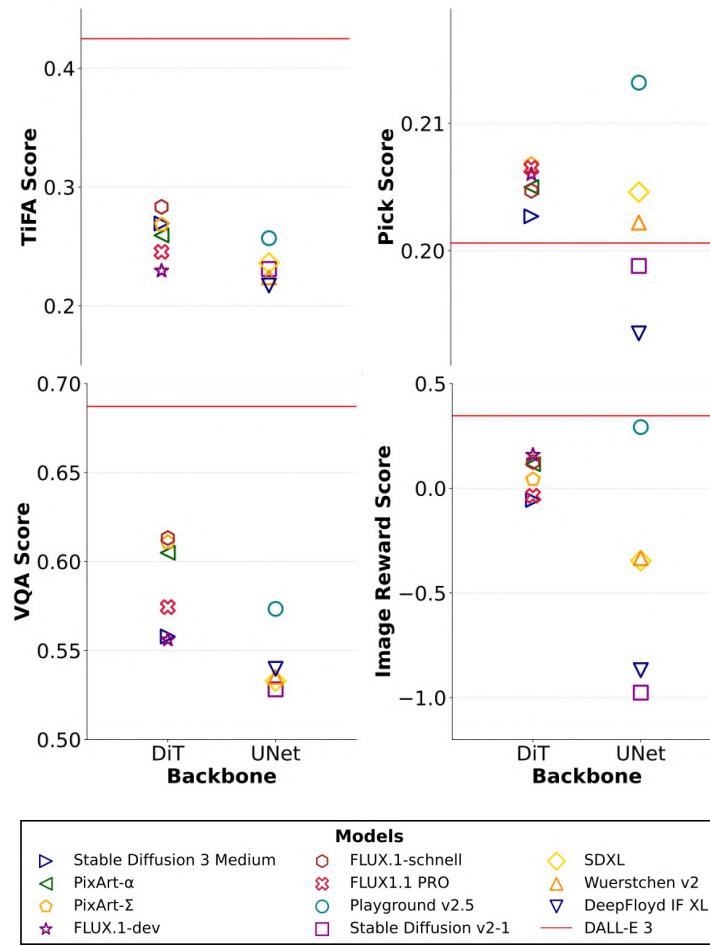


Figure 7: Comparative evaluation of *Text-to-Image generation* models across different backbones (DiT and UNet) using multiple metrics: *TiFA Score*, *Pick Score*, *VQA Score*, and *ImageReward Score*.

A.2 OVERALL RESULTS

We evaluate *Text-to-Image generation*, *Text-to-Video generation*, and *Text-to-3D generation* models on GENERATE ANY SCENE.

Table 5: Overall performance of *Text-to-Image generation* models over 10K GENERATE ANY SCENE captions. [†]Evaluated on a 1K caption subset due to inference cost constraints.

Model	clip score	pick score	vqa score	tifa score	image reward score
Playground v2.5 (51)	0.2581	0.2132	0.5734	0.2569	0.2919
Stable Diffusion v2-1 (22)	0.2453	0.1988	0.5282	0.2310	-0.9760
SDXL (50)	0.2614	0.2046	0.5328	0.2361	-0.3463
Wuerstchen v2 (52)	0.2448	0.2022	0.5352	0.2239	-0.3339
DeepFloyd IF XL (54)	0.2396	0.1935	0.5397	0.2171	-0.8687
Stable Diffusion 3 Medium (55)	0.2527	0.2027	0.5579	0.2693	-0.0557
PixArt-α (56)	0.2363	0.2050	0.6049	0.2593	0.1149
PixArt-Σ (57)	0.2390	0.2068	0.6109	0.2683	0.0425
FLUX.1-dev (58)	0.2341	0.2060	0.5561	0.2295	0.1588
FLUX.1-schnell (58)	0.2542	0.2047	0.6132	0.2833	0.1251
FLUX.1.1 PRO (58) [†]	0.2315	0.2065	0.5744	0.2454	-0.0361
Dalle-3 (3)	0.2518	0.2006	0.6871	0.4249	0.3464

972 **Text-to-Image generation results. (Figure 7, Table 5)**
973

974 1. DiT-backbone models outperform UNet-backbone models on *VQA Score* and *TIFA Score*,
975 indicating greater faithfulness and comprehensiveness to input captions.
976 2. Despite using a UNet architecture, *Playground v2.5* achieves higher *Pick Score* and *ImageReward Score* scores than other open-source models. We attribute this to *Playground v2.5*'s alignment with human preferences achieved during training.
977 3. The closed-source model *DaLL-E 3* maintains a significant lead in *VQA Score*, *TIFA Score*,
978 and *ImageReward Score*, demonstrating strong faithfulness and alignment with captions
979 across generated content.
980

983 **Text-to-Video generation results. (Table 6[7])**
984

985 Table 6: Overall performance of open-source *Text-to-Video generation* models over 10K GENERATE
986 ANY SCENE captions. **Red Cell** is the highest score. **Yellow Cell** is the second highest score.[†]Close-
987 source models are evaluated on a 1K caption subset due to high inference cost.
988

Model	clip score	pick score	image reward score	VQA score	TiFA score
VideoCraft2 (65)	0.2398	0.1976	-0.4202	0.5018	0.2466
AnimateLCM (61)	0.2450	0.1987	-0.5754	0.4816	0.2176
AnimateDiff (60)	0.2610	0.1959	-0.7301	0.5255	0.2208
Open-Sora 1.2 (67)	0.2259	0.1928	-0.6277	0.5519	0.2414
FreeInit (64)	0.2579	0.1950	-0.9335	0.5123	0.2047
ModelScope (63)	0.2041	0.1886	-1.9172	0.3840	0.1219
Text2Video-Zero (62)	0.2539	0.1933	-1.2050	0.4753	0.1952
CogVideoX-2B (66)	0.2038	0.1901	-1.2301	0.4585	0.1997
ZeroScope (83)	0.2289	0.1933	-1.1599	0.4892	0.2388
KLING 1.6 (88) [†]	0.2215	0.1985	-0.3419	0.5307	0.2802
Wanx 2.1 (89) [†]	0.2308	0.1969	-0.1418	0.5970	0.3328

1003 Table 7: Overall performance of open-source *Text-to-Video generation* models over 10K GENERATE
1004 ANY SCENE captions with VBench metrics. **Red Cell** is the highest score. **Blue Cell** is the lowest
1005 score.
1006

Model	subject consistency	background consistency	motion smoothness	dynamic degree	aesthetic quality	imaging quality
Open-Sora 1.2	0.9964	0.9907	0.9973	0.0044	0.5235	0.6648
Text2Video-Zero	0.8471	0.9030	0.8301	0.9999	0.4889	0.7018
VideoCraft2	0.9768	0.9688	0.9833	0.3556	0.5515	0.6974
AnimateDiff	0.9823	0.9733	0.9859	0.1406	0.5427	0.5830
FreeInit	0.9581	0.9571	0.9752	0.4440	0.5200	0.5456
ModelScope	0.9795	0.9831	0.9803	0.1281	0.3993	0.6494
AnimateLCM	0.9883	0.9802	0.9887	0.0612	0.6323	0.6977
CogVideoX-2B	0.9583	0.9602	0.9823	0.4980	0.4607	0.6098
ZeroScope	0.9814	0.9811	0.9919	0.1670	0.4582	0.6782

1019 1. Open-source text-to-video models face challenges in balancing dynamics and consistency
1020 (Table 7). This is especially evident in *Open-Sora 1.2*, which achieves high consistency but
1021 minimal dynamics, and *Text2Video-Zero*, which excels in dynamics but suffers from frame
1022 inconsistency.
1023 2. All models exhibit negative *ImageReward Score* (Table 6), suggesting a lack of human-
1024 preferred visual appeal in the generated content, even in cases where certain models demon-
1025 strate strong semantic alignment.

1026 3. As expected, SOTA close-source text-to-video models outperform others overall, particularly
 1027 in image reward, VQA score, and TIFA score. This indicates their superior alignment
 1028 with human preferences, as well as stronger faithfulness and compositional capabilities in
 1029 generation.

1030

1031 4. Among open-source models, *VideoCrafter2* strikes a balance across key metrics, leading in
 1032 human-preference alignment, faithfulness, consistency, and dynamic.

1033

1034

1035 **Text-to-3D generation results. (Table 8)**

1036

1037

1038 Table 8: Overall performance of *Text-to-3D generation* models over 1K GENERATE ANY SCENE
 1039 captions. [†]Evaluated on a 100 caption subset due to high inference cost.

Model	clip score	pick score	vqa score	tifa score	image reward score
Latent-NeRF (70)	0.2115	0.1910	0.4767	0.2216	-1.5311
DreamFusion-sd (68)	0.1961	0.1906	0.4421	0.1657	-1.5582
Magic3D-sd (71)	0.1947	0.1903	0.4193	0.1537	-1.6327
SJC (69)	0.2191	0.1915	0.5015	0.2563	-1.4370
DreamFusion-IF (68)	0.1828	0.1857	0.3872	0.1416	-1.9353
Magic3D-IF (71)	0.1919	0.1866	0.4039	0.1537	-1.8465
ProlificDreamer (4)	0.2125	0.1940	0.5411	0.2704	-1.2774
Meshy-4 (90) [†]	0.2163	0.1922	0.5290	0.2908	-1.0496

1052

1053

1054

1055

1056 1. Among open-source models, *ProlificDreamer* outperforms other models, particularly in
 1057 *ImageReward Score*, *VQA Score* and *TIFA Score*.

1058

1059

1060 2. All models receive negative *ImageReward Score* scores, highlighting a significant gap
 1061 between human preference and current *Text-to-3D generation* generation capabilities.

1062

1063

1064 3. Meshy-4 demonstrates overall superior performance compared to all open-source models,
 1065 especially in terms of *Clip Score*, *TIFA Score* and *ImageReward Score*, reflecting its strengths
 1066 in semantic generation and human preference alignment.

1067

1068

1069 A.3 VALIDATION OF PHRASING ROBUSTNESS AND HUMAN ALIGNMENT

1070

1071 To assess robustness to linguistic variation and to verify that automated metrics reflect human
 1072 preferences, we conduct two focused studies.

1073

1074

1075

1076 A.3.1 PHRASING ROBUSTNESS VIA PARAPHRASING

1077

1078 **Setup.** We sample 100 scene graphs from the 10K benchmark while preserving the distribution
 1079 of object counts, relation density, and attribute complexity. For each graph, GPT-4o generates a
 linguistically varied yet graph-faithful caption using the prompt below.

1080
1081 Paraphrasing Prompt
1082 You are given a scene graph in JSON format, where:
1083 - "nodes" contain objects and their attributes,
1084 - "edges" describe relationships between objects or link attributes
1085 to objects.
1086
1087 Your task:
1088 1. Understand the semantic meaning of each node and edge.
1089 2. Convert the graph into a natural language caption that describes
1090 the entire scene.
1091 3. Include all objects, attributes, and relations from the graph,
1092 and strictly follow the graph structure.
1093 4. Do not introduce new objects or relationships not present in the
1094 graph.
1095 Input: {scene_graph}

We then re-score all models with *VQA Score* under these paraphrased captions. Results are listed in Table 9.

Table 9: Paraphrase robustness: VQA Score and ranks on 100 graphs.

Model	Orig. Score	Para. Score	Diff	Orig. Rank	Para. Rank
DALLE-3	0.6871	0.7542	+0.0671	1	1
FLUX.1-schnell	0.6132	0.6648	+0.0516	2	2
PixArt- Σ	0.6109	0.6159	+0.0050	3	3
PixArt- α	0.6049	0.6043	-0.0006	4	4
Playground v2.5	0.5734	0.5075	-0.0659	5	8
Stable Diffusion 3	0.5579	0.5140	-0.0439	6	7
FLUX.1-dev	0.5561	0.5024	-0.0537	7	9
DeepFloyd IF XL	0.5397	0.5606	+0.0209	8	5
Wuerstchen v2	0.5352	0.5014	-0.0338	9	10
SDXL	0.5328	0.5322	-0.0006	10	6
SD v2-1	0.5282	0.4961	-0.0321	11	11

Findings. The Pearson correlation coefficient between model rankings on programmatic versus paraphrased captions is **0.9232**, indicating a very strong positive correlation.

This validation study demonstrates strong consistency between the two approaches. Importantly, the top-performing models (*DaLL-E 3*, *FLUX.1-schnell*, *PixArt- Σ* , *PixArt- α*) maintain their rankings across both evaluation conditions, while the relative ordering of models remains largely consistent. This high correlation validates that our programmatic approach produces rankings that are generalizable and not artifacts of the templated caption generation. The slight variations observed (e.g., some mid-tier models showing small rank changes) are within expected bounds and do not affect the overall conclusions about model capabilities.

A.3.2 HUMAN ALIGNMENT STUDY

Setup. We evaluate six representative models (*DaLL-E 3*, *FLUX.1-schnell*, *PixArt- Σ* , *Playground v2.5*, *SD3 Medium*, *SDv2.1*) with diverse performance characteristics and recruit 3 human evaluators. Three independent evaluators each assess 40 caption–image groups, with 10 shared overlapping groups across all evaluators to measure inter-annotator agreement. Evaluators ranked the generated images based on both relevance to the caption and overall visual quality. We show the rankings in Table 10.

Findings

Inter-annotator reliability. The 3 evaluators showed strong agreement on the 10 shared samples, with a Spearman correlation coefficient of **0.962**, demonstrating consistent human judgment criteria.

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
Table 10: Human vs. VQA rankings (lower is better).

Model	VQA Rank	Human Avg. Rank
<i>DaLL-E 3</i>	1	1
<i>FLUX.1-schnell</i>	2	2
<i>PixArt-Σ</i>	3	4
<i>Playground v2.5</i>	4	3
<i>SD3 Medium</i>	5	5
<i>SDv2.1</i>	6	6

Human-metric alignment. The correlation between human rankings and our *VQA Score* rankings is **0.918**, indicating strong alignment between automated and human evaluation:

This study validates that our VQA Score-based rankings closely align with human preferences. The consistency between automated metrics and human judgment strengthens confidence in our benchmark’s ability to assess model performance in a manner that reflects human perception.

A.4 MORE ANALYSIS WITH GENERATE ANY SCENE

With GENERATE ANY SCENE, we can generate infinitely diverse and highly controllable captions. Using GENERATE ANY SCENE, we conduct several analyses to provide insights into the performance of today’s *Text-to-Vision generation* models.

A.4.1 PERFORMANCE ANALYSIS ACROSS CAPTION PROPERTIES

In this section, we delve into how model performance varies with respect to distinct properties of GENERATE ANY SCENE captions. While GENERATE ANY SCENE is capable of generating an extensive diversity of captions, these outputs inherently differ in key characteristics that influence model evaluation. Specifically, we examine three properties of the caption: Commonsense, Perplexity, and Scene Graph Complexity (captured as the number of elements in the captions). These properties are critical in understanding how different models perform across a spectrum of linguistic and semantic challenges presented by captions with varying levels of coherence, plausibility, and compositional richness.

Perplexity. (Figure 8) Perplexity is a metric used to measure a language model’s unpredictability or uncertainty in generating a text sequence. A higher perplexity value indicates that the sentences are less coherent or less likely to be generated by the model.

As shown in Figure 8, From left to right, when perplexity increases, indicating that the sentences become less reasonable and less typical of those generated by a language model, we observe no clear or consistent trends across all models and metrics. This suggests that the relationship between perplexity and model performance varies depending on the specific model and evaluation metric.

Commonsense. (Figure 9) Commonsense is an inherent property of text. We utilize the Vera Score (91), a metric generated by a fine-tuned LLM to evaluate the text’s commonsense level.

As shown in Figure 9, from left to right, as the Vera Score increases—indicating that the captions exhibit greater commonsense reasoning—we observe a general improvement in performance across all metrics and models, except for *Clip Score*. This trend underscores the correlation between commonsense-rich captions and enhanced model performance.

Element Numbers (Complexity of Scene Graph). (Figure 10) Finally, we evaluate model performance across total element numbers in the captions, which represent the complexity of scene graphs (objects + attributes + relations).

From left to right, the complexity of scene graphs becomes higher, reflecting more compositional and intricate captions. Across most metrics and models, we observe a noticeable performance decline as the scene graphs become more complex. However, an interesting exception is observed in the

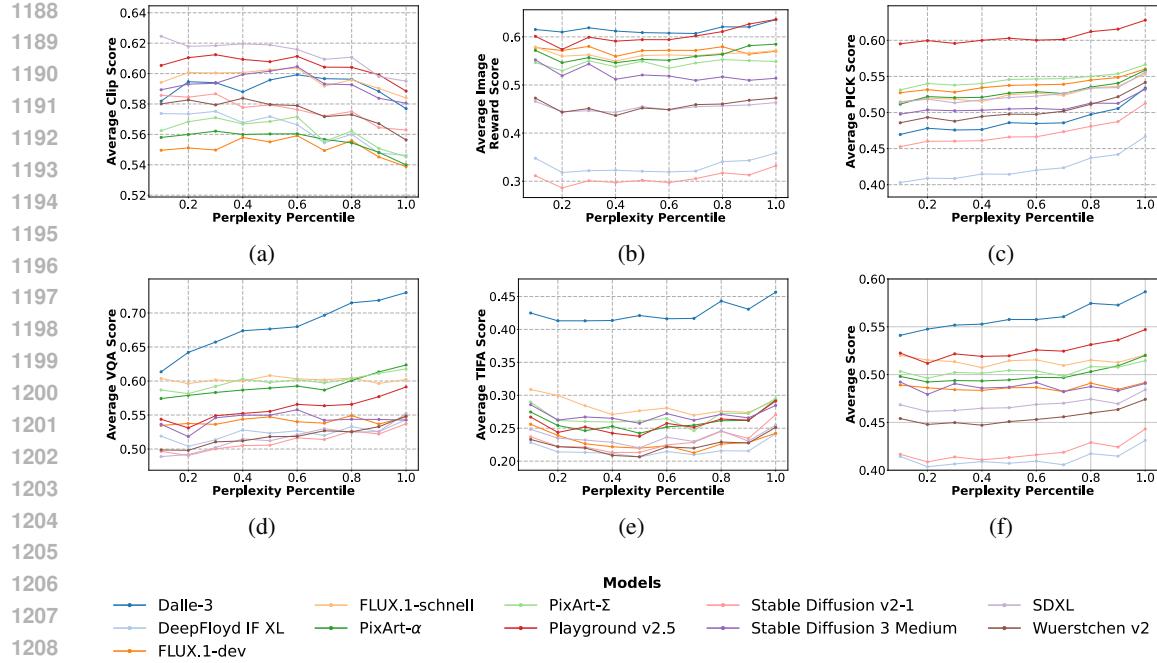


Figure 8: Average performance of models across different percentiles of perplexity of captions, evaluated on various metrics. From left to right, the perplexity decreases, indicating captions that are progressively more reasonable and easier for the LLM to generate.

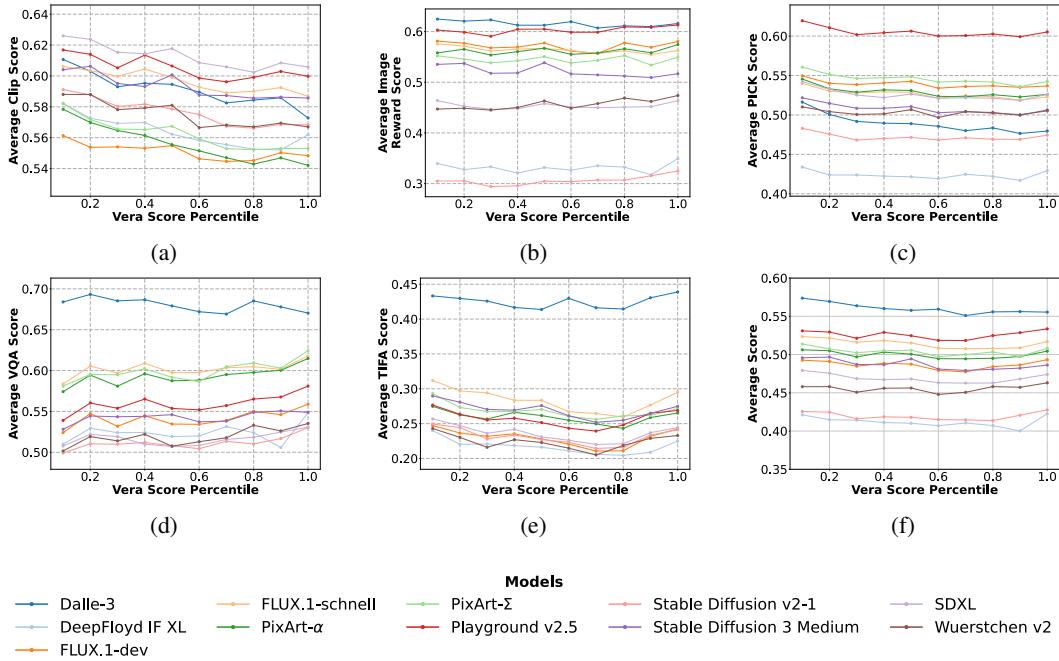


Figure 9: Average performance of models across different percentiles of Vera Score for captions, evaluated on various metrics. From left to right, the Vera Score decreases, indicating captions that exhibit less commonsense reasoning and are more likely to describe implausible scenes.

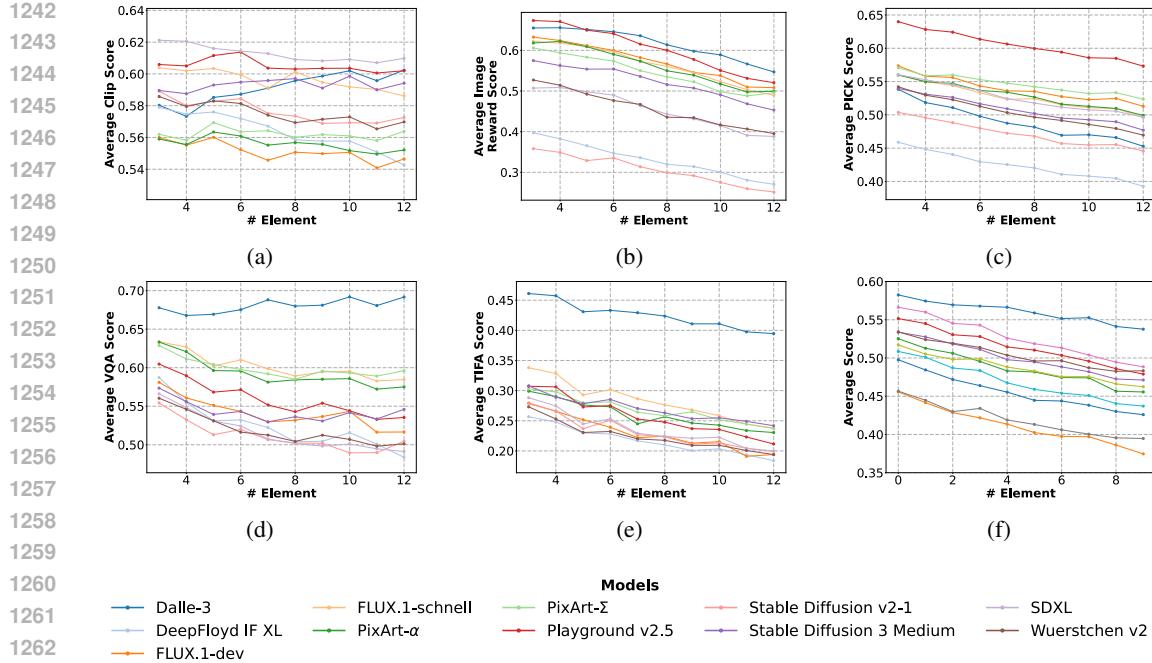


Figure 10: Average performance of models across different numbers of elements (objects + attributes + relations) in the scene graph (complexity of the scene graph) of the captions, evaluated on various metrics. From left to right, as the number of elements (complexity) increases, the scene graphs become more complicated and compositional.

performance of *DaLL-E 3*. Unlike other models, *DaLL-E 3* performs exceptionally well on *VQA Score* and *TIFA Score*, particularly on *VQA Score*, where it even shows a slight improvement as caption complexity increases. This suggests that *DaLL-E 3* may have a unique capacity to handle complex and compositional captions effectively.

A.4.2 ANALYSIS ON DIFFERENT METRICS

Compared with most LLM and VLM benchmarks that use multiple-choice questions and accuracy as metrics. There is no universal metric in evaluating *Text-to-Vision generation* models. Researchers commonly used model-based metrics like *Clip Score*, *VQA Score*, etc. Each of these metrics is created and fine-tuned for different purposes with bias. Therefore, we also analysis on different metrics.

Clip Score isn't a universal metric. *Clip Score* is one of the most widely used metrics in *Text-to-Vision generation* for evaluating the alignment between visual content and text. However, our analysis reveals that *Clip Score* is not a perfect metric and displays some unusual trends. For instance, as shown in Figures 8, 9, and 10, we compute the perplexity across 10K captions used in our study, where higher perplexity indicates more unpredictable or disorganized text. Interestingly, unlike other metrics, *Clip Score* decreases as perplexity lowers, suggesting that *Clip Score* tends to favor more disorganized text. This behavior is counterintuitive and highlights the potential limitations of using *Clip Score* as a robust alignment metric.

Limitations of human preference-based metrics. We use two metrics fine-tuned using human preference data: *Pick Score* and *ImageReward Score*. However, we found that these metrics exhibit a strong bias toward the data on which they were fine-tuned. For instance, as shown in Table 5, *Pick Score* assigns similar scores across all models, failing to provide significant differentiation or meaningful insights into model performance. In contrast, *ImageReward Score* demonstrates clearer preferences, favoring models such as *DaLL-E 3* and *Playground v2.5*, which incorporated human-alignment techniques during their training. However, this metric shows a significant drawback:

Figure 11: Average performance scores of all models across different genders evaluated using various metrics.

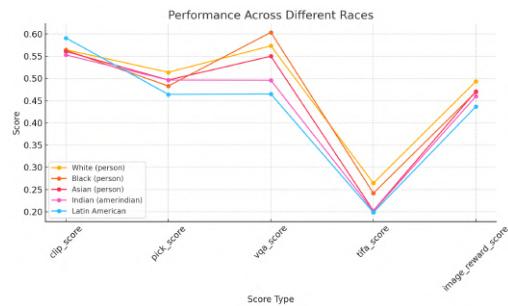


Figure 12: Average performance scores of all models across different races evaluated using various metrics.

it assigns disproportionately large negative scores to models like *SDv2.1*, indicating a potential over-sensitivity to alignment mismatches. Such behavior highlights the limitations of these metrics in providing fair and unbiased evaluations across diverse model architectures.

VQA Score and TIFA Score are relative reliable metrics. Among the evaluated metrics, *VQA Score* and *TIFA Score* stand out by assessing model performance on VQA tasks, rather than relying solely on subjective human preferences. This approach enhances the interpretability of the evaluation process. Additionally, we observed that the results from *VQA Score* and *TIFA Score* show a stronger correlation with other established benchmarks. Based on these advantages, we recommend prioritizing these two metrics for evaluation. However, it is important to note that their effectiveness is constrained by the limitations of the VQA models utilized in the evaluation.

A.4.3 FAIRNESS ANALYSIS

We evaluate fairness by examining the model’s performance across different genders and races. Specifically, we calculate the average performance for each node and its associated child nodes within the taxonomy tree constructed for objects. For example, the node “females” includes child nodes such as “waitresses,” and their combined performance is considered in the analysis.

Gender. In gender, we observe a notable performance gap between females and males, as could be seen from Figure 11. Models are better at generating male concepts.

Race. There are also performance gaps in different races. From Figure 12, we found that “white (person)” and “black (person)” perform better than “asian (person)”, “Indian (amerindian)”, and “Latin American”.

A.4.4 CORRELATION OF GENERATE ANY SCENE WITH OTHER *Text-to-Vision generation* BENCHMARKS

The GENERATE ANY SCENE benchmark uniquely relies entirely on synthetic captions to evaluate models. To assess the transferability of these synthetic captions, we analyzed the consistency in model rankings across different benchmarks (79, 37, 92). Specifically, we identified the overlap of models evaluated by two benchmarks and computed the Spearman correlation coefficient between their rankings.

As shown in the figure 13, GENERATE ANY SCENE demonstrates a strong correlation with other benchmarks, such as Conceptmix (79) and GenAI Bench (37), indicating the robustness and reliability of GENERATE ANY SCENE’s synthetic caption-based evaluations. This suggests that the synthetic captions generated by GENERATE ANY SCENE can effectively reflect model performance trends, aligning closely with those observed in benchmarks using real-world captions or alternative evaluation methods.

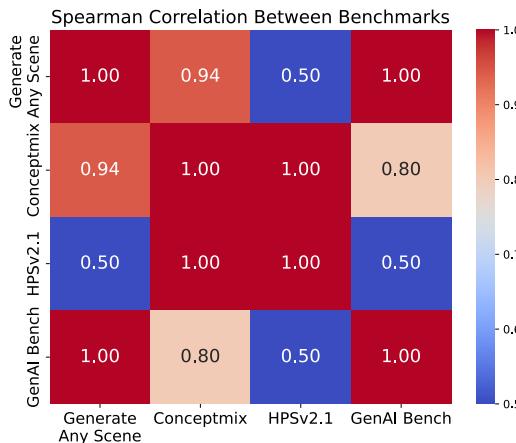
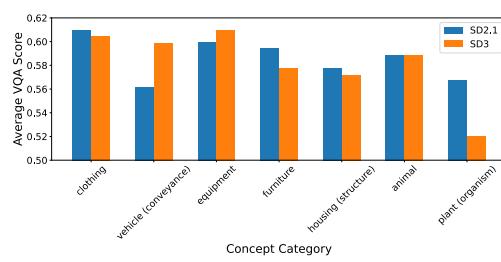
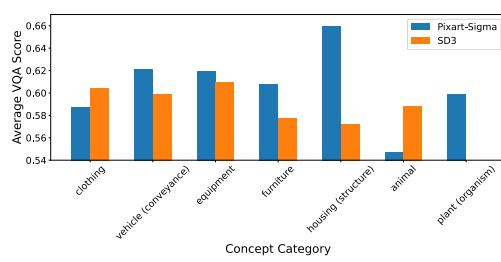


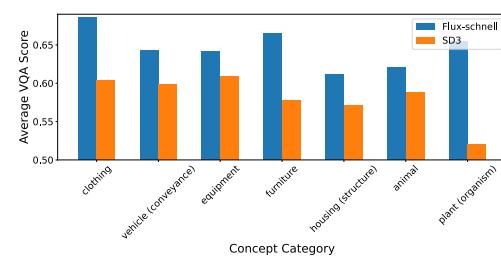
Figure 13: Correlation of GENERATE ANY SCENE with other popular *Text-to-Vision generation* benchmarks.



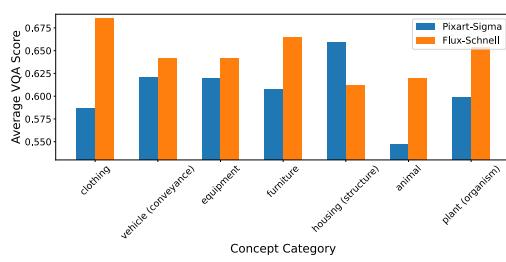
(a) *SDv2.1* vs. *SD3 Medium* on average *VQA Score* in fine-grained categories.



(b) *PixArt- Σ* vs. *SD3 Medium* on average *VQA Score* in fine-grained categories.



(c) *FLUX.I-schnell* vs. *SD3 Medium* on average *VQA Score* in fine-grained categories.



(d) *PixArt- Σ* vs. *FLUX.I-schnell* on average *VQA Score* in fine-grained categories.

Figure 14: Pairwise comparison on average *VQA Score* in fine-grained categories.

1404 A.4.5 CASE STUDY: PAIRWISE FINE-GRAINED MODEL COMPARISON
14051406 Evaluating models using a single numerical average score can be limiting, as different training data
1407 often lead models to excel in generating different types of concepts. By leveraging the taxonomy we
1408 developed for GENERATE ANY SCENE, we can systematically organize these concepts and evaluate
1409 each model’s performance on specific concepts over the taxonomy. This approach enables a more
1410 detailed comparison of how well models perform on individual concepts rather than relying solely on
1411 an overall average score. Our analysis revealed that, while the models may achieve similar average
1412 performance, their strengths and weaknesses vary significantly across different concepts. Here we
1413 present a pairwise comparison of models across different metrics.
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1458 B DETAILS OF TAXONOMY OF VISUAL CONCEPTS

1460 To construct a scene graph, we utilize three primary types of metadata: objects, attributes, and
 1461 relations, which represent the structure of a visual scene. Additionally, scene attributes—which
 1462 include factors like image style, perspective, and video time span—capture broader aspects of the
 1463 visual content. Together, the scene graph and scene attributes form a comprehensive representation of
 1464 the scene.

1465 Our metadata is further organized using a well-defined taxonomy, enhancing the ability to generate
 1466 controllable captions. This hierarchical taxonomy not only facilitates the creation of diverse scene
 1467 graphs, but also enables fine-grained and systematic model evaluation.

1469 **Objects.** To enhance the comprehensiveness and taxonomy of object data, we leverage noun synsets
 1470 and the structure of WordNet (32). In WordNet, a *physical object* is defined as "*a tangible and visible*
 1471 *entity; an entity that can cast a shadow.*" Following this definition, we designate the *physical object*
 1472 as the root node, constructing a hierarchical tree with all 28,787 hyponyms under this category as the
 1473 set of objects in our model.

1474 Following WordNet’s hypernym-hyponym relationships, we establish a tree structure, linking each
 1475 object to its primary parent node based on its first-listed hypernym. For objects with multiple
 1476 hyperonyms, we retain only the primary parent to simplify the hierarchy. Furthermore, to reduce
 1477 ambiguity, if multiple senses of a term share the same parent, we exclude that term itself and reassign
 1478 its children to the original parent node. This approach yields a well-defined and disambiguated
 1479 taxonomy.

1480 **Attributes.** The attributes of a scene graph represent properties or characteristics associated with
 1481 each object. We classify these attributes into *nine* primary categories. For *color*, we aggregate 677
 1482 unique entries sourced from Wikipedia (33). The *material* category comprises 76 types, referenced
 1483 from several public datasets (93, 94, 95). The *texture* category includes 42 kinds from the Describable
 1484 Textures Dataset (96), while the *architectural style* encompasses 25 distinct styles (97). Additionally,
 1485 we collect 85 *states*, 41 *shapes*, and 24 *sizes*. For *human descriptors*, we compile 59 terms across
 1486 subcategories, including body type and height. Finally, we collect 465 common *adjectives* covering
 1487 general characteristics of objects to enhance the descriptive richness of our scene graphs.

1488 **Relationships.** We leverage the Robin dataset (34) as the foundation for relationship metadata,
 1489 encompassing six key categories: spatial, functional, interactional, social, emotional, and symbolic.
 1490 With 10,492 relationships, the dataset provides a comprehensive and systematic repository that
 1491 supports modeling diverse and complex object interactions. Its extensive coverage captures both
 1492 tangible and abstract connections, forming a robust framework for accurate scene graph representation.

1494 **Scene Attributes.** In *Text-to-Vision generation* tasks, people mainly focus on creating realistic
 1495 images and art from a text description (98, 2, 3). For artistic styles, we define scene attributes
 1496 using 76 renowned *artists*, 41 *genres*, and 126 *painting styles* from WikiArt (99), along with 29
 1497 common *painting techniques*. For realistic imagery, we construct camera settings attributes across 6
 1498 categories: camera models, focal lengths, perspectives, apertures, depths of field, and shot scales. The
 1499 camera models are sourced from the 1000 Cameras Dataset (100), while the remaining categories
 1500 are constructed based on photography knowledge and common captions in *Text-to-Vision generation*
 1501 tasks (1, 101). To control scene settings, we categorize location, weather and lighting attributes,
 1502 using 430 diverse locations from Places365 (35), alongside 76 *weathers* and 57 *lighting conditions*.
 1503 For video generation, we introduce attributes that describe dynamic elements. These include 12
 1504 types of camera rig, 30 distinct camera movements, 15 video editing styles, and 27 temporal spans.
 1505 The comprehensive scene attributes that we construct allow for the detailed and programmatic
 1506 *Text-to-Vision generation* generation.

1512 **C DETAILS OF SELF-IMPROVING MODELS WITH SYNTHETIC CAPTIONS**
 1513 **(SECTION 3)**
 1514

1515 **C.1 EXPERIMENT DETAILS**
 1516

1517 **C.1.1 CAPTIONS PREPARATION**
 1518

1519 To evaluate the effectiveness of our iterative self-improving *Text-to-Vision generation* model, we
 1520 generated three distinct sets of 10K captions using GENERATE ANY SCENE, covering a sample
 1521 complexity range from 3 to 12. These captions were programmatically created to reflect a spectrum
 1522 of structured scene graph compositions, designed to challenge and enrich the model’s learning
 1523 capabilities.

1524 For comparative analysis, we leveraged the Conceptual Captions (CC3M) (102) dataset, a large-scale
 1525 benchmark containing approximately 3.3 million image-caption pairs sourced from web alt-text
 1526 descriptions. CC3M is renowned for its diverse visual content and natural language expressions,
 1527 encompassing a wide range of styles, contexts, and semantic nuances.

1528 To ensure fair comparison, we randomly sampled three subsets of 10K captions from the CC3M
 1529 dataset, matching the GENERATE ANY SCENE-generated caption sets in size. This approach stan-
 1530 dardizes data volume while enabling direct performance evaluation. The diversity and semantic
 1531 richness of the CC3M captions serve as a robust benchmark to assess whether GENERATE ANY
 1532 SCENE-generated captions can match or exceed the descriptive quality of real-world data across
 1533 varied visual contexts.

1534 **C.1.2 DATASET CONSTRUCTION AND SELECTION STRATEGIES**
 1535

1536 For the captions generated by GENERATE ANY SCENE, we employed a top-scoring selection strategy
 1537 to construct the fine-tuning training dataset, using a random selection strategy as a baseline for
 1538 comparison. Specifically, for each caption, the model generated eight images. Under the top-scoring
 1539 strategy, we evaluated the generated images using the VQA score and selected the highest-scoring
 1540 image as the best representation of the caption. This process yielded 10K top-ranked images per
 1541 iteration, from which the top 25% (approximately 2.5k images) with the highest VQA scores were
 1542 selected to form the fine-tuning dataset.

1543 In the random selection strategy, one image was randomly chosen from the eight generated per
 1544 caption, and 25% of these 10K randomly selected images were sampled to create the fine-tuning
 1545 dataset, maintaining parity in data size.

1546 For the CC3M dataset, each caption was uniquely paired with a real image. From the 10K real
 1547 image-caption pairs sampled from CC3M, the top 25% with the highest VQA scores were selected as
 1548 the fine-tuning training dataset. This ensured consistency in data size and selection criteria across all
 1549 methods, facilitating a rigorous and equitable comparison of fine-tuning strategies.

1551 **C.1.3 FINE-TUNING DETAILS**
 1552

1553 We fine-tuned the *SDv1.5* using the LoRA technique. The training was conducted with a resolution
 1554 of 512×512 for input images and a batch size of 8. Gradients were accumulated over two steps.
 1555 The optimization process utilized the AdamW optimizer with $\beta_1 = 0.9$, $\beta_2 = 0.999$, an ϵ value of
 1556 1×10^{-8} , and a weight decay of 10^{-2} . The learning rate was set to 1×10^{-4} and followed a cosine
 1557 scheduler for smooth decay during training. To ensure stability, a gradient clipping threshold of 1.0
 1558 was applied. The fine-tuning process was executed for one epoch, with a maximum of 2500 training
 1559 steps. For the LoRA-specific configurations, we set the rank of the low-rank adaptation layers and
 1560 the scaling factor α to be 128.

1561 After completing fine-tuning for each epoch, we set the LoRA weight to 0.75 and integrate it into
 1562 *SDv1.5* to guide image generation and selection for the next subset. For the CC3M dataset, images
 1563 from the subsequent subset are directly selected.

1564 In the following epoch, the fine-tuned LoRA parameters from the previous epoch are loaded and
 1565 used to resume training on the current subset, ensuring continuity and leveraging the incremental
 1566 improvements from prior iterations.

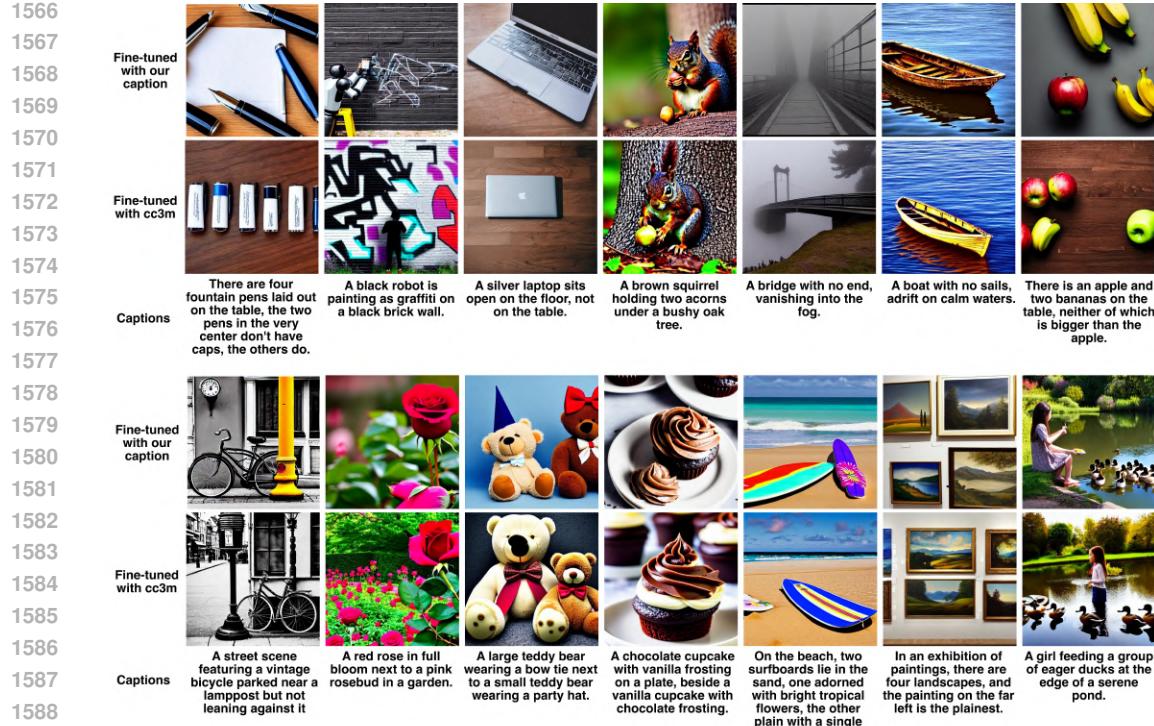


Figure 15: Visualization of Different Caption Fine-Tuning.

In Figure 15, we present results using our captions and the CC3M captions. The model fine-tuned with captions generated by GENERATE ANY SCENE demonstrates superior performance in terms of text semantic relevance and the generation of complex compositional scenes.

C.2 EVALUATION ON TIFA BENCH

Aside from our own test set and GenAI benchmark, we also evaluated our fine-tuned *Text-to-Image generation* models on the Tifa Bench (Figure 16), where we observed the same trend: models fine-tuned with our captions consistently outperformed the original *SDv1.5* and CC3M fine-tuned models.

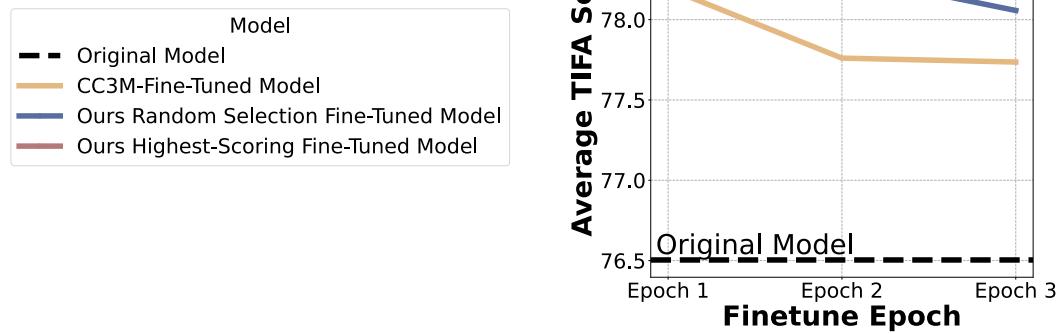


Figure 16: Results for Application 1: Self-Improving Models. Average TIFA score of *SDv1.5* fine-tuned with different data over TIFA Bench.

1620 C.3 ADDITIONAL REAL-DATA BASELINES
16211622 **Setup.** We conduct more experiments comparing GENERATE ANY SCENE synthetic captions to
1623 other real-world caption sources. We sampled 10K captions from MS-COCO-2017 and LAION-
1624 COCO for one-epoch LoRA fine-tuning under same experimental settings. The results on GENERATE
1625 ANY SCENE test set are summarized in Table 11.1626 Table 11: Self-improvement on GENERATE ANY SCENE Test (VQA). One-epoch finetuning, equal
1627 budget.
1628

Method	VQA \uparrow
Baseline (<i>SDv1.5</i>)	0.508
MS-COCO-2017	0.508
LAION-COCO	0.510
CC3M	0.508
GAS (Random)	0.524
GAS (Top-Score)	0.530

1638 **Findings.** Fine-tuning with MS-COCO-2017 and LAION-COCO captions yields results similar to
1639 CC3M, with none surpassing the significant improvements achieved by our GENERATE ANY SCENE
1640 captions. We think that although MS-COCO-2017 and LAION captions are generally high-quality
1641 and well-aligned with images, they offer limited compositional diversity. These additional results
1642 confirm that the observed gains are not specific to CC3M but generalize across other widely used
1643 real-caption datasets. This further supports our claim that the compositional diversity of GENERATE
1644 ANY SCENE synthetic captions drives the improvement.
16451646 C.4 FULL FINE-TUNING VS. LORA FINE-TUNING
16471648 **Setup.** We replicate the self-improvement pipeline with *full fine-tuning* and compare three strategies:
1649 GENERATE ANY SCENE captions with high-score selection, GENERATE ANY SCENE captions with
1650 random selection, and CC3M captions as the real-data baseline. The results are shown in Tables 12
1651 and 13.1652 Table 12: Results on GENERATE ANY SCENE test set under full fine-tuning. (VQA Score)
1653

Method	Iter-1	Iter-2	Iter-3
Baseline	0.508	—	—
CC3M (Full FT)	0.496	0.518	0.519
GAS (Rand, Full FT)	0.510	0.519	0.520
GAS (Top, Full FT)	0.510	0.534	0.540

1660 Table 13: Results on GenAI-Bench under full fine-tuning. (VQA Score)
1661

Method	Iter-1	Iter-2	Iter-3
Baseline	0.617	—	—
CC3M (Full FT)	0.589	0.619	0.622
GAS (Rand, Full FT)	0.599	0.621	0.617
GAS (Top, Full FT)	0.620	0.626	0.634

1670 **Findings.** Using our GENERATE ANY SCENE captions with high score selection not only improves
1671 performance consistently across iterations but also surpasses CC3M at every stage. The full fine-
1672 tuning results confirm that our captions and strategy’s effectiveness is not dependent on the specific
1673 training approach (LoRA vs. full fine-tuning). The consistent improvement patterns across both
evaluation benchmarks validate the robustness of our iterative self-improvement framework.

1674 D DETAILS OF DISTILLING TARGETED CAPABILITIES (SECTION 4)
1675
16761677 D.1 COLLECTING HARD CONCEPTS
1678

1679 We evaluate both models on 10K GENERATE ANY SCENE captions and select 81 challenging object
1680 concepts where *SDv1.5* and *DaLL-E 3* exhibit the largest gap. To determine the score for each
1681 concept, we calculated the average *TIFA Score* of the captions containing that specific concept. For
1682 each targeted-generated caption, we generate four images and use the one with the highest *VQA*
1683 *Score*. The full list of hard concepts is shown below:

1. cloverleaf
2. aerie (habitation)
3. admixture
4. webbing (web)
5. platter
6. voussoir
7. hearthstone
8. puttee
9. biretta
10. yarmulke
11. surplice
12. overcoat
13. needlepoint
14. headshot
15. photomicrograph
16. lavaliere
17. crepe
18. tureen
19. bale
20. jetliner
21. square-rigger
22. supertanker
23. pocketcomb
24. filament (wire)
25. inverter
26. denture
27. lidar
28. volumeter
29. colonoscope
30. synchrocyclotron
31. miller (shaper)
32. alternator
33. dicer
34. trundle
35. paddle (blade)
36. harmonica

1728 37. piccolo
1729 38. handrest
1730 39. rundle
1731 40. blowtorch
1732 41. volleyball
1733 42. tile (man)
1734 43. shuttlecock
1735 44. jigsaw
1736 45. roaster (pan)
1737 46. maze
1738 47. belt (ammunition)
1739 48. gaddi
1740 49. drawer (container)
1741 50. tenter
1742 51. pinnacle (steeple)
1743 52. pegboard
1744 53. afterdeck
1745 54. scaffold
1746 55. catheter
1747 56. broomcorn
1748 57. spearmint
1749 58. okra (herb)
1750 59. goatsfoot
1751 60. peperomia
1752 61. ammobium
1753 62. gazania
1754 63. echinocactus
1755 64. birthwort
1756 65. love-in-a-mist (passionflower)
1757 66. ragwort
1758 67. spicebush (allspice)
1759 68. leadplant
1760 69. barberry
1761 70. hamelia
1762 71. jimsonweed
1763 72. undershrub
1764 73. dogwood
1765 74. butternut (walnut)
1766 75. bayberry (tree)
1767 76. lodestar
1768 77. tapa (bark)
1769 78. epicalyx
1770 79. blackberry (berry)
1771 80. stub
1772 81. shag (tangle)

1782 D.2 EXPERIMENT DETAILS
1783

1784 We conducted targeted fine-tuning experiments on *SDv1.5* to evaluate GENERATE ANY SCENE’s
1785 effectiveness in distilling model compositionality and learning hard concepts. For each task, we
1786 selected a dataset of 778 GENERATE ANY SCENE captions paired with images generated by *DaLL-E 3*. For compositionality, we selected multi-object captions from the existing dataset of 10K
1787 GENERATE ANY SCENE captions and paired them with the corresponding images generated by
1788 *DaLL-E 3*. To address hard concept learning, we first used *SDv1.5* to generate images based on
1789 the 10K GENERATE ANY SCENE captions and identified the hard concepts with the lowest VQA
1790 scores. These concepts were then used to create a subset of objects, which we recombined into our
1791 scene-graph based captions with complexity levels ranging from 3 to 9. Finally, we used *DaLL-E 3*
1792 to generate corresponding images for these newly composed captions.
1793

1794 The fine-tuning configurations were consistent with those used in the self-improving setup (Ap-
1795 pendix C.1.3). To accommodate the reduced dataset size, the maximum training steps were set to
1796 1000.

1797 As a baseline, we randomly selected 778 images from 10K GENERATE ANY SCENE-generated
1798 images, using captions produced by GENERATE ANY SCENE. This ensured a controlled comparison
1799 between the targeted and random fine-tuning strategies.
1800

1801 D.3 BENCHMARK AGAINST WEB-CRAWLED CAPTION-IMAGE PAIRS
1802

1803 **Setup.** We conduct additional experiments to benchmark against alternative data sourcing strategies,
1804 specifically comparing our *DaLL-E 3* distillation approach with web-scraped real images. Using the
1805 Bing Image Search API, we retrieve images matching our multi-object and hard-concept captions
1806 and constructed two datasets of equivalent scale for comparison. We then apply the same fine-tuning
1807 setup described in Application 2. The results are shown in Table 14.

1810 Table 14: Comparison of VQA scores from targeted fine-tuning on different data sources. (*SDv1.5*)

Test Set	Original	<i>DaLL-E 3</i> Distill	Web-crawled
Hard Concept	0.303	0.361	0.258
Multi-object	0.271	0.325	0.264

1818 **Findings.** The results show that web-scraped images not only failed to improve performance but
1819 actually degraded model capabilities.
1820

1821 Upon examination of the retrieved images, we identify several critical issues. The web-crawled
1822 images contain significant noise, including watermarks, overlaid text, and irrelevant visual element.
1823 Our hard concept and multi-object captions feature high compositional complexity and novel object
1824 combinations that rarely exist in real-world photographs. The retrieved images show poor relevance
1825 to our systematically designed compositional scenarios, as real-world images cannot adequately
1826 represent the diverse and controlled compositional variations we programmatically generate. Thus,
1827 training on such misaligned data appears to introduce incorrect visual-textual associations, leading to
1828 performance degradation rather than improvement.
1829

1830 Table 15: *VQA Score* of targeted distillation on *FLUX.1-dev*.
1831

Test Set	Original	Fine-tuned
Hard Concept	0.303	0.361
Multi-object	0.271	0.325

1836 D.4 DISTILLATION ON FLUX.1-DEV
18371838 **Setup.** We further apply our distillation framework to *FLUX.1-dev*, a current SOTA open-source
1839 model, using *DaLL-E 3* -generated images of hard concepts and multi-object captions to distill these
1840 capabilities into *FLUX.1-dev*. The results are shown in the Table 15.

1841

1842 **Findings.** The results demonstrate that our approach’s effectiveness extends to state-of-the-art
1843 models (*FLUX.1-dev*). The distillation approach yields substantial improvements on challenging
1844 compositional tasks.

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890 **E DETAILS OF REINFORCEMENT LEARNING WITH A SYNTHETIC REWARD**
 1891 **FUNCTION (SECTION 5)**
 1892

1893 **E.1 TRAINING DATA PREPARATION**
 1894

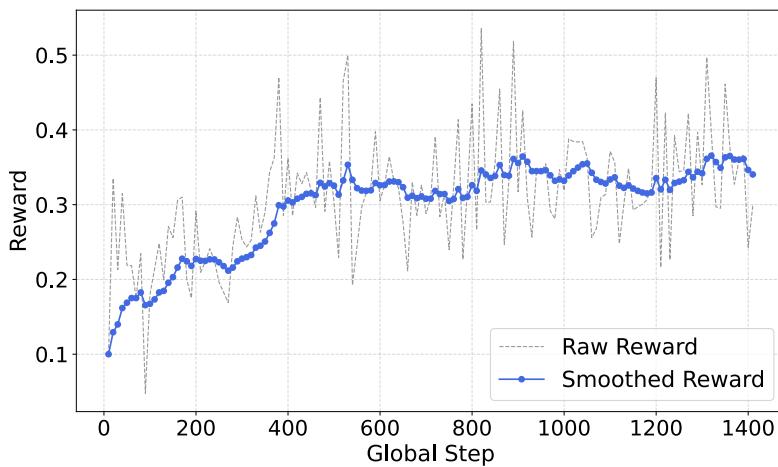
1895 We adopt SimpleAR-0.5B-SFT (26) as our base model. Given that SimpleAR-0.5B-SFT is pretrained
 1896 on high-quality real image datasets such as LAION (11) and CC3M (12), we aim to mitigate potential
 1897 distributional shift between the original training data and the reinforcement learning phase. To this
 1898 end, we perform metadata pre-selection for GENERATE ANY SCENE by analyzing the frequency of
 1899 each object category appearing in the LAION dataset. Leveraging the controllable compositional
 1900 capabilities of GENERATE ANY SCENE, we filter object categories by selecting the top 10% most
 1901 frequent entries and constrain scene complexity to 3–6 objects per scene. Based on these conditions,
 1902 we synthesize a set of 10K captions, ensuring semantic alignment with the base model’s pretraining
 1903 distribution while maintaining structural and content diversity.
 1904

1905 **E.2 EXPERIMENT DETAILS**
 1906

1907 The detailed training configuration is provided in Table 16. We utilize $8 \times$ NVIDIA H100 GPUs
 1908 (80GB HBM3), with one GPU allocated for online generation using vLLM. The total training time is
 1909 approximately 14 hours.
 1910

1911 Table 16: Scene-graph based GRPO Fine-tuning Configuration for SimpleAR

1912 Component	1913 Details
1914 Model Name	1915 SimpleAR-0.5B-SFT
1916 Model Size	1917 $\sim 0.5B$ parameters
1918 Training Policy	1919 GRPO
1920 Inference Engine	1921 vLLM (GPU utilization = 0.7)
1922 Completion Length	1923 4096 tokens
1924 Training Epochs	1
1925 Batch Size per Device	4
1926 Learning Rate	1927 1×10^{-5}
1928 Scheduler	1929 Cosine Annealing (min lr rate = 0.1)
1930 Warm-up Ratio	1931 0.1
1932 Gradient Accumulation	1933 1



1941 Figure 17: Reward progression during scene-graph based GRPO training.
 1942

1943 Figure 17 illustrates the reward progression during training. A noticeable improvement in reward
 1944 is observed following the application of a learning rate of $1e-5$ combined with a warm-up strategy.
 1945

1944 Overall, the reward increases by approximately 0.2, indicating effective learning under the adjusted
 1945 training configuration.

1946
 1947 In Table 4, we observe that the reproduced results of baseline models on DPG-Bench and GenEval
 1948 Bench are slightly lower than those reported in the original paper. Considering the inherent stochas-
 1949 ticity in generative model outputs, we cite the original results for comparison. For GenAI-Bench, all
 1950 reported results are based on our own experimental evaluations.

1951 **E.3 REWARD VARIANTS AND ABLATIONS**
 1952

1953 **Setup.** To verify the observed gains arise specifically from the scene-graph-generated QA reward,
 1954 rather than simply from using any QA-based reward, we conduct experiments incorporating manually
 1955 annotated QA datasets, VQAv2, as additional reward signals under the same RLHF framework.
 1956 We sample 10K images from VQAv2, with corresponding QA pairs, matched them to COCO2017
 1957 captions, and apply same training frameworks to SimpleAR-0.5B-SFT with RL training. The results
 1958 on GenAI Bench are shown in the table:

1959 Table 17: GenAI Bench performance (VQA) under RLHF with different reward sources. All models
 1960 start from *SimpleAR-0.5B-SFT*.
 1961

Method	Basic \uparrow	Advanced \uparrow	All \uparrow
SimpleAR-0.5B-SFT	0.74	0.60	0.66
SimpleAR-0.5B-RL (CLIP)	0.75	0.60	0.67
SimpleAR-0.5B-RL (VQAv2)	0.73	0.59	0.66
SimpleAR-0.5B-RL (Ours)	0.75	0.61	0.68

1968
 1969
 1970 **Findings.** The results show that using VQAv2 captions and QA pairs as rewards yields even lower
 1971 performance than CLIP-based RL training. Furthermore, we observe minimal reward improvement
 1972 from VQA signals throughout training. We attribute this to the fact that, although VQAv2 QA pairs
 1973 are rich, the underlying image captions fail to cover enough visual elements, leading to a mismatch
 1974 between QA pairs and captions that undermines RLHF reward alignment.

1975 This highlights the inherent difficulty and cost of constructing high-quality image-caption and QA
 1976 annotations, whereas our method leverages scene-graph structures to systematically generate synthetic
 1977 caption-QA pairs at minimal cost with unique advantages.

1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997

1998
1999

F DETAILS OF IMPROVING GENERATED-CONTENT DETECTION (SECTION 6)

2000
2001

F.1 EXPERIMENT DETAILS

2002
2003
2004
2005

In this section, our goal is to validate that the more diverse captions generated by GENERATE ANY SCENE can complement existing datasets, which are predominantly composed of real-world images paired with captions. By doing so, we aim to train AI-generated content detectors to achieve greater robustness.

2006

Dataset preparation We conducted comparative experiments between captions generated by GENERATE ANY SCENE and entries from the D^3 dataset. From the D^3 dataset, we randomly sampled 10K entries, each including a caption, a link to a real image, and an image generated by SD v1.4. Due to some broken links, we successfully downloaded 8.5K real images and retained 10K SD v1.4-generated images. We also used SD v1.4 to generate images based on 10K GENERATE ANY SCENE captions.

2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017

We varied the training data sizes based on the sampled dataset. Specifically, we sampled N real images from the 10K D^3 real images. For synthetic data, we compared N samples exclusively from D^3 with a mixed set of N/2 samples from 10K GENERATE ANY SCENE images and N/2 sampled from D^3 , ensuring a total of N synthetic samples. Combined, this resulted in 2N training images. We tested 2N across various sizes, ranging from 2K to 10K.

2018
2019
2020
2021
2022
2023
2024
2025

Detector architecture and training We employed ViT-T (47) and ResNet-18 (103) as backbones for the detection models. Their pretrained parameters on ImageNet-21K were frozen, and the final classification head was replaced with a linear layer using a sigmoid activation function to predict the probability of an image being AI-generated. During training, We used Binary Cross-Entropy (BCE) as the loss function, and the AdamW optimizer was applied with a learning rate of $2e^{-3}$. Training was conducted with a batch size of 256 for up to 50 epochs, with early stopping triggered after six epochs of no improvement in validation performance.

2026
2027
2028

Testing To evaluate the performance of models trained with varying dataset sizes and synthetic data combinations, we tested them on both GenImage and GENERATE ANY SCENE datasets to assess their in-domain and out-of-domain performance under different settings.

2029
2030
2031
2032
2033
2034

For GenImage, we used validation data from four models: SD v1.4, SD v1.5, MidJourney, and VQDM. Each validation set contained 8K real images and 8k generated images. For GENERATE ANY SCENE, we sampled 10K real images from CC3M and paired them with 10K generated images from each of the following models: *SDv2.1*, *PixArt- α* , *SD3 Medium*, and *Playground v2.5*. This created distinct test sets for evaluating model performance across different synthetic data sources.

2035
2036
2037

Table 18: F1-Score Comparison of ResNet-18 and ViT-T Detectors Trained with D^3 and D^3 + GENERATE ANY SCENE Across In-Domain Settings

Detector	Data Scale (2N)	SDv1.4 (In-domain, same model)		SDv2.1		Pixart- α		SDv3-medium		Playground v2.5		Average (In-domain, cross model)	
		D^3	Ours	D^3	D^3 + Ours	D^3	D^3 + Ours	D^3	D^3 + Ours	D^3	D^3 + Ours	D^3	D^3 + Ours
Resnet-18	2K	0.6561	0.6663	0.7682	0.6750	0.7379	0.606	0.7509	0.6724	0.7380	0.5939	0.7488	0.6368
	4K	0.6751	0.6812	0.7624	0.6853	0.7328	0.6494	0.7576	0.7028	0.7208	0.6163	0.7434	0.6635
	6K	0.6780	0.6995	0.7886	0.6870	0.7493	0.6586	0.7768	0.7285	0.7349	0.6335	0.7624	0.6769
	8K	0.6828	0.6964	0.7710	0.6741	0.7454	0.6418	0.7785	0.7186	0.7215	0.6033	0.7541	0.6595
	10K	0.6830	0.6957	0.7807	0.6897	0.7483	0.6682	0.7781	0.7326	0.7300	0.6229	0.7593	0.6784
ViT-T	2K	0.6759	0.6672	0.7550	0.6827	0.7585	0.6758	0.7473	0.6941	0.7327	0.6106	0.7484	0.6658
	4K	0.6878	0.6871	0.7576	0.7000	0.7605	0.7071	0.7549	0.7217	0.7221	0.6144	0.7488	0.6858
	6K	0.6988	0.6891	0.7663	0.6962	0.7666	0.7164	0.7629	0.7238	0.7303	0.6134	0.7565	0.6875
	8K	0.6962	0.6974	0.7655	0.6894	0.7712	0.7253	0.7653	0.7253	0.7381	0.6344	0.7600	0.6936
	10K	0.6986	0.6984	0.7828	0.6960	0.7777	0.7275	0.7786	0.7334	0.7330	0.6293	0.7680	0.6966

2045
2046
2047

F.2 RESULTS

2048
2049
2050
2051

Table 19 and Table 18 evaluate the performance of ResNet-18 and ViT-T detection backbones trained on datasets of varying sizes and compositions across in-domain (same model and cross-model) and out-of-domain settings. While models trained with D^3 and GENERATE ANY SCENE occasionally underperform compared to those trained solely on D^3 in the in-domain same-model setting, they exhibit significant advantages in both in-domain cross-model and out-of-domain evaluations. These

2052 results demonstrate that incorporating our data (GENERATE ANY SCENE) into the training process
 2053 enhances the detector's robustness. By supplementing existing datasets with GENERATE ANY SCENE
 2054 under the same training configurations and dataset sizes, detectors achieve stronger cross-model and
 2055 cross-dataset capabilities, highlighting improved generalizability to diverse generative models and
 2056 datasets.

2057
 2058 Table 19: F1-Score Comparison of ResNet-18 and ViT-T Detectors Trained with D^3 and D^3+
 2059 GENERATE ANY SCENE Across Out-of-Domain Settings

Detector	Data Scale (2N)	SDv1.5		VQDM		Midjourney		Average (Out-of-domain)	
		D^3 + Ours	D^3	D^3 + Ours	D^3	D^3 + Ours	D^3	D^3 + Ours	D^3
Resnet-18	2K	0.6515	0.6591	0.5629	0.5285	0.5803	0.5647	0.5982	0.5841
	4K	0.6709	0.6817	0.5693	0.5428	0.6016	0.5941	0.6139	0.6062
	6K	0.6750	0.6963	0.5724	0.5327	0.6084	0.6072	0.6186	0.6121
	8K	0.6792	0.6965	0.5716	0.5282	0.6097	0.5873	0.6202	0.6040
	10K	0.6814	0.6955	0.5812	0.5454	0.6109	0.6040	0.6245	0.6150
ViT-T	2K	0.6755	0.6685	0.5443	0.4966	0.6207	0.6066	0.6135	0.5906
	4K	0.6845	0.6865	0.5591	0.4971	0.6416	0.6149	0.6284	0.5995
	6K	0.6900	0.6890	0.5580	0.4948	0.6455	0.6259	0.6313	0.6032
	8K	0.6940	0.6969	0.5553	0.4962	0.6495	0.6387	0.6329	0.6106
	10K	0.6961	0.6988	0.5499	0.4975	0.6447	0.6358	0.6302	0.6107

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106 **G ADVANTAGES OF GENERATE ANY SCENE OVER LLM-DRIVEN SCENE**
 2107 **GRAPH AND CAPTION GENERATION**

2109 GENERATE ANY SCENE is conceptually superior to a well-prompted LLM for large-scale scene
 2110 graph and corresponding captions generation. While modern LLMs are powerful, they do not provide
 2111 the guarantees required for systematic, controllable, and reproducible enumeration of compositional
 2112 structures. In contrast, GENERATE ANY SCENE explicitly enumerates graph topologies under user-
 2113 specified constraints (e.g., complexity, topics, connectivity) and then deterministically instantiates
 2114 them, yielding uniform coverage, strict structural validity, and high efficiency.

2116 **Controllability and Diversity.** GENERATE ANY SCENE explicitly enumerates scene graph struc-
 2117 tures and populates with user-specified configuration and taxonomy (e.g., complexity, topics, connec-
 2118 tivity, etc.), ensuring systematic coverage of rare or unconventional compositions without requiring
 2119 users to manually write prompts for desired structures. In contrast, an LLM tends to default to
 2120 common patterns in its training distribution. For example, given only the metadata {book, table,
 2121 on}, an LLM will prefer the statistically dominant configuration "the book is on the table", and
 2122 struggle to produce the less common but equally valid "the table is on the book" without extensive
 2123 prompt engineering. Moreover, such extensive or high-quality prompting for scene graph generation
 2124 essentially requires the user to manually enumerate graph structures and design multiple templates in
 2125 natural language, whereas GAS accomplishes this systematically with a single program.

2126 **Reduced Bias and Hallucination.** Relying on LLMs to generate large-scale captions inherently
 2127 inherits their internal biases and increases the likelihood of hallucinating unseen or semantically
 2128 inconsistent object configurations. GENERATE ANY SCENE avoids this by enumerating scene graphs
 2129 and then deterministically mapping them to captions, producing text that is faithful by construction to
 2130 the underlying graph structure.

2132 **Lower Cost and Higher Reproducibility.** In GENERATE ANY SCENE, once a scene graph is
 2133 enumerated, it is cached and reused across multiple populations, and it can also serve as a seed graph
 2134 for controllable topological expansion without re-enumerating the entire structure. Combined with
 2135 our fully programmatic operations, this makes large-scale generation substantially more cost-efficient.
 2136 In contrast, relying on an LLM would require repeated API calls or prompt redesign for structural
 2137 variant and new content, making the process both costly and labor-intensive.

2138 To empirically validate these points, we compare GENERATE ANY SCENE against Gemini 2.5-
 2139 flash on generating 10K scene graphs from our common metadata (3,649 items: 2,591 objects, 551
 2140 attributes, 507 relations). Because Gemini becomes increasingly error-prone when prompted with
 2141 the full metadata list, we adopt a batching strategy: in each batch we randomly sample 5% of the
 2142 metadata (182 items) and prompt the model to generate 20 scene graphs containing 3–12 elements.

2143 Table 20 shows the distribution quality and diversity of generated elements. GENERATE ANY SCENE
 2144 achieves near-uniform usage across objects, attributes, and relations, with Gini coefficients between
 2145 0.14 and 0.17 and normalized entropy above 99.3%. Gemini, in contrast, exhibits strong concentration
 2146 (Gini 0.53–0.66) and substantially lower entropy (79.5–92.5%), indicating a tendency to overuse a
 2147 narrow subset of frequent categories. The top-10% coverage further highlights this imbalance: under
 2148 Gemini, 37.29% of object occurrences and 50.38% of relation occurrences are concentrated in only
 2149 10% of the vocabulary, whereas GENERATE ANY SCENE remains close to the uniform ideal.

2150 Beyond distributional properties, we assess structural validity and data quality using strict schema-
 2151 level checks (Table 21). GENERATE ANY SCENE produces 100% structurally valid graphs with zero
 2152 hallucinated elements. In contrast, only 49.1% of Gemini’s outputs satisfy the schema. Common
 2153 failure modes include treating relations as nodes (34.6% of graphs), and omitting required value
 2154 (31.2%) or type (30.3%) fields. Gemini also hallucinates 1,773 “unknown” objects (4.59% of all
 2155 objects) and 3,638 “unknown” relations.

2156 Finally, GENERATE ANY SCENE is more efficient than LLM-based generation (Table 22). Because
 2157 GENERATE ANY SCENE uses programmatic enumeration, it generates 10K scene graphs in under
 2158 one minute, with negligible cost. In contrast, Gemini requires 1.5 hours and incurs over \$50 of API
 2159 cost for the same workload. Overall, GENERATE ANY SCENE provides a 90× speedup and near-zero
 marginal expense.

Table 20: Distribution quality and diversity of generated scene graphs.

Metric	GAS (Ours)	Gemini 2.5-flash
Gini Coefficient (↓)		
Objects	0.14	0.53
Attributes	0.14	0.57
Relations	0.17	0.66
Normalized Entropy (↑)		
Objects	99.6%	92.5%
Attributes	99.3%	91.7%
Relations	99.3%	79.5%
Top 10% Coverage (↓)		
Objects	14.68%	37.29%
Relations	15.41%	50.38%

Table 21: Structural validity and data quality of generated scene graphs.

Metric	GAS (Ours)	Gemini 2.5-flash
Structurally valid graphs	100%	49.1%
Graphs with relations as nodes (error)	0%	34.6%
Graphs missing value field	0%	31.2%
Graphs missing type field	0%	30.3%
Hallucinated “unknown” objects	0	1,773 (4.59%)
Hallucinated “unknown” relations	0	3,638

These results confirm that programmatic enumeration in GENERATE ANY SCENE outperforms LLM-based generation, providing the systematic guarantees of uniformity, validity, and efficiency.

H DISCUSSION

H.1 COMMONSENSE AND PLAUSIBILITY FILTERING

GENERATE ANY SCENE enables systematic, controllable, and diverse compositional scene construction through programmatic scene graph enumeration. This allows the synthesized captions to cover not only realistic scenes commonly observed in the real world, but also uncommon, imaginative, and unrealistic scenes. Many widely-used generative models, including DALL-E, Midjourney, and Sora/Sora2, derive much of their practical value from producing surreal, imaginative, or physically unlikely compositions (e.g., “an astronaut riding a horse on the moon,” or “a raccoon astronaut with a glowing space donut”). Such prompts are not outliers; they reflect common user intents in art, game design, advertising, and entertainment. Users frequently employ abstract or fantastical combinations precisely to explore the model’s creativity, and the community often discusses and evaluates models based on performance on these highly “unrealistic” prompts. From a research perspective, a broad and systematically controlled compositional space is essential for improving and benchmarking modern generative models. Limiting sampling to only strictly “realistic” combinations would substantially reduce both the training and the evaluation value.

Table 22: Efficiency and cost of generating 10K scene graphs.

Metric	GAS (Ours)	Gemini 2.5-flash
Generation time (10K graphs)	< 1 minute	1.5 hours
Monetary cost	Negligible	> \$50

Our approach is specifically designed to meet this need for diverse captions and systematic visual representations. At the same time, GENERATE ANY SCENE differentiates uncommon or unrealistic scenes from nonsensical scenes. The taxonomy enforces strong type-level constraints, e.g., architectural attributes apply only to buildings, human-specific attributes only to the “person” subtree, and attentional relations only between animate entities, ensuring that generated scenes remain meaningful and structurally valid, even when creatively unrealistic. Beyond these inherent structural constraints, GENERATE ANY SCENE additionally provides an optional two-stage commonsense and plausibility filtering mechanism to support use cases that require higher visual realism. (1) Pre-population filtering. We maintain for every object/attribute/relation its LAION-5B (11) frequency and embedding representation, and select candidates by jointly enforcing minimum frequency thresholds and semantic coherence: for each newly added relation or attribute attached to a given object, we compute the top-k semantically compatible candidates based on embedding similarity to that object. Likewise, when expanding a relation triple, we compute candidate object similarity to the anchor object within the triplet, including all attributes and relations already attached to the anchor, and then sample from the top-k most semantically compatible objects (where k is user-configurable). Users may further specify complexity limits to avoid highly complex scenes. (2) Post-population filtering. After population, once the scene graph is translated into a caption, we compute its Vera score (91) and caption perplexity, and discard captions falling below plausibility or above perplexity thresholds. These mechanisms ensure that GENERATE ANY SCENE preserves meaningfulness while still enabling broad creative coverage.

H.2 SOCIAL BIAS

Assessing social bias is important for understanding whether synthetic data introduces unintended shifts in model behavior. To examine this, we evaluate models on gender-related prompts from the DALL-Eval (104) benchmark, comparing SDv1.5, SDv1.5 fine-tuned on CC3M captions, and SDv1.5 fine-tuned on GENERATE ANY SCENE captions. The gender MAD results are shown in Table 23. The experiment shows that fine-tuning with GENERATE ANY SCENE does not amplify gender bias relative to the base model. We attribute this to our design choices. First, GENERATE ANY SCENE does not generate data by propagating textual descriptions or cultural associations from these sources; instead, our metadata is used purely as a structural vocabulary of objects, attributes, and relations. GENERATE ANY SCENE doesn’t sample linguistic definitions or corpus-derived stereotypes from WordNet. Second, the systematic, programmatic nature of our scene-graph enumeration further reduces the pathways through which social bias present in real-world distributions could propagate. Also, any more debiased metadata can be plugged into GENERATE ANY SCENE engine seamlessly.

Table 23: Gender MAD Scores on DALLEval

Model	MAD ↓
SDv1.5	0.3602
FT w/ CC3M	0.3476
FT w/ GAS	0.3555

I LIMITATION

Programmatically generated prompts can be unrealistic and biased. Programmatically generated prompts can be unrealistic and biased. Although our system is capable of producing a wide range of rare compositional scenes and corresponding prompts, some of these outputs may violate rules or conventions, going beyond what is even considered imaginable or plausible. We also implement a pipeline to filter the commonsense of the generated prompts using the *Vera score* (a large language model-based commonsense metric) and *Perplexity*, but we make this pipeline **optional**.

Linguistic diversity of programmatic prompts is limited. While GENERATE ANY SCENE excels at generating diverse and compositional scene graphs and prompts, its ability to produce varied language expressions is somewhat constrained. The programmatic approach to generating content ensures diversity in terms of the elements of the scene, but it is limited when it comes to linguistic diversity and the richness of expression. To address this, we introduce a pipeline that leverages large

2268 language models (LLMs) to paraphrase prompts, enhancing linguistic variety. However, this addition
2269 introduces new challenges. LLMs are prone to biases and hallucinations, which can affect the quality
2270 and reliability of the output. Furthermore, the use of LLMs risks distorting the integrity of the original
2271 scene graph structure, compromising the coherence and accuracy of the generated content. So we
2272 make this LLM paraphrase pipeline **optional** for our paper.
2273

2274 **Toward curriculum-aware GRPO training.** Our proposed GENERATE ANY SCENE framework
2275 plays a central role in GRPO training by providing structured scene graphs that serve as the foun-
2276 dation for a semantically grounded and controllable reward function. This design enables effective
2277 optimization by aligning generation objectives with fine-grained visual semantics. Beyond this, we
2278 also observe that GENERATE ANY SCENE also offers broader potential: the scene graphs it produces
2279 vary in complexity, such as in the number of objects, attributes, relationships and graph degree.
2280 These variations naturally correspond to different levels of generation difficulty and reward variance.
2281 This property suggests an opportunity for curriculum-based training, where the model could be
2282 progressively exposed to increasingly complex scene graphs. Such a strategy may improve training
2283 stability and efficiency, especially in the early stages of learning. We identify this as a promising
2284 direction for future work, further leveraging the controllability of GENERATE ANY SCENE to guide
2285 structured policy learning.
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321