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ABSTRACT

Recent advances in text-to-vision generation excel in visual fidelity but struggle
with compositional generalization and semantic alignment. Existing datasets
are noisy and weakly compositional, limiting models’ understanding of complex
scenes, while scalable solutions for dense, high-quality annotations remain a
challenge. We introduce GENERATE ANY SCENE, a data engine that systematically
enumerates scene graphs representing the combinatorial array of possible visual
scenes. GENERATE ANY SCENE dynamically constructs scene graphs of varying
complexity from a structured taxonomy of objects, attributes, and relations. Given
a sampled scene graph, GENERATE ANY SCENE translates it into a caption for
text-to-image or text-to-video generation; it also translates it into a set of visual
question answers that allow automatic evaluation and reward modeling of semantic
alignment. Using GENERATE ANY SCENE, we first design a self-improving
framework where models iteratively enhance their performance using generated
data. SDv1.5 achieves an average 4% improvement over baselines and surpassing
fine-tuning on CC3M. Second, we also design a distillation algorithm to transfer
specific strengths from proprietary models to their open-source counterparts. Using
fewer than 800 synthetic captions, we fine-tune SDv1.5 and achieve a 10% increase
in TIFA score on compositional and hard concept generation. Third, we create
a reward model to align model generation with semantic accuracy at a low cost.
Using GRPO algorithm, we fine-tune SimpleAR-0.5B-SFT and surpass CLIP-based
methods by +5% on DPG-Bench. Finally, we apply these ideas to the downstream
task of content moderation where we train models to identify challenging cases by
learning from synthetic data.

1 INTRODUCTION

Despite the high-fidelity of modern generative models (text-to-image and text-to-video), we are yet
to witness wide-spread adoption (1; 2; 3; 4; 5). Controllability remains out of reach (6). Generated
content appears realistic but often falls short of semantic alignment (7; 8; 9; 10). Users prompt models
with a specific concept in mind. For example, when prompted to generate a scene of a “A black dog
chasing after a rabbit that is eating the grass, in Van Gogh’s style, with starlight lightening”, some
models are likely to generate an image of a dog but might miss the rabbit or get the style incorrect.

We hypothesize that these limitations stem not only from architectural bottlenecks but more funda-
mentally from the lack of structured, compositionally rich training data (3), especially those with
uncommon compositions. Popular datasets such as LAION (11) and CC3M (12) predominantly
consist of web-crawled image-caption pairs, which are inherently noisy, weakly compositional, and
biased toward single-object, coarse-grained descriptions. Such datasets lack explicit grounding of
object-attribute relations and multi-object interactions, restricting models’ ability to generalize to
complex visual scenes. Efforts to enhance caption quality (3; 13) have demonstrated that enhancing
the compositional density and semantic richness of captions can significantly improve generative per-
formance. Nevertheless, manual curation of such dense compositional annotations is labor-intensive,
while automatic annotation methods (e.g., via MLMs) suffer from hallucination and semantic noise.

Constructing a compositional dataset requires that we first define the space of the visual content.
Scene graphs are one such representation of the visual space (14; 15; 16; 17; 18), grounded in
cognitive science (19). A scene graph represents objects in a scene as individual nodes in a graph.
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Each object is modified by attributes, which describe its properties. For example, attributes can
describe the material, color, size, and location of the object in the scene. Finally, relationships are
edges that connect the nodes. They define the spatial, functional, social, and interactions between
objects (20). For example, in a living room scene, a “table” node might have attributes like “wooden”
or “rectangular” and be connected to a “lamp” node through a relation: “on top of”. This systematic
scene graph structure provides simple yet effective ways to define and model the scene. As such,
scene graphs are an ideal foundation for systematically defining the compositional space of visual
content in text-to-vision generation.

We introduce GENERATE ANY SCENE, a system capable of efficiently enumerating the space of
scene graphs representing a wide range of visual scenes. GENERATE ANY SCENE composes scene
graphs of any structure using a rich taxonomy of visual elements, translating each scene graph into an
input caption and visual question answers to evaluate the output image or video. In particular, we first
construct a rich taxonomy of visual concepts consisting of 28, 787 objects, 1, 494 attributes, 10, 492
relations, 2, 193 scene attributes from various sources. Based on these assets, GENERATE ANY
SCENE can synthesize an almost infinite number of scene graphs of varying complexity (21). Besides,
GENERATE ANY SCENE allows configurable scene graph generation. For example, evaluators can
specify the complexity level of the scene graph to be generated or provide a seed scene graph to be
expanded. By automating these steps, our system ensures both scalability and adaptability, providing
researchers and developers with diverse, richly detailed scene graphs and corresponding captions
tailored to their specific needs. We also conduct comprehensive text-to-vision evaluations using our
generated captions, as detailed in Appendix A.

We show that GENERATE ANY SCENE can allow generation models to self-improve. Our diverse
captions can facilitate a framework to iteratively improve Text-to-Vision generation models using
their own generations. Given a model, we generate multiple images, identify the highest-scoring one,
and use it as new fine-tuning data to improve the model itself. We fine-tune SDv1.5 (22) and achieve
an average of 4% performance boost compared with original models, and this method is even better
than fine-tuning with the same amount of real images and captions from the Conceptual Captions
CC3M over different benchmarks.

We also use GENERATE ANY SCENE to design targeted distillation algorithms. Using our evaluations,
we identify limitations in open-sourced models that their proprietary counterparts excel at. Next,
we distill these specific capabilities from proprietary models. For example, DaLL-E 3 (3) excels
particularly in generating composite images with multiple parts. We distill this capability into SDv1.5,
effectively bridging the gap between DaLL-E 3 and SDv1.5. After targeted fine-tuning, SDv1.5
achieves a 10% increase in TIFA score (23) for compositional tasks and hard concept generation.

Then we propose a low-cost scene graph-based reward model for RLHF (24) in text-to-image
generation. By leveraging synthetic scene graphs generated by GENERATE ANY SCENE, we generate
exhaustive question-answer pairs that cover all objects, attributes, and relationships in the caption.
Our method enables fine-grained, compositional reward modeling without manual annotation or
heavy LLM inference. With GRPO (25), we fine-tune SimpleAR-0.5B-SFT (26) using a scene graph
reward model, achieving better compositional alignment than CLIP-based methods (27) (+5% on
DPG-Bench (28)).

Finally, we apply GENERATE ANY SCENE to the downstream application of content moderation.
Content moderation is a vital application, especially as Text-to-Vision generation models improve.
A key challenge lies in the limited diversity of existing training data. To address this, we leverage
GENERATE ANY SCENE to generate diverse and compositional captions, creating synthetic training
data that complements existing datasets. By retraining a ViT-T (29) detector with our enriched dataset,
we enhance its detection performance, particularly in cross-model and cross-dataset scenarios.

2 GENERATE ANY SCENE

In this section, we present GENERATE ANY SCENE (Figure 1), a data engine that systematically
synthesizes diverse scene graphs in terms of both structure and content and translates them into
corresponding captions.

Scene graph. A scene graph is a structured representation of a visual scene, where objects are
represented as nodes, their attributes (such as color and shape) are properties of those nodes, and the
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relationships between objects (such as spatial or semantic connections) are represented as edges. In
recent years, scene graphs have played a crucial role in visual understanding tasks, such as those
found in Visual Genome (14) and GQA (30) for visual question answering (VQA). Their utility
has expanded to various Text-to-Vision generation tasks. For example, the DSG (31) and DPG (10)
benchmarks leverage scene graphs to evaluate how well generated images align with captions.

Taxonomy of visual elements. To construct a scene graph, we use three main metadata types:
objects, attributes, and relations. We further introduce scene attributes that capture global visual
contexts, such as art style, to facilitate comprehensive caption synthesis. The statistics and source of
our metadata are shown in Table 1. Additionally, we build a hierarchical taxonomy that categorizes
metadata into distinct levels and types, enabling fine-grained analysis. This structure supports precise
content synthesis, from broad concepts like “flower” to fine-grained instances such as “daisy.”

Table 1: Summary of the quantities and sources of visual elements. Details are in Appendix B.

Metadata Type Number Source
Objects 28,787 WordNet (32)
Attributes 1,494 Wikipedia (33), etc.
Relations 10,492 Synthetic Visual Genome (34)
Scene Attributes 2,193 Places365 (35), etc.

2.1 GENERATING DATA WITH SCENE GRAPHS

Step 1: Scene graph structure enumeration. Our engine pre-computes a library of directed scene-
graph topologies subject to user-specified structural constraints: complexity (total number of objects,
relations, and attributes) (36), average node degree, and number of connected components. We first
sample the number of object nodes and then systematically enumerate feasible edge sets and attribute
attachments that satisfy these constraints. We provide 3 optional controls: (i) degree-profile bounds
per-node in/out-degree, (ii) seed-graph preservation embeds a user-provided seed graph as a subgraph
of each enumerated structure, and (3) commonsense plausibility filtering prunes implausible contents
while retaining compositional diversity (See Appendix. H.1). All enumerations are performed once
per parameter tuple and cached for fast querying.

Step 2: Populate the scene graph structure with metadata. Given a generated scene graph
structure, the next step involves populating the graph with metadata. For each object node, attribute
node, and relation edge, we sample the corresponding content from our metadata. This process is
highly customizable and controllable: users can define the topics and types of metadata to include,
for instance, by selecting only commonsense metadata or specifying relationships between particular
objects. By determining the scope of metadata sampling, we can precisely control the final content of
the captions and easily extend the diversity and richness of scene graphs by adding new metadata.

Step 3: Sample scene attributes. We also include scene attributes that describe aspects such as the
art style, viewpoint, time span (for video), and 3D attributes (for 3D content). These scene attributes
are sampled directly from our metadata, creating a list that provides contextual details to enrich the
description of the visual content.

Step 4: Translate scene graph to caption. We introduce a deterministic and programmatic algorithm
that converts scene graphs with scene attributes into captions. It traverses scene graphs by converting
objects/attributes/relations into descriptive text in topological order, while tracking each object’s
references to ensure coherence. Programmatic grammar rules are employed (e.g., disambiguating
identical objects with “the first/second” and skipping already mentioned objects) to prevent duplication
and misreference, resulting in clear captions. We also provide LLM paraphrasing as an optional
step to diversify wording; however, our studies (see Appendix A.3) show that paraphrasing does not
materially affect results. We adopt the programmatic caption converter as the default for its speed
and low hallucination rate.

Step 5: Convert scene graph to a series of question-answer pairs. Given a synthetic scene graph,
GENERATE ANY SCENE automatically enumerates exhaustive QA pairs using templates that query
object attributes (e.g., What color is the sphere?), spatial relations (e.g., What is to the left of the
cube?), and other compositional elements. Each answer maps directly to an object, attribute, or edge,
ensuring full coverage of the graph at minimal cost. This enables both VQA-based evaluation of
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Figure 1: The generation pipeline of GENERATE ANY SCENE. Step 1: Enumerate diverse scene
graph structures under user-defined constraints. Step 2: Populate structures with sampled objects,
attributes, and relations. Step 3: Sample scene attributes such as style, perspective, or time span.
Step 4: Translate scene graph and attributes into coherent captions. Step 5: Automatically generate
QA pairs covering all elements for evaluation and reward modeling.

generated images and the construction of fine-grained reward models without manual labeling or
costly LLM inference.

3 SELF-IMPROVING MODELS WITH SYNTHETIC CAPTIONS

Figure 2: Results for Self-Improving Models. Average VQA score of SDv1.5 fine-tuned on different
data across 1K GENERATE ANY SCENE image/video evaluation set and GenAI-Bench image/video
benchmark (37).

With GENERATE ANY SCENE, we develop a self-improvement framework to improve generative
capabilities. By generating scalable compositional captions from scene graphs, GENERATE ANY
SCENE expands the textual and visual space, allowing for a diversity of synthetic images that extend
beyond real-world scenes. Our goal is to utilize these richly varied synthetic images to further boost
model performance.

Iterative self-improving framework. Inspired by DreamSync (38), we designed an iterative self-
improving framework using GENERATE ANY SCENE with SDv1.5 as the baseline model. With
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Table 2: Quality and diversity comparison on
GenAI-Bench. Fine-tuning with GENERATE
ANY SCENE captions improves global semantic
fidelity and perceptual quality without reducing
generation diversity.

SDv1.5 CC3M-FT GAS-FT

CLIPScore 0.3167 0.3196 0.3206
ImageReward 0.2056 0.3842 0.3927
LPIPS 0.7297 0.7356 0.7329

Table 3: Generalization to unseen composi-
tions. On a 400-caption test set containing
only unseen combinations of seen elements, the
model fine-tuned with GENERATE ANY SCENE
achieves the best compositional generalization.

SDv1.5 CC3M-FT GAS-FT

VQAScore 0.5823 0.6044 0.6109
CLIPScore 0.2876 0.2927 0.2938
ImageReward 0.4861 0.2602 -0.2497

VQA Score, which shows strong correlation with human evaluations on compositional images (39),
we guide the model’s improvement throughout the process. Specifically, GENERATE ANY SCENE
generates 3 → 10K captions across three epochs. For each caption, SDv1.5 generates 8 images, and
the image with the highest VQA Score is selected. From each set of 10K optimal images, we then
select the top 25% (2.5K image-caption pairs) as the training data for each epoch. In subsequent
epochs, we use the fine-tuned model from the prior iteration to generate new images. We employ
LoRA (40) for parameter-efficient fine-tuning.

Baselines. We conduct comparative experiments with the CC3M dataset, which comprises high-
quality and diverse real-world image-caption pairs (12). We randomly sample 3 → 10K captions from
CC3M, applying the same top-score selection strategy for iterative fine-tuning of SDv1.5. Additionally,
we include a baseline using random-sample fine-tuning strategy to validate the advantage of our
highest-scoring selection-based strategy. We evaluate our self-improving pipeline on Text-to-Vision
generation benchmarks, including GenAI Bench (37). For the Text-to-Video generation task, we use
Text2Video-Zero as the baseline model, substituting its backbone with the original SDv1.5 and our
fine-tuned SDv1.5 models.

Fine-tuning with our synthetic captions can surpass high-quality real-world image-caption
data. Our results show that fine-tuning with GENERATE ANY SCENE-generated synthetic data
consistently outperforms CC3M-based fine-tuning across Text-to-Vision generation tasks (Figure 2),
achieving the highest gains with our highest-scoring selection strategy. This highlights GENERATE
ANY SCENE’s scalability and compositional diversity, enabling models to effectively capture com-
plex scene structures. In Table 2, we further evaluate SDv1.5, the CC3M-finetuned model, and the
model finetuned with GENERATE ANY SCENE captions on additional metrics from GenAI-Bench.
Fine-tuning with GENERATE ANY SCENE yields higher CLIPScore and ImageReward while preserv-
ing LPIPS, demonstrating that our method not only strengthens compositional alignment but also
improves global semantic fidelity and perceptual quality without reducing generation diversity. In
Table 3, we additionally evaluate whether our self-improving framework enhances combinatorial
generalization. We extract all objects, attributes, and relations from the CC3M fine-tuning data and
retain the metadata sampled by GENERATE ANY SCENE. Using the same element set as in the
fine-tuning data, we synthesize 200 CC3M-element-based and 200 GENERATE ANY SCENE-element-
based captions while excluding all seen combinations, forming a 400-caption test set of unseen
compositions. The model fine-tuned with GENERATE ANY SCENE achieves the highest VQAScore,
CLIPScore, and ImageReward, indicating stronger compositional generalization than both SDv1.5
and the CC3M-finetuned baseline. Additional experiment settings and results are in Appendix C.

4 DISTILLING TARGETED CAPABILITIES

Although self-improving with GENERATE ANY SCENE shows clear advantages over high-quality
real-world datasets, its efficiency is inherently limited by the model’s own generation capabilities. To
address this, we leverage the taxonomy and systematical generation capabilities within GENERATE
ANY SCENE to identify specific strengths of proprietary models (DaLL-E 3), and distill these
capabilities into open-source models. More details are in Appendix D.

We evaluate multiple models using GENERATE ANY SCENE controllably generated captions and
observe that DaLL-E 3 achieves TIFA Score 1.5 to 2 times higher than those of other models. As
shown in Figure 4a, when comparing TIFA Score across captions with varying numbers of elements
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Figure 3: Examples for Distilling Capabilities. Examples of images generated by DaLL-E 3, the
original SDv1.5, and the fine-tuned versions. The left four captions demonstrate fine-tuning with
multi-object captions generated by GENERATE ANY SCENE for better compositionality, while the
right two columns focus on understanding hard concepts.

(objects, relations, and attributes), DaLL-E 3 counterintuitively maintains consistent performance
regardless of element count. The performance of other models declines as the element count increases,
which aligns with expected compositional challenges. We suspect that these differences are primarily
due to DaLL-E 3’s advanced capabilities in compositionality and understanding hard concepts,
which ensures high faithfulness across diverse combinations of element types and counts.

Distilling compositionality from DaLL-E 3. When analyzing model outputs from our synthetic
captions, we find that DaLL-E 3 tends to produce straightforward combinations of multiple objects
(Figure 3). In contrast, open-source models like SDv1.5 often omit objects from the captions, despite
being capable of generating each one individually. This difference suggests that DaLL-E 3 may
benefit from training data emphasizing multi-object presence, even without detailed layout or object
interaction. Such training likely underpins DaLL-E 3’s stronger performance on metrics like TIFA
Score and VQA Score that prioritize object inclusion. To effectively distill these compositional
abilities into SDv1.5, we employ GENERATE ANY SCENE for targeted synthesis of 778 multi-object
captions, paired with images generated by DaLL-E 3, for finetuning SDv1.5.

Distilling hard concepts understanding from DaLL-E 3. Figure 3 shows that DaLL-E 3 is capable
not only of handling multi-object generation but also of understanding and generating rare and
hard concepts, such as a specific species of flower. We attribute this to its training with proprietary
real-world data. Using the taxonomy of GENERATE ANY SCENE, we evaluate both models on 10K
GENERATE ANY SCENE captions that broadly cover the taxonomy. For each concept, we gather all
captions in which it appears and average their generation scores to obtain a concept-level score for
each model. Comparing these concept-level scores lets us identify the 81 concepts where SDv1.5
shows the largest gap relative to DaLL-E 3; the full list is provided in Appendix D. For distilling,
we increase the sampling frequency of these hard concepts and generate 778 captions incorporating
these hard concepts with other elements, and use DaLL-E 3 to produce corresponding images.

Baselines. For the baseline, we randomly synthesize 778 captions using GENERATE ANY SCENE
paired with DaLL-E 3-generated images to fine-tune the model. To evaluate model improvements,
we generate another 1K multi-object captions and 1K hard-concept captions separately.

Targeted caption synthesis via GENERATE ANY SCENE enables effective distillation of composi-
tional abilities and hard concept understanding. We analyze images generated by SDv1.5 before
and after fine-tuning on high-complexity captions (Figure 3). Surprisingly, with fewer than 1K LoRA
fine-tuning steps, SDv1.5 effectively learns DaLL-E 3 ’s capability to arrange and compose multiple
objects within a single image. Quantitatively, Figure 4b shows a 10% improvement in TIFA Score
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after targeted fine-tuning, surpassing the performance of the randomly fine-tuned model. On a broader
set of 10K GENERATE ANY SCENE-generated captions, the targeted fine-tuned model consistently
outperforms randomly fine-tuned and original counterparts across complex scenes (Figure 4a). These
results confirm not only the effectiveness but also the scalability and efficiency of GENERATE ANY
SCENE. Also, the results in Figure 4c show that our targeted fine-tuning with hard concepts leads to
improved model performance, reflected in higher average scores across captions and increased scores
for each challenging concept.

5 REINFORCEMENT LEARNING WITH A SYNTHETIC REWARD FUNCTION

Reinforcement Learning with Human Feedback (RLHF) has become an increasingly popular fine-
tuning strategy in text-to-image generation (41; 42; 26). However, defining an effective reward model
that accurately captures semantic alignment for text-to-image generation remains an open challenge.
Existing reward models like CLIP offer only coarse-grained image-text similarity signals, which fall
short in assessing compositional correctness and lack interpretability. Alternative approaches have
explored using visual question answering (VQA) as a proxy for evaluating semantic alignment, aiming
for finer-grained assessments, yet require either labor-intensive datasets with dense annotations or
large volumes of contextually relevant questions via advanced LLMs. Leveraging its structured scene
graph synthesis capabilities, GENERATE ANY SCENE offers a scalable alternative by producing
exhaustive semantic queries with negligible overhead, enabling low-cost, compositional reward
modeling (Sec 2.1).

Experiment setup. Building on this scene graph-based reward modeling strategy, we adopt Group
Relative Policy Optimization (GRPO) as our reinforcement learning algorithm. We fine-tune the
SimpleAR-0.5B-SFT model for one epoch using 10K captions generated by GENERATE ANY SCENE,
each paired with their scene graph-derived QA sets. For reward evaluation, we use Qwen2.5-VL-3B, a
lightweight open-source vision-language model, to answer these QA pairs given the model-generated
images. The reward is computed as the accuracy across all questions. This fine-grained, scene
graph-aligned reward provides precise feedback on compositional faithfulness. As a baseline, we
compare against SimpleAR-0.5B-RL, trained with CLIP-based rewards on 11K captions from real
world datasets for one epoch. We evaluate our scene graph-based reward model on three benchmarks:
DPG-Bench (10), GenEval (9), and GenAI-Bench (37). More details are in Appendix E.

GENERATE ANY SCENE rewards outperform CLIP. As shown in Table 4, our method outperforms
both SFT and CLIP-RL models and achieves a significant improvement, demonstrating superior
compositional faithfulness driven by explicit scene graph rewards. Importantly, this performance gain
is directly enabled by the GENERATE ANY SCENE engine, which constructs explicit scene graphs
to generate compositional captions. GENERATE ANY SCENE provides a structured and cognitively

(a) Distilling compositionality
from DaLL-E 3: Model results on
TIFA vs. total element numbers in
captions in 10K general GENERATE
ANY SCENE captions. ("Best
Open-Source Model" refers to
Flux.1-schnell)

(b) Distilling compositionality
from DaLL-E 3: Model results on
TIFA vs. total element numbers
in captions in 1K multi-object
GENERATE ANY SCENE captions.

(c) Distilling hard concepts under-
standing from DALL-E 3: Models’
average TIFA Score performance
over captions and hard concepts in
1K hard concepts GENERATE ANY
SCENE captions.

Figure 4: Results for Distilling Capabilities. The left two figures show the results for Distilling
compositionality, while the rightmost figure shows the results for Distilling hard concepts under-
standing from DALL-E 3.
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Figure 5: Comparison of generated images. Our reward model enables image generation with
better semantic alignment, realism, and visual quality than baselines.

aligned visual representation, from which we derive exhaustive QA pairs with minimal additional
cost. Combined with lightweight VLM judge, this approach offers a scalable, low-cost solution for
semantic-level reward modeling.

Table 4: Evaluation on the DPG, GenEval and GenAI benchmark. GRPO training with our reward
model outperforms both SFT baseline and CLIP-RL models. TO: two objects, P: position, CA: color
attribute.

Method DPG-Bench GenEval GenAI-Bench

Global Relation Overall TO P CA Overall Basic Advanced All

SimpleAR-0.5B-SFT 85.02 86.59 78.48 0.73 0.22 0.23 0.53 0.74 0.60 0.66
SimpleAR-0.5B-RL (Clip) 86.64 88.51 79.66 0.82 0.26 0.38 0.59 0.75 0.60 0.67
SimpleAR-0.5B-RL (Ours) 88.46 90.13 80.50 0.81 0.31 0.38 0.61 0.75 0.61 0.68

6 IMPROVING GENERATED-CONTENT DETECTION

Advances in Text-to-Vision generation underscore the need for effective content moderation (43).
Major challenges include the lack of high-quality and diverse datasets and the difficulty of generalizing
detection across models Text-to-Vision generation (44; 45). GENERATE ANY SCENE addresses these
issues by enabling scalable, systematical generation of compositional captions, increasing the diversity
and volume of synthetic data. This approach enhances existing datasets by compensating for their
limited scope-from realistic to imaginative-and variability.

Experiment setup. To demonstrate GENERATE ANY SCENE’s effectiveness in training generated
content detectors, we used the D3 dataset (46) as a baseline. We sampled 5K captioned real and
SDv1.4-generated image pairs from D3 and generated 5K additional images with GENERATE ANY
SCENE captions. We trained a ViT–T (47) model with a single-layer linear classifier, and compared
models trained with samples solely from D3 against those trained with samples GENERATE ANY
SCENE and D3.

GENERATE ANY SCENE improves generated content detectors. We evaluate the detector’s
generalization on the GenImage (48) validation set and images generated using GENERATE ANY
SCENE captions. Figure 6 demonstrates that combining GENERATE ANY SCENE-generated images
with real-world captioned images consistently enhances detection performance, particularly across
cross-model scenarios and diverse visual scenes. More details are in Appendix F.
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(a) In-domain testing (Same
Model - SD v1.4): Detection results
on images generated by SD v1.4
using the GenImage dataset.

(b) In domain testing (cross-
model):Average detection results on
images generated by multiple mod-
els using our captions.

(c) Out of domain: Average de-
tection results on images generated
by multiple models using captions
from the GenImage dataset.

Figure 6: Results for Application 4: Generated content detector. Comparison of detection
performance across different data scales using D3 alone versus the combined D3 + GENERATE ANY
SCENE training set in cross-model and cross-dataset scenarios.

7 COMPREHENSIVE EVALUATION WITH GENERATE ANY SCENE

Beyond showcasing GENERATE ANY SCENE in model training, we also show that GENERATE ANY
SCENE is a valuable resource for comprehensive and compositional evaluation. Specifically, we
synthesize 10K captions for text-to-image, 10K for text-to-video, and 1K for text-to-3D, covering
diverse scene structures and content topics. We evaluate 12 text-to-image, 9 text-to-video, and 5 text-
to-3D models. Evaluations combine GENERATE ANY SCENE synthetic scene graphs with existing
metrics (e.g., CLIP Score (49), VQA Score (39), TIFA Score (23; 31)) to assess semantic similarity,
faithfulness, and human preference alignment. Our key findings include: (1) DiT-backbone text-to-
image models align more closely with input captions than UNet-backbone models. (2) Text-to-video
models struggle with balancing dynamics and consistency, while both text-to-video and text-to-3D
models show notable gaps in human preference alignment. Except for aggregating quantitative
results, we also leverage GENERATE ANY SCENE ’s controllable captioning to evaluate models on
fine-grained factors: perplexity, scene complexity, commonsense reasoning, and content category
variation for case study.

Overall, GENERATE ANY SCENE yields stable, human-aligned rankings across T2I/T2V/T2-3D.
Through broad, controllable coverage of objects, attributes, relations, and categories, it serves as a
compositional stress test that reliably exposes plausibility gaps, category brittleness, and long-tail
concept failures in current models (see Appendix A).

8 RELATED WORK

Text-to-Vision generation models. Text-to-Image generation advances are driven by diffusion
models and LLMs. Some open-source models (22; 50; 51; 52; 53; 54) use UNet backbones to
refine images iteratively. In parallel, Diffusion Transformers (DiTs) architectures(55; 56; 57; 58)
have emerged as a better alternative in capturing long-range dependencies and improving coherence.
Proprietary models like DALL-E 3 (3) and Imagen 3 (59) still set the state-of-the-art. Based on Text-to-
Image generation method, Text-to-Video generation models typically utilize time-aware architectures
to ensure temporal coherence across frames (60; 61; 62; 63; 64; 65; 66; 67). In Text-to-3D generation,
recent proposed models (4; 68; 69; 70; 71) integrate the diffusion models with Neural Radiance Fields
(NeRF) rendering to generate diverse 3D objects. Recent studies (26; 42; 72; 73) have also explored
the integration of image generation into a unified multimodal language model (MLM) framework
based on auto-regressive transformer architectures, demonstrating promising improvements in both
performance and efficiency.

Synthetic captions for Text-to-Vision generation. Captions for Text-to-Vision generation models
vary greatly in diversity, complexity, and compositionality. This variation makes it challenging
and costly to collect large-scale and diverse captions written by humans. Consequently, synthetic
captions have been widely used for both training (74; 38; 75; 76; 8; 77; 78; 79) and evaluation
purposes (7). For example, training methods like LLM-Grounded Diffusion (74) leverage LLM-
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generated captions to enhance the model’s understanding and alignment with human instruction. For
evaluation, benchmarks such as T2I-CompBench (7) and T2V-CompBench (8) utilize benchmarks
generated by LLMs. However, LLMs are hard to control and may introduce exhibit systematic bias.
In this work, we propose a programmatic scene graph-based data engine that can generate infinitely
diverse captions for improving Text-to-Vision generation models.

Finetuning techniques for Text-to-Vision generation. To accommodate the diverse applications
and personalization needs in text-to-vision models, numerous fine-tuning techniques have been
developed. LoRA (40) reduces fine-tuning costs via low-rank weight updates, while Textual Inver-
sion (80; 81) introduces new word embeddings for novel concepts without altering core parameters.
DreamBooth (82) adapts models to specific subjects or styles using a few personalized images, and
DreamSync (38) enables models to self-improve by learning from their own high-quality outputs.
Recently, RLHF (26; 41; 42) in Text-to-Vision generation has shown promise as an efficient fine-
tuning strategy. In this work, we use several fine-tuning techniques with GENERATE ANY SCENE to
improve Text-to-Vision generation models.

9 CONCLUSION

We present GENERATE ANY SCENE, a system leveraging scene graph programming to generate
diverse and compositional synthetic captions for Text-to-Vision generation tasks. It extends beyond
existing real-world caption datasets to include comprehensive scenes and even implausible scenarios.
To demonstrate the effectiveness of GENERATE ANY SCENE, we explore four applications: (1)
self-improvement by iteratively optimizing models, (2) distillation of proprietary model strengths into
open-source models, (3) a scene-graph-based efficient reward model within the GRPO, and (4) robust
content moderation with diverse synthetic data. GENERATE ANY SCENE highlights the importance
of synthetic data in improving Text-to-Vision generation, and addresses the need to systematically
define and scalably produce the space of visual scenes.

10
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A EVALUATING Text-to-Vision generation MODELS WITH GENERATE ANY
SCENE

A.1 EXPERIMENT SETTINGS

Models. We conduct experiments on 12 Text-to-image models (54; 50; 22; 51; 52; 55; 56; 57; 58; 3), 9
Text-to-Video models (63; 83; 62; 60; 61; 64; 67; 66; 65), and 5 Text-to-3D models (68; 71; 69; 4; 70).

• For Text-to-Image generation, we select a range of open-source models, including those
utilizing UNet backbones, such as DeepFloyd IF (54), SDv2.1 (22), SDXL (50), Playground
v2.5 (51), and Wuerstchen v2 (52), as well as models with DiT backbones, including SD3
Medium (55), PixArt-ω (56), PixArt-! (57), FLUX.1-schnell (58), FLUX.1-dev (58), and
FLUX 1. Closed-source models, such as DaLL-E 3 (3) and FLUX1.1 PRO (58), are also
assessed to ensure a comprehensive comparison. All models are evaluated at a resolution of
1024 ! 1024 pixels.

• For Text-to-Video generation, we select nine open-source models: ModelScope (63),
ZeroScope (83), Text2Video-Zero (62), CogVideoX-2B (66), VideoCrafter2 (65), Ani-
mateLCM (61), AnimateDiff (60), FreeInit (64), and Open-Sora 1.2 (67). We standardize
the frame length to 16 across all video models for fair comparisons.

• For Text-to-3D generation, we evaluate five recently proposed models: SJC (69), Dream-
Fusion (68), Magic3D (71), Latent-NeRF (70), and ProlificDreamer (4). We employ the
implementation and configurations provided by ThreeStudio (84) and generate videos by
rendering from 120 viewpoints. To accelerate inference, we omit the refinement stage. For
Magic3D and DreamFusion, we respectively use DeepFloyd IF and SDv2.1 as their 2D
backbones.

Metrics. Across all Text-to-Vision generation tasks, we use Clip Score (49) (semantic similarity),
VQA Score (39) (faithfulness), TIFA Score (23; 31) (faithfulness), Pick Score (85) (human preference),
and ImageReward Score (86) (human preference) as general metrics:

• Clip Score: Assesses semantic similarity between images and text.
• VQA Score and TIFA Score: Evaluate faithfulness by generating question-answer pairs and

measuring answer accuracy from images.
• Pick Score and ImageReward Score: Capture human preference tendencies.

We also use metrics in VBench (87) to evaluate Text-to-Video generation models on fine-grained
dimensions, such as consistency and dynamics, providing detailed insights into video performance.

For Text-to-Video generation and Text-to-3D generation tasks:

• We calculate Clip Score, Pick Score, and ImageReward Score on each frame, then average
these scores across all frames to obtain an overall video score.

• For VQA Score and TIFA Score, we handle Text-to-Video generation and Text-to-3D genera-
tion tasks differently:
↑ In Text-to-Video generation tasks, we uniformly sample four frames from the 16-frame

sequence and arrange them in a 2 ! 2 grid image.
↑ For Text-to-3D generation tasks, we render images at 45-degree intervals from nine

different viewpoints and arrange them in a 3 ! 3 grid.

This sampling approach optimizes inference speed without affecting score accuracy (39).

Synthetic captions. We evaluate our Text-to-Image generation and Text-to-Video generation models
on 10K randomly generated captions, with scene graph complexity ranging from 3 to 12 and scene
attributes from 0 to 5, using unrestricted metadata. The captions exhibit an average graph degree of
1.15, with values spanning from 0.0 to 0.8. The mean number of connected components per scene
graph is 3.51, ranging from 1 to 11. For Text-to-3D generation models, due to their limitations in
handling complex captions and time-intensive generation, we restrict scene graph complexity to 1-3,
scene attributes to 0-2, and evaluate on 1K captions.
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Figure 7: Comparative evaluation of Text-to-Image generation models across different backbones
(DiT and UNet) using multiple metrics: TIFA Score, Pick Score, VQA Score, and ImageReward Score.

A.2 OVERALL RESULTS

We evaluate Text-to-Image generation, Text-to-Video generation, and Text-to-3D generation models
on GENERATE ANY SCENE.

Table 5: Overall performance of Text-to-Image generation models over 10K GENERATE ANY SCENE
captions. †Evaluated on a 1K caption subset due to inference cost constraints.

Model clip score pick score vqa score tifa score image reward score
Playground v2.5 (51) 0.2581 0.2132 0.5734 0.2569 0.2919
Stable Diffusion v2-1 (22) 0.2453 0.1988 0.5282 0.2310 -0.9760
SDXL (50) 0.2614 0.2046 0.5328 0.2361 -0.3463
Wuerstchen v2 (52) 0.2448 0.2022 0.5352 0.2239 -0.3339
DeepFloyd IF XL (54) 0.2396 0.1935 0.5397 0.2171 -0.8687
Stable Diffusion 3 Medium (55) 0.2527 0.2027 0.5579 0.2693 -0.0557
PixArt-ω (56) 0.2363 0.2050 0.6049 0.2593 0.1149
PixArt-! (57) 0.2390 0.2068 0.6109 0.2683 0.0425
FLUX.1-dev (58) 0.2341 0.2060 0.5561 0.2295 0.1588
FLUX.1-schnell (58) 0.2542 0.2047 0.6132 0.2833 0.1251
FLUX1.1 PRO (58)† 0.2315 0.2065 0.5744 0.2454 -0.0361
Dalle-3 (3) 0.2518 0.2006 0.6871 0.4249 0.3464
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Text-to-Image generation results. (Figure 7, Table 5)

1. DiT-backbone models outperform UNet-backbone models on VQA Score and TIFA Score,
indicating greater faithfulness and comprehensiveness to input captions.

2. Despite using a UNet architecture, Playground v2.5 achieves higher Pick Score and Im-
ageReward Score scores than other open-source models. We attribute this to Playground
v2.5 ’s alignment with human preferences achieved during training.

3. The closed-source model DaLL-E 3 maintains a significant lead in VQA Score, TIFA Score,
and ImageReward Score, demonstrating strong faithfulness and alignment with captions
across generated content.

Text-to-Video generation results. (Table 6,7)

Table 6: Overall performance of open-source Text-to-Video generation models over 10K GENERATE

ANY SCENE captions. Red Cell is the highest score. Yellow Cell is the second highest score.†Close-
source models are evaluated on a 1K caption subset due to high inference cost.

Model clip score pick score image reward
score VQA score TiFA score

VideoCraft2 (65) 0.2398 0.1976 -0.4202 0.5018 0.2466
AnimateLCM (61) 0.2450 0.1987 -0.5754 0.4816 0.2176
AnimateDiff (60) 0.2610 0.1959 -0.7301 0.5255 0.2208
Open-Sora 1.2 (67) 0.2259 0.1928 -0.6277 0.5519 0.2414
FreeInit (64) 0.2579 0.1950 -0.9335 0.5123 0.2047
ModelScope (63) 0.2041 0.1886 -1.9172 0.3840 0.1219
Text2Video-Zero (62) 0.2539 0.1933 -1.2050 0.4753 0.1952
CogVideoX-2B (66) 0.2038 0.1901 -1.2301 0.4585 0.1997
ZeroScope (83) 0.2289 0.1933 -1.1599 0.4892 0.2388
KLING 1.6 (88)† 0.2215 0.1985 -0.3419 0.5307 0.2802
Wanx 2.1 (89)† 0.2308 0.1969 -0.1418 0.5970 0.3328

Table 7: Overall performance of open-source Text-to-Video generation models over 10K GENERATE

ANY SCENE captions with VBench metrics. Red Cell is the highest score. Blue Cell is the lowest
score.

Model subject
consistency

background
consistency

motion
smoothness

dynamic
degree

aesthetic
quality

imaging
quality

Open-Sora 1.2 0.9964 0.9907 0.9973 0.0044 0.5235 0.6648
Text2Video-Zero 0.8471 0.9030 0.8301 0.9999 0.4889 0.7018
VideoCraft2 0.9768 0.9688 0.9833 0.3556 0.5515 0.6974
AnimateDiff 0.9823 0.9733 0.9859 0.1406 0.5427 0.5830
FreeInit 0.9581 0.9571 0.9752 0.4440 0.5200 0.5456
ModelScope 0.9795 0.9831 0.9803 0.1281 0.3993 0.6494
AnimateLCM 0.9883 0.9802 0.9887 0.0612 0.6323 0.6977
CogVideoX-2B 0.9583 0.9602 0.9823 0.4980 0.4607 0.6098
ZeroScope 0.9814 0.9811 0.9919 0.1670 0.4582 0.6782

1. Open-source text-to-video models face challenges in balancing dynamics and consistency
(Table 7). This is especially evident in Open-Sora 1.2, which achieves high consistency but
minimal dynamics, and Text2Video-Zero, which excels in dynamics but suffers from frame
inconsistency.

2. All models exhibit negative ImageReward Score (Table 6), suggesting a lack of human-
preferred visual appeal in the generated content, even in cases where certain models demon-
strate strong semantic alignment.
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3. As expected, SOTA close-source text-to-video models outperform others overall, particularly
in image reward, VQA score, and TIFA score. This indicates their superior alignment
with human preferences, as well as stronger faithfulness and compositional capabilities in
generation.

4. Among open-source models, VideoCrafter2 strikes a balance across key metrics, leading in
human-preference alignment, faithfulness, consistency, and dynamic.

Text-to-3D generation results. (Table 8)

Table 8: Overall performance of Text-to-3D generation models over 1K GENERATE ANY SCENE
captions. †Evaluated on a 100 caption subset due to high inference cost.

Model clip score pick score vqa score tifa score image reward
score

Latent-NeRF (70) 0.2115 0.1910 0.4767 0.2216 -1.5311
DreamFusion-sd (68) 0.1961 0.1906 0.4421 0.1657 -1.5582
Magic3D-sd (71) 0.1947 0.1903 0.4193 0.1537 -1.6327
SJC (69) 0.2191 0.1915 0.5015 0.2563 -1.4370
DreamFusion-IF (68) 0.1828 0.1857 0.3872 0.1416 -1.9353
Magic3D-IF (71) 0.1919 0.1866 0.4039 0.1537 -1.8465
ProlificDreamer (4) 0.2125 0.1940 0.5411 0.2704 -1.2774
Meshy-4 (90)† 0.2163 0.1922 0.5290 0.2908 -1.0496

1. Among open-source models, ProlificDreamer outperforms other models, particularly in
ImageReward Score, VQA Score and TIFA Score.

2. All models receive negative ImageReward Score scores, highlighting a significant gap
between human preference and current Text-to-3D generation generation capabilities.

3. Meshy-4 demonstrates overall superior performance compared to all open-source models,
especially in terms of Clip Score, TIFA Score and ImageReward Score, reflecting its strengths
in semantic generation and human preference alignment.

A.3 VALIDATION OF PHRASING ROBUSTNESS AND HUMAN ALIGNMENT

To assess robustness to linguistic variation and to verify that automated metrics reflect human
preferences, we conduct two focused studies.

A.3.1 PHRASING ROBUSTNESS VIA PARAPHRASING

Setup. We sample 100 scene graphs from the 10K benchmark while preserving the distribution
of object counts, relation density, and attribute complexity. For each graph, GPT-4o generates a
linguistically varied yet graph-faithful caption using the prompt below.
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Paraphrasing Prompt

You are given a scene graph in JSON format, where:

- "nodes" contain objects and their attributes,

- "edges" describe relationships between objects or link attributes

to objects.

Your task:

1. Understand the semantic meaning of each node and edge.

2. Convert the graph into a natural language caption that describes

the entire scene.

3. Include all objects, attributes, and relations from the graph,

and strictly follow the graph structure.

4. Do not introduce new objects or relationships not present in the

graph.

Input: {scene_graph}

We then re-score all models with VQA Score under these paraphrased captions. Results are listed in
Table 9.

Table 9: Paraphrase robustness: VQA Score and ranks on 100 graphs.

Model Orig. Score Para. Score Diff Orig. Rank Para. Rank

DALLE-3 0.6871 0.7542 +0.0671 1 1
FLUX.1-schnell 0.6132 0.6648 +0.0516 2 2
PixArt-! 0.6109 0.6159 +0.0050 3 3
PixArt-ω 0.6049 0.6043 -0.0006 4 4
Playground v2.5 0.5734 0.5075 -0.0659 5 8
Stable Diffusion 3 0.5579 0.5140 -0.0439 6 7
FLUX.1-dev 0.5561 0.5024 -0.0537 7 9
DeepFloyd IF XL 0.5397 0.5606 +0.0209 8 5
Wuerstchen v2 0.5352 0.5014 -0.0338 9 10
SDXL 0.5328 0.5322 -0.0006 10 6
SD v2-1 0.5282 0.4961 -0.0321 11 11

Findings. The Pearson correlation coefficient between model rankings on programmatic versus
paraphrased captions is 0.9232, indicating a very strong positive correlation.

This validation study demonstrates strong consistency between the two approaches. Importantly, the
top-performing models (DaLL-E 3, FLUX.1-schnell, PixArt-!, PixArt-ω) maintain their rankings
across both evaluation conditions, while the relative ordering of models remains largely consistent.
This high correlation validates that our programmatic approach produces rankings that are gener-
alizable and not artifacts of the templated caption generation. The slight variations observed (e.g.,
some mid-tier models showing small rank changes) are within expected bounds and do not affect the
overall conclusions about model capabilities.

A.3.2 HUMAN ALIGNMENT STUDY

Setup. We evaluate six representative models (DaLL-E 3, FLUX.1-schnell, PixArt-!, Playground
v2.5, SD3 Medium, SDv2.1) with diverse performance characteristics and recruit 3 human evaluators.
Three independent evaluators each assess 40 caption–image groups, with 10 shared overlapping
groups across all evaluators to measure inter-annotator agreement. Evaluators ranked the generated
images based on both relevance to the caption and overall visual quality. We show the rankings in
Table 10.

Findings
Inter-annotator reliability. The 3 evaluators showed strong agreement on the 10 shared samples, with
a Spearman correlation coefficient of 0.962, demonstrating consistent human judgment criteria.
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Table 10: Human vs. VQA rankings (lower is better).

Model VQA Rank Human Avg. Rank

DaLL-E 3 1 1
FLUX.1-schnell 2 2
PixArt-! 3 4
Playground v2.5 4 3
SD3 Medium 5 5
SDv2.1 6 6

Human–metric alignment. The correlation between human rankings and our VQA Score rankings is
0.918, indicating strong alignment between automated and human evaluation:

This study validates that our VQA Score-based rankings closely align with human preferences.
The consistency between automated metrics and human judgment strengthens confidence in our
benchmark’s ability to assess model performance in a manner that reflects human perception.

A.4 MORE ANALYSIS WITH GENERATE ANY SCENE

With GENERATE ANY SCENE, we can generate infinitely diverse and highly controllable captions.
Using GENERATE ANY SCENE, we conduct several analyses to provide insights into the performance
of today’s Text-to-Vision generation models.

A.4.1 PERFORMANCE ANALYSIS ACROSS CAPTION PROPERTIES

In this section, we delve into how model performance varies with respect to distinct properties of
GENERATE ANY SCENE captions. While GENERATE ANY SCENE is capable of generating an
extensive diversity of captions, these outputs inherently differ in key characteristics that influence
model evaluation. Specifically, we examine three properties of the caption: Commonsense, Perplexity,
and Scene Graph Complexity (captured as the number of elements in the captions). These properties
are critical in understanding how different models perform across a spectrum of linguistic and semantic
challenges presented by captions with varying levels of coherence, plausibility, and compositional
richness.

Perplexity. (Figure 8) Perplexity is a metric used to measure a language model’s unpredictability
or uncertainty in generating a text sequence. A higher perplexity value indicates that the sentences
are less coherent or less likely to be generated by the model.

As shown in Figure 8, From left to right, when perplexity increases, indicating that the sentences
become less reasonable and less typical of those generated by a language model, we observe no
clear or consistent trends across all models and metrics. This suggests that the relationship between
perplexity and model performance varies depending on the specific model and evaluation metric.

Commonsense. (Figure 9) Commonsense is an inherent property of text. We utilize the Vera
Score (91), a metric generated by a fine-tuned LLM to evaluate the text’s commonsense level.

As shown in Figure 9, from left to right, as the Vera Score increases—indicating that the captions
exhibit greater commonsense reasoning—we observe a general improvement in performance across
all metrics and models, except for Clip Score. This trend underscores the correlation between
commonsense-rich captions and enhanced model performance.

Element Numbers (Complexity of Scene Graph). (Figure 10) Finally, we evaluate model
performance across total element numbers in the captions, which represent the complexity of scene
graphs (objects + attributes + relations).

From left to right, the complexity of scene graphs becomes higher, reflecting more compositional and
intricate captions. Across most metrics and models, we observe a noticeable performance decline
as the scene graphs become more complex. However, an interesting exception is observed in the
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(a) (b) (c)

(d) (e) (f)

Figure 8: Average performance of models across different percentiles of perplexity of captions,
evaluated on various metrics. From left to right, the perplexity decreases, indicating captions that are
progressively more reasonable and easier for the LLM to generate.

(a) (b) (c)

(d) (e) (f)

Figure 9: Average performance of models across different percentiles of Vera Score for captions,
evaluated on various metrics. From left to right, the Vera Score decreases, indicating captions that
exhibit less commonsense reasoning and are more likely to describe implausible scenes.
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(a) (b) (c)

(d) (e) (f)

Figure 10: Average performance of models across different numbers of elements (objects + attributes
+ relations) in the scene graph (complexity of the scene graph) of the captions, evaluated on various
metrics. From left to right, as the number of elements (complexity) increases, the scene graphs
become more complicated and compositional.

performance of DaLL-E 3. Unlike other models, DaLL-E 3 performs exceptionally well on VQA
Score and TIFA Score, particularly on VQA Score, where it even shows a slight improvement as
caption complexity increases. This suggests that DaLL-E 3 may have a unique capacity to handle
complex and compositional captions effectively.

A.4.2 ANALYSIS ON DIFFERENT METRICS

Compared with most LLM and VLM benchmarks that use multiple-choice questions and accuracy as
metrics. There is no universal metric in evaluating Text-to-Vision generation models. Researchers
commonly used model-based metrics like Clip Score, VQA Score, etc. Each of these metrics is created
and fine-tuned for different purposes with bias. Therefore, we also analysis on different metrics.

Clip Score isn’t a universal metric. Clip Score is one of the most widely used metrics in Text-
to-Vision generation for evaluating the alignment between visual content and text. However, our
analysis reveals that Clip Score is not a perfect metric and displays some unusual trends. For instance,
as shown in Figures 8, 9, and 10, we compute the perplexity across 10K captions used in our study,
where higher perplexity indicates more unpredictable or disorganized text. Interestingly, unlike other
metrics, Clip Score decreases as perplexity lowers, suggesting that Clip Score tends to favor more
disorganized text. This behavior is counterintuitive and highlights the potential limitations of using
Clip Score as a robust alignment metric.

Limitations of human preference-based metrics. We use two metrics fine-tuned using human
preference data: Pick Score and ImageReward Score. However, we found that these metrics exhibit
a strong bias toward the data on which they were fine-tuned. For instance, as shown in Table 5,
Pick Score assigns similar scores across all models, failing to provide significant differentiation or
meaningful insights into model performance. In contrast, ImageReward Score demonstrates clearer
preferences, favoring models such as DaLL-E 3 and Playground v2.5, which incorporated human-
alignment techniques during their training. However, this metric shows a significant drawback:

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 11: Average performance scores of all
models across different genders evaluated using
various metrics.

Figure 12: Average performance scores of all
models across different races evaluated using
various metrics.

it assigns disproportionately large negative scores to models like SDv2.1, indicating a potential
over-sensitivity to alignment mismatches. Such behavior highlights the limitations of these metrics in
providing fair and unbiased evaluations across diverse model architectures.

VQA Score and TIFA Score are relative reliable metrics. Among the evaluated metrics, VQA
Score and TIFA Score stand out by assessing model performance on VQA tasks, rather than relying
solely on subjective human preferences. This approach enhances the interpretability of the evaluation
process. Additionally, we observed that the results from VQA Score and TIFA Score show a stronger
correlation with other established benchmarks. Based on these advantages, we recommend prioritizing
these two metrics for evaluation. However, it is important to note that their effectiveness is constrained
by the limitations of the VQA models utilized in the evaluation.

A.4.3 FAIRNESS ANALYSIS

We evaluate fairness by examining the model’s performance across different genders and races.
Specifically, we calculate the average performance for each node and its associated child nodes within
the taxonomy tree constructed for objects. For example, the node “females” includes child nodes
such as “waitresses,” and their combined performance is considered in the analysis.

Gender. In gender, we observe a notable performance gap between females and males, as could be
seen from Figure 11, Models are better at generating male concepts.

Race. There are also performance gaps in different races. From Figure 12, we found that "white
(person)" and "black (person)" perform better than "asian (person)", "Indian (amerindian)", and
"Latin American".

A.4.4 CORRELATION OF GENERATE ANY SCENE WITH OTHER Text-to-Vision generation
BENCHMARKS

The GENERATE ANY SCENE benchmark uniquely relies entirely on synthetic captions to evaluate
models. To assess the transferability of these synthetic captions, we analyzed the consistency in
model rankings across different benchmarks (79; 37; 92). Specifically, we identified the overlap of
models evaluated by two benchmarks and computed the Spearman correlation coefficient between
their rankings.

As shown in the figure 13, GENERATE ANY SCENE demonstrates a strong correlation with other
benchmarks, such as Conceptmix (79) and GenAI Bench (37), indicating the robustness and reliability
of GENERATE ANY SCENE’s synthetic caption-based evaluations. This suggests that the synthetic
captions generated by GENERATE ANY SCENE can effectively reflect model performance trends,
aligning closely with those observed in benchmarks using real-world captions or alternative evaluation
methods.
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Figure 13: Correlation of GENERATE ANY SCENE with other popular Text-to-Vision generation
benchmarks.

(a) SDv2.1 vs. SD3 Medium on average VQA Score in
fine-grained categories.

(b) PixArt-! vs. SD3 Medium on average VQA Score
in fine-grained categories.

(c) FLUX.1-schnell vs. SD3 Medium on average VQA
Score in fine-grained categories.

(d) PixArt-! vs. FLUX.1-schnell on average VQA
Score in fine-grained categories.

Figure 14: Pairwise comparison on average VQA Score in fine-grained categories.
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A.4.5 CASE STUDY: PAIRWISE FINE-GRAINED MODEL COMPARISON

Evaluating models using a single numerical average score can be limiting, as different training data
often lead models to excel in generating different types of concepts. By leveraging the taxonomy we
developed for GENERATE ANY SCENE, we can systematically organize these concepts and evaluate
each model’s performance on specific concepts over the taxonomy. This approach enables a more
detailed comparison of how well models perform on individual concepts rather than relying solely on
an overall average score. Our analysis revealed that, while the models may achieve similar average
performance, their strengths and weaknesses vary significantly across different concepts. Here we
present a pairwise comparison of models across different metrics.
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B DETAILS OF TAXONOMY OF VISUAL CONCEPTS

To construct a scene graph, we utilize three primary types of metadata: objects, attributes, and
relations, which represent the structure of a visual scene. Additionally, scene attributes—which
include factors like image style, perspective, and video time span—capture broader aspects of the
visual content. Together, the scene graph and scene attributes form a comprehensive representation of
the scene.

Our metadata is further organized using a well-defined taxonomy, enhancing the ability to generate
controllable captions. This hierarchical taxonomy not only facilitates the creation of diverse scene
graphs, but also enables fine-grained and systematic model evaluation.

Objects. To enhance the comprehensiveness and taxonomy of object data, we leverage noun synsets
and the structure of WordNet (32). In WordNet, a physical object is defined as "a tangible and visible
entity; an entity that can cast a shadow." Following this definition, we designate the physical object
as the root node, constructing a hierarchical tree with all 28,787 hyponyms under this category as the
set of objects in our model.

Following WordNet’s hypernym-hyponym relationships, we establish a tree structure, linking each
object to its primary parent node based on its first-listed hypernym. For objects with multiple
hypernyms, we retain only the primary parent to simplify the hierarchy. Furthermore, to reduce
ambiguity, if multiple senses of a term share the same parent, we exclude that term itself and reassign
its children to the original parent node. This approach yields a well-defined and disambiguated
taxonomy.

Attributes. The attributes of a scene graph represent properties or characteristics associated with
each object. We classify these attributes into nine primary categories. For color, we aggregate 677
unique entries sourced from Wikipedia (33). The material category comprises 76 types, referenced
from several public datasets (93; 94; 95). The texture category includes 42 kinds from the Describable
Textures Dataset (96), while the architectural style encompasses 25 distinct styles (97). Additionally,
we collect 85 states, 41 shapes, and 24 sizes. For human descriptors, we compile 59 terms across
subcategories, including body type and height. Finally, we collect 465 common adjectives covering
general characteristics of objects to enhance the descriptive richness of our scene graphs.

Relationships. We leverage the Robin dataset (34) as the foundation for relationship metadata,
encompassing six key categories: spatial, functional, interactional, social, emotional, and symbolic.
With 10,492 relationships, the dataset provides a comprehensive and systematic repository that
supports modeling diverse and complex object interactions. Its extensive coverage captures both
tangible and abstract connections, forming a robust framework for accurate scene graph representation.

Scene Attributes. In Text-to-Vision generation tasks, people mainly focus on creating realistic
images and art from a text description (98; 2; 3). For artistic styles, we define scene attributes
using 76 renowned artists, 41 genres, and 126 painting styles from WikiArt (99), along with 29
common painting techniques. For realistic imagery, we construct camera settings attributes across 6
categories: camera models, focal lengths, perspectives, apertures, depths of field, and shot scales. The
camera models are sourced from the 1000 Cameras Dataset (100), while the remaining categories
are constructed based on photography knowledge and common captions in Text-to-Vision generation
tasks (1; 101). To control scene settings, we categorize location, weather and lighting attributes,
using 430 diverse locations from Places365 (35), alongside 76 weathers and 57 lighting conditions.
For video generation, we introduce attributes that describe dynamic elements. These include 12
types of camera rig, 30 distinct camera movements, 15 video editing styles, and 27 temporal spans.
The comprehensive scene attributes that we construct allow for the detailed and programmatic
Text-to-Vision generation generation.
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C DETAILS OF SELF-IMPROVING MODELS WITH SYNTHETIC CAPTIONS
(SECTION 3)

C.1 EXPERIMENT DETAILS

C.1.1 CAPTIONS PREPARATION

To evaluate the effectiveness of our iterative self-improving Text-to-Vision generation model, we
generated three distinct sets of 10K captions using GENERATE ANY SCENE, covering a sample
complexity range from 3 to 12. These captions were programmatically created to reflect a spectrum
of structured scene graph compositions, designed to challenge and enrich the model’s learning
capabilities.

For comparative analysis, we leveraged the Conceptual Captions (CC3M) (102) dataset, a large-scale
benchmark containing approximately 3.3 million image-caption pairs sourced from web alt-text
descriptions. CC3M is renowned for its diverse visual content and natural language expressions,
encompassing a wide range of styles, contexts, and semantic nuances.

To ensure fair comparison, we randomly sampled three subsets of 10K captions from the CC3M
dataset, matching the GENERATE ANY SCENE-generated caption sets in size. This approach stan-
dardizes data volume while enabling direct performance evaluation. The diversity and semantic
richness of the CC3M captions serve as a robust benchmark to assess whether GENERATE ANY
SCENE-generated captions can match or exceed the descriptive quality of real-world data across
varied visual contexts.

C.1.2 DATASET CONSTRUCTION AND SELECTION STRATEGIES

For the captions generated by GENERATE ANY SCENE, we employed a top-scoring selection strategy
to construct the fine-tuning training dataset, using a random selection strategy as a baseline for
comparison. Specifically, for each caption, the model generated eight images. Under the top-scoring
strategy, we evaluated the generated images using the VQA score and selected the highest-scoring
image as the best representation of the caption. This process yielded 10K top-ranked images per
iteration, from which the top 25% (approximately 2.5k images) with the highest VQA scores were
selected to form the fine-tuning dataset.

In the random selection strategy, one image was randomly chosen from the eight generated per
caption, and 25% of these 10K randomly selected images were sampled to create the fine-tuning
dataset, maintaining parity in data size.

For the CC3M dataset, each caption was uniquely paired with a real image. From the 10K real
image-caption pairs sampled from CC3M, the top 25% with the highest VQA scores were selected as
the fine-tuning training dataset. This ensured consistency in data size and selection criteria across all
methods, facilitating a rigorous and equitable comparison of fine-tuning strategies.

C.1.3 FINE-TUNING DETAILS

We fine-tuned the SDv1.5 using the LoRA technique. The training was conducted with a resolution
of 512 → 512 for input images and a batch size of 8. Gradients were accumulated over two steps.
The optimization process utilized the AdamW optimizer with ε1 = 0.9, ε2 = 0.999, an ϑ value of
1→ 10→8, and a weight decay of 10→2. The learning rate was set to 1→ 10→4 and followed a cosine
scheduler for smooth decay during training. To ensure stability, a gradient clipping threshold of 1.0
was applied. The fine-tuning process was executed for one epoch, with a maximum of 2500 training
steps. For the LoRA-specific configurations, we set the rank of the low-rank adaptation layers and
the scaling factor ω to be 128.

After completing fine-tuning for each epoch, we set the LoRA weight to 0.75 and integrate it into
SDv1.5 to guide image generation and selection for the next subset. For the CC3M dataset, images
from the subsequent subset are directly selected.

In the following epoch, the fine-tuned LoRA parameters from the previous epoch are loaded and
used to resume training on the current subset, ensuring continuity and leveraging the incremental
improvements from prior iterations.
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Figure 15: Visualization of Different Caption Fine-Tuning.

In Figure 15, we present results using our captions and the CC3M captions. The model fine-tuned
with captions generated by GENERATE ANY SCENE demonstrates superior performance in terms of
text semantic relevance and the generation of complex compositional scenes.

C.2 EVALUATION ON TIFA BENCH

Aside from our own test set and GenAI benchmark, we also evaluated our fine-tuned Text-to-Image
generation models on the Tifa Bench (Figure 16), where we observed the same trend: models
fine-tuned with our captions consistently outperformed the original SDv1.5 and CC3M fine-tuned
models.

Figure 16: Results for Application 1: Self-Improving Models. Average TIFA score of SDv1.5
fine-tuned with different data over TIFA Bench.
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C.3 ADDITIONAL REAL-DATA BASELINES

Setup. We conduct more experiments comparing GENERATE ANY SCENE synthetic captions to
other real-world caption sources. We sampled 10K captions from MS-COCO-2017 and LAION-
COCO for one-epoch LoRA fine-tuning under same experimental settings. The results on GENERATE
ANY SCENE test set are summarized in Table 11.

Table 11: Self-improvement on GENERATE ANY SCENE Test (VQA). One-epoch finetuning, equal
budget.

Method VQA ↓
Baseline (SDv1.5) 0.508
MS-COCO-2017 0.508
LAION-COCO 0.510
CC3M 0.508
GAS (Random) 0.524
GAS (Top-Score) 0.530

Findings. Fine-tuning with MS-COCO-2017 and LAION-COCO captions yields results similar to
CC3M, with none surpassing the significant improvements achieved by our GENERATE ANY SCENE
captions. We think that although MS-COCO-2017 and LAION captions are generally high-quality
and well-aligned with images, they offer limited compositional diversity. These additional results
confirm that the observed gains are not specific to CC3M but generalize across other widely used
real-caption datasets. This further supports our claim that the compositional diversity of GENERATE
ANY SCENE synthetic captions drives the improvement.

C.4 FULL FINE-TUNING VS. LORA FINE-TUNING

Setup. We replicate the self-improvement pipeline with full fine-tuning and compare three strategies:
GENERATE ANY SCENE captions with high-score selection, GENERATE ANY SCENE captions with
random selection, and CC3M captions as the real-data baseline. The results are shown in Tables 12
and 13.

Table 12: Results on GENERATE ANY SCENE test set under full fine-tuning. (VQA Score)

Method Iter-1 Iter-2 Iter-3

Baseline 0.508 — —
CC3M (Full FT) 0.496 0.518 0.519
GAS (Rand, Full FT) 0.510 0.519 0.520
GAS (Top, Full FT) 0.510 0.534 0.540

Table 13: Results on GenAI-Bench under full fine-tuning. (VQA Score)

Method Iter-1 Iter-2 Iter-3

Baseline 0.617 — —
CC3M (Full FT) 0.589 0.619 0.622
GAS (Rand, Full FT) 0.599 0.621 0.617
GAS (Top, Full FT) 0.620 0.626 0.634

Findings. Using our GENERATE ANY SCENE captions with high score selection not only improves
performance consistently across iterations but also surpasses CC3M at every stage. The full fine-
tuning results confirm that our captions and strategy’s effectiveness is not dependent on the specific
training approach (LoRA vs. full fine-tuning). The consistent improvement patterns across both
evaluation benchmarks validate the robustness of our iterative self-improvement framework.
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D DETAILS OF DISTILLING TARGETED CAPABILITIES (SECTION 4)

D.1 COLLECTING HARD CONCEPTS

We evaluate both models on 10K GENERATE ANY SCENE captions and select 81 challenging object
concepts where SDv1.5 and DaLL-E 3 exhibit the largest gap. To determine the score for each
concept, we calculated the average TIFA Score of the captions containing that specific concept. For
each targeted-generated caption, we generate four images and use the one with the highest VQA
Score. The full list of hard concepts is shown below:

1. cloverleaf
2. aerie (habitation)
3. admixture
4. webbing (web)
5. platter
6. voussoir
7. hearthstone
8. puttee
9. biretta

10. yarmulke
11. surplice
12. overcoat
13. needlepoint
14. headshot
15. photomicrograph
16. lavaliere
17. crepe
18. tureen
19. bale
20. jetliner
21. square-rigger
22. supertanker
23. pocketcomb
24. filament (wire)
25. inverter
26. denture
27. lidar
28. volumeter
29. colonoscope
30. synchrocyclotron
31. miller (shaper)
32. alternator
33. dicer
34. trundle
35. paddle (blade)
36. harmonica
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37. piccolo
38. handrest
39. rundle
40. blowtorch
41. volleyball
42. tile (man)
43. shuttlecock
44. jigsaw
45. roaster (pan)
46. maze
47. belt (ammunition)
48. gaddi
49. drawer (container)
50. tenter
51. pinnacle (steeple)
52. pegboard
53. afterdeck
54. scaffold
55. catheter
56. broomcorn
57. spearmint
58. okra (herb)
59. goatsfoot
60. peperomia
61. ammobium
62. gazania
63. echinocactus
64. birthwort
65. love-in-a-mist (passionflower)
66. ragwort
67. spicebush (allspice)
68. leadplant
69. barberry
70. hamelia
71. jimsonweed
72. undershrub
73. dogwood
74. butternut (walnut)
75. bayberry (tree)
76. lodestar
77. tapa (bark)
78. epicalyx
79. blackberry (berry)
80. stub
81. shag (tangle)
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D.2 EXPERIMENT DETAILS

We conducted targeted fine-tuning experiments on SDv1.5 to evaluate GENERATE ANY SCENE’s
effectiveness in distilling model compositionality and learning hard concepts. For each task, we
selected a dataset of 778 GENERATE ANY SCENE captions paired with images generated by DaLL-
E 3. For compositionality, we selected multi-object captions from the existing dataset of 10K
GENERATE ANY SCENE captions and paired them with the corresponding images generated by
DaLL-E 3. To address hard concept learning, we first used SDv1.5 to generate images based on
the 10K GENERATE ANY SCENE captions and identified the hard concepts with the lowest VQA
scores. These concepts were then used to create a subset of objects, which we recombined into our
scene-graph based captions with complexity levels ranging from 3 to 9. Finally, we used DaLL-E 3
to generate corresponding images for these newly composed captions.

The fine-tuning configurations were consistent with those used in the self-improving setup (Ap-
pendix C.1.3). To accommodate the reduced dataset size, the maximum training steps were set to
1000.

As a baseline, we randomly selected 778 images from 10K GENERATE ANY SCENE-generated
images, using captions produced by GENERATE ANY SCENE. This ensured a controlled comparison
between the targeted and random fine-tuning strategies.

D.3 BENCHMARK AGAINST WEB-CRAWLED CAPTION–IMAGE PAIRS

Setup. We conduct additional experiments to benchmark against alternative data sourcing strategies,
specifically comparing our DaLL-E 3 distillation approach with web-scraped real images. Using the
Bing Image Search API, we retrieve images matching our multi-object and hard-concept captions
and constructed two datasets of equivalent scale for comparison. We then apply the same fine-tuning
setup described in Application 2. The results are shown in Table 14:

Table 14: Comparison of VQA scores from targeted fine-tuning on different data sources. (SDv1.5)

Test Set Original DaLL-E 3 Distill Web-crawled

Hard Concept 0.303 0.361 0.258
Multi-object 0.271 0.325 0.264

Findings. The results show that web-scraped images not only failed to improve performance but
actually degraded model capabilities.

Upon examination of the retrieved images, we identify several critical issues. The web-crawled
images contain significant noise, including watermarks, overlaid text, and irrelevant visual element.
Our hard concept and multi-object captions feature high compositional complexity and novel object
combinations that rarely exist in real-world photographs. The retrieved images show poor relevance
to our systematically designed compositional scenarios, as real-world images cannot adequately
represent the diverse and controlled compositional variations we programmatically generate. Thus,
training on such misaligned data appears to introduce incorrect visual-textual associations, leading to
performance degradation rather than improvement.

Table 15: VQA Score of targeted distillation on FLUX.1-dev.

Test Set Original Fine-tuned

Hard Concept 0.303 0.361
Multi-object 0.271 0.325
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D.4 DISTILLATION ON FLUX.1-DEV

Setup. We further apply our distillation framework to FLUX.1-dev, a current SOTA open-source
model, using DaLL-E 3 -generated images of hard concepts and multi-object captions to distill these
capabilities into FLUX.1-dev. The results are shown in the Table 15:

Findings. The results demonstrate that our approach’s effectiveness extends to state-of-the-art
models (FLUX.1-dev). The distillation approach yields substantial improvements on challenging
compositional tasks.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

E DETAILS OF REINFORCEMENT LEARNING WITH A SYNTHETIC REWARD
FUNCTION (SECTION 5)

E.1 TRAINING DATA PREPARATION

We adopt SimpleAR-0.5B-SFT (26) as our base model. Given that SImpleAR-0.5B-SFT is pretrained
on high-quality real image datasets such as LAION (11) and CC3M (12), we aim to mitigate potential
distributional shift between the original training data and the reinforcement learning phase. To this
end, we perform metadata pre-selection for GENERATE ANY SCENE by analyzing the frequency of
each object category appearing in the LAION dataset. Leveraging the controllable compositional
capabilities of GENERATE ANY SCENE, we filter object categories by selecting the top 10% most
frequent entries and constrain scene complexity to 3–6 objects per scene. Based on these conditions,
we synthesize a set of 10K captions, ensuring semantic alignment with the base model’s pretraining
distribution while maintaining structural and content diversity.

E.2 EXPERIMENT DETAILS

The detailed training configuration is provided in Table 16. We utilize 8 → NVIDIA H100 GPUs
(80GB HBM3), with one GPU allocated for online generation using vLLM. The total training time is
approximately 14 hours.

Table 16: Scene-graph based GRPO Fine-tuning Configuration for SimpleAR

Component Details
Model Name SimpleAR-0.5B-SFT
Model Size ↔0.5B parameters
Training Policy GRPO
Inference Engine vLLM (GPU utilization = 0.7)
Completion Length 4096 tokens
Training Epochs 1
Batch Size per Device 4
Learning Rate 1→ 10→5

Scheduler Cosine Annealing (min lr rate = 0.1)
Warm-up Ratio 0.1
Gradient Accumulation 1

Figure 17: Reward progression during scene-graph based GRPO training.

Figure 17 illustrates the reward progression during training. A noticeable improvement in reward
is observed following the application of a learning rate of 1e-5 combined with a warm-up strategy.
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Overall, the reward increases by approximately 0.2, indicating effective learning under the adjusted
training configuration.

In Table 4, we observe that the reproduced results of baseline models on DPG-Bench and GenEval
Bench are slightly lower than those reported in the original paper. Considering the inherent stochas-
ticity in generative model outputs, we cite the original results for comparison. For GenAI-Bench, all
reported results are based on our own experimental evaluations.

E.3 REWARD VARIANTS AND ABLATIONS

Setup. To verify the observed gains arise specifically from the scene-graph–generated QA reward,
rather than simply from using any QA-based reward, we conduct experiments incorporating manually
annotated QA datasets, VQAv2, as additional reward signals under the same RLHF framework.
We sample 10K images from VQAv2, with corresponding QA pairs, matched them to COCO2017
captions, and apply same training frameworks to SimpleAR-0.5B-SFT with RL training. The results
on GenAI Bench are shown in the table:

Table 17: GenAI Bench performance (VQA) under RLHF with different reward sources. All models
start from SimpleAR-0.5B-SFT.

Method Basic ↓ Advanced ↓ All ↓
SimpleAR-0.5B-SFT 0.74 0.60 0.66
SimpleAR-0.5B-RL (CLIP) 0.75 0.60 0.67
SimpleAR-0.5B-RL (VQAv2) 0.73 0.59 0.66
SimpleAR-0.5B-RL (Ours) 0.75 0.61 0.68

Findings. The results show that using VQAv2 captions and QA pairs as rewards yields even lower
performance than CLIP-based RL training. Furthermore, we observe minimal reward improvement
from VQA signals throughout training. We attribute this to the fact that, although VQAv2 QA pairs
are rich, the underlying image captions fail to cover enough visual elements, leading to a mismatch
between QA pairs and captions that undermines RLHF reward alignment.

This highlights the inherent difficulty and cost of constructing high-quality image-caption and QA
annotations, whereas our method leverages scene-graph structures to systematically generate synthetic
caption-QA pairs at minimal cost with unique advantages.
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F DETAILS OF IMPROVING GENERATED-CONTENT DETECTION (SECTION 6)

F.1 EXPERIMENT DETAILS

In this section, our goal is to validate that the more diverse captions generated by GENERATE ANY
SCENE can complement existing datasets, which are predominantly composed of real-world images
paired with captions. By doing so, we aim to train AI-generated content detectors to achieve greater
robustness.

Dataset preparation We conducted comparative experiments between captions generated by
GENERATE ANY SCENE and entries from the D3 dataset. From the D3 dataset, we randomly
sampled 10K entries, each including a caption, a link to a real image, and an image generated by SD
v1.4. Due to some broken links, we successfully downloaded 8.5K real images and retained 10K SD
v1.4-generated images. We also used SD v1.4 to generate images based on 10K GENERATE ANY
SCENE captions.

We varied the training data sizes based on the sampled dataset. Specifically, we sampled N real
images from the 10K D3 real images. For synthetic data, we compared N samples exclusively from
D3 with a mixed set of N/2 samples from 10K GENERATE ANY SCENE images and N/2 sampled
from D3, ensuring a total of N synthetic samples. Combined, this resulted in 2N training images. We
tested 2N across various sizes, ranging from 2K to 10K.

Detector architecture and training We employed ViT-T (47) and ResNet-18 (103) as backbones
for the detection models. Their pretrained parameters on ImageNet-21K were frozen, and the final
classification head was replaced with a linear layer using a sigmoid activation function to predict the
probability of an image being AI-generated. During training, We used Binary Cross-Entropy (BCE)
as the loss function, and the AdamW optimizer was applied with a learning rate of 2e→3. Training
was conducted with a batch size of 256 for up to 50 epochs, with early stopping triggered after six
epochs of no improvement in validation performance.

Testing To evaluate the performance of models trained with varying dataset sizes and synthetic data
combinations, we tested them on both GenImage and GENERATE ANY SCENE datasets to assess
their in-domain and out-of-domain performance under different settings.

For GenImage, we used validation data from four models: SD v1.4, SD v1.5, MidJourney, and
VQDM. Each validation set contained 8K real images and 8k generated images. For GENERATE
ANY SCENE, we sampled 10K real images from CC3M and paired them with 10K generated images
from each of the following models: SDv2.1, PixArt-ω, SD3 Medium, and Playground v2.5. This
created distinct test sets for evaluating model performance across different synthetic data sources.

Table 18: F1-Score Comparison of ResNet-18 and ViT-T Detectors Trained with D3 and D3+
GENERATE ANY SCENE Across In-Domain Settings

Detector Data Scale
(2N)

SDv1.4
(In-domain, same model) SDv2.1 Pixart-ω SDv3-medium Playground v2.5 Average

(In-domain, cross model)
D3 + Ours D3 D3 + Ours D3 D3 + Ours D3 D3 + Ours D3 D3 + Ours D3 D3 + Ours D3

Resnet-18

2K 0.6561 0.6663 0.7682 0.6750 0.7379 0.606 0.7509 0.6724 0.7380 0.5939 0.7488 0.6368
4K 0.6751 0.6812 0.7624 0.6853 0.7328 0.6494 0.7576 0.7028 0.7208 0.6163 0.7434 0.6635
6K 0.6780 0.6995 0.7886 0.6870 0.7493 0.6586 0.7768 0.7285 0.7349 0.6335 0.7624 0.6769
8K 0.6828 0.6964 0.7710 0.6741 0.7454 0.6418 0.7785 0.7186 0.7215 0.6033 0.7541 0.6595
10K 0.6830 0.6957 0.7807 0.6897 0.7483 0.6682 0.7781 0.7326 0.7300 0.6229 0.7593 0.6784

ViT-T

2K 0.6759 0.6672 0.7550 0.6827 0.7585 0.6758 0.7473 0.6941 0.7327 0.6106 0.7484 0.6658
4K 0.6878 0.6871 0.7576 0.7000 0.7605 0.7071 0.7549 0.7217 0.7221 0.6144 0.7488 0.6858
6K 0.6898 0.6891 0.7663 0.6962 0.7666 0.7164 0.7629 0.7238 0.7303 0.6134 0.7565 0.6875
8K 0.6962 0.6974 0.7655 0.6894 0.7712 0.7253 0.7653 0.7253 0.7381 0.6344 0.7600 0.6936
10K 0.6986 0.6984 0.7828 0.6960 0.7777 0.7275 0.7786 0.7334 0.7330 0.6293 0.7680 0.6966

F.2 RESULTS

Table 19 and Table 18 evaluate the performance of ResNet-18 and ViT-T detection backbones trained
on datasets of varying sizes and compositions across in-domain (same model and cross-model) and
out-of-domain settings. While models trained with D3 and GENERATE ANY SCENE occasionally
underperform compared to those trained solely on D3 in the in-domain same-model setting, they
exhibit significant advantages in both in-domain cross-model and out-of-domain evaluations. These
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results demonstrate that incorporating our data (GENERATE ANY SCENE) into the training process
enhances the detector’s robustness. By supplementing existing datasets with GENERATE ANY SCENE
under the same training configurations and dataset sizes, detectors achieve stronger cross-model and
cross-dataset capabilities, highlighting improved generalizability to diverse generative models and
datasets.

Table 19: F1-Score Comparison of ResNet-18 and ViT-T Detectors Trained with D3 and D3+
GENERATE ANY SCENE Across Out-of-Domain Settings

Detector Data Scale
(2N)

SDv1.5 VQDM Midjourney Average
(Out-of-domain)

D3 + Ours D3 D3 + Ours D3 D3 + Ours D3 D3 + Ours D3

Resnet-18

2K 0.6515 0.6591 0.5629 0.5285 0.5803 0.5647 0.5982 0.5841
4K 0.6709 0.6817 0.5693 0.5428 0.6016 0.5941 0.6139 0.6062
6K 0.6750 0.6963 0.5724 0.5327 0.6084 0.6072 0.6186 0.6121
8K 0.6792 0.6965 0.5716 0.5282 0.6097 0.5873 0.6202 0.6040
10K 0.6814 0.6955 0.5812 0.5454 0.6109 0.6040 0.6245 0.6150

ViT-T

2K 0.6755 0.6685 0.5443 0.4966 0.6207 0.6066 0.6135 0.5906
4K 0.6845 0.6865 0.5591 0.4971 0.6416 0.6149 0.6284 0.5995
6K 0.6900 0.6890 0.5580 0.4948 0.6455 0.6259 0.6313 0.6032
8K 0.6940 0.6969 0.5553 0.4962 0.6495 0.6387 0.6329 0.6106
10K 0.6961 0.6988 0.5499 0.4975 0.6447 0.6358 0.6302 0.6107
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G ADVANTAGES OF GENERATE ANY SCENE OVER LLM-DRIVEN SCENE
GRAPH AND CAPTION GENERATION

GENERATE ANY SCENE is conceptually superior to a well-prompted LLM for large-scale scene
graph and corresponding captions generation. While modern LLMs are powerful, they do not provide
the guarantees required for systematic, controllable, and reproducible enumeration of compositional
structures. In contrast, GENERATE ANY SCENE explicitly enumerates graph topologies under user-
specified constraints (e.g., complexity, topics, connectivity) and then deterministically instantiates
them, yielding uniform coverage, strict structural validity, and high efficiency.

Controllability and Diversity. GENERATE ANY SCENE explicitly enumerates scene graph struc-
tures and populates with user-specified configuration and taxonomy (e.g., complexity, topics, connec-
tivity, etc.), ensuring systematic coverage of rare or unconventional compositions without requiring
users to manually write prompts for desired structures. In contrast, an LLM tends to default to
common patterns in its training distribution. For example, given only the metadata {book, table,
on}, an LLM will prefer the statistically dominant configuration "the book is on the table", and
struggle to produce the less common but equally valid “the table is on the book” without extensive
prompt engineering. Moreover, such extensive or high-quality prompting for scene graph generation
essentially requires the user to manually enumerate graph structures and design multiple templates in
natural language, whereas GAS accomplishes this systematically with a single program.

Reduced Bias and Hallucination. Relying on LLMs to generate large-scale captions inherently
inherits their internal biases and increases the likelihood of hallucinating unseen or semantically
inconsistent object configurations. GENERATE ANY SCENE avoids this by enumerating scene graphs
and then deterministically mapping them to captions, producing text that is faithful by construction to
the underlying graph structure.

Lower Cost and Higher Reproducibility. In GENERATE ANY SCENE, once a scene graph is
enumerated, it is cached and reused across multiple populations, and it can also serve as a seed graph
for controllable topological expansion without re-enumerating the entire structure. Combined with
our fully programmatic operations, this makes large-scale generation substantially more cost-efficient.
In contrast, relying on an LLM would require repeated API calls or prompt redesign for structural
variant and new content, making the process both costly and labor-intensive.

To empirically validate these points, we compare GENERATE ANY SCENE against Gemini 2.5-
flash on generating 10K scene graphs from our common metadata (3,649 items: 2,591 objects, 551
attributes, 507 relations). Because Gemini becomes increasingly error-prone when prompted with
the full metadata list, we adopt a batching strategy: in each batch we randomly sample 5% of the
metadata ( 182 items) and prompt the model to generate 20 scene graphs containing 3–12 elements.

Table 20 shows the distribution quality and diversity of generated elements. GENERATE ANY SCENE
achieves near-uniform usage across objects, attributes, and relations, with Gini coefficients between
0.14 and 0.17 and normalized entropy above 99.3%. Gemini, in contrast, exhibits strong concentration
(Gini 0.53–0.66) and substantially lower entropy (79.5–92.5%), indicating a tendency to overuse a
narrow subset of frequent categories. The top-10% coverage further highlights this imbalance: under
Gemini, 37.29% of object occurrences and 50.38% of relation occurrences are concentrated in only
10% of the vocabulary, whereas GENERATE ANY SCENE remains close to the uniform ideal.

Beyond distributional properties, we assess structural validity and data quality using strict schema-
level checks (Table 21). GENERATE ANY SCENE produces 100% structurally valid graphs with zero
hallucinated elements. In contrast, only 49.1% of Gemini’s outputs satisfy the schema. Common
failure modes include treating relations as nodes (34.6% of graphs), and omitting required value
(31.2%) or type (30.3%) fields. Gemini also hallucinates 1,773 “unknown” objects (4.59% of all
objects) and 3,638 “unknown” relations.

Finally, GENERATE ANY SCENE is more efficient than LLM-based generation (Table 22). Because
GENERATE ANY SCENE uses programmatic enumeration, it generates 10K scene graphs in under
one minute, with negligible cost. In contrast, Gemini requires 1.5 hours and incurs over $50 of API
cost for the same workload. Overall, GENERATE ANY SCENE provides a 90→ speedup and near-zero
marginal expense.
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Table 20: Distribution quality and diversity of generated scene graphs.

Metric GAS (Ours) Gemini 2.5-flash

Gini Coefficient (↗)
Objects 0.14 0.53

Attributes 0.14 0.57
Relations 0.17 0.66

Normalized Entropy (↓)
Objects 99.6% 92.5%

Attributes 99.3% 91.7%
Relations 99.3% 79.5%

Top 10% Coverage (↗)
Objects 14.68% 37.29%

Relations 15.41% 50.38%

Table 21: Structural validity and data quality of generated scene graphs.

Metric GAS (Ours) Gemini 2.5-flash

Structurally valid graphs 100% 49.1%
Graphs with relations as nodes (error) 0% 34.6%
Graphs missing value field 0% 31.2%
Graphs missing type field 0% 30.3%
Hallucinated “unknown” objects 0 1,773 (4.59%)
Hallucinated “unknown” relations 0 3,638

These results confirm that programmatic enumeration in GENERATE ANY SCENE outperforms
LLM-based generation, providing the systematic guarantees of uniformity, validity, and efficiency.

H DISCUSSION

H.1 COMMONSENSE AND PLAUSIBILITY FILTERING

GENERATE ANY SCENE enables systematic, controllable, and diverse compositional scene construc-
tion through programmatic scene graph enumeration. This allows the synthesized captions to cover
not only realistic scenes commonly observed in the real world, but also uncommon, imaginative,
and unrealistic scenes. Many widely-used generative models, including DALL-E, Midjourney, and
Sora/Sora2, derive much of their practical value from producing surreal, imaginative, or physically
unlikely compositions (e.g., "an astronaut riding a horse on the moon," or "a raccoon astronaut with a
glowing space donut"). Such prompts are not outliers; they reflect common user intents in art, game
design, advertising, and entertainment. Users frequently employ abstract or fantastical combinations
precisely to explore the model’s creativity, and the community often discusses and evaluates models
based on performance on these highly “unrealistic” prompts. From a research perspective, a broad and
systematically controlled compositional space is essential for improving and benchmarking modern
generative models. Limiting sampling to only strictly "realistic" combinations would substantially
reduce both the training and the evaluation value.

Table 22: Efficiency and cost of generating 10K scene graphs.

Metric GAS (Ours) Gemini 2.5-flash

Generation time (10K graphs) < 1 minute 1.5 hours
Monetary cost Negligible > $50
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Our approach is specifically designed to meet this need for diverse captions and systematic visual
representations. At the same time, GENERATE ANY SCENE differentiates uncommon or unrealistic
scenes from nonsensical scenes. The taxonomy enforces strong type-level constraints, e.g., architec-
tural attributes apply only to buildings, human-specific attributes only to the “person” subtree, and
attentional relations only between animate entities, ensuring that generated scenes remain meaningful
and structurally valid, even when creatively unrealistic. Beyond these inherent structural constraints,
GENERATE ANY SCENE additionally provides an optional two-stage commonsense and plausibility
filtering mechanism to support use cases that require higher visual realism. (1) Pre-population
filtering. We maintain for every object/attribute/relation its LAION-5B (11) frequency and em-
bedding representation, and select candidates by jointly enforcing minimum frequency thresholds
and semantic coherence: for each newly added relation or attribute attached to a given object, we
compute the top-k semantically compatible candidates based on embedding similarity to that object.
Likewise, when expanding a relation triple, we compute candidate object similarity to the anchor
object within the triplet, including all attributes and relations already attached to the anchor, and
then sample from the top-k most semantically compatible objects (where k is user-configurable).
Users may further specify complexity limits to avoid highly complex scenes. (2) Post-population
filtering. After population, once the scene graph is translated into a caption, we compute its Vera
score (91) and caption perplexity, and discard captions falling below plausibility or above perplexity
thresholds. These mechanisms ensure that GENERATE ANY SCENE preserves meaningfulness while
still enabling broad creative coverage.

H.2 SOCIAL BIAS

Assessing social bias is important for understanding whether synthetic data introduces unintended
shifts in model behavior. To examine this, we evaluate models on gender-related prompts from the
DALL-Eval (104) benchmark, comparing SDv1.5, SDv1.5 fine-tuned on CC3M captions, and SDv1.5
fine-tuned on GENERATE ANY SCENE captions. The gender MAD results are shown in Table 23.
The experiment shows that fine-tuning with GENERATE ANY SCENE does not amplify gender bias
relative to the base model. We attribute this to our design choices. First, GENERATE ANY SCENE
does not generate data by propagating textual descriptions or cultural associations from these sources;
instead, our metadata is used purely as a structural vocabulary of objects, attributes, and relations.
GENERATE ANY SCENE doesn’t sample linguistic definitions or corpus-derived stereotypes from
WordNet. Second, the systematic, programmatic nature of our scene-graph enumeration further
reduces the pathways through which social bias present in real-world distributions could propagate.
Also, any more debiased metadata can be plugged into GENERATE ANY SCENE engine seamlessly.

Table 23: Gender MAD Scores on DALLEval

Model MAD →
SDv1.5 0.3602
FT w/ CC3M 0.3476
FT w/ GAS 0.3555

I LIMITATION

Programmatically generated prompts can be unrealistic and biased. Programmatically gener-
ated prompts can be unrealistic and biased. Although our system is capable of producing a wide range
of rare compositional scenes and corresponding prompts, some of these outputs may violate rules or
conventions, going beyond what is even considered imaginable or plausible. We also implement a
pipeline to filter the commonsense of the generated prompts using the Vera score (a large language
model-based commonsense metric) and Perplexity, but we make this pipeline optional.

Linguistic diversity of programmatic prompts is limited. While GENERATE ANY SCENE excels
at generating diverse and compositional scene graphs and prompts, its ability to produce varied
language expressions is somewhat constrained. The programmatic approach to generating content
ensures diversity in terms of the elements of the scene, but it is limited when it comes to linguistic
diversity and the richness of expression. To address this, we introduce a pipeline that leverages large
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language models (LLMs) to paraphrase prompts, enhancing linguistic variety. However, this addition
introduces new challenges. LLMs are prone to biases and hallucinations, which can affect the quality
and reliability of the output. Furthermore, the use of LLMs risks distorting the integrity of the original
scene graph structure, compromising the coherence and accuracy of the generated content. So we
make this LLM paraphrase pipeline optional for our paper.

Toward curriculum-aware GRPO training. Our proposed GENERATE ANY SCENE framework
plays a central role in GRPO training by providing structured scene graphs that serve as the foun-
dation for a semantically grounded and controllable reward function. This design enables effective
optimization by aligning generation objectives with fine-grained visual semantics. Beyond this, we
also observe that GENERATE ANY SCENE also offers broader potential: the scene graphs it produces
vary in complexity, such as in the number of objects, attributes, relationships and graph degree.
These variations naturally correspond to different levels of generation difficulty and reward variance.
This property suggests an opportunity for curriculum-based training, where the model could be
progressively exposed to increasingly complex scene graphs. Such a strategy may improve training
stability and efficiency, especially in the early stages of learning. We identify this as a promising
direction for future work, further leveraging the controllability of GENERATE ANY SCENE to guide
structured policy learning.
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