GENERATE ANY SCENE: SCENE GRAPH DRIVEN DATA SYNTHESIS FOR VISUAL GENERATION TRAINING

Anonymous authorsPaper under double-blind review

000

001

002003004

010 011

012

013

014

016

018

019

021

023

024

025

026

027

028

029

031

032 033 034

037

038

040

041

043

044

046

047

048

051

052

ABSTRACT

Recent advances in text-to-vision generation excel in visual fidelity but struggle with compositional generalization and semantic alignment. Existing datasets are noisy and weakly compositional, limiting models' understanding of complex scenes, while scalable solutions for dense, high-quality annotations remain a challenge. We introduce GENERATE ANY SCENE, a data engine that systematically enumerates scene graphs representing the combinatorial array of possible visual scenes. Generate Any Scene dynamically constructs scene graphs of varying complexity from a structured taxonomy of objects, attributes, and relations. Given a sampled scene graph, GENERATE ANY SCENE translates it into a caption for text-to-image or text-to-video generation; it also translates it into a set of visual question answers that allow automatic evaluation and reward modeling of semantic alignment. Using GENERATE ANY SCENE, we first design a self-improving framework where models iteratively enhance their performance using generated data. SDv1.5 achieves an average 4% improvement over baselines and surpassing fine-tuning on CC3M. Second, we also design a distillation algorithm to transfer specific strengths from proprietary models to their open-source counterparts. Using fewer than 800 synthetic captions, we fine-tune SDv1.5 and achieve a 10% increase in TIFA score on compositional and hard concept generation. Third, we create a reward model to align model generation with semantic accuracy at a low cost. Using GRPO algorithm, we fine-tune SimpleAR-0.5B-SFT and surpass CLIP-based methods by +5% on DPG-Bench. Finally, we apply these ideas to the downstream task of content moderation where we train models to identify challenging cases by learning from synthetic data.

1 Introduction

Despite the high-fidelity of modern generative models (text-to-image and text-to-video), we are yet to witness wide-spread adoption (11, 21, 31, 41, 5). Controllability remains out of reach (6). Generated content appears realistic but often falls short of semantic alignment (7, 8, 9, 10). Users prompt models with a specific concept in mind. For example, when prompted to generate a scene of a "A black dog chasing after a rabbit that is eating the grass, in Van Gogh's style, with starlight lightening", some models are likely to generate an image of a dog but might miss the rabbit or get the style incorrect.

We hypothesize that these limitations stem not only from architectural bottlenecks but more fundamentally from the lack of structured, compositionally rich training data (3), especially those with uncommon compositions. Popular datasets such as LAION (III) and CC3M (II2) predominantly consist of web-crawled image-caption pairs, which are inherently noisy, weakly compositional, and biased toward single-object, coarse-grained descriptions. Such datasets lack explicit grounding of object-attribute relations and multi-object interactions, restricting models' ability to generalize to complex visual scenes. Efforts to enhance caption quality (3), II3) have demonstrated that enhancing the compositional density and semantic richness of captions can significantly improve generative performance. Nevertheless, manual curation of such dense compositional annotations is labor-intensive, while automatic annotation methods (e.g., via MLMs) suffer from hallucination and semantic noise.

Constructing a compositional dataset requires that we first define *the space of the visual content*. Scene graphs are one such representation of the visual space (14, 15, 16, 17, 18), grounded in cognitive science (19). A scene graph represents objects in a scene as individual nodes in a graph.

Each object is modified by attributes, which describe its properties. For example, attributes can describe the material, color, size, and location of the object in the scene. Finally, relationships are edges that connect the nodes. They define the spatial, functional, social, and interactions between objects (20). For example, in a living room scene, a "table" node might have attributes like "wooden" or "rectangular" and be connected to a "lamp" node through a relation: "on top of". This systematic scene graph structure provides simple yet effective ways to define and model the scene. As such, scene graphs are an ideal foundation for systematically defining the compositional space of visual content in text-to-vision generation.

We introduce GENERATE ANY SCENE, a system capable of efficiently enumerating the space of scene graphs representing a wide range of visual scenes. GENERATE ANY SCENE composes scene graphs of any structure using a rich taxonomy of visual elements, translating each scene graph into an input caption and visual question answers to evaluate the output image or video. In particular, we first construct a rich taxonomy of visual concepts consisting of 28, 787 objects, 1, 494 attributes, 10, 492 relations, 2, 193 scene attributes from various sources. Based on these assets, GENERATE ANY SCENE can synthesize an almost infinite number of scene graphs of varying complexity (21). Besides, GENERATE ANY SCENE allows configurable scene graph generation. For example, evaluators can specify the complexity level of the scene graph to be generated or provide a seed scene graph to be expanded. By automating these steps, our system ensures both scalability and adaptability, providing researchers and developers with diverse, richly detailed scene graphs and corresponding captions tailored to their specific needs. We also conduct comprehensive text-to-vision evaluations using our generated captions, as detailed in Appendix [A].

We show that GENERATE ANY SCENE can allow generation models to self-improve. Our diverse captions can facilitate a framework to iteratively improve *Text-to-Vision generation* models using their own generations. Given a model, we generate multiple images, identify the highest-scoring one, and use it as new fine-tuning data to improve the model itself. We fine-tune *SDv1.5* (22) and achieve an average of 4% performance boost compared with original models, and this method is even better than fine-tuning with the same amount of real images and captions from the Conceptual Captions CC3M over different benchmarks.

We also use GENERATE ANY SCENE to design targeted distillation algorithms. Using our evaluations, we identify limitations in open-sourced models that their proprietary counterparts excel at. Next, we distill these specific capabilities from proprietary models. For example, $DaLL-E\ 3$ (3) excels particularly in generating composite images with multiple parts. We distill this capability into SDv1.5, effectively bridging the gap between $DaLL-E\ 3$ and SDv1.5. After targeted fine-tuning, SDv1.5 achieves a 10% increase in TIFA score (23) for compositional tasks and hard concept generation.

Then we propose a low-cost scene graph-based reward model for RLHF (24) in text-to-image generation. By leveraging synthetic scene graphs generated by GENERATE ANY SCENE, we generate exhaustive question-answer pairs that cover all objects, attributes, and relationships in the caption. Our method enables fine-grained, compositional reward modeling without manual annotation or heavy LLM inference. With GRPO (25), we fine-tune SimpleAR-0.5B-SFT (26) using a scene graph reward model, achieving better compositional alignment than CLIP-based methods (27) (+5% on DPG-Bench (28)).

Finally, we apply GENERATE ANY SCENE to the downstream application of content moderation. Content moderation is a vital application, especially as *Text-to-Vision generation* models improve. A key challenge lies in the limited diversity of existing training data. To address this, we leverage GENERATE ANY SCENE to generate diverse and compositional captions, creating synthetic training data that complements existing datasets. By retraining a ViT-T (29) detector with our enriched dataset, we enhance its detection performance, particularly in cross-model and cross-dataset scenarios.

2 GENERATE ANY SCENE

In this section, we present GENERATE ANY SCENE (Figure []), a data engine that systematically synthesizes diverse scene graphs in terms of both structure and content and translates them into corresponding captions.

Scene graph. A scene graph is a structured representation of a visual scene, where objects are represented as nodes, their attributes (such as color and shape) are properties of those nodes, and the

relationships between objects (such as spatial or semantic connections) are represented as edges. In recent years, scene graphs have played a crucial role in visual understanding tasks, such as those found in Visual Genome (14) and GQA (30) for visual question answering (VQA). Their utility has expanded to various *Text-to-Vision generation* tasks. For example, the DSG (31) and DPG (10) benchmarks leverage scene graphs to evaluate how well generated images align with captions.

Taxonomy of visual elements. To construct a scene graph, we use three main metadata types: **objects**, **attributes**, and **relations**. We further introduce **scene attributes** that capture global visual contexts, such as art style, to facilitate comprehensive caption synthesis. The statistics and source of our metadata are shown in Table [1]. Additionally, we build a hierarchical taxonomy that categorizes metadata into distinct levels and types, enabling fine-grained analysis. This structure supports precise content synthesis, from broad concepts like "flower" to fine-grained instances such as "daisy."

Table 1: Summary of the quantities and sources of visual elements. Details are in Appendix B

Metadata Type	Number	Source		
Objects	28,787	WordNet (32)		
Attributes	1,494	Wikipedia (33), etc.		
Relations	10,492	Synthetic Visual Genome (34)		
Scene Attributes	2,193	Places365 (35), etc.		

2.1 GENERATING DATA WITH SCENE GRAPHS

Step 1: Scene graph structure enumeration. Our engine pre-computes a library of directed scene-graph topologies subject to user-specified *structural constraints*: complexity (total number of objects, relations, and attributes) (36), average node degree, and number of connected components. We first sample the number of object nodes and then systematically enumerate feasible edge sets and attribute attachments that satisfy these constraints. We provide 3 optional controls: (i) *degree-profile* bounds per-node in/out-degree, (ii) *seed-graph preservation* embeds a user-provided seed graph as a subgraph of each enumerated structure, and (3) *commonsense plausibility filtering* prunes implausible contents while retaining compositional diversity. All enumerations are performed once per parameter tuple and cached for fast querying.

Step 2: Populate the scene graph structure with metadata. Given a generated scene graph structure, the next step involves populating the graph with metadata. For each object node, attribute node, and relation edge, we sample the corresponding content from our metadata. This process is highly customizable and controllable: users can define the topics and types of metadata to include, for instance, by selecting only commonsense metadata or specifying relationships between particular objects. By determining the scope of metadata sampling, we can precisely control the final content of the captions and easily extend the diversity and richness of scene graphs by adding new metadata.

Step 3: Sample scene attributes. We also include scene attributes that describe aspects such as the art style, viewpoint, time span (for video), and 3D attributes (for 3D content). These scene attributes are sampled directly from our metadata, creating a list that provides contextual details to enrich the description of the visual content.

Step 4: Translate scene graph to caption. We introduce a deterministic and programmatic algorithm that converts scene graphs with scene attributes into captions. It traverses scene graphs by converting objects/attributes/relations into descriptive text in topological order, while tracking each object's references to ensure coherence. Programmatic grammar rules are employed (e.g., disambiguating identical objects with "the first/second" and skipping already mentioned objects) to prevent duplication and misreference, resulting in clear captions. We also provide LLM paraphrasing as an optional step to diversify wording; however, our studies (see Appendix A.3) show that paraphrasing does not materially affect results. We adopt the programmatic caption converter as the default for its speed and low hallucination rate.

Step 5: Convert scene graph to a series of question-answer pairs. Given a synthetic scene graph, GENERATE ANY SCENE automatically enumerates exhaustive QA pairs using templates that query object attributes (e.g., What color is the sphere?), spatial relations (e.g., What is to the left of the cube?), and other compositional elements. Each answer maps directly to an object, attribute, or edge, ensuring full coverage of the graph at minimal cost. This enables both VQA-based evaluation of

Figure 1: The generation pipeline of GENERATE ANY SCENE. **Step 1:** Enumerate diverse scene graph structures under user-defined constraints. **Step 2:** Populate structures with sampled objects, attributes, and relations. **Step 3:** Sample scene attributes such as style, perspective, or time span. **Step 4:** Translate scene graph and attributes into coherent captions. **Step 5:** Automatically generate QA pairs covering all elements for evaluation and reward modeling.

generated images and the construction of fine-grained reward models without manual labeling or costly LLM inference.

3 Self-Improving models with synthetic captions

Figure 2: **Results for Self-Improving Models**. Average VQA score of *SDv1.5* fine-tuned on different data across 1K GENERATE ANY SCENE image/video evaluation set and GenAI-Bench image/video benchmark (37).

With GENERATE ANY SCENE, we develop a self-improvement framework to improve generative capabilities. By generating scalable compositional captions from scene graphs, GENERATE ANY SCENE expands the textual and visual space, allowing for a diversity of synthetic images that extend beyond real-world scenes. Our goal is to utilize these richly varied synthetic images to further boost model performance.

Iterative self-improving framework. Inspired by DreamSync (38), we designed an iterative self-improving framework using GENERATE ANY SCENE with *SDv1.5* as the baseline model. With *VQA Score*, which shows strong correlation with human evaluations on compositional images (39),

we guide the model's improvement throughout the process. Specifically, GENERATE ANY SCENE generates $3 \times 10 \text{K}$ captions across three epochs. For each caption, SDvI.5 generates 8 images, and the image with the highest VQA Score is selected. From each set of 10 K optimal images, we then select the top 25% (2.5 K image-caption pairs) as the training data for each epoch. In subsequent epochs, we use the fine-tuned model from the prior iteration to generate new images. We employ LoRA (40) for parameter-efficient fine-tuning.

Baselines. We conduct comparative experiments with the CC3M dataset, which comprises high-quality and diverse real-world image-caption pairs (12). We randomly sample 3×10 K captions from CC3M, applying the same top-score selection strategy for iterative fine-tuning of SDv1.5. Additionally, we include a baseline using random-sample fine-tuning strategy to validate the advantage of our highest-scoring selection-based strategy. We evaluate our self-improving pipeline on Text-to-Vision generation benchmarks, including GenAI Bench (37). For the Text-to-Video generation task, we use Text2Video-Zero as the baseline model, substituting its backbone with the original SDv1.5 and our fine-tuned SDv1.5 models.

Fine-tuning with our synthetic captions can surpass high-quality real-world image-caption data. Our results show that fine-tuning with GENERATE ANY SCENE-generated synthetic data consistently outperforms CC3M-based fine-tuning across *Text-to-Vision generation* tasks (Figure 2), achieving the highest gains with our highest-scoring selection strategy. This highlights GENERATE ANY SCENE's scalability and compositional diversity, enabling models to effectively capture complex scene structures. Additional experiment settings and results are in Appendix C.

4 DISTILLING TARGETED CAPABILITIES

Although self-improving with GENERATE ANY SCENE shows clear advantages over high-quality real-world datasets, its efficiency is inherently limited by the model's own generation capabilities. To address this, we leverage the taxonomy and systematical generation capabilities within GENERATE ANY SCENE to identify specific strengths of proprietary models (*DaLL-E 3*), and distill these capabilities into open-source models. More details are in Appendix D

We evaluate multiple models using GENERATE ANY SCENE controllably generated captions and observe that *DaLL-E 3* achieves *TIFA Score* **1.5** to **2** times higher than those of other models. As shown in Figure 4a when comparing *TIFA Score* across captions with varying numbers of elements (objects, relations, and attributes), *DaLL-E 3* **counterintuitively** maintains consistent performance regardless of element count. The performance of other models declines as the element count increases, which aligns with expected compositional challenges. We suspect that these differences are primarily due to *DaLL-E 3*'s advanced capabilities in compositionality and **understanding hard concepts**, which ensures high faithfulness across diverse combinations of element types and counts.

Distilling compositionality from DaLL-E 3. When analyzing model outputs from our synthetic captions, we find that *DaLL-E 3* tends to produce straightforward combinations of multiple objects (Figure 3). In contrast, open-source models like *SDv1.5* often omit objects from the captions, despite being capable of generating each one individually. This difference suggests that *DaLL-E 3* may benefit from training data emphasizing multi-object presence, even without detailed layout or object interaction. Such training likely underpins *DaLL-E 3*'s stronger performance on metrics like *TIFA Score* and *VQA Score* that prioritize object inclusion. To effectively distill these compositional abilities into *SDv1.5*, we employ GENERATE ANY SCENE for targeted synthesis of 778 multi-object captions, paired with images generated by *DaLL-E 3*, for finetuning *SDv1.5*.

Distilling hard concepts understanding from DaLL-E 3. Figure 3 shows that *DaLL-E 3* is capable not only of handling multi-object generation but also of understanding and generating rare and hard concepts, such as a specific species of flower. We attribute this to its training with proprietary real-world data. Using the taxonomy of GENERATE ANY SCENE, we compute model performance on each concept by averaging generation scores across captions containing that concept. Accumulating results through the taxonomy, we identify the 100 concepts where *SDv1.5* shows the largest performance gap relative to *DaLL-E 3*. For distilling, we generate 778 captions incorporating these hard concepts with other elements, and use *DaLL-E 3* to produce corresponding images.

Figure 3: **Examples for Distilling Capabilities.** Examples of images generated by *DaLL-E 3*, the original SDv1.5, and the fine-tuned versions. The left four captions demonstrate fine-tuning with multi-object captions generated by GENERATE ANY SCENE for better compositionality, while the right two columns focus on understanding hard concepts.

Baselines. For the baseline, we randomly synthesize 778 captions using GENERATE ANY SCENE paired with DaLL-E 3-generated images to fine-tune the model. To evaluate model improvements, we generate another 1K multi-object captions and 1K hard-concept captions separately.

Targeted caption synthesis via GENERATE ANY SCENE enables effective distillation of compositional abilities and hard concept understanding. We analyze images generated by SDv1.5 before and after fine-tuning on high-complexity captions (Figure 3). Surprisingly, with fewer than 1K LoRA fine-tuning steps, SDv1.5 effectively learns DaLL-E 3 's capability to arrange and compose multiple objects within a single image. Quantitatively, Figure 4b shows a 10% improvement in TIFA Score after targeted fine-tuning, surpassing the performance of the randomly fine-tuned model. On a broader set of 10K GENERATE ANY SCENE-generated captions, the targeted fine-tuned model consistently outperforms randomly fine-tuned and original counterparts across complex scenes (Figure 4a). These results confirm not only the effectiveness but also the scalability and efficiency of GENERATE ANY SCENE. Also, the results in Figure 4c show that our targeted fine-tuning with hard concepts leads to

ANY SCENE captions. Open-Source Model" refers to Flux.1-schnell)

(a) Distilling compositionality (b) Distilling compositionality (c) Distilling hard concepts under-("Best GENERATE ANY SCENE captions.

from DaLL-E 3: Model results on from DaLL-E 3: Model results on standing from DALL-E 3: Models' TIFA vs. total element numbers in TIFA vs. total element numbers average TIFA Score performance captions in 10K general GENERATE in captions in 1K multi-object over captions and hard concepts in 1K hard concepts GENERATE ANY SCENE captions.

Figure 4: **Results for Distilling Capabilities**. The left two figures show the results for **Distilling** compositionality, while the rightmost figure shows the results for **Distilling hard concepts under**standing from DALL-E 3.

Figure 5: **Comparison of generated images.** Our reward model enables image generation with better semantic alignment, realism, and visual quality than baselines.

improved model performance, reflected in higher average scores across captions and increased scores for each challenging concept.

5 REINFORCEMENT LEARNING WITH A SYNTHETIC REWARD FUNCTION

Reinforcement Learning with Human Feedback (RLHF) has become an increasingly popular fine-tuning strategy in text-to-image generation (41) 42; 26). However, defining an effective reward model that accurately captures semantic alignment for text-to-image generation remains an open challenge. Existing reward models like CLIP offer only coarse-grained image-text similarity signals, which fall short in assessing compositional correctness and lack interpretability. Alternative approaches have explored using visual question answering (VQA) as a proxy for evaluating semantic alignment, aiming for finer-grained assessments, yet require either labor-intensive datasets with dense annotations or large volumes of contextually relevant questions via advanced LLMs. Leveraging its structured scene graph synthesis capabilities, GENERATE ANY SCENE offers a scalable alternative by producing exhaustive semantic queries with negligible overhead, enabling low-cost, compositional reward modeling (Sec 2.1).

Experiment setup. Building on this scene graph-based reward modeling strategy, we adopt Group Relative Policy Optimization (GRPO) as our reinforcement learning algorithm. We fine-tune the SimpleAR-0.5B-SFT model for one epoch using 10K captions generated by GENERATE ANY SCENE, each paired with their scene graph-derived QA sets. For reward evaluation, we use Qwen2.5-VL-3B, a lightweight open-source vision-language model, to answer these QA pairs given the model-generated images. The reward is computed as the accuracy across all questions. This fine-grained, scene graph-aligned reward provides precise feedback on compositional faithfulness. As a baseline, we compare against SimpleAR-0.5B-RL, trained with CLIP-based rewards on 11K captions from real world datasets for one epoch. We evaluate our scene graph-based reward model on three benchmarks: DPG-Bench (10), GenEval (9), and GenAI-Bench (37). More details are in Appendix E.

GENERATE ANY SCENE rewards outperform CLIP. As shown in Table 2 our method outperforms both SFT and CLIP-RL models and achieves a significant improvement, demonstrating superior compositional faithfulness driven by explicit scene graph rewards. Importantly, this performance gain is directly enabled by the GENERATE ANY SCENE engine, which constructs explicit scene graphs to generate compositional captions. GENERATE ANY SCENE provides a structured and cognitively aligned visual representation, from which we derive exhaustive QA pairs with minimal additional cost. Combined with lightweight VLM judge, this approach offers a scalable, low-cost solution for semantic-level reward modeling.

379

380

381 382

389 390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407 408

409

410

411

412

413

414

415

416

417

418 419

420

421 422 423

424 425

426

427

428

429

430

431

Table 2: Evaluation on the DPG, GenEval and GenAI benchmark. GRPO training with our reward model outperforms both SFT baseline and CLIP-RL models. TO: two objects, P: position, CA: color attribute.

Method	DPG-Bench		GenEval				GenAI-Bench			
	Global	Relation	Overall	TO	P	CA	Overall	Basic	Advanced	All
SimpleAR-0.5B-SFT	85.02	86.59	78.48	0.73	0.22	0.23	0.53	0.74	0.60	0.66
SimpleAR-0.5B-RL (Clip)	86.64	88.51	79.66	0.82	0.26	0.38	0.59	0.75	0.60	0.67
SimpleAR-0.5B-RL (Ours)	88.46	90.13	80.50	0.81	0.31	0.38	0.61	0.75	0.61	0.68

IMPROVING GENERATED-CONTENT DETECTION

Advances in *Text-to-Vision generation* underscore the need for effective content moderation (43). Major challenges include the lack of high-quality and diverse datasets and the difficulty of generalizing detection across models Text-to-Vision generation (44) 45). GENERATE ANY SCENE addresses these issues by enabling scalable, systematical generation of compositional captions, increasing the diversity and volume of synthetic data. This approach enhances existing datasets by compensating for their limited scope-from realistic to imaginative-and variability.

Experiment setup. To demonstrate GENERATE ANY SCENE's effectiveness in training generated content detectors, we used the D^3 dataset (46) as a baseline. We sampled 5K captioned real and SDv1.4-generated image pairs from D^3 and generated 5K additional images with GENERATE ANY SCENE captions. We trained a ViT-T (47) model with a single-layer linear classifier, and compared models trained with samples solely from D^3 against those trained with samples GENERATE ANY Scene and D^3 .

GENERATE ANY SCENE improves generated content detectors. We evaluate the detector's generalization on the GenImage (48) validation set and images generated using GENERATE ANY SCENE captions. Figure 6 demonstrates that combining GENERATE ANY SCENE-generated images with real-world captioned images consistently enhances detection performance, particularly across cross-model scenarios and diverse visual scenes. More details are in Appendix F

Model - SD v1.4): Detection results on images generated by SD v1.4 using the GenImage dataset.

(a) In-domain testing (Same (b) In domain testing (cross- (c) Out of domain: Average deels using our captions.

model): Average detection results on tection results on images generated images generated by multiple mod- by multiple models using captions from the GenImage dataset.

Figure 6: Results for Application 4: Generated content detector. Comparison of detection performance across different data scales using D^3 alone versus the combined D^3 + GENERATE ANY SCENE training set in cross-model and cross-dataset scenarios.

COMPREHENSIVE EVALUATION WITH GENERATE ANY SCENE

Beyond showcasing GENERATE ANY SCENE in model training, we also show that GENERATE ANY SCENE is a valuable resource for comprehensive and compositional evaluation. Specifically, we synthesize 10K captions for text-to-image, 10K for text-to-video, and 1K for text-to-3D, covering diverse scene structures and content topics. We evaluate 12 text-to-image, 9 text-to-video, and 5 textto-3D models. Evaluations combine GENERATE ANY SCENE synthetic scene graphs with existing metrics (e.g., CLIP Score (49), VQA Score (39), TIFA Score (23, 31)) to assess semantic similarity, faithfulness, and human preference alignment. Our key findings include: (1) DiT-backbone text-toimage models align more closely with input captions than UNet-backbone models. (2) Text-to-video

models struggle with balancing dynamics and consistency, while both text-to-video and text-to-3D models show notable gaps in human preference alignment. Except for aggregating quantitative results, we also leverage GENERATE ANY SCENE's controllable captioning to evaluate models on fine-grained factors: perplexity, scene complexity, commonsense reasoning, and content category variation for case study.

Overall, GENERATE ANY SCENE yields stable, human-aligned rankings across T2I/T2V/T2-3D. Through broad, controllable coverage of objects, attributes, relations, and categories, it serves as a compositional stress test that reliably exposes plausibility gaps, category brittleness, and long-tail concept failures in current models (see Appendix A).

8 RELATED WORK

Text-to-Vision generation models. Text-to-Image generation advances are driven by diffusion models and LLMs. Some open-source models (22) 50; 51; 52; 53; 54) use UNet backbones to refine images iteratively. In parallel, Diffusion Transformers (DiTs) architectures (55; 56; 57; 58) have emerged as a better alternative in capturing long-range dependencies and improving coherence. Proprietary models like DALL-E 3 (3) and Imagen 3 (59) still set the state-of-the-art. Based on Text-to-Image generation method, Text-to-Video generation models typically utilize time-aware architectures to ensure temporal coherence across frames (60; 61; 62; 63; 64; 65; 66; 67). In Text-to-3D generation, recent proposed models (4; 68; 69; 70; 71) integrate the diffusion models with Neural Radiance Fields (NeRF) rendering to generate diverse 3D objects. Recent studies (26; 42; 72; 73) have also explored the integration of image generation into a unified multimodal language model (MLM) framework based on auto-regressive transformer architectures, demonstrating promising improvements in both performance and efficiency.

Synthetic captions for *Text-to-Vision generation*. Captions for *Text-to-Vision generation* models vary greatly in diversity, complexity, and compositionality. This variation makes it challenging and costly to collect large-scale and diverse captions written by humans. Consequently, synthetic captions have been widely used for both training (74; 38; 75; 76; 8; 77; 78; 79) and evaluation purposes (7). For example, training methods like LLM-Grounded Diffusion (74) leverage LLM-generated captions to enhance the model's understanding and alignment with human instruction. For evaluation, benchmarks such as T2I-CompBench (7) and T2V-CompBench (8) utilize benchmarks generated by LLMs. However, LLMs are hard to control and may introduce exhibit systematic bias. In this work, we propose a programmatic scene graph-based data engine that can generate infinitely diverse captions for improving *Text-to-Vision generation* models.

Finetuning techniques for *Text-to-Vision generation*. To accommodate the diverse applications and personalization needs in text-to-vision models, numerous fine-tuning techniques have been developed. LoRA (40) reduces fine-tuning costs via low-rank weight updates, while Textual Inversion (80, 81) introduces new word embeddings for novel concepts without altering core parameters. DreamBooth (82) adapts models to specific subjects or styles using a few personalized images, and DreamSync (38) enables models to self-improve by learning from their own high-quality outputs. Recently, RLHF (26, 41, 42) in *Text-to-Vision generation* has shown promise as an efficient fine-tuning strategy. In this work, we use several fine-tuning techniques with GENERATE ANY SCENE to improve *Text-to-Vision generation* models.

9 Conclusion

We present GENERATE ANY SCENE, a system leveraging scene graph programming to generate diverse and compositional synthetic captions for *Text-to-Vision generation* tasks. It extends beyond existing real-world caption datasets to include comprehensive scenes and even implausible scenarios. To demonstrate the effectiveness of GENERATE ANY SCENE, we explore four applications: (1) self-improvement by iteratively optimizing models, (2) distillation of proprietary model strengths into open-source models, (3) a scene-graph-based efficient reward model within the GRPO, and (4) robust content moderation with diverse synthetic data. GENERATE ANY SCENE highlights the importance of synthetic data in improving *Text-to-Vision generation*, and addresses the need to systematically define and scalably produce the space of visual scenes.

REFERENCES

486

487

488

489

490

491

492 493

494

495 496

497

498

499

500

501

502

503

504 505

506 507

508

509

510

511

512

513

514515

516

517

518 519

520

521

522 523

524

525 526

527

529

530

531

532

534

535

536

537 538

- [1] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators. 2024. *URL https://openai.com/research/video-generation-models-as-world-simulators*, 3, 2024.
- [2] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image generation with clip latents. *arXiv* preprint arXiv:2204.06125, 1(2):3, 2022.
- [3] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer Science*. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.
- [4] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu. Prolificdreamer: High-fidelity and diverse text-to-3d generation with variational score distillation. Advances in Neural Information Processing Systems, 36, 2024.
- [5] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James T. Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-α: Fast training of diffusion transformer for photorealistic text-to-image synthesis. ArXiv, abs/2310.00426, 2023.
- [6] Bohao Peng, Jian Wang, Yuechen Zhang, Wenbo Li, Ming-Chang Yang, and Jiaya Jia. Controlnext: Powerful and efficient control for image and video generation. *arXiv* preprint arXiv:2408.06070, 2024.
- [7] Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A comprehensive benchmark for open-world compositional text-to-image generation. *ArXiv*, abs/2307.06350, 2023.
- [8] Kaiyue Sun, Kaiyi Huang, Xian Liu, Yue Wu, Zihan Xu, Zhenguo Li, and Xihui Liu. T2v-compbench: A comprehensive benchmark for compositional text-to-video generation. ArXiv, abs/2407.14505, 2024.
- [9] Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework for evaluating text-to-image alignment. Advances in Neural Information Processing Systems, 36:52132– 52152, 2023.
- [10] Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models with llm for enhanced semantic alignment. *arXiv preprint arXiv:2403.05135*, 2024.
- [11] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale dataset for training next generation image-text models. Advances in neural information processing systems, 35:25278–25294, 2022.
- [12] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 2556–2565, 2018.
- [13] Zejian Li, Chenye Meng, Yize Li, Ling Yang, Shengyuan Zhang, Jiarui Ma, Jiayi Li, Guang Yang, Changyuan Yang, Zhiyuan Yang, et al. Laion-sg: An enhanced large-scale dataset for training complex image-text models with structural annotations. arXiv preprint arXiv:2412.08580, 2024.
- [14] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting language and vision using crowdsourced dense image annotations. *International journal of computer vision*, 123:32–73, 2017.
- [15] Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma, Michael Bernstein, and Li Fei-Fei. Image retrieval using scene graphs. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3668–3678, 2015.
- [16] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and Felix Heide. Neural scene graphs for dynamic scenes. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2856–2865, 2021.
- [17] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene graphs. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 1219–1228, 2018.
- [18] Jingwei Ji, Ranjay Krishna, Li Fei-Fei, and Juan Carlos Niebles. Action genome: Actions as compositions of spatio-temporal scene graphs. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10236–10247, 2020.

541

542 543

544

545

546

547

548

550

552

553

554

555

556

557

558

559

560

561

562563

564

565 566

567

569

570

571

572

573

574 575

576

577 578

579

580

581

582

583 584

585

586

588

589

590

591 592

- [19] Irving Biederman. Recognition-by-components: a theory of human image understanding. Psychological review, 94(2):115, 1987.
 - [20] Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-Fei. Visual relationship detection with language priors. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part 114, pages 852–869. Springer, 2016.
 - [21] Jieyu Zhang, Weikai Huang, Zixian Ma, Oscar Michel, Dong He, Tanmay Gupta, Wei-Chiu Ma, Ali Farhadi, Aniruddha Kembhavi, and Ranjay Krishna. Task me anything. In Advances in neural information processing systems, 2024.
 - [22] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 10684–10695, June 2022.
 - [23] Yushi Hu, Benlin Liu, Jungo Kasai, Yizhong Wang, Mari Ostendorf, Ranjay Krishna, and Noah A Smith. Tifa: Accurate and interpretable text-to-image faithfulness evaluation with question answering, 2023.
 - [24] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano, Jan Leike, and Ryan J. Lowe. Training language models to follow instructions with human feedback. *ArXiv*, abs/2203.02155, 2022.
 - [25] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language models, 2024.
 - [26] Junke Wang, Zhi Tian, Xun Wang, Xinyu Zhang, Weilin Huang, Zuxuan Wu, and Yu-Gang Jiang. Simplear: Pushing the frontier of autoregressive visual generation through pretraining, sft, and rl. arXiv preprint arXiv:2504.11455, 2025.
 - [27] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision, 2021.
 - [28] Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models with llm for enhanced semantic alignment, 2024.
 - [29] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale, 2021.
 - [30] Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning and compositional question answering. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 6700–6709, 2019.
 - [31] Jaemin Cho, Yushi Hu, Roopal Garg, Peter Anderson, Ranjay Krishna, Jason Baldridge, Mohit Bansal, Jordi Pont-Tuset, and Su Wang. Davidsonian scene graph: Improving reliability in fine-grained evaluation for text-to-image generation. ArXiv, abs/2310.18235, 2023.
 - [32] George A Miller. Wordnet: a lexical database for english. *Communications of the ACM*, 38(11):39–41, 1995.
 - [33] Wikipedia Contributors. Lists of colors. https://en.wikipedia.org/wiki/Lists_of_colors, 2024. Accessed: 2024-11-09.
 - [34] Jae Sung Park, Zixian Ma, Linjie Li, Chenhao Zheng, Cheng-Yu Hsieh, Ximing Lu, Khyathi Chandu, Quan Kong, Norimasa Kobori, Ali Farhadi, Yejin Choi, and Ranjay Krishna. Synthetic visual genome. In CVPR, 2025.
 - [35] Alejandro López-Cifuentes, Marcos Escudero-Vinolo, Jesús Bescós, and Álvaro García-Martín. Semantic-aware scene recognition. *Pattern Recognition*, 102:107256, 2020.
 - [36] Madeleine Grunde-McLaughlin, Ranjay Krishna, and Maneesh Agrawala. Agqa: A benchmark for compositional spatio-temporal reasoning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 11287–11297, 2021.

- [37] Baiqi Li, Zhiqiu Lin, Deepak Pathak, Jiayao Emily Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and Deva Ramanan. Genai-bench: A holistic benchmark for compositional text-to-visual generation. In Synthetic Data for Computer Vision Workshop@ CVPR 2024, 2024.
 - [38] Jiao Sun, Deqing Fu, Yushi Hu, Su Wang, Royi Rassin, Da-Cheng Juan, Dana Alon, Charles Herrmann, Sjoerd van Steenkiste, Ranjay Krishna, and Cyrus Rashtchian. Dreamsync: Aligning text-to-image generation with image understanding feedback. *ArXiv*, abs/2311.17946, 2023.
 - [39] Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. ArXiv, abs/2404.01291, 2024.
 - [40] J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. *ArXiv*, abs/2106.09685, 2021.
 - [41] Lixue Gong, Xiaoxia Hou, Fanshi Li, Liang Li, Xiaochen Lian, Fei Liu, Liyang Liu, Wei Liu, Wei Lu, Yichun Shi, et al. Seedream 2.0: A native chinese-english bilingual image generation foundation model. arXiv preprint arXiv:2503.07703, 2025.
 - [42] Dongzhi Jiang, Ziyu Guo, Renrui Zhang, Zhuofan Zong, Hao Li, Le Zhuo, Shilin Yan, Pheng-Ann Heng, and Hongsheng Li. T2i-r1: Reinforcing image generation with collaborative semantic-level and token-level cot. *arXiv preprint arXiv:2505.00703*, 2025.
 - [43] Gan Pei, Jiangning Zhang, Menghan Hu, Zhenyu Zhang, Chengjie Wang, Yunsheng Wu, Guangtao Zhai, Jian Yang, Chunhua Shen, and Dacheng Tao. Deepfake generation and detection: A benchmark and survey. *arXiv preprint arXiv:2403.17881*, 2024.
 - [44] Tianyi Wang, Xin Liao, Kam Pui Chow, Xiaodong Lin, and Yinglong Wang. Deepfake detection: A comprehensive survey from the reliability perspective. ACM Computing Surveys, 2024.
 - [45] Achhardeep Kaur, Azadeh Noori Hoshyar, Vidya Saikrishna, Selena Firmin, and Feng Xia. Deepfake video detection: challenges and opportunities. Artificial Intelligence Review, 57(6):1–47, 2024.
 - [46] Lorenzo Baraldi, Federico Cocchi, Marcella Cornia, Alessandro Nicolosi, and Rita Cucchiara. Contrasting deepfakes diffusion via contrastive learning and global-local similarities. arXiv preprint arXiv:2407.20337, 2024.
 - [47] Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan. Tinyvit: Fast pretraining distillation for small vision transformers. In *European conference on computer vision*, pages 68–85. Springer, 2022.
 - [48] Mingjian Zhu, Hanting Chen, Qiangyu Yan, Xudong Huang, Guanyu Lin, Wei Li, Zhijun Tu, Hailin Hu, Jie Hu, and Yunhe Wang. Genimage: A million-scale benchmark for detecting ai-generated image. *Advances in Neural Information Processing Systems*, 36, 2024.
 - [49] Tuhin Chakrabarty, Kanishk Singh, Arkadiy Saakyan, and Smaranda Muresan. Learning to follow object-centric image editing instructions faithfully. *ArXiv*, abs/2310.19145, 2023.
 - [50] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image synthesis. arXiv preprint arXiv:2307.01952, 2023.
 - [51] Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground v2. 5: Three insights towards enhancing aesthetic quality in text-to-image generation. *arXiv preprint arXiv:2402.17245*, 2024.
 - [52] Pablo Pernias, Dominic Rampas, Mats L Richter, Christopher J Pal, and Marc Aubreville. Würstchen: An efficient architecture for large-scale text-to-image diffusion models. *arXiv preprint arXiv:2306.00637*, 2023.
 - [53] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 10684–10695, June 2022.
 - [54] DeepFloyd Lab at StabilityAI. DeepFloyd IF: a novel state-of-the-art open-source text-to-image model with a high degree of photorealism and language understanding. https://www.deepfloyd.ai/deepfloyd-if, 2023. Retrieved on 2023-11-08.

649

650

651

652

653

654

655

656

657 658

659

660

661

662

663

664

665

666

667

668 669

670

671

672 673

674 675

676

677

678

679

680

681

682

683

684 685

686 687

688

689

690

691

692

693

694

695 696

697

698

699 700

- [55] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In Forty-first International Conference on Machine Learning, 2024.
 - [56] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo, Huchuan Lu, et al. Pixart-\alpha: Fast training of diffusion transformer for photorealistic text-to-image synthesis. *arXiv* preprint *arXiv*:2310.00426, 2023.
 - [57] Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-\sigma: Weak-to-strong training of diffusion transformer for 4k text-to-image generation. *arXiv preprint arXiv:2403.04692*, 2024.
 - [58] Black Forest Labs. Flux.1: Advanced text-to-image models, 2024. Accessed: 2024-11-10.
 - [59] Jason Baldridge, Jakob Bauer, Mukul Bhutani, Nicole Brichtova, Andrew Bunner, Kelvin Chan, Yichang Chen, Sander Dieleman, Yuqing Du, Zach Eaton-Rosen, et al. Imagen 3. arXiv preprint arXiv:2408.07009, 2024.
 - [60] Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffusion models without specific tuning. *arXiv preprint arXiv:2307.04725*, 2023.
 - [61] Fu-Yun Wang, Zhaoyang Huang, Xiaoyu Shi, Weikang Bian, Guanglu Song, Yu Liu, and Hongsheng Li. Animatelcm: Accelerating the animation of personalized diffusion models and adapters with decoupled consistency learning. arXiv preprint arXiv:2402.00769, 2024.
 - [62] Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang Wang, Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models are zero-shot video generators. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 15954–15964, 2023.
 - [63] Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang. Modelscope text-to-video technical report. arXiv preprint arXiv:2308.06571, 2023.
 - [64] Tianxing Wu, Chenyang Si, Yuming Jiang, Ziqi Huang, and Ziwei Liu. Freeinit: Bridging initialization gap in video diffusion models. In *European Conference on Computer Vision*, pages 378–394. Springer, 2025.
 - [65] Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 7310–7320, 2024.
 - [66] Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models with an expert transformer. arXiv preprint arXiv:2408.06072, 2024.
 - [67] Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all, March 2024.
 - [68] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv preprint arXiv:2209.14988, 2022.
 - [69] Haochen Wang, Xiaodan Du, Jiahao Li, Raymond A Yeh, and Greg Shakhnarovich. Score jacobian chaining: Lifting pretrained 2d diffusion models for 3d generation. In *Proceedings of the IEEE/CVF* Conference on Computer Vision and Pattern Recognition, pages 12619–12629, 2023.
 - [70] Gal Metzer, Elad Richardson, Or Patashnik, Raja Giryes, and Daniel Cohen-Or. Latent-nerf for shape-guided generation of 3d shapes and textures. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 12663–12673, 2023.
 - [71] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d content creation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 300–309, 2023.
 - [72] Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified multimodal understanding and generation. arXiv preprint arXiv:2410.13848, 2024.

- [73] Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model scaling. *arXiv* preprint arXiv:2501.17811, 2025.
 - [74] Long Lian, Boyi Li, Adam Yala, and Trevor Darrell. Llm-grounded diffusion: Enhancing prompt understanding of text-to-image diffusion models with large language models. *Trans. Mach. Learn. Res.*, 2024, 2023.
 - [75] Jialu Li, Jaemin Cho, Yi-Lin Sung, Jaehong Yoon, and Mohit Bansal. Selma: Learning and merging skill-specific text-to-image experts with auto-generated data. *ArXiv*, abs/2403.06952, 2024.
 - [76] Rui Zhao, Hangjie Yuan, Yujie Wei, Shiwei Zhang, Yuchao Gu, Lin Hao Ran, Xiang Wang, Zhangjie Wu, Junhao Zhang, Yingya Zhang, and Mike Zheng Shou. Evolvedirector: Approaching advanced text-to-image generation with large vision-language models, 2024.
 - [77] Dong Huk Park, Samaneh Azadi, Xihui Liu, Trevor Darrell, and Anna Rohrbach. Benchmark for compositional text-to-image synthesis. In *NeurIPS Datasets and Benchmarks*, 2021.
 - [78] Song Wen, Guian Fang, Renrui Zhang, Peng Gao, Hao Dong, and Dimitris Metaxas. Improving compositional text-to-image generation with large vision-language models. *ArXiv*, abs/2310.06311, 2023.
 - [79] Xindi Wu, Dingli Yu, Yangsibo Huang, Olga Russakovsky, and Sanjeev Arora. Conceptmix: A compositional image generation benchmark with controllable difficulty. ArXiv, abs/2408.14339, 2024.
 - [80] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for editing real images using guided diffusion models. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 6038–6047, 2022.
 - [81] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, and Daniel Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual inversion. ArXiv, abs/2208.01618, 2022.
 - [82] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dream-booth: Fine tuning text-to-image diffusion models for subject-driven generation. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 22500–22510, 2022.
 - [83] Spencer Sterling. zeroscope_v2_576w, 2023. Accessed: 2024-11-10.
 - [84] Y.C. Guo, Y.T. Liu, R. Shao, C. Laforte, V. Voleti, G. Luo, C.H. Chen, Z.X. Zou, C. Wang, Y.P. Cao, and S.H. Zhang. threestudio: A unified framework for 3d content generation. https://github.com/threestudio-project/threestudio, 2023.
 - [85] Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and Omer Levy. Pick-a-pic: An open dataset of user preferences for text-to-image generation, 2023.
 - [86] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation, 2023.
 - [87] Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for video generative models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 21807–21818, 2024.
 - [88] Kling AI. Kling ai text-to-video. https://klingai.com/text-to-video/new, 2025. Accessed May 23, 2025.
 - [89] Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models. arXiv preprint arXiv:2503.20314, 2025.
 - [90] Meshy AI. Meshy ai text-to-3d, image-to-3d, and text-to-texture 3d model generator. https://www.meshy.ai. 2025. Accessed May 23, 2025.

- [91] Jiacheng Liu, Wenya Wang, Dianzhuo Wang, Noah A. Smith, Yejin Choi, and Hannaneh Hajishirzi. Vera: A general-purpose plausibility estimation model for commonsense statements, 2023.
 - [92] Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen, Feng Zhu, Rui Zhao, and Hongsheng Li. Human preference score v2: A solid benchmark for evaluating human preferences of text-to-image synthesis. *arXiv preprint arXiv:2306.09341*, 2023.
 - [93] Giuseppe Vecchio and Valentin Deschaintre. Matsynth: A modern pbr materials dataset. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 22109–22118, 2024.
 - [94] Sean Bell, Paul Upchurch, Noah Snavely, and Kavita Bala. Material recognition in the wild with the materials in context database. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3479–3487, 2015.
 - [95] Jia Xue, Hang Zhang, Kristin Dana, and Ko Nishino. Differential angular imaging for material recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 764–773, 2017.
 - [96] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing textures in the wild. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3606–3613, 2014.
 - [97] Zhe Xu, Dacheng Tao, Ya Zhang, Junjie Wu, and Ah Chung Tsoi. Architectural style classification using multinomial latent logistic regression. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13, pages 600–615. Springer, 2014.
 - [98] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-toimage diffusion models with deep language understanding. Advances in neural information processing systems, 35:36479–36494, 2022.
 - [99] Babak Saleh and Ahmed Elgammal. Large-scale classification of fine-art paintings: Learning the right metric on the right feature. *arXiv preprint arXiv:1505.00855*, 2015.
 - [100] Colby Crawford. 1000 cameras dataset. https://www.kaggle.com/datasets/crawford/1000-cameras-dataset, 2018. Accessed: 2024-11-09.
 - [101] Zijie J. Wang, Evan Montoya, David Munechika, Haoyang Yang, Benjamin Hoover, and Duen Horng Chau. DiffusionDB: A large-scale prompt gallery dataset for text-to-image generative models. arXiv:2210.14896 [cs], 2022.
 - [102] Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12M: Pushing web-scale image-text pre-training to recognize long-tail visual concepts. In *CVPR*, 2021.
 - [103] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.