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ABSTRACT

Recent advances in text-to-vision generation excel in visual fidelity but struggle
with compositional generalization and semantic alignment. Existing datasets
are noisy and weakly compositional, limiting models’ understanding of complex
scenes, while scalable solutions for dense, high-quality annotations remain a
challenge. We introduce GENERATE ANY SCENE, a data engine that systematically
enumerates scene graphs representing the combinatorial array of possible visual
scenes. GENERATE ANY SCENE dynamically constructs scene graphs of varying
complexity from a structured taxonomy of objects, attributes, and relations. Given
a sampled scene graph, GENERATE ANY SCENE translates it into a caption for
text-to-image or text-to-video generation; it also translates it into a set of visual
question answers that allow automatic evaluation and reward modeling of semantic
alignment. Using GENERATE ANY SCENE, we first design a self-improving
framework where models iteratively enhance their performance using generated
data. SDv1.5 achieves an average 4% improvement over baselines and surpassing
fine-tuning on CC3M. Second, we also design a distillation algorithm to transfer
specific strengths from proprietary models to their open-source counterparts. Using
fewer than 800 synthetic captions, we fine-tune SDv1.5 and achieve a 10% increase
in TIFA score on compositional and hard concept generation. Third, we create
a reward model to align model generation with semantic accuracy at a low cost.
Using GRPO algorithm, we fine-tune SimpleAR-0.5B-SFT and surpass CLIP-based
methods by +5% on DPG-Bench. Finally, we apply these ideas to the downstream
task of content moderation where we train models to identify challenging cases by
learning from synthetic data.

1 INTRODUCTION

Despite the high-fidelity of modern generative models (text-to-image and text-to-video), we are yet
to witness wide-spread adoption (1; 2; 3; 4; 5). Controllability remains out of reach (6). Generated
content appears realistic but often falls short of semantic alignment (7; 8; 9; 10). Users prompt models
with a specific concept in mind. For example, when prompted to generate a scene of a “A black dog
chasing after a rabbit that is eating the grass, in Van Gogh’s style, with starlight lightening”, some
models are likely to generate an image of a dog but might miss the rabbit or get the style incorrect.

We hypothesize that these limitations stem not only from architectural bottlenecks but more funda-
mentally from the lack of structured, compositionally rich training data (3), especially those with
uncommon compositions. Popular datasets such as LAION (11) and CC3M (12) predominantly
consist of web-crawled image-caption pairs, which are inherently noisy, weakly compositional, and
biased toward single-object, coarse-grained descriptions. Such datasets lack explicit grounding of
object-attribute relations and multi-object interactions, restricting models’ ability to generalize to
complex visual scenes. Efforts to enhance caption quality (3; 13) have demonstrated that enhancing
the compositional density and semantic richness of captions can significantly improve generative per-
formance. Nevertheless, manual curation of such dense compositional annotations is labor-intensive,
while automatic annotation methods (e.g., via MLMs) suffer from hallucination and semantic noise.

Constructing a compositional dataset requires that we first define the space of the visual content.
Scene graphs are one such representation of the visual space (14; 15; 16; 17; 18), grounded in
cognitive science (19). A scene graph represents objects in a scene as individual nodes in a graph.
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Each object is modified by attributes, which describe its properties. For example, attributes can
describe the material, color, size, and location of the object in the scene. Finally, relationships are
edges that connect the nodes. They define the spatial, functional, social, and interactions between
objects (20). For example, in a living room scene, a “table” node might have attributes like “wooden”
or “rectangular” and be connected to a “lamp” node through a relation: “on top of”. This systematic
scene graph structure provides simple yet effective ways to define and model the scene. As such,
scene graphs are an ideal foundation for systematically defining the compositional space of visual
content in text-to-vision generation.

We introduce GENERATE ANY SCENE, a system capable of efficiently enumerating the space of
scene graphs representing a wide range of visual scenes. GENERATE ANY SCENE composes scene
graphs of any structure using a rich taxonomy of visual elements, translating each scene graph into an
input caption and visual question answers to evaluate the output image or video. In particular, we first
construct a rich taxonomy of visual concepts consisting of 28, 787 objects, 1, 494 attributes, 10, 492
relations, 2, 193 scene attributes from various sources. Based on these assets, GENERATE ANY
SCENE can synthesize an almost infinite number of scene graphs of varying complexity (21). Besides,
GENERATE ANY SCENE allows configurable scene graph generation. For example, evaluators can
specify the complexity level of the scene graph to be generated or provide a seed scene graph to be
expanded. By automating these steps, our system ensures both scalability and adaptability, providing
researchers and developers with diverse, richly detailed scene graphs and corresponding captions
tailored to their specific needs. We also conduct comprehensive text-to-vision evaluations using our
generated captions, as detailed in Appendix A.

We show that GENERATE ANY SCENE can allow generation models to self-improve. Our diverse
captions can facilitate a framework to iteratively improve Text-to-Vision generation models using
their own generations. Given a model, we generate multiple images, identify the highest-scoring one,
and use it as new fine-tuning data to improve the model itself. We fine-tune SDv1.5 (22) and achieve
an average of 4% performance boost compared with original models, and this method is even better
than fine-tuning with the same amount of real images and captions from the Conceptual Captions
CC3M over different benchmarks.

We also use GENERATE ANY SCENE to design targeted distillation algorithms. Using our evaluations,
we identify limitations in open-sourced models that their proprietary counterparts excel at. Next,
we distill these specific capabilities from proprietary models. For example, DaLL-E 3 (3) excels
particularly in generating composite images with multiple parts. We distill this capability into SDv1.5,
effectively bridging the gap between DaLL-E 3 and SDv1.5. After targeted fine-tuning, SDv1.5
achieves a 10% increase in TIFA score (23) for compositional tasks and hard concept generation.

Then we propose a low-cost scene graph-based reward model for RLHF (24) in text-to-image
generation. By leveraging synthetic scene graphs generated by GENERATE ANY SCENE, we generate
exhaustive question-answer pairs that cover all objects, attributes, and relationships in the caption.
Our method enables fine-grained, compositional reward modeling without manual annotation or
heavy LLM inference. With GRPO (25), we fine-tune SimpleAR-0.5B-SFT (26) using a scene graph
reward model, achieving better compositional alignment than CLIP-based methods (27) (+5% on
DPG-Bench (28)).

Finally, we apply GENERATE ANY SCENE to the downstream application of content moderation.
Content moderation is a vital application, especially as Text-to-Vision generation models improve.
A key challenge lies in the limited diversity of existing training data. To address this, we leverage
GENERATE ANY SCENE to generate diverse and compositional captions, creating synthetic training
data that complements existing datasets. By retraining a ViT-T (29) detector with our enriched dataset,
we enhance its detection performance, particularly in cross-model and cross-dataset scenarios.

2 GENERATE ANY SCENE

In this section, we present GENERATE ANY SCENE (Figure 1), a data engine that systematically
synthesizes diverse scene graphs in terms of both structure and content and translates them into
corresponding captions.

Scene graph. A scene graph is a structured representation of a visual scene, where objects are
represented as nodes, their attributes (such as color and shape) are properties of those nodes, and the

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

relationships between objects (such as spatial or semantic connections) are represented as edges. In
recent years, scene graphs have played a crucial role in visual understanding tasks, such as those
found in Visual Genome (14) and GQA (30) for visual question answering (VQA). Their utility
has expanded to various Text-to-Vision generation tasks. For example, the DSG (31) and DPG (10)
benchmarks leverage scene graphs to evaluate how well generated images align with captions.

Taxonomy of visual elements. To construct a scene graph, we use three main metadata types:
objects, attributes, and relations. We further introduce scene attributes that capture global visual
contexts, such as art style, to facilitate comprehensive caption synthesis. The statistics and source of
our metadata are shown in Table 1. Additionally, we build a hierarchical taxonomy that categorizes
metadata into distinct levels and types, enabling fine-grained analysis. This structure supports precise
content synthesis, from broad concepts like “flower” to fine-grained instances such as “daisy.”

Table 1: Summary of the quantities and sources of visual elements. Details are in Appendix B.

Metadata Type Number Source

Objects 28,787 WordNet (32)
Attributes 1,494 Wikipedia (33), etc.
Relations 10,492 Synthetic Visual Genome (34)
Scene Attributes 2,193 Places365 (35), etc.

2.1 GENERATING DATA WITH SCENE GRAPHS

Step 1: Scene graph structure enumeration. Our engine pre-computes a library of directed scene-
graph topologies subject to user-specified structural constraints: complexity (total number of objects,
relations, and attributes) (36), average node degree, and number of connected components. We first
sample the number of object nodes and then systematically enumerate feasible edge sets and attribute
attachments that satisfy these constraints. We provide 3 optional controls: (i) degree-profile bounds
per-node in/out-degree, (ii) seed-graph preservation embeds a user-provided seed graph as a subgraph
of each enumerated structure, and (3) commonsense plausibility filtering prunes implausible contents
while retaining compositional diversity. All enumerations are performed once per parameter tuple
and cached for fast querying.

Step 2: Populate the scene graph structure with metadata. Given a generated scene graph
structure, the next step involves populating the graph with metadata. For each object node, attribute
node, and relation edge, we sample the corresponding content from our metadata. This process is
highly customizable and controllable: users can define the topics and types of metadata to include,
for instance, by selecting only commonsense metadata or specifying relationships between particular
objects. By determining the scope of metadata sampling, we can precisely control the final content of
the captions and easily extend the diversity and richness of scene graphs by adding new metadata.

Step 3: Sample scene attributes. We also include scene attributes that describe aspects such as the
art style, viewpoint, time span (for video), and 3D attributes (for 3D content). These scene attributes
are sampled directly from our metadata, creating a list that provides contextual details to enrich the
description of the visual content.

Step 4: Translate scene graph to caption. We introduce a deterministic and programmatic algorithm
that converts scene graphs with scene attributes into captions. It traverses scene graphs by converting
objects/attributes/relations into descriptive text in topological order, while tracking each object’s
references to ensure coherence. Programmatic grammar rules are employed (e.g., disambiguating
identical objects with “the first/second” and skipping already mentioned objects) to prevent duplication
and misreference, resulting in clear captions. We also provide LLM paraphrasing as an optional
step to diversify wording; however, our studies (see Appendix A.3) show that paraphrasing does not
materially affect results. We adopt the programmatic caption converter as the default for its speed
and low hallucination rate.

Step 5: Convert scene graph to a series of question-answer pairs. Given a synthetic scene graph,
GENERATE ANY SCENE automatically enumerates exhaustive QA pairs using templates that query
object attributes (e.g., What color is the sphere?), spatial relations (e.g., What is to the left of the
cube?), and other compositional elements. Each answer maps directly to an object, attribute, or edge,
ensuring full coverage of the graph at minimal cost. This enables both VQA-based evaluation of
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Figure 1: The generation pipeline of GENERATE ANY SCENE. Step 1: Enumerate diverse scene
graph structures under user-defined constraints. Step 2: Populate structures with sampled objects,
attributes, and relations. Step 3: Sample scene attributes such as style, perspective, or time span.
Step 4: Translate scene graph and attributes into coherent captions. Step 5: Automatically generate
QA pairs covering all elements for evaluation and reward modeling.

generated images and the construction of fine-grained reward models without manual labeling or
costly LLM inference.

3 SELF-IMPROVING MODELS WITH SYNTHETIC CAPTIONS

Figure 2: Results for Self-Improving Models. Average VQA score of SDv1.5 fine-tuned on different
data across 1K GENERATE ANY SCENE image/video evaluation set and GenAI-Bench image/video
benchmark (37).

With GENERATE ANY SCENE, we develop a self-improvement framework to improve generative
capabilities. By generating scalable compositional captions from scene graphs, GENERATE ANY
SCENE expands the textual and visual space, allowing for a diversity of synthetic images that extend
beyond real-world scenes. Our goal is to utilize these richly varied synthetic images to further boost
model performance.

Iterative self-improving framework. Inspired by DreamSync (38), we designed an iterative self-
improving framework using GENERATE ANY SCENE with SDv1.5 as the baseline model. With
VQA Score, which shows strong correlation with human evaluations on compositional images (39),
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we guide the model’s improvement throughout the process. Specifically, GENERATE ANY SCENE
generates 3 → 10K captions across three epochs. For each caption, SDv1.5 generates 8 images, and
the image with the highest VQA Score is selected. From each set of 10K optimal images, we then
select the top 25% (2.5K image-caption pairs) as the training data for each epoch. In subsequent
epochs, we use the fine-tuned model from the prior iteration to generate new images. We employ
LoRA (40) for parameter-efficient fine-tuning.

Baselines. We conduct comparative experiments with the CC3M dataset, which comprises high-
quality and diverse real-world image-caption pairs (12). We randomly sample 3 → 10K captions from
CC3M, applying the same top-score selection strategy for iterative fine-tuning of SDv1.5. Additionally,
we include a baseline using random-sample fine-tuning strategy to validate the advantage of our
highest-scoring selection-based strategy. We evaluate our self-improving pipeline on Text-to-Vision
generation benchmarks, including GenAI Bench (37). For the Text-to-Video generation task, we use
Text2Video-Zero as the baseline model, substituting its backbone with the original SDv1.5 and our
fine-tuned SDv1.5 models.

Fine-tuning with our synthetic captions can surpass high-quality real-world image-caption

data. Our results show that fine-tuning with GENERATE ANY SCENE-generated synthetic data
consistently outperforms CC3M-based fine-tuning across Text-to-Vision generation tasks (Figure 2),
achieving the highest gains with our highest-scoring selection strategy. This highlights GENERATE
ANY SCENE’s scalability and compositional diversity, enabling models to effectively capture complex
scene structures. Additional experiment settings and results are in Appendix C.

4 DISTILLING TARGETED CAPABILITIES

Although self-improving with GENERATE ANY SCENE shows clear advantages over high-quality
real-world datasets, its efficiency is inherently limited by the model’s own generation capabilities. To
address this, we leverage the taxonomy and systematical generation capabilities within GENERATE
ANY SCENE to identify specific strengths of proprietary models (DaLL-E 3), and distill these
capabilities into open-source models. More details are in Appendix D.

We evaluate multiple models using GENERATE ANY SCENE controllably generated captions and
observe that DaLL-E 3 achieves TIFA Score 1.5 to 2 times higher than those of other models. As
shown in Figure 4a, when comparing TIFA Score across captions with varying numbers of elements
(objects, relations, and attributes), DaLL-E 3 counterintuitively maintains consistent performance
regardless of element count. The performance of other models declines as the element count increases,
which aligns with expected compositional challenges. We suspect that these differences are primarily
due to DaLL-E 3’s advanced capabilities in compositionality and understanding hard concepts,
which ensures high faithfulness across diverse combinations of element types and counts.

Distilling compositionality from DaLL-E 3. When analyzing model outputs from our synthetic
captions, we find that DaLL-E 3 tends to produce straightforward combinations of multiple objects
(Figure 3). In contrast, open-source models like SDv1.5 often omit objects from the captions, despite
being capable of generating each one individually. This difference suggests that DaLL-E 3 may
benefit from training data emphasizing multi-object presence, even without detailed layout or object
interaction. Such training likely underpins DaLL-E 3’s stronger performance on metrics like TIFA
Score and VQA Score that prioritize object inclusion. To effectively distill these compositional
abilities into SDv1.5, we employ GENERATE ANY SCENE for targeted synthesis of 778 multi-object
captions, paired with images generated by DaLL-E 3, for finetuning SDv1.5.

Distilling hard concepts understanding from DaLL-E 3. Figure 3 shows that DaLL-E 3 is capable
not only of handling multi-object generation but also of understanding and generating rare and hard
concepts, such as a specific species of flower. We attribute this to its training with proprietary real-
world data. Using the taxonomy of GENERATE ANY SCENE, we compute model performance on each
concept by averaging generation scores across captions containing that concept. Accumulating results
through the taxonomy, we identify the 100 concepts where SDv1.5 shows the largest performance
gap relative to DaLL-E 3. For distilling, we generate 778 captions incorporating these hard concepts
with other elements, and use DaLL-E 3 to produce corresponding images.
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Figure 3: Examples for Distilling Capabilities. Examples of images generated by DaLL-E 3, the
original SDv1.5, and the fine-tuned versions. The left four captions demonstrate fine-tuning with
multi-object captions generated by GENERATE ANY SCENE for better compositionality, while the
right two columns focus on understanding hard concepts.

Baselines. For the baseline, we randomly synthesize 778 captions using GENERATE ANY SCENE
paired with DaLL-E 3-generated images to fine-tune the model. To evaluate model improvements,
we generate another 1K multi-object captions and 1K hard-concept captions separately.

Targeted caption synthesis via GENERATE ANY SCENE enables effective distillation of composi-

tional abilities and hard concept understanding. We analyze images generated by SDv1.5 before
and after fine-tuning on high-complexity captions (Figure 3). Surprisingly, with fewer than 1K LoRA
fine-tuning steps, SDv1.5 effectively learns DaLL-E 3 ’s capability to arrange and compose multiple
objects within a single image. Quantitatively, Figure 4b shows a 10% improvement in TIFA Score
after targeted fine-tuning, surpassing the performance of the randomly fine-tuned model. On a broader
set of 10K GENERATE ANY SCENE-generated captions, the targeted fine-tuned model consistently
outperforms randomly fine-tuned and original counterparts across complex scenes (Figure 4a). These
results confirm not only the effectiveness but also the scalability and efficiency of GENERATE ANY
SCENE. Also, the results in Figure 4c show that our targeted fine-tuning with hard concepts leads to

(a) Distilling compositionality

from DaLL-E 3: Model results on
TIFA vs. total element numbers in
captions in 10K general GENERATE
ANY SCENE captions. ("Best
Open-Source Model" refers to
Flux.1-schnell)

(b) Distilling compositionality

from DaLL-E 3: Model results on
TIFA vs. total element numbers
in captions in 1K multi-object
GENERATE ANY SCENE captions.

(c) Distilling hard concepts under-

standing from DALL-E 3: Models’
average TIFA Score performance
over captions and hard concepts in
1K hard concepts GENERATE ANY
SCENE captions.

Figure 4: Results for Distilling Capabilities. The left two figures show the results for Distilling

compositionality, while the rightmost figure shows the results for Distilling hard concepts under-

standing from DALL-E 3.
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Figure 5: Comparison of generated images. Our reward model enables image generation with
better semantic alignment, realism, and visual quality than baselines.

improved model performance, reflected in higher average scores across captions and increased scores
for each challenging concept.

5 REINFORCEMENT LEARNING WITH A SYNTHETIC REWARD FUNCTION

Reinforcement Learning with Human Feedback (RLHF) has become an increasingly popular fine-
tuning strategy in text-to-image generation (41; 42; 26). However, defining an effective reward model
that accurately captures semantic alignment for text-to-image generation remains an open challenge.
Existing reward models like CLIP offer only coarse-grained image-text similarity signals, which fall
short in assessing compositional correctness and lack interpretability. Alternative approaches have
explored using visual question answering (VQA) as a proxy for evaluating semantic alignment, aiming
for finer-grained assessments, yet require either labor-intensive datasets with dense annotations or
large volumes of contextually relevant questions via advanced LLMs. Leveraging its structured scene
graph synthesis capabilities, GENERATE ANY SCENE offers a scalable alternative by producing
exhaustive semantic queries with negligible overhead, enabling low-cost, compositional reward
modeling (Sec 2.1).

Experiment setup. Building on this scene graph-based reward modeling strategy, we adopt Group
Relative Policy Optimization (GRPO) as our reinforcement learning algorithm. We fine-tune the
SimpleAR-0.5B-SFT model for one epoch using 10K captions generated by GENERATE ANY SCENE,
each paired with their scene graph-derived QA sets. For reward evaluation, we use Qwen2.5-VL-3B, a
lightweight open-source vision-language model, to answer these QA pairs given the model-generated
images. The reward is computed as the accuracy across all questions. This fine-grained, scene
graph-aligned reward provides precise feedback on compositional faithfulness. As a baseline, we
compare against SimpleAR-0.5B-RL, trained with CLIP-based rewards on 11K captions from real
world datasets for one epoch. We evaluate our scene graph-based reward model on three benchmarks:
DPG-Bench (10), GenEval (9), and GenAI-Bench (37). More details are in Appendix E.

GENERATE ANY SCENE rewards outperform CLIP. As shown in Table 2, our method outperforms
both SFT and CLIP-RL models and achieves a significant improvement, demonstrating superior
compositional faithfulness driven by explicit scene graph rewards. Importantly, this performance gain
is directly enabled by the GENERATE ANY SCENE engine, which constructs explicit scene graphs
to generate compositional captions. GENERATE ANY SCENE provides a structured and cognitively
aligned visual representation, from which we derive exhaustive QA pairs with minimal additional
cost. Combined with lightweight VLM judge, this approach offers a scalable, low-cost solution for
semantic-level reward modeling.
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Table 2: Evaluation on the DPG, GenEval and GenAI benchmark. GRPO training with our reward
model outperforms both SFT baseline and CLIP-RL models. TO: two objects, P: position, CA: color
attribute.

Method DPG-Bench GenEval GenAI-Bench

Global Relation Overall TO P CA Overall Basic Advanced All

SimpleAR-0.5B-SFT 85.02 86.59 78.48 0.73 0.22 0.23 0.53 0.74 0.60 0.66
SimpleAR-0.5B-RL (Clip) 86.64 88.51 79.66 0.82 0.26 0.38 0.59 0.75 0.60 0.67
SimpleAR-0.5B-RL (Ours) 88.46 90.13 80.50 0.81 0.31 0.38 0.61 0.75 0.61 0.68

6 IMPROVING GENERATED-CONTENT DETECTION

Advances in Text-to-Vision generation underscore the need for effective content moderation (43).
Major challenges include the lack of high-quality and diverse datasets and the difficulty of generalizing
detection across models Text-to-Vision generation (44; 45). GENERATE ANY SCENE addresses these
issues by enabling scalable, systematical generation of compositional captions, increasing the diversity
and volume of synthetic data. This approach enhances existing datasets by compensating for their
limited scope-from realistic to imaginative-and variability.

Experiment setup. To demonstrate GENERATE ANY SCENE’s effectiveness in training generated
content detectors, we used the D3 dataset (46) as a baseline. We sampled 5K captioned real and
SDv1.4-generated image pairs from D3 and generated 5K additional images with GENERATE ANY
SCENE captions. We trained a ViT–T (47) model with a single-layer linear classifier, and compared
models trained with samples solely from D3 against those trained with samples GENERATE ANY
SCENE and D3.

GENERATE ANY SCENE improves generated content detectors. We evaluate the detector’s
generalization on the GenImage (48) validation set and images generated using GENERATE ANY
SCENE captions. Figure 6 demonstrates that combining GENERATE ANY SCENE-generated images
with real-world captioned images consistently enhances detection performance, particularly across
cross-model scenarios and diverse visual scenes. More details are in Appendix F.

(a) In-domain testing (Same

Model - SD v1.4): Detection results
on images generated by SD v1.4
using the GenImage dataset.

(b) In domain testing (cross-

model):Average detection results on
images generated by multiple mod-
els using our captions.

(c) Out of domain: Average de-
tection results on images generated
by multiple models using captions
from the GenImage dataset.

Figure 6: Results for Application 4: Generated content detector. Comparison of detection
performance across different data scales using D3 alone versus the combined D3 + GENERATE ANY
SCENE training set in cross-model and cross-dataset scenarios.

7 COMPREHENSIVE EVALUATION WITH GENERATE ANY SCENE

Beyond showcasing GENERATE ANY SCENE in model training, we also show that GENERATE ANY
SCENE is a valuable resource for comprehensive and compositional evaluation. Specifically, we
synthesize 10K captions for text-to-image, 10K for text-to-video, and 1K for text-to-3D, covering
diverse scene structures and content topics. We evaluate 12 text-to-image, 9 text-to-video, and 5 text-
to-3D models. Evaluations combine GENERATE ANY SCENE synthetic scene graphs with existing
metrics (e.g., CLIP Score (49), VQA Score (39), TIFA Score (23; 31)) to assess semantic similarity,
faithfulness, and human preference alignment. Our key findings include: (1) DiT-backbone text-to-
image models align more closely with input captions than UNet-backbone models. (2) Text-to-video
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models struggle with balancing dynamics and consistency, while both text-to-video and text-to-3D
models show notable gaps in human preference alignment. Except for aggregating quantitative
results, we also leverage GENERATE ANY SCENE ’s controllable captioning to evaluate models on
fine-grained factors: perplexity, scene complexity, commonsense reasoning, and content category
variation for case study.

Overall, GENERATE ANY SCENE yields stable, human-aligned rankings across T2I/T2V/T2-3D.
Through broad, controllable coverage of objects, attributes, relations, and categories, it serves as a
compositional stress test that reliably exposes plausibility gaps, category brittleness, and long-tail
concept failures in current models (see Appendix A).

8 RELATED WORK

Text-to-Vision generation models. Text-to-Image generation advances are driven by diffusion
models and LLMs. Some open-source models (22; 50; 51; 52; 53; 54) use UNet backbones to
refine images iteratively. In parallel, Diffusion Transformers (DiTs) architectures(55; 56; 57; 58)
have emerged as a better alternative in capturing long-range dependencies and improving coherence.
Proprietary models like DALL-E 3 (3) and Imagen 3 (59) still set the state-of-the-art. Based on Text-to-
Image generation method, Text-to-Video generation models typically utilize time-aware architectures
to ensure temporal coherence across frames (60; 61; 62; 63; 64; 65; 66; 67). In Text-to-3D generation,
recent proposed models (4; 68; 69; 70; 71) integrate the diffusion models with Neural Radiance Fields
(NeRF) rendering to generate diverse 3D objects. Recent studies (26; 42; 72; 73) have also explored
the integration of image generation into a unified multimodal language model (MLM) framework
based on auto-regressive transformer architectures, demonstrating promising improvements in both
performance and efficiency.

Synthetic captions for Text-to-Vision generation. Captions for Text-to-Vision generation models
vary greatly in diversity, complexity, and compositionality. This variation makes it challenging
and costly to collect large-scale and diverse captions written by humans. Consequently, synthetic
captions have been widely used for both training (74; 38; 75; 76; 8; 77; 78; 79) and evaluation
purposes (7). For example, training methods like LLM-Grounded Diffusion (74) leverage LLM-
generated captions to enhance the model’s understanding and alignment with human instruction. For
evaluation, benchmarks such as T2I-CompBench (7) and T2V-CompBench (8) utilize benchmarks
generated by LLMs. However, LLMs are hard to control and may introduce exhibit systematic bias.
In this work, we propose a programmatic scene graph-based data engine that can generate infinitely
diverse captions for improving Text-to-Vision generation models.

Finetuning techniques for Text-to-Vision generation. To accommodate the diverse applications
and personalization needs in text-to-vision models, numerous fine-tuning techniques have been
developed. LoRA (40) reduces fine-tuning costs via low-rank weight updates, while Textual Inver-
sion (80; 81) introduces new word embeddings for novel concepts without altering core parameters.
DreamBooth (82) adapts models to specific subjects or styles using a few personalized images, and
DreamSync (38) enables models to self-improve by learning from their own high-quality outputs.
Recently, RLHF (26; 41; 42) in Text-to-Vision generation has shown promise as an efficient fine-
tuning strategy. In this work, we use several fine-tuning techniques with GENERATE ANY SCENE to
improve Text-to-Vision generation models.

9 CONCLUSION

We present GENERATE ANY SCENE, a system leveraging scene graph programming to generate
diverse and compositional synthetic captions for Text-to-Vision generation tasks. It extends beyond
existing real-world caption datasets to include comprehensive scenes and even implausible scenarios.
To demonstrate the effectiveness of GENERATE ANY SCENE, we explore four applications: (1)
self-improvement by iteratively optimizing models, (2) distillation of proprietary model strengths into
open-source models, (3) a scene-graph-based efficient reward model within the GRPO, and (4) robust
content moderation with diverse synthetic data. GENERATE ANY SCENE highlights the importance
of synthetic data in improving Text-to-Vision generation, and addresses the need to systematically
define and scalably produce the space of visual scenes.

9
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