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Figure 1. Multi-view robotic manipulation. We propose a method for vision-based robotic manip-
ulation that fuses egocentric and third-person views using a cross-view attention mechanism. Our
method learns a policy using reinforcement learning that successfully transfers from simulation to a
real robot, and solves precision-based manipulation tasks directly from uncalibrated cameras, without
access to state information, and with a high degree of variability in task configurations.

Abstract

Learning to solve precision-based manipulation tasks from visual feedback using
Reinforcement Learning (RL) could drastically reduce the engineering efforts
required by traditional robot systems. However, performing fine-grained motor
control from visual inputs alone is challenging, especially with a static third-
person camera as often used in previous work. We propose a setting for robotic
manipulation in which the agent receives visual feedback from both a third-person
camera and an egocentric camera mounted on the robot’s wrist. While the third-
person camera is static, the egocentric camera enables the robot to actively control
its vision to aid in precise manipulation. To fuse visual information from both
cameras effectively, we additionally propose to use Transformers with a cross-
view attention mechanism that models spatial attention from one view to another
(and vice-versa), and use the learned features as input to an RL policy. Our
method improves learning over strong single-view and multi-view baselines, and
successfully transfers to a set of challenging manipulation tasks on a real robot
with uncalibrated cameras, no access to state information, and a high degree of task
variability. In a hammer manipulation task, our method succeeds in 75% of trials
versus 38% and 13% for multi-view and single-view baselines, respectively.

1 Introduction

Most solutions for robotic manipulation today rely on highly structured setups that allow for full
state information, fine-grained robot calibration, and predefined action sequences. This requires
substantial engineering effort, and the resulting system is intolerant to changes in the environment.
Visual feedback from a mounted camera has gained popularity as an inexpensive tool for relaxing the
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assumption of full state information [28, 30, 44, 48], and Reinforcement Learning (RL) has emerged
as a promising technique for learning flexible control policies without the need for detailed human
engineering [43, 39, 31, 14]. Together, vision-based RL could enable use of robots in unstructured
environments through flexible policies operating directly from visual feedback, without assuming
access to any state information [29, 35, 32, 49].

However, solving complex precision-based manipulation tasks in an end-to-end fashion remains
very challenging, and current methods often rely on important state information that is difficult to
obtain in the real world [13, 30, 22, 2, 33], and/or rely on known camera intrinsics and meticulous
calibration [44, 36] in order to transfer from simulation to the real world. We argue that for a system
to be truly robust, it should be able to operate from visual feedback, succeed without the need for
camera calibration, and be flexible enough to tolerate task variations, much like humans. In particular,
Land et al. [27] find that when humans perform a complex motor task, the oculo-motor system keeps
the centre of gaze very close to the point at which information is extracted, also known as visual
fixation. However, previous work in visual RL often limit themselves to a single, static third-person
monocular camera, which makes extraction of local information from areas of interest challenging,
and uncalibrated cameras only exacerbate the problem.

In this work, we propose a setting for vision-based robotic manipulation in which the agent receives
visual feedback from two complementary views: (i) a third-person view (global information), and (ii)
an egocentric view (local information), as shown in Figure 1. While the third-person view is static,
the egocentric camera moves with the robot gripper, providing the robot with active vision capabilities
analogous to the oculo-motor system in humans. Because the agent has control over its egocentric
vision, it can learn to actively position its camera such that it provides additional information at
regions of interest, e.g. accurate localization of points of contact in fine-grained manipulation tasks.

To fuse visual feedback from the two views effectively, we propose to integrate an explicit modeling
of visual fixation through a network architecture with soft attention mechanisms. Specifically, we
propose to use Transformers [40] with a cross-view attention module that explicitly models spatial
attention from one view to another. Each view is encoded using separate ConvNet encoders, and we
fuse their corresponding feature maps by applying our cross-view attention module bidirectionally.
In this way, we let every spatial region in the egocentric view highlight the corresponding regions of
interest in the third-person view, and vice-versa. We use the learned features as input for an RL policy
and optimize the network end-to-end using a reward signal. This encourages the agent to actively
control the egocentric camera in a way that maximizes success.

To demonstrate the effectiveness of our method, we conduct extensive empirical evaluation and
compare to a set of strong baselines on four precision-based manipulation tasks: (1) Reach, a task
in which the robot reaches for a goal marked by a red disc placed on the table, (2) Push, a task in
which the robot pushes a cube to a goal marked by a red disc, both placed on the table, (3) Peg in Box,
a task in which the objective is to insert a peg tied to the robot’s end-effector into a box placed on
the table, (4) Hammer, a task in which the objective is to hammer in an out-of-position peg. Each of
the four tasks are shown in Figure 1. We find that our multi-view setting and cross-view attention
modules each improve learning over single-view baselines, and we further show that our method
successfully transfers from simulation to a real robot setup (shown in Figure 2) with uncalibrated
cameras, no access to state information, and a high degree of task configuration variability. In the
challenging Hammer task, our method is significantly more successful during transfer than any of our
baselines, achieving a success rate of 75% versus 38% for a multi-view baseline without cross-view
attention, and only 13% and 0.0% for our single-view baselines. Finally, we qualitatively observe
that (i) multi-view methods appear less prone to error due to lack of camera calibration, and (ii) our
proposed cross-view attention mechanism improves precision in tasks that require fine-grained motor
control.

2 Related Work

Vision-Based Robotic Manipulation. Learning RL policies for end-to-end vision-based robotic
manipulation via task supervision has been widely explored [29, 31, 35, 32, 14, 25, 45, 49]. For
example, Lillicrap et al. [31] solve simulated continuous control tasks directly from images with no
access to state information, and Zhan et al. [49] shows that vision-based RL can solve real-world
manipulation tasks efficiently. Despite this progress it is still very challenging – especially for
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vision-based policies – to transfer learned skills to other environments, e.g. Sim2Real [34, 9, 16].
To facilitate transfer, related work also leverage important state information such as object pose,
which is readily available in simulation but difficult to obtain in the real world [13, 30, 22, 2, 36, 33].
In comparison, our approach learns directly from raw images and transfers to a real robot with
uncalibrated cameras.

Multi-View Robotic Manipulation. Using multiple views in robotic manipulation remains a rela-
tively unexplored topic that has only recently gained interest [1, 33, 6]. For example, Akinola et al.
[1] show that third-person views from multiple cameras improves policy learning in precision-based
manipulation tasks. In addition to camera inputs, they assume access to state information from the
gripper. OpenAI et al. [33] explore a multi-view robotic manipulation setting similar to ours, but
they require privileged state information that is not easily available in the real world. Concurrent to
our work, Chen et al. [6] propose a framework for learning 3D keypoints for control from multiple
third-person views. All of the aforementioned works only consider manipulation tasks in simulation.
In this work, we develop a real robotic system that operates strictly from uncalibrated egocentric and
third-person cameras.

Active Vision for Manipulation. Robots operating only from egocentric images suffer from incom-
plete state information (occlusion, small field-of-view), while when operating only from third-person
vision fail to capture more accurate interactions. A natural solution to this problem is active vision. An
active vision system is one that can manipulate the viewpoint of the camera(s) in order to investigate
the environment and get better information from it [5, 42]. Traditional methods for active vision [8]
either use hand-crafted utility functions [26] or are uncertainty or reconstruction based [12], whereas
learning based [18, 23] approaches explicitly learn these utility functions for selecting the next-best
view using ground truth labels. In this work, we use the task-based reward to guide active vision. Our
approach employs an egocentric camera tied to the wrist of the robot for active vision.

Attention Mechanisms in RL. Our multi-view fusion builds upon the soft attention mechanism
which has been widely adopted in natural language processing [40, 10] and computer vision [41, 11],
and has recently been popularized in the context of RL [21, 7, 20, 15, 46, 19]. For example, Jiang et
al. [21] propose an attention-based communication model that scales to cooperative decision-making
between a large amount of agents, and Yang et al. [46] use a cross-modal Transformer to fuse state
information with a depth input in simulated locomotion tasks. James et al. [19] is a parallel work that
is closest to our approach. However, like most other works on image-based RL, they restrict their
study to a single, fixed third-person view. We propose a cross-view attention mechanism that fuses
information from multiple camera views, and we are – to the best of our knowledge – the first to
demonstrate the effectiveness of attention-based policies in transfer from simulation to a real robot
setup.

3 Background

Vision-Based Reinforcement Learning. We formulate interaction between the agent’s vision-based
control policy and environment as an infinite-horizon Partially Observable Markov Decision Process
(POMDP) [24] described by a tuple (S,A,P, p0, r, γ), where S is the state space, A is the action
space, P : S × A 7→ S is a transition function that defines a conditional probability distribution
P(·|st,at) over possible next states given current state st ∈ S and action at ∈ A taken at time t, P0 is
a probability distribution over initial states, r : S ×A 7→ R is a scalar reward function, and γ ∈ [0, 1)
is a discount factor. In a POMDP, the underlying state s of the system is assumed unavailable, and
the agent must therefore learn to implicitly model states from raw image observations. Our goal
is to learn a policy π : S 7→ A that maximizes return EΓ∼π[

∑∞
t=0 γ

tr(st,at)] along a trajectory
Γ = (s0, s1, . . . , s∞) where s0 ∼ P0, at ∼ π(·|st), and st+1 ∼ P(·|st,at), and we use the Soft
Actor-Critic [14] RL algorithm for policy search.

Soft Actor-Critic (SAC) [14] is an off-policy actor-critic algorithm that learns a (soft) state-action
value function Qθ : S ×A 7→ R, a stochastic policy πθ as previously defined, and optionally a tem-
perature parameter τθ. Qθ is optimized to minimize the (soft) Bellman residual [38], πθ is optimized
using a maximum entropy objective [4, 50], and τθ is optimized to maintain a desired expected
entropy; see [14] for further details. For brevity, we generically refer to learnable parameterization by
a subscript θ throughout this work.
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Figure 2. Real robot setup. Image depicting our real-world environment for the Peg in Box task.
The third-person camera is static, and the egocentric camera moves along with the robot arm. See
Figure 1 for camera view samples.
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Figure 3. Sim2Real. Samples from our simulation and real world environments for each view
and two tasks, Peg in Box and Hammer. We emphasize that the real world differs in both visuals,
dimensions, dynamics, and camera views, but roughly implement the same task as in simulation.
Also note that there is only an approximate correspondence between the samples from simulation and
the real world shown here.

Robot Setup. Our real-world setup is shown in Figure 2. We use a Ufactory xArm 7 robot with an
xArm Gripper as the robot platform in both our real-world and simulation experiments, although
our method is agnostic to the specific robot hardware. The camera poses and the shape and size of
objects in the simulation roughly mimic that of the real-world. We apply the same pre-processing to
both the simulated and real images. Image samples from the simulation and real-world robot setup
can be seen in Figure 3. Two cameras are mounted to overlook the robot workspace where the task
is being performed. With respect to the robot, one camera is directly placed in front of the whole
setup (third-person view) with a large field of view covering the robot and the workspace, and the
other camera (egocentric view) is attached to the robot at its wrist, i.e. right above where the gripper
meets the robot. We emphasize that the cameras are uncalibrated, that the policy operates strictly
from RGB images (84× 84 pixels) captured by the two cameras, and that the policy has no access to
state information.

4 Method

Inspired by visual fixation in the human eye, we propose to fuse egocentric and third-person views
in a multi-camera robotic manipulation setting, leveraging Transformers for explicit modeling of
fixation through its attention mechanism. Our method is a general framework for multi-view robotic
manipulation that is simple to both implement and deploy in a real-world setting. For simplicity, we
describe our method using SAC [14] as backbone learning algorithm as used in our experiments, but
we emphasize that our method is agnostic to the particular choice of learning algorithm. We introduce
each component of our method in the following.
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Figure 4. Architectural overview. Egocentric and third-person views O1, O2 are augmented using
stochastic data augmentation, and are encoded using separate ConvNet encoders to produce spatial
feature maps Z1, Z2. We perform cross-view attention between views using a Transformer such that
features in Z1 are used as queries for spatial information in Z2, and vice-versa. Features are then
aggregated using simple addition (⊕ in the figure), and used as input for a Soft Actor-Critic (SAC)
policy.
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Figure 5. Attention maps. Visualization of attention maps learned by our policy for (i), (ii) Hammer
task, and (iii), (iv) Push task. For samples (i), (iii) a spatial location in egocentric view (red highlight;
top) is used as query and its corresponding attention map for the third-person image (green highlight;
bottom) is shown. For samples (ii), (iv) the third-person view is used as query and attention maps for
the egocentric view are shown.

4.1 Multi-View Robotic Manipulation

We propose to learn vision-based RL policies for robotic manipulation tasks using raw, uncalibrated
RGB inputs from two complementary camera views: (i) an egocentric view O1 from a camera
mounted on the wrist of the robot, and (ii) a fixed third-person view O2. The third-person view
provides global information about the scene and robot-object relative configurations, while the
egocentric view serves to provide local information for fine-grained manipulation; see Figure 3 for
samples. Because the egocentric camera is attached to the robot, it provides the robot with active
vision capabilities – control over one of the two views. Our method learns a joint latent representation
from the two camera views, encouraging the model to relate global and local information, and actively
position itself such that the egocentric view provides valuable local information for fine-grained
manipulation.

4.2 Network Architecture

Figure 4 provides an overview of our method and architecture. Our proposed architecture takes two
raw RGB images O1, O2 ∈ RC×H×W from the egocentric and third-person cameras, respectively
(s.t. the system state s is approximated by {O1, O2}), and encodes them separately using ConvNet
encoders fθ1 and fθ2 to produce latent feature maps Z1, Z2 ∈ RC′×H′×W ′

. We propose to fuse the
two feature maps using a Transformer [40] with a cross-view attention module that takes Z1, Z2

as input and produces a single feature map H = Tθ(Z1, Z2). The aggregated features H are
flattened and fed into the policy (actor) πθ and state-action value function (critic) Qθ s.t. a ∼
πθ(·|Tθ(fθ1(O1), fθ2(O2))) and similarly for the critic. In practice, we optimize all components
end-to-end using the actor and critic losses of SAC, but only back-propagate gradients from the critic
to encoder components Tθ, fθ1, fθ2, as is common practice in image-based RL [47, 37, 17, 25]. In
the following section, we describe our cross-view attention mechanism in more detail.
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4.3 Cross-View Attention

Our Transformer Tθ learns to perform cross-view attention by associating spatial information between
intermediate feature maps Z1, Z2 from the egocentric viewO1 and third-person viewO2, respectively.
Tθ takes as input Z1, Z2 and produces a joint embedding

H = Tθ(Z1, Z2) (1)

, gθ1 (LN(Z1 + V2A12)) + gθ2 (LN(Z2 + V1A21)) (2)

where gθ1, gθ2 are Multi-Layer Perceptrons (MLP), LN is a LayerNorm [3] normalization, and
A12, A21 are normalized (soft) scaled dot-product attention [40] weights

A12 = σ
(
K>2 Q1

/√
C ′
)
, A21 = σ

(
K>1 Q2

/√
C ′
)

(3)

for Qi,Kj , Vj ∈ RC′×H′×W ′
denoted as the queries, keys, and values, respectively, for the cross-

view attention between Zi and Zj , and σ is a Softmax normalization. Qi,Kj , Vj are view-dependent
embeddings

Qi = ψQθi(LN(Zi)), Kj = ψKθj(LN(Zj)) (4)

Vj = ψVθj(LN(Zj)) , (5)

where ψQθi, ψ
K
θj , ψ

V
θj are 1× 1 convolutional layers.

Intuitively, each of the two cross-view attention mechanisms between feature maps Zi, Zj can
be interpreted as a differential (spatial) lookup operation, where Zi is used as query to retrieve
information in Zj . By performing cross-view attention bidirectionally as shown in Equation 2, Tθ
enables flow of spatial information both from the egocentric view to the third-person view and
vice-versa. With spatial attention, the policy can learn to associate concepts present in both views,
e.g. objects or the gripper as shown in Figure 5, and enhance both object-centric features as well as
the overall 3D geometry of the scene. We note that, while we consider two views in this work, our
method can trivially be extended to n views by letting Tθ compute cross-view attention bidirectionally
between all pairs of views.

4.4 Data Augmentation

To aid both learning in simulation and transfer to the real world, we apply data augmentation to image
observations, both in our method and across all baselines. During training, we sequentially apply
stochastic image shift [25] and color jitter augmentations to each view independently after sampling
from the replay buffer, i.e. Oaug

1 = aug(O1, ζ1), Oaug
2 = aug(O2, ζ2), ζ1, ζ2 ∼ Ω where ζ1, ζ2

parameterize the augmentations and Ω is a uniform distribution over the joint augmentation space.

5 Experiments

We investigate the effects of our proposed multi-view setting as well as our Transformer’s cross-view
attention mechanism on a set of precision-based robotic manipulation tasks from visual feedback.
Both our method and baselines are trained entirely in simulation using dense rewards and randomized
initial configurations of the robot, goal, and objects across the workspace. We evaluate methods both
in the simulation used for training, and a real robot setup as described in Section 3. During evaluation,
agents have no access to reward signals and are expected to generalize without any trials nor prior
knowledge about the test conditions. To ensure consistent results, we report success rate over a set
of pre-defined goal and object locations both in simulation and the real world. Goal locations vary
between tasks, and the robot is reset after each trial. We first detail our experimental setup and then
discuss our findings.

Tasks. Figure 1 provides samples for each task and view considered. Using the simulation setup as
described in Section 3, we consider the following tasks: (1) Reach, a task in which the robot reaches
for a goal marked by a red disc placed on the table. Success is considered when the robot gripper
reaches within 5 cm of the goal. (2) Push, a task in which the robot pushes a cube to a goal marked
by a red disc, both placed on the table. Success is considered when the cube reaches within 10 cm of
the goal. (3) Peg in Box, a task in which the objective is to insert a peg tied to the robot’s end-effector
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Figure 6. Training performance. Episode return as a function of the number of frames during
training, averaged over 3 seeds and shaded area is ±1 std. deviation. Our method consistently
performs on par or better than all baselines considered.

Table 1. Simulation experiments. Success rate of our method and baselines when trained and
evaluated in simulation. Averaged across 3 seeds and 30 trials (24 for Hammer). Our method is
significantly more success in Hammer.

Simulation 3rd Ego Multi Ours

Reach 1.00 0.15 1.00 1.00
Push 0.75 0.50 0.80 0.80
Peg in Box 0.80 0.20 0.80 0.80
Hammer 0.30 0.00 0.50 0.86

into a box placed on the table. Success is considered when the peg reaches within 5 cm of the goal
and as a result gets inserted into the box. (4) Hammer, a task in which the objective is to hammer
in an out-of-position peg. At each episode, one peg is randomly selected from 4 differently colored
pegs. Success is considered when the out-of-position peg is hammered back within 1 cm of the box.
Both the Reach and Push tasks use an XY action space, with movement along Z constrained. Peg
in Box and Hammer use an XYZ action space. Episodes are terminated when the policy succeeds,
collides with the table, or a maximum number of time steps is reached. An episode is counted as a
success if the success criteria defined above is met for any time step in the episode.

Setup. We implement our method and all baselines using Soft Actor-Critic (SAC) [14] as learning
algorithm and, whenever applicable, we similarly use the same network architecture and hyperparam-
eters adopted from previous work on image-based RL [17, 15]. As in previous work, fθ consists of 11
convolutional layers. Observations are RGB images of size 84× 84 from either one or two cameras
depending on the method. Although related works commonly approximate the system state s using
a stack of frames, we empirically find a single frame sufficient for both learning and transfer. All
methods are trained for 500k frames and evaluated for 30 trials (24 in Hammer: 6 for each peg across
3 object locations), both in simulation and on the real robot. In simulation, all results are averaged
over 3 model seeds; in real world experiments, we report transfer results for the best seed of each
method due to real world constraints.

Baselines. We compare our method to a set of strong baselines, all using Soft Actor-Critic (SAC)
as learning algorithm and the same choice of network architecture, hyperparameters, and data
augmentations as our method, whenever applicable. Specifically, we compare our method to the
following baselines: (1) Third-Person View (3rd) using visual feedback from a fixed third-person
camera, (2) Egocentric View (Ego) using only the egocentric camera mounted on the robot’s wrist,
(3) Multi-View (Multi) that uses both views as input, encodes each view using separate encoders, and
aggregates extracted features using addition. We emphasize that all baselines are implemented using
the same image augmentations (image shift and color jitter) as our method, which makes them largely
equivalent to DrQ [25], a state-of-the-art algorithm for image-based RL that builds on SAC. Lastly,
we note that (3) implements our method without cross-view attention and is therefore analogous to
the method proposed by Akinola et al. [1] but for a combination of third-person and egocentric views,
without state information from the gripper, and including recent advances in image-based RL such
as augmentations. In addition to these baselines, we also ablate design choices in our cross-view
attention mechanism.
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Table 2. Real robot experiments. Success rate of our methods when trained in simulation and
transferred to a real robot. Averaged across 30 trials (24 for Hammer).

Real robot 3rd Ego Multi Ours

Reach 0.83 0.17 0.83 1.00
Push 0.10 0.17 0.23 0.80
Peg in Box 0.23 0.27 0.50 0.80
Hammer 0.13 0.00 0.38 0.75

O
ur

s
M

ul
ti-

Vi
ew

Th
ird

-P
er

so
n

Hammer  ⟶
t=0 Highlight 1 TerminationHighlight 2

Figure 7. Qualitative results. Sample trajectories from the Hammer task for our method, the
multi-view baseline using both camera views, as well as the baseline using only a third-person view.
Episodes are terminated when the policy succeeds, collides with the table, or a maximum number of
time steps is reached. Our method succeeds in 75% of trials.

5.1 Robotic Manipulation in Simulation

Before discussing our real robot experiments, we first consider methods in simulation. Training
performance (in terms of episode return) of our method and baselines is shown in Figure 6. Our
method using both multi-view inputs and a Transformer performs on par or better than baselines
on all tasks, and we particularly observe improvements in sample efficiency on the Peg in Box task
that requires 3D geometric understanding. All methods except the egocentric-only baselines trivially
solve the Reach task, but we include it to better ground our results. We conjecture that the egocentric
baseline performs significantly worse than other methods due to its lack of global scene information.

The corresponding success rates for each task and method after training for 500k frames are shown in
Table 1. Interestingly, while a third-person view is sufficient for learning to solve 3 out of 4 tasks,
we observe substantial improvements in success rate in both our method (+56%) and multi-view
(+20%), which is not immediately obvious from the episode returns. Qualitatively, we find that the
third-person baseline often approaches the peg but fails to hit it, whereas our method is comparably
better at precise manipulation.

5.2 Sim2Real Transfer

We now consider deployment of the learned policies in a Sim2Real setting, i.e. the policies trained in
simulation are transferred to a real robot setup as shown in Figure 3. Success rates on the real robot
are shown in Table 2.
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Table 3. Ablations. Success rate of our method and ablations when trained and evaluated in
simulation. A12 ablates our method by only performing cross-attention from the egocentric view to
the third-person view, and A21 corresponds to the opposite direction. Averaged across 3 seeds and 30
trials (24 for Hammer).

Simulation A12 A21 Ours

Reach 1.00 1.00 1.00
Push 0.63 0.65 0.80
Peg in Box 0.70 0.70 0.80
Hammer 0.60 0.50 0.86

We find that the success of the single-view baselines drops considerably when transferring to the real
world. For example, third-person baseline (3rd) achieves success rates of 75% and 80% for the Push
and Peg in Box tasks, respectively, in simulation, while merely 10% and 23% in the real world. We
conjecture that this drop in performance is due to the reality gap – and the lack of camera calibration
in particular. With the addition of an egocentric view, the multi-view baseline improves transfer to
23% and 50% on the two Push and Peg in Box tasks. Finally, we observe no drop in success for
our method on the two tasks, achieving a success rate of 80% in both tasks, and only a small drop
in success rate on the challenging Hammer task that requires 3D understanding and a high level of
precision. Specifically, our method succeeds in 75% of trials in the Hammer task versus only 38%
and 13% for the multi-view and single-view baselines, respectively. As such, view aggregation using
Transformers appear to be a promising research direction.

Similar to our simulation experiments, we also study the qualitative behavior of policies when
transferring to the real world. Figure 7 shows sample trajectories for our method, the multi-view
baseline, and the third-person baseline on the Hammer task. In the Hammer task, we observe that
the multi-view baseline frequently misses its target by a small margin (presumably due to the reality
gap), and the third-person baseline systematically fails to reach the peg, which we conjecture is due
to error in 3D perception from the uncalibrated camera. Using our method, we observe that the robot
frequently positions its gripper above the peg, such that it is visible from the egocentric view during
the hammering motion. Finally, we also evaluate the qualitative behavior of the cross-view attention
module. Attention maps for a set of spatial queries are shown in Figure 5. We find that the agent
often attends to regions of interest, such as objects or the gripper. Transformer-based policies could
therefore also be a promising technique for explainability in RL.

5.3 Ablations

Our experiments discussed in Section 5.1 and 5.2 ablate the choice of camera views. Our method
learns cross-view attention between the egocentric view and the third-person view and models each
of the directions individually, i.e. an attention map A12 is computed for egocentric→ third-person
direction, and A21 is likewise computed for the opposite direction. We ablate each of these two
modules such that cross-view attention is only learned unidirectionally. Our ablations indicate that
unidirectional cross-view attention achieves similar success rates to that of the multi-view baselines,
only improving marginally in the Hammer task for the egocentric → third-person direction. In
comparison, our proposed bidirectional formulation of cross-view attention succeeds more often
than either ablation. We conjecture that letting both views attend to each other improves flow of
information, which in turn improves the expressiveness of the learned joint representation.

6 Conclusion

Precise robotic manipulation from visual feedback is challenging. Through experiments in both
simulation and the real world, we observe that both our multi-view setting as well as our proposed
cross-view attention mechanism improves learning and in particular improves transfer to the real
world, even in the challenging setting of Sim2Real with uncalibrated cameras, no state information,
and a high degree of task variability. Therefore, we believe our proposed problem setting and method
is a promising direction for future research in robotic manipulation from visual feedback.
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