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Abstract. Systems of linear equations are ubiquitous across science,
engineering, machine learning, and even finance. While classical meth-
ods can be prohibitively slow for large-scale problems, quantum linear
systems algorithms o!er the potential for exponential speedup in cer-
tain parameter regimes. However, a significant gap persists between this
theoretical promise and practical implementation, as the advantages are
often obscured by the substantial quantum resources and high sensitiv-
ity to noise inherent in current quantum hardware. One way to bridge
this gap is through the use of Iterative Refinement, a classical post-
processing scheme that can exponentially improve the accuracy to which
a linear system of equations can be solved using low-precision arithmetic.
In the context of quantum linear systems algorithms, such as the HHL
algorithm proposed by Harrow, Hassidim, and Loyd, Iterative Refine-
ment can greatly reduce the quantum resources required to calculate
an accurate solution in terms of tomography cost, circuit volume, and
fault-tolerant overhead. Here, we compute and benchmark highly pre-
cise solutions to linear systems of equations of up to eight variables by
running HHL with Iterative Refinement on NISQ quantum computers.
We also present our open-source implementation, emphasizing that our
circuit is not tailored to specific problem instances, as most available
implementations are.

Keywords: Quantum Linear System Algorithm · HHL Algorithm · It-
erative Refinement · Benchmarking.

1 Introduction

It is widely believed that quantum computers can e!ciently solve some problems
that do not admit e!cient classical algorithms. Recently, a considerable amount
of attention has been devoted to quantum linear algebra. A common class of
methods use Hamiltonian simulation to prepare a quantum state |x→ that is
proportional to the solution of the linear system

Ax = b, (1)

for a given s-row sparse Hermitian matrix A ↑ Rn↑n (i.e., A = A† has at most
s nonzero entries per row) and a vector b ↑ Rn. In the quantum linear systems
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problem (QLSP), one has input oracle access to the entries of A and the ability
to prepare a quantum state |b→ that is proportional to the right hand side vector
b. It is also standard to assume that ↓A↓ ↔ 1, and that its non-zero eigenvalues
lie in [↗1,↗1/ωA] ↘ [1/ωA, 1], where ωA the (known) condition number of A.

Research into this subfield began with the work of Harrow, Hassidim, and
Lloyd [4], who proposed what has come to be known as the HHL algorithm for
solving the QLSP. In this seminal work, it was shown that a quantum computer
could be used to solve a QLSP with a worst-case complexity of

O

(
s2ω2

M

ε
· polylog(d)

)
,

where ε > 0 is the accuracy to which the solution is obtained. Although the HHL
algorithm originally exhibited quadratic dependence on ωA, its poly-logarithmic
dependence on the dimension of the problem opened the doors for a potential
exponential quantum speedup for solving linear systems of equations.

Many linear systems problems (for example, solving the Newton system
within an interior point method algorithm for linear or semidefinite optimiza-
tion [7]) require high-precision solutions, which can be challenging to compute on
imperfect hardware. Iterative Refinement (IR) is a classical technique originally
developed in response to this challenge on low-precision classical computers. IR
can use an inexact or low-precision solution as a starting point and systemati-
cally improve its accuracy [3, 9]. This idea has since been extended to compute
highly accurate (and at times, exact) solutions to linear [1, 2] and semidefinite
optimization problems [5], and recent works have investigated their adaptability
to quantum algorithms [6, 8]. Given the speedups IR has facilitated for optimiza-
tion, it is worthwhile to investigate how IR can be leveraged in combination with
QLSAs. In this work, we show that both in theory and in practice, by using a
NISQ device to solve for the residual error term at each step, we can achieve
high-precision final solutions while requiring significantly fewer resources from
the quantum hardware.

The iterative refinement method for solving linear system of equations [3] is
described in Algorithm 1, and we summarize the core idea as follows. The algo-
rithm commences from an initial solution x(0)

↑ Rd, and subsequently computes
a refined solution x(k+1)

≃ x(k) + u(k) in iterations k = 0, 1, 2, . . . , where u(k)

acts as a correction of the error r(k) = z ↗ Mx(k) and is the solution to the
refining system Mu(k) = r(k). These operations can all be carried out using the
same level of accuracy or fixed precision.

1.1 Contributions

Our primary contribution is a benchmarking suite, available at https://github.
com/QCOL-LU/QLSAs, for running the HHL algorithm with iterative refinement
on quantum computer simulators/emulators as well as on real hardware. The
suite is integrated with the Quantinuum qnexus library for seamless execu-
tion on supported backends, including Quantinuum’s own H-series hardware and
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high-performance emulators. Our implementation is generalized (not hard-coded
to specific instances or sizes), unlike the majority of available implementations
found online.

We also demonstrate that classical IR post-processing significantly lowers the
quantum resource requirements for HHL. By iteratively refining a low-precision
quantum solution, we reduce the need for high-precision quantum phase estima-
tion (QPE). This directly translates to shallower circuits with fewer gates, fewer
qubits required for the QPE register, and viable execution on current NISQ hard-
ware, e"ectively enabling a fault-tolerant-era algorithm to provide meaningful
results today. Iterative refinement also reduces statistical noise in the estimate
of the solution vector during tomography. This reduces the number of shots
required to estimate a quantum state to a given level of precision.

Lastly, we benchmark results for systems up to 4 variables on Quantinuum
H2-2, and 8 variables on various emulators/simulators, quantifying the resource
reductions and demonstrating exponential improvements in solution accuracy
even on real noisy hardware.

2 Algorithm Implementation

Here, we discuss the details of our HHL-IR implementation.

2.1 Iterative Refinement

Our implementation follows the fixed-precision IR scheme detailed in and sum-
marized in Algorithm 1, which alternates between a quantum solver and classical
post-processing. This approach uses the quantum computer only for the most
challenging step (solving the linear system), while leveraging classical resources
for all scaling and update operations.

Algorithm 1 Iterative Refinement for the Linear Systems Problem
Input: Coe"cient matrix A → Rd→d with

∥∥A↑1
∥∥ ↑ ωA, right-hand side vector b → Rd,

error tolerances 0 < ε ↓ ϑ < 1.
Output: A classical solution vector x → Rd satisfying

∥∥∥Ax↔ b
↓b↓

∥∥∥ ↑ ε.

Let ϖ̃ = max{↗A↗F , ↗b↗}. Then, normalize the system b̃ ↘ b
ω̃ and Ã ↘ A

ω̃ .
Choose starting point (x(0)

, r
(0)

, ϱ
(0)) ↘ (0, b̃, 1), k ↘ 0.

while ↗r(k)↗ >
ε
ω̃

1. ũ
(k) ↘ solve (A, ϱ

(k)
r
(k)) using OLS(ϑ)

2. x
(k+1) ↘ x

(k) + 1
ϑ(k) ũ

(k)

3. r
(k+1) ↘ b̃↔Ax

(k+1)

4. ϱ
(k+1) ↘ 1

↓r(k+1)↓
5. k ↘ k + 1

end
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2.2 HHL Circuit and Execution

The core quantum component is the HHL algorithm, which we implement in
Qiskit. The circuit consists of three main stages: Quantum Phase Estimation
(QPE) to find the eigenvalues of the matrix A, a controlled rotation based on
the inverted eigenvalues, and an inverse QPE to uncompute the register. For
hardware execution on Quantinuum systems, circuits are transpiled using pytket
and submitted via the qnexus library, which handles the full compilation and
job management workflow. While most existing HHL implementations currently
available are hardcoded to a given linear system, this is not su!cient for our
IR scheme because the right hand side of the system changes at each iteration.
Thus, our implementation flexibly accepts input matrices and vectors just as
classical linear solvers do.

3 Experimental Results

Fig. 1. Residuals and errors from an 8 variable linear system as a function of iterative
refinement iteration on Quantinuum emulators and an IBM Qiskit simulator.

We run HHL-IR on various backends, including both emulators/simulators
and quantum hardware. The results demonstrate that iterative refinement con-
sistently and significantly improves the quality of the solutions obtained from
the HHL algorithm.

Figure 1 shows the log-scale residuals and errors for an 8-variable linear sys-
tem solved on Quantinuum emulators and an IBM Qiskit simulator. As the num-
ber of IR iterations increases, both the error and residual decrease exponentially,
confirming the e"ectiveness of the refinement process in noiseless simulatation.

This trend is successfully reproduced on NISQ hardware. Figure 2 plots the
results for a 4-variable system executed on the Quantinuum H2-2 quantum com-
puter. Despite the presence of hardware noise, IR still exponentially reduces the
solution error and residual, improving the accuracy of the final result with each
iteration.
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Fig. 2. Residuals and errors from a 4 variable linear system as a function of iterative
refinement iteration on Quantinuum H2-2.

A detailed summary of our benchmarking is presented in the table in Table
1. This data quantifies the performance of HHL with and without IR across
various problem sizes and backends. For every case, the application of IR yields
a dramatic reduction in both the final solution error ||xc ↗ xq|| and the residual
||Ax↗b||. For example, for an 8-variable problem on the H1-1LE emulator, IR re-
duced the solution error by over three orders of magnitude, from approximately
0.8488 to 0.0008. Note that we set a maximum of 10 iterations in these experi-
ments, but in some cases IR converges in less. These results empirically validate
that IR is a crucial tool for obtaining high-precision solutions from quantum
linear solvers on current and near-term hardware.

Table 1. Example statistics gathered in our QLSA benchmarking suite on a variety of
problem sizes and backends.

Backend Problem
Size

Condition
Number Sparsity Number

of Qubits
Circuit
Depth

Total
Gates

↗xc ↔ xq↗
without IR

↗xc ↔ xq↗
with IR

↗Ax↔ b↗
without IR

↗Ax↔ b↗
with IR

Total
Iterations

of IR
aer_simulator 2 x 2 1.872340 0.500000 4 21 25 0.379778 0.000000 0.327757 0.000000 5
H1-1LE 2 x 2 1.872340 0.500000 4 12 22 0.255828 0.000050 0.121943 0.000042 10
H2-1LE 2 x 2 1.872340 0.500000 4 12 22 0.281076 0.000092 0.132106 0.000051 10
aer_simulator 4 x 4 2.571542 0.625000 7 107 132 0.547150 0.000030 0.141385 0.000009 9
H1-1LE 4 x 4 2.571542 0.625000 7 323 449 0.711828 0.096980 0.189305 0.024518 10
H2-1LE 4 x 4 2.571542 0.625000 7 323 449 0.765401 0.058367 0.204540 0.014552 10
aer_simulator 8 x 8 2.232571 0.750000 12 1007 1093 0.771855 0.000142 0.258965 0.000055 10
H1-1LE 8 x 8 2.232571 0.750000 12 2997 4310 0.848844 0.000807 0.305588 0.000260 10
H2-1LE 8 x 8 2.232571 0.750000 12 2997 4310 0.857951 0.003080 0.309835 0.000992 10

4 Conclusions

Quantum linear systems algorithms such as HHL can provide speedups over
their classical counterparts. However, many instances of linear systems prob-
lems require solutions calculated to high precision. Although the requirements
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for achieving these levels of precision directly with QLSAs like the HHL algo-
rithm are out of reach on today’s hardware, integrating QLSAs with iterative
refinement can exponentially improve the quality of the solution with linear cost
in time and no cost in space. Here, we close the gap between theory and practice,
providing an open-source implementation with state of the art results in solution
quality on current NISQ hardware.

Future work will focus on expanding this benchmarking suite to further en-
hance its practicality and scope. We plan to incorporate and evaluate other
promising quantum linear systems algorithms, such as variational QLSAs, to
provide a more comprehensive comparison of available methods. To continue re-
ducing the resource overhead, we will also implement more e!cient variations of
the HHL algorithm for specific problem instances, like using the Hadamard test
to avoid costly tomography procedures. Finally, we will extend backend support
to a wider array of quantum platforms beyond Quantinuum and IBM, ensuring
our findings are broadly applicable and robust across di"erent hardware archi-
tectures.
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Challenges
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Implementation

✓ Python Package benchmarking, resource 
estimation, and running QLSAs with IR on different 
backends: https://github.com/QCOL-LU/QLSAs

Motivation 

Quantum Linear System Algorithms

• Systems of linear equations are fundamental 
to science, engineering, and machine learning.

• Quantum Linear Systems Algorithms (QLSAs) 
like HHL offer a potential exponential speedup 
over classical methods.

• A significant gap exists between the theoretical promise 
of QLSAs and their practical implementation.

• Current Noisy Intermediate-Scale Quantum (NISQ) 
hardware has high error rates and limited resources.

Our Contribution

• We present a benchmarking suite for the HHL 
algorithm enhanced with classical Iterative 
Refinement (IR).

• Our implementation is open-source and 
generalized (not hard-coded to specific 
problems).

Applications

• Quantum Interior Point Methods
• Quantum Machine Learning

1 Lehigh University, PA, USA

Iterative Refinement:

Benchmarking HHL-IR

Projected performance on emulators:

Quantinuum H2-2:

Quantum Linear System Problem:

Conclusions 

• Our hybrid quantum-classical method 
successfully produces high-precision solutions 
on current NISQ hardware, overcoming 
limitations from noise and resource 
constraints.

• Iterative Refinement exponentially improves 
solution accuracy. For the 8-variable problem 
on the H1-1LE emulator, IR reduced the 
solution error by over 1000x (from 0.8488 to 
0.0008).

• This work helps close the gap between the 
theoretical promise of QLSAs and their 
practical application, making fault-tolerant era 
algorithms useful for meaningful results today.

Future Work

• Expand Algorithm Portfolio: Incorporate and 
benchmark other promising quantum linear 
systems algorithms, such as Variational 
Quantum Linear Solvers (VQLS).

• Enhance Efficiency: Implement more resource-
efficient variations of the HHL algorithm, for 
instance, by using the Hadamard test to avoid 
costly state tomography.

• Broaden Hardware Support: Extend the 
benchmarking suite to support a wider array 
of quantum hardware platforms beyond 
Quantinuum and IBM.
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