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Abstract

Functional brain networks (fNETs), typically derived from fMRI time series, have1

been widely studied for understanding demographic differences and neurodegen-2

erative diseases. Recent years have seen an increasing adoption of deep learning3

methods, particularly graph neural networks (GNNs) and Transformers, for analyz-4

ing fNETs. Yet, the structural characteristics of fNETs remain poorly understood,5

and it is unclear whether these complex architectures consistently outperform6

simpler baselines. In this work, we conduct a systematic comparison of GNNs7

and Transformer-based models with baseline models across publicly available8

fNET datasets. We show that strong baseline models often match or exceed the9

performance of GNNs, while Transformers demonstrate more consistent gains.10

Our findings suggest that pooling mechanisms are a potential bottleneck for GNN11

performance. We argue that careful evaluation with simple baselines is crucial12

before attributing improvements to architectural sophistication.13

1 Introduction14

Functional brain networks (fNETs) are graph representations of the brain, where nodes correspond15

to distinct brain regions and edges reflect functional similarities quantified by correlations between16

their fMRI time series [1]. They have been widely used to study neurodegenerative disorders and17

demographic differences such as gender [2,3]. Early studies employed handcrafted graph measures18

and graph kernels to analyze these networks [4,5], but more recent works increasingly rely on19

deep learning models such as graph neural networks (GNNs) and Transformers [6,7]. Despite20

their promise, fNETs differ fundamentally from typical graph domains such as molecules or social21

networks: nodes are fixed and edge weights are dense. Moreover, fNETs lack node features, and22

connectivity values are also used as node attributes. Yet complex architectures like GNNs and23

Transformers are frequently applied without systematic baseline comparisons, even though recent24

studies have shown that, contrary to common belief, simple multilayer perceptrons (MLPs) can25

outperform GNNs in certain tasks [8,9].26

Another major challenge is data availability. Most open datasets release raw fMRI scans rather27

than processed networks. While standardized preprocessing pipelines improve consistency, openly28

available preprocessed networks remain scarce. Such resources would enable more consistent29

benchmarking and reproducible comparisons across studies, but only few open fNET datasets exist.30

This work asks two main questions: (1) Are GNNs or Transformers consistently necessary for31

modeling fNETs? (2) How do pooling strategies affect their performance? To address these questions,32

we compare GNNs and Transformers with varying pooling strategies against two baselines: a flattened33

MLP that treats the network as a vector, and a DeepSet model that processes nodes independently34

using a shared MLP. We argue that any proposed architecture should surpass such baselines. Our35

experiments across three datasets, two open fNET datasets (ABIDE and HCP) and one private cohort,36

systematically evaluate whether increased architectural complexity leads to consistent performance37

gains.38
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2 Datasets39

We focus on two widely used open datasets that provide precomputed functional brain networks40

rather than raw fMRI signals, along with one private dataset.41

• ABIDE: fNETs were extracted from preprocessed fMRI data provided by the Preprocessed42

Connectomes Project using Nilearn in Python [10]. Low-quality scans failing quality checks43

were excluded, leaving 871 scans (403 ASD patients, 468 healthy controls).44

• HCP-Gender: fNETs released by [11] from the HCP1200 dataset were used for gender45

classification, including 1,078 subjects labeled as male or female.46

• XXX: A private dataset consisting of 42 subjects—18 diagnosed with Alzheimer’s Disease47

and 24 with Subjective Cognitive Impairment (SCI). Preprocessing details are provided48

here.149

3 Methodology50

We denote the fMRI time series of a brain region n as xn ∈ RT where T is the number of time51

points. With N brain regions in total, the functional network (fNET) can be represented as a graph52

G = (V, E , A). The vertex set V corresponds to brain regions, and each edge in the edge set, E , is53

given by the correlation coefficient between regional time series: ei,j = corr(xi, xj). and A is the54

adjacency matrix that stores edges, Ai,j = ei,j55

We consider five architectures: 1) GCN [12] : f(A,X) = σ(L̃XΘ), with L̃ is normalized Laplacian56

of adjacency matrix, X is the node feature matrix, Θ trainable parameters and σ is a nonlinear57

function, 2) GAT [13] : f(A,X) = σ(ÃXΘ), where Ã attention coefficient matrix, learned only for58

connected nodes specified by A, 3) Transformer [14] : f(X) = σ(self_attn(X)), allowing every59

node to attend to all others by applying conventional self-attention mechanism, 4) MLP: flattens the60

fNET and computes f(X) = MLP(vec(X)), 5) DeepSet [15] : ignores adjacency and computes61

f(X) = MLP(X).62

These models produce latent node representations, X̂ , which are aggregated into a graph-level63

representation using pooling. We consider three schemes: 1) Basic Pooling: sum or mean of node64

features, z =
∑

n x̂n or z = 1
N

∑
n x̂n. 2) Concat Pooling: concatenation of node features followed65

by a linear projection, z = W [x̂1; x̂2; . . . ; x̂N ]. 3) Soft Pooling: nodes are assigned to K orthogonal66

clusters via S ∈ RN×k with pooled features Z = ST X̂ . Resulting Z is then processed like Concat67

Pooling [7].68

4 Experiments and results69

We compared GCN, GAT, and Transformers with various pooling strategies against simpler baselines70

(MLP and DeepSet) under consistent training conditions. For ABIDE and HCP-Gender, we use a71

(0.7:0.1:0.2) train/validation/test split, repeat experiments 5 times, and report mean and standard72

deviation of accuracy, F1, and AUC. The best model is selected on the validation set based on AUC,73

and its performance is reported on the test set. We tuned hyperparameters based on validation AUC74

and report the test performance of the best configuration. Models were trained for up to 100 epochs75

using the Adam optimizer, exploring learning rates {1e−3, 1e−4}, weight decays {0, 1e−3, 1e−4},76

layers {1, 2, 3} and, hidden dimension {8, 64}. For the XXXX dataset, we perform leave-one-out77

cross-validation due to its small size. Hyperparameters are set equal to those in the ABIDE and78

HCP-Gender experiments. To make GNN models suitable, we apply percentile-based thresholding,79

retaining the top 5 percent of edges in the adjacency matrix. We used adjacency matrix as the node80

feature matrix as it is a common practice in the field [16]. All experiments were implemented in81

Python and run on a single NVIDIA RTX 3060. The code used for these experiments is publicly82

available here2. We report the results for different models in Table 1. The main observations are as83

follows :84

1Details of the preprocessing pipeline are not shared yet due to anonymity.
2Github repo will be shared upon acceptance
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Table 1: Performance of different architectures and pooling schemes on three datasets (mean ± std).
Top results are highlighted: best in red, second-best in blue. The number of nodes in each graph is
indicated by the dataset name: ABIDE and XXXX use the Schaefer-400 atlas, while HCP-GENDER
uses the Schaefer-1000 atlas to define brain regions [17].

Model Pooling ABIDE(400) HCP-Gender(1000) XXXX(400)
Acc F1 AUC Acc F1 AUC Acc F1 AUC

GCN

Mean 0.667±0.023 0.630±0.043 0.744±0.015 0.806±0.020 0.804±0.019 0.897±0.006 0.700±0.011 0.627±0.018 0.762±0.008
Sum 0.633±0.034 0.622±0.054 0.690±0.031 0.751±0.009 0.750±0.008 0.821±0.024 0.600±0.046 0.548±0.044 0.631±0.037

Concat 0.706±0.020 0.674±0.053 0.774±0.019 0.839±0.012 0.838±0.012 0.911±0.014 0.728±0.035 0.653±0.053 0.803±0.020
Soft 0.687±0.022 0.614±0.056 0.763±0.007 0.848±0.010 0.847±0.010 0.914±0.008 0.729±0.035 0.679±0.032 0.808±0.018

GAT

Mean 0.685±0.028 0.657±0.049 0.738±0.017 0.825±0.016 0.824±0.016 0.896±0.006 0.633±0.028 0.554±0.030 0.712±0.026
Sum 0.652±0.028 0.614±0.074 0.689±0.029 0.719±0.020 0.718±0.020 0.790±0.025 0.629±0.038 0.639±0.048 0.558±0.072

Concat 0.713±0.019 0.665±0.028 0.771±0.011 0.822±0.014 0.821±0.014 0.896±0.008 0.652±0.032 0.572±0.022 0.717±0.045
Soft 0.696±0.035 0.621±0.064 0.762±0.011 0.808±0.027 0.807±0.028 0.894±0.020 0.652±0.019 0.574±0.053 0.746±0.023

Transformer

Mean 0.691±0.016 0.660±0.022 0.765±0.009 0.835±0.023 0.834±0.023 0.919±0.019 0.705±0.024 0.634±0.029 0.754±0.026
Sum 0.654±0.018 0.604±0.055 0.697±0.019 0.822±0.014 0.821±0.014 0.890±0.016 0.638±0.055 0.575±0.072 0.663±0.044

Concat 0.724±0.034 0.637±0.092 0.814±0.033 0.888±0.017 0.887±0.018 0.961±0.007 0.747±0.024 0.697±0.031 0.784±0.039
Soft 0.719±0.042 0.683±0.033 0.803±0.037 0.810±0.143 0.771±0.216 0.862±0.183 0.785±0.015 0.734±0.019 0.822±0.006

MLP - 0.725±0.010 0.657±0.017 0.808±0.002 0.906±0.003 0.906±0.003 0.962±0.001 0.805±0.009 0.757±0.015 0.827±0.003

DeepSet

Mean 0.688±0.020 0.656±0.027 0.757±0.008 0.823±0.011 0.821±0.011 0.893±0.004 0.681±0.011 0.573±0.008 0.726±0.009
Sum 0.667±0.022 0.615±0.057 0.722±0.014 0.817±0.023 0.815±0.023 0.902±0.012 0.681±0.041 0.622±0.044 0.726±0.022

Concat 0.734±0.012 0.691±0.023 0.806±0.011 0.860±0.015 0.859±0.015 0.931±0.009 0.705±0.024 0.634±0.042 0.769±0.017
Soft 0.721±0.014 0.646±0.021 0.800±0.019 0.867±0.009 0.866±0.009 0.940±0.007 0.724±0.024 0.666±0.038 0.792±0.014

GNNs and Transformer do not outperform baseline models. Although Transformer with concat85

or soft pooling achieve performance comparable to the baselines in some cases, they do not introduce86

significant gains. MLPs consistently perform better than other models across most tasks and metrics.87

GNNs fail to outperform the graph-free DeepSet model. This suggests that the creating sparse88

underlying graph from fNETs is difficult to define reliably and requires further investigation.89

Pooling strategies have a critical impact on performance. Simple pooling methods underperform,90

while concatenation-based pooling generally yields better results, indicating that inadequate pooling91

may be a key bottleneck in fNET analysis.92

Our results highlight the importance of strong baseline models for demonstrating genuine performance93

improvements. These observations are consistent with prior studies [18,19]. For instance, it has been94

shown that a simple MLP applied directly to time-series data can outperform Transformer-based95

models [18]. Although their focus was on time-series signals rather than brain networks, the study96

highlights the value of robust baselines. Similarly, other work has reported that simple models can97

surpass more complex architectures [19]. Our main contribution is to extend these observations to98

fully open fNET datasets and to emphasize the critical influence of pooling strategies.99

5 Conclusion100

Our experiments demonstrate that simple baseline models, such as MLPs and DeepSet, can outperform101

complex architectures like GNNs and Transformers on functional brain network analysis. These102

results highlight the critical importance of carefully evaluating model design choices, particularly103

graph pooling strategies, before claiming performance improvements. By conducting systematic104

comparisons on fully open network datasets, we validate that strong baselines are essential for105

reproducible and fair benchmarking. Our study emphasizes that future works should report baseline106

performances and carefully consider pooling mechanisms to meaningfully demonstrate the benefits107

of more sophisticated architectures. Furthermore, recent studies questioning the necessity of GNNs108

should be followed closely by researchers. Rather than proposing increasingly complex architectures109

solely to achieve marginal performance gains, focusing on interpretability and understanding the110

learned representations may offer a more valuable direction for advancing functional brain network111

analysis.112

Broader Impact113

Our work focuses on analyzing functional brain networks using machine learning. Potential positive114

impacts include improved understanding of neurodegenerative disorders and supporting research in115

neuroscience and clinical decision-making. Potential negative impacts may arise if the models are116

misused for clinical predictions without proper validation, potentially leading to incorrect diagnoses.117

These models are intended solely for research purposes and should not be used for direct clinical118

decision-making.119
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