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Abstract
Empirical scaling laws have driven the evolution
of large language models (LLMs), yet their coef-
ficients shift whenever the model architecture or
data pipeline changes. Mixture-of-Experts (MoE)
models, now standard in state-of-the-art systems,
introduce a new sparsity dimension that current
dense-model frontiers overlook. We investigate
how MoE sparsity influences two distinct capa-
bility regimes: memorization and reasoning. We
train families of MoE Transformers that system-
atically vary total parameters, active parameters,
and top-k routing while holding the compute bud-
get fixed. For every model we record pre-training
loss, downstream task loss, and task accuracy, al-
lowing us to separate the train-test generalization
gap from the loss-accuracy gap. Memorization
benchmarks improve monotonically with total pa-
rameters, mirroring training loss. By contrast,
reasoning performance saturates and can even
regress despite continued gains in both total pa-
rameters and training loss. Altering top-k alone
has little effect when active parameters are con-
stant, and classic hyperparameters such as learn-
ing rate and initialization modulate the general-
ization gap in the same direction as sparsity. Nei-
ther post-training reinforcement learning (GRPO)
nor extra test-time compute rescues the reasoning
deficit of overly sparse models.

1. Introduction
The recent evolution of large language models (LLMs) has
been driven by empirical scaling laws that link training loss
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to model size, dataset size, and compute budget. Kaplan
et al. showed that these laws hold across seven orders of
magnitude, establishing them as a reliable extrapolation tool
for dense Transformers (Kaplan et al., 2020). Subsequent
work by Hoffmann et al. demonstrated that scaling curves
can be inverted to choose the compute-optimal combination
of parameters and tokens for a fixed budget (Hoffmann
et al., 2022). Together, these results have made scaling
analysis a cornerstone of model planning at both academic
and industrial labs.

Yet the coefficients of the scaling laws are not universal.
Highly expressive models trained under different optimiz-
ers or architectures often follow the same loss trajectory
but diverge substantially on downstream reasoning bench-
marks (Liu et al., 2023). Brandfonbrener et al. extend
the classic laws with loss-to-loss prediction, showing that
the mapping between training and test distributions admits
its own power law when the distributions differ substan-
tially (Brandfonbrener et al., 2025). These observations
imply that optimal budgets must be re-estimated whenever
we modify the model or the data pipeline.

A particularly compelling architectural modification is the
Mixture-of-Experts (MoE) paradigm, offering high capacity
at fixed FLOPs by routing each token through a sparse
subset of experts (Shazeer et al., 2017; Lepikhin et al.,
2021; Fedus et al., 2021). Modern flagship models, e.g.,
Gemini 2.5/1.5 Pro (Gemini Team, 2025; 2024), DeepSeek-
V2/V3 (DeepSeek-AI, 2024; 2025b), Qwen-2.5/3 (Qwen,
2025; Qwen Team, 2025), and Mixtral-8x22B (Jiang et al.,
2024), now rely on MoE as a de-facto standard for econom-
ical scaling. Abnar et al. derive a parameters-vs-FLOPs
frontier and locate an optimal sparsity for a given compute
budget (Abnar et al., 2025). These findings emphasize that
the classical dense-model frontier is an incomplete picture,
and one must account for architectural knobs such as MoE
sparsity and top-k routing.

Furthermore, loss-based scaling curves do not always pre-
dict the performance on downstream tasks. Jelassi et al.
report that increasing MoE sparsity improves memorization
benchmarks, but saturates for reasoning performance (Je-
lassi et al., 2025). However, the Mixture of Parrots paper (Je-
lassi et al., 2025) only explores the number of active vs. total
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parameters, ignoring the effect of routing strategies beyond
standard top-2 routing. They also do not consider the effect
of reinforcement learning and test-time compute on their
reasoning benchmarks. Evaluating reasoning performance
immediately after pre-training overlooks both the benefits of
post-training adaptation and the leverage of additional test-
time compute. Post-training methods such as GRPO, which
use reinforcement signals to encourage coherent chain-of-
thought generation, sharpen a model’s reasoning on complex
tasks (OpenAI, 2024b; DeepSeek-AI, 2025a). Beyond these
refinements, models can further improve outputs at test
time by adopting calibrated decoding strategies that mirror
how humans pause to reconsider difficult problems. These
test-time approaches not only boost routine benchmark per-
formance but, when properly tuned, substantially enhance
multi-step mathematical reasoning, demonstrating that adap-
tive computing at test time is a powerful complement to both
model scale and post-training adaptation.

In this paper, we aim to identify how the optimal sparsity
of MoE changes between memorization (TriviaQA, Hel-
laSwag) and reasoning (GSM8K, GSM-Plus) tasks. We
train families of MoEs varying not only the total vs. ac-
tive parameters, but also the number of top-k experts. For
each model, we measure the loss on the pre-training data,
the task loss on the downstream benchmarks, and the accu-
racy on those benchmarks. This allows us to disentangle
the generalization gap between the train vs. test loss, and
the gap between loss vs. accuracy. For both memoriza-
tion and reasoning benchmarks, the train loss decreases
monotonically with the total parameters. The task loss and
accuracy follow the same monotonic trend as the train loss
for memorization benchmarks. In contrast, for reasoning
benchmarks, the task loss and accuracy diverge from the
monotonic trend as the total parameters increase and train-
ing loss decreases. We found that changing the k in top-k
routing itself has a negligible effect if the number of ac-
tive parameters is kept constant. We also consider classic
generalization-gap controls by sweeping the learning rate
and initialization, and show that their effects align strikingly
with the generalization-gap caused by sparsity. This con-
firms that the gap between the performance on memorization
vs. reasoning tasks can be induced not only by sparsity of
the MoE, but also classical hyperparameters like learning
rate and initialization. We further investigate whether ap-
plying GRPO or additional test-time compute could recover
the poor reasoning ability of sparser models. Our results
show that the gap between memorization and reasoning per-
formance caused by increased sparsity remains unchanged
even after GRPO and increased test-time compute. This
means that finding the optimal sparsity of the MoE during
pre-training is crucial for training a reasoning model under
a fixed compute budget.

2. Background and Related Work
2.1. Mixture of Experts

MoE Architecture. Mixture-of-Experts (MoE) networks
were introduced by (Jacobs et al., 1991; Jordan & Jacobs,
1994) and later brought to large-scale neural language mod-
eling by Shazeer et al. (2017). Within the Transformer
architecture (Vaswani et al., 2017), MoE layers have proven
especially effective, scaling to hundreds of billions of pa-
rameters while maintaining manageable training costs (Lep-
ikhin et al., 2021; Fedus et al., 2021; Du et al., 2022; Zoph
et al., 2022). Consequently, modern state-of-the-art lan-
guage models, including Gemini 2.5/1.5 Pro (Gemini Team,
2025; 2024) DeepSeek-V2/V3 (DeepSeek-AI, 2024; 2025b),
Qwen-2.5/3 (Qwen, 2025; Qwen Team, 2025), and Mixtral-
8x22B (Jiang et al., 2024), rely heavily on MoE layers to
achieve superior performance under fixed inference budgets.
In an MoE layer, a learnable router assigns each token to a
sparse subset of experts. Let x ∈ Rdh be a token representa-
tion and {FFN(x)i}ni=1 the n feed-forward experts. For top-
k routing, the router produces scores s = x⊤Wrouter ∈ Rn,
and selects the indices K of the k largest components, then
normalizes them: g(x)i = exp(si)∑

j∈K exp(sj)
if i ∈ K and

g(x)i = 0 otherwise. The layer output is the weighted sum
of the chosen experts: y =

∑n
i=1g(x)i FFN(x)i. Modern

MoE models typically supplement the token-level cross-
entropy loss with two auxiliary terms: a load-balancing loss
LLB, which prevents expert collapse (Shazeer et al., 2017),
and a router-z loss LRZ, which penalizes large router log-
its for better numerical stability and gradient flow (Zoph
et al., 2022). The combined training loss is expressed as
L = LCE + αLLB + βLRZ, where α and β are hyperpa-
rameters that control the relative importance of each term in
the objective function. This formulation is widely used in
recent MoE-based language models and remains unchanged
throughout the experiments.

2.2. Scaling Laws of LLMs

Scaling Laws for MoE. Existing scaling laws demon-
strate power-law relationships between model performance,
parameter count, dataset size, and compute budget (Ka-
plan et al., 2020; Hoffmann et al., 2022). Scaling laws for
MoE models have similarly explored how total parameter
count and expert granularity jointly affect scaling behavior
(Clark et al., 2022; Ludziejewski et al., 2024). Building on
this, Frantar et al. derived sparsity-aware scaling exponents
that bridge dense and sparse regimes (Frantar et al., 2024),
while Abnar et al. empirically charted the optimal trade-offs
between total parameters and FLOPs per token in MoE set-
tings (Abnar et al., 2025). Complementary theoretical and
empirical work shows that adding experts tends to improve
memorization more than reasoning, motivating new, gen-
eralized scaling frameworks that address scaling laws for
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reasoning performance (Jelassi et al., 2025).

Task Loss. Since the scaling law for next-token predic-
tion loss does not necessarily align with downstream task
loss, it may not be reliable for predicting benchmark per-
formance (Grattafiori et al., 2024). Some work has tried to
model downstream accuracy with an exponential curve, but
accuracy is only predictable when we average over many
tasks and carefully choose which ones to include (Gadre
et al., 2024). Another line of research instead first quanti-
fies how downstream task loss scales with parameters and
data, then converts predicted losses into accuracy estimates,
achieving under two points of absolute error for mid-scale
models using minimal extra compute (Bhagia et al., 2024).
Prior work observes that downstream task loss relates to
pre-training loss, where the shifts depend on the minimal
achievable losses determined by the intrinsic complexity
and distributional mismatch between the pre-training and
downstream datasets (Brandfonbrener et al., 2025). Because
scaling laws differ across tasks, the optimal scaling strategy
may also vary; for example, knowledge-based QA tasks are
“capacity-hungry,” benefiting more from larger model sizes,
whereas code-related tasks are “data-hungry,” benefiting
more from increased training data (Roberts et al., 2025).

Overfitting of LLMs. Standard scaling laws imply that
one can indefinitely increase model and dataset size with-
out worrying about overfitting; however, if we need to
worry about generalization and overfitting, these scaling
laws break down (Caballero et al., 2023). While some work
has shown that large language models can generalize to
mathematical reasoning tasks (Wang et al., 2025), others
have found that even the latest state-of-the-art models may
still overfit on the GSM8K benchmark (Zhang et al., 2024;
Mirzadeh et al., 2024). However, it remains unclear whether
this overfitting stems from overtraining or from having too
many parameters. For overtraining, empirical studies in data-
constrained pre-training show that repeated passes over the
same data yield negligible improvements after four epochs
(Muennighoff et al., 2023), with validation loss on high-
quality scientific text starting to rise at the beginning of
the fifth epoch (Taylor et al., 2022), and severe accuracy
drops observed under extreme token scarcity when train-
ing is extended well beyond four to five epochs (Xue et al.,
2023). Outside of pre-training contexts, overtraining has
been shown to degrade performance after post-quantization
or post-training, despite continued reductions in pre-training
loss (Kumar et al., 2025; Springer et al., 2025).

2.3. Post Training and Test-Time Compute (TTC)

Reinforcement Learning (RL) post-training has long been
a predominant approach for improving LLMs. Proximal
Policy Optimization (PPO) (Schulman et al., 2017) forms

the backbone of RLHF pipelines, from the original GPT
alignment work (Ouyang et al., 2022) to the GPT-4 family
of models (OpenAI, 2024a). More recently, Group Rela-
tive Policy Optimization (GRPO) was introduced as a vari-
ant of PPO that replaces the value function baseline with
a group-relative advantage estimator, thereby improving
memory efficiency and stabilizing updates; this approach
already powers frontier-scale systems such as DeepSeek-R1,
achieving state-of-the-art results on mathematical-reasoning
benchmarks (Shao et al., 2024; DeepSeek-AI, 2025a).

Complementary to these training-time advances, scaling
test-time compute (TTC) offers an orthogonal approach.
TTC denotes accuracy gains obtained without updating
model parameters, simply by allocating more inference re-
sources, e.g., running longer chains of thought (OpenAI,
2024b; Muennighoff et al., 2025b), sampling larger can-
didate pools (Li et al., 2022; Wang et al., 2023; Brown
et al., 2024; Schaeffer et al., 2025), or performing explicit
search-and-verify steps (Lightman et al., 2024; Shinn et al.,
2024; Snell et al., 2025; Inoue et al., 2025). Among these,
self-consistency, repeated sampling with majority-vote ag-
gregation, has emerged as a strong TTC baseline (Wang
et al., 2023).

3. Experiments
In this section, we empirically demonstrate the scaling of
downstream task performance through a systematic inves-
tigation of memorization-reasoning benchmarks in MoE
LLMs.

3.1. Experimental Setup

We use the Mixtral (Jiang et al., 2024) architecture, a
Transformer backbone with RMSNorm (Zhang & Sennrich,
2019), SwiGLU activations (Shazeer, 2020), and rotary po-
sitional embeddings (Su et al., 2024). Each feed-forward
block is a sparsely gated MoE layer, gated by the drop-
less token-choice top-k routing (Gale et al., 2023). All
models use L = 16 layers, following Muennighoff et al.
(2025a). We sweep three architectural hyperparameters:
(i) the model width d ∈ {512, 1024, 2048}; (ii) the num-
ber of experts per layer E ∈ {8, 16, 32, 64, 128, 256}; and
(iii) the top-k experts per token k ∈ {2, 4, 8, 16}. Each
feed-forward network has a hidden dimension of 2d. When
d = 512 and d = 1024, we train every combination of E
and k. For d = 2048, we limit the search to E ≤ 128 due to
computational resource constraints. We train with AdamW
(Loshchilov & Hutter, 2019) using a peak learning rate of
4 × 10−4, a 2k-step linear warm-up followed by cosine
decay, and a weight decay of 0.1.

Hyperparameter Study. To isolate optimization effects,
we reuse the same 125 B-token corpus. For all HP runs,
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we fix E = 16, k = 2, and train two widths, dmodel ∈
{512, 1024}, with the same FFN expansion factor 2. We
vary (i) LM-head initialization schemes, (ii) peak learning
rate, and (iii) AdamW ϵ. Further implementation and envi-
ronmental details are deferred to Appendix A.3.

Pre-training Datasets. We use a balanced mixture of
general-domain and mathematics-centric corpora, totaling
125 B-tokens. High quality web text (43 B) comes from de-
duplicated DCLM (Zyphra, 2024), the Flan-decontaminated
Dolmino subset, and WebInstructFull. Mathematics (32 B)
combines OLMo OpenWebMath and Algebraic-Stack (Sol-
daini et al., 2024), FineMath-4+ (Liu et al., 2024), the Math-
Pile commercial subset (Wang et al., 2024), the math split
of Dolmino-Mix-1124 (OLMo, 2025), OpenMathInstruct-
1/2 (Toshniwal et al., 2024b;a), StackMathQA, Orca-
Math (Mitra et al., 2024), and GSM8K train (Cobbe et al.,
2021). STEM Literature & Reference (42 B) consists of
arXiv, pes2o, Wikipedia, and Dolma–books (Soldaini et al.,
2024). Finally, we add Code from the StackExchange code
subset. See Appendix A.1 for complete statistics. See Ap-
pendix A.1 for complete statistics.

Evaluation Protocol. We evaluate four capability areas
with standard few-shot prompts. General Knowledge and
Reasoning: BBH (Suzgun et al., 2023) (3-shot CoT). Math-
ematical Reasoning: GSM8K (Cobbe et al., 2021) (4-shot)
and GSM-Plus (Li et al., 2024) (5-shot CoT). Reading
Comprehension: TriviaQA (Joshi et al., 2017) with 4-shot
prompting. Commonsense Reasoning: HellaSwag (Zellers
et al., 2019), and XWinograd (EN) (Tikhonov & Ryabinin,
2021), each under a 4-shot prompting setup. See Appendix 3
for further details.

3.2. Downstream Performance Does Not Necessarily
Improve with Total Parameter Size

In this section, we examine how the expert sparsity in MoE
models affects the relationship between pre-training loss and
downstream performance. We train a series of models with
controlled sparsity levels and measure their performance on
the representative downstream tasks. Our analysis shows
that while increasing the total number of parameters reduces
pre-training loss, downstream task loss on mathematical
reasoning worsens beyond a certain model size.

Task Loss Computation. Following Brandfonbrener et al.
(2025) and Grattafiori et al. (2024), we compute cross-
entropy only over the answer tokens by concatenating the
prompt with the ground-truth answer. For multiple-choice
datasets (e.g., HellaSwag, TriviaQA) the target sequence is
the correct answer string, as in Bhagia et al. (2024). For
open-ended mathematics datasets—GSM8K, and GSM-Plus
—we likewise compute cross-entropy directly against the

ground-truth answer tokens.

Training Loss and Validation Loss. Figure 1 presents the
training and validation losses when fixing the top-k/MoE
layer width constant and increasing only the number of ex-
perts (and hence the total parameter count). As the total
parameter count grows, both training and validation losses
decrease. Therefore, in terms of pre-training loss, increas-
ing total parameters (thereby raising sparsity) reduces pre-
training loss, which is consistent with prior work.

Experiments with Task Loss Next, we examine how
the downstream task loss responds to increases in the to-
tal parameter count. Figure 2 shows task loss on several
benchmarks as we vary only the number of experts, hold-
ing both top-k and each MoE layer widths constant. On
TriviaQA and HellaSwag, lower pre-training loss reduces
task loss, indicating that larger total parameter models yield
better results on these datasets. In contrast, for GSM8K and
GSM-Plus, further reductions in pre-training loss do not
translate into improved task loss; in some cases, the task
loss actually worsens. On XWinograd as well, one of the
reasoning tasks, we observe a modest downward trend in
performance. However, task loss displays considerable vari-
ability. We hypothesize that this observation arises because
the ground-truth answers are only a few tokens long. These
results suggest that, once top-k and layer width are fixed, an
optimal number of experts exists for each task, and adding
more beyond that point can harm performance on GSM8K
and GSM-Plus.

Dependence on Active Parameter. Can we avoid a de-
cline in performance as the total number of experts in-
creases? Figure 2 shows that models with more active pa-
rameters begin to overfit at a lower pre-training loss and
reach a lower minimum task loss at their optimal expert
counts. Consequently, improving results on GSM8K and
GSM-Plus requires tuning not only the total number of ex-
perts but also the top-k size. Whether a similar trend occurs
on other reasoning benchmarks, including code-generation
tasks, remains an open question.

Downstream Accuracy. The decline in math-task perfor-
mance as total parameters increase is not limited to task loss;
it also consistently holds for downstream accuracy (Figure
3). For TriviaQA and HellaSwag, accuracy improves mono-
tonically as training loss decreases. By contrast, on GSM8K,
further reductions in pre-training loss do not always translate
to higher accuracy. When the number of active parameters
is held constant, over-optimizing pre-training loss can in-
deed harm performance. Figure 4 plots benchmark error rate
against pre-training loss, including intermediate checkpoints.
We can find a sparsity dependence for reasoning-oriented
tasks such as GSM8K, XWinograd, and BBH. These results
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Figure 1. Although training and validation loss decrease as the total number of parameters grows, the task loss on GSM8K can
sometimes worsen with larger models. Training and validation losses steadily decrease as total or active parameters increase. The
HellaSwag task loss follows this scaling trend, whereas GSM8K task loss worsens once total parameters exceed a threshold, yet continues
to improve when active parameters are scaled up.
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Figure 2. For GSM8K and GSM-Plus, once the training loss drops below a certain point, the task loss starts to increase. Results
of scaling total parameters by increasing the number of experts, with model width and top-k held constant. For TriviaQA, HellaSwag,
and task loss falls monotonically as training loss decreases. By contrast, GSM8K and GSM-Plus show a U-shaped trend: task loss
declines with training loss only until a threshold, beyond which further reductions in training loss hurt task performance. That threshold
moves lower as active parameter count increases, models with more active parameters achieve a lower optimal task loss. No such active
parameters dependence appears for TriviaQA, HellaSwag. On XWinograd, a modest downward trend in performance can still be observed,
while this trend is not as clean as the others.

suggest that, for MoE models, downstream accuracy can
deviate from the predictions of conventional scaling laws,
and these deviations may vary across different tasks.

3.3. Optimal Sparsity for Iso-FLOP Budgets

We next analyze model quality under a constant compute
budget, that is, along IsoFLOP contours (Hoffmann et al.,
2022; Abnar et al., 2025). For a fixed per-token FLOP
count, we vary only the sparsity configuration: the number
of experts E and the top-k value, while holding the hidden
dimension and sequence length.
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Figure 3. Downstream accuracy when scaling total parameters via expert count with width and top-k fixed. TriviaQA and HellaSwag
exhibit steadily improving accuracy as pre-training loss decreases, whereas GSM8K shows a non-monotonic trend: further reductions in
pre-training loss do not always improve accuracy and can even degrade performance.
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Figure 4. Effect of sparsity on performance across different tasks We vary sparsity (1 - top-k/Experts) and plot the relationship between
pre-training loss and benchmark error rate, including intermediate checkpoints. For TriviaQA and HellaSwag, the error rate clearly tracks
training loss and is largely insensitive to sparsity. In contrast, reasoning-intensive tasks such as GSM8K, XWinograd, and BBH exhibit a
strong dependence of error rate on sparsity.

In Figure 5, we plot the task-specific optimal density (i.e. 1-
TopK/Experts) against model performance under a fixed
FLOPs budget. For QA benchmarks such as TriviaQA
and HellaSwag, lower density (higher sparsity) consistently
yields lower task loss and higher accuracy. This pattern
aligns with prior studies showing that, when FLOPs are fixed
to be constant, sparse models outperform denser models on
QA tasks (Abnar et al., 2025). By contrast, on mathematical-
reasoning benchmarks like GSM8K and GSM-Plus, the re-
lationship between density and performance depends on the
available compute. At lower FLOPs, increasing sparsity
still reduces loss and improves accuracy; however, once
the FLOPs budget grows, denser models begin to perform
better, achieving both lower loss and higher accuracy. This
shift indicates that the optimal model density for reasoning
tasks depends on compute budget: when a lot of FLOPs are
available, a denser models may be preferable.

3.4. Impact of TTC and Post-Training on Downstream
Performance

Test-Time Compute and RL post-training are standard for
boosting reasoning on tasks such as mathematical problem
solving. We therefore investigated whether performance de-
clines reported above persist when applying (a) Test-Time

Compute (TTC) and (b) RL post-training (GRPO). In Test-
Time Compute, we evaluated GSM8K(COBBE ET AL.,
2021) in a purely zero-shot setting using Self-Consistency
(SC) decoding(Wang et al., 2023), generating 27 indepen-
dent continuations per problem and selecting the most fre-
quent answer. In Post-Training, we fine-tuned each model
on the GSM8K training dataset using the GRPO algorithm
(Shao et al., 2024). We followed the settings of Zhao et al.
(2025) including reward function and fixed the learning rate
constant across all model configurations.

As illustrated in Figure 6, neither Test-Time Compute nor
GRPO mitigates the GSM8K performance drop that arises
when total parameters increase. In other words, although
both methods consistently improve overall performance,
they do not eliminate the inverted U-shaped relationship
between training loss and task accuracy.

3.5. Influence of Optimization Hyperparameter

Thus far, we have demonstrated that the structure of the
model, particularly the degree of sparsity, can lead to dif-
ferences in reasoning performance on downstream tasks,
even when the models converge to the same training loss.
Such differences are similar to generalization, in which a
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Figure 5. At fixed active parameter counts, higher sparsity (lower density) consistently improves performance, but at larger active
parameter counts, GSM8K and GSM-PLUS shift their optima back toward dense models. Task loss (top row) and Accuracy
(bottom row) against MoE Density k/E for a fixed active parameter budget.In the left two tasks (TRIVIAQA, HELLASWAG), increasing
sparsity consistently lowers task loss and raises accuracy across all active parameter budgets, in contrast, in the right two tasks (GSM8K,
GSM-PLUS), once active parameter counts become large, this trend reverses and denser models begin to outperform their sparser
counterparts.
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Figure 6. Effect of Test-Time Compute and GRPO on the
loss–accuracy trade-off. Although both methods yield perfor-
mance improvements that scale with model size, the loss–accuracy
trade-off on GSM8K remains. Left: Final training loss vs. accu-
racy under Test-Time Compute (Self-Consistency). Right: Final
training loss vs. accuracy after GRPO post-training.

model’s behavior on unseen data reflects implicit inductive
biases rather than mere fit to the training data. Studies on
neural network generalization have long recognized that not
only architectural choices, but also optimization dynamics
(i.e., differences in hyperparameter settings, regularization
schemes, and optimizer algorithms), play an important role

in shaping these inductive biases. Motivated by this insight,
we examine the learning-rate scale, which is critical to gen-
eralization (Keskar et al., 2017; Li et al., 2019; Yang & Hu,
2021). Our goal is to investigate how these choices influence
the model’s ability to transfer to downstream tasks, beyond
what is captured by pre-training loss alone.

Figure 7 illustrates our empirical findings, obtained us-
ing a MoE architecture with 16 experts. By varying the
learning rate, we evaluate performance on both QA bench-
marks (TriviaQA, HellaSwag) and reasoning benchmarks
(GSM8K, BBH). While QA benchmark performance like
TriviaQA and HellaSwag remain largely invariant to these
hyperparameters, reasoning benchmark performance like
GSM8K and BBH are sensitive to the learning rates: when
models converge to the same training loss, trainings with
lower learning rates and smaller initialization scales yield
superior downstream accuracy. These observations carry an
important implication. Studies on generalization in large-
scale language models should incorporate rigorous reason-
ing benchmarks (such as GSM8K and BBH) rather than
relying solely on validation loss curves or standard QA
tasks to fully capture the impact of optimization-induced
implicit biases. This enables a more precise analysis on the
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Figure 7. For reasoning tasks like GSM8K and BBH, the relationship between training loss and downstream performance is
dependent on the choice of optimization hyperparameters. The learning rate also impact downstream accuracy. For the maximum
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higher learning rates lead to a lower maximum eigenvalue, which is consistent with existing research indicating that convergence to flatter
minima improves generalization (Hochreiter & Schmidhuber, 1997; Keskar et al., 2017; Jiang et al., 2020).

generalization of LLMs.

4. Discussion and Limitations
Dataset In this study, we trained our model on a diverse
set of mathematics datasets, ranging from web-sourced col-
lections to those generated synthetically, as detailed in Table
1 of the Appendix. Our findings merely demonstrate that,
under this particular mix of datasets, the model overfits on
GSM8K. Thus, alternative dataset combinations, such as
those without synthetic data or employing higher quality
collections, may not exhibit the same overfitting behavior.
All models are trained on a 125B-token corpus. This corpus
is Chinchilla-optimal for dense models of comparable acti-
vated size (Hoffmann et al., 2022), yet two orders of magni-
tude smaller than the multi-trillion-token budgets now com-
mon for state-of-the-art MoE LLMs (DeepSeek-AI, 2025b;
Qwen Team, 2025). Appendix C.4 shows that ablating the
web-vs-math ratio up to a 1 T-token scale does not improve
GSM8K, implying that sheer data volume is less critical than
high-quality reasoning data. Recent large models such as
OLMo-2 and Qwen-3 adopt a multi-stage curriculum train-
ing, general web pre-training followed by mid-training on
math and CoT data (OLMo, 2025; Qwen Team, 2025); we
avoid this design to keep a fixed data distribution and a clean
link between pre-train loss and downstream accuracy, but
exploring staged curricula remains important future work.
These caveats render our conclusions suggestive rather than
prescriptive and motivate verification at trillion-token scale
with richer reasoning corpora.

Model We build on the Mixtral backbone and adopt the
fine-grained expert segmentation of DeepSeek-MoE: each
feed-forward block is split into g = 2, so the effective
expert count becomes E × g while the total parameter bud-
get stays fixed. In conjunction with standard top-k routing

strategy (k ∈ {2, 4, 8, 16}) and the auxiliary importance /
load-balance loss of Shazeer et al. (2017), our hyperparam-
eter sweep evaluates configurations with up to 256 active
experts. This is contrast to contemporary MoE variants
such as Qwen-3, which primarily differ from Mixtral by the
integration of only QK-Norm and a global load-balancing
regularizer. These modifications are negligible in compar-
ison to the scale of changes evaluated in our experiments.
For scaling, the number of experts is more influential than
minor structural details. We explore configurations with up
to 256 experts and a top-16 routing strategy, which offers
a sufficiently broad range for our purposes. We acknowl-
edge that gating design choices, such as the formulation
of the load-balance loss, might affect how expert scaling
influences performance; we leave this for future work. The
patterns we report are intended as provisional observations
rather than definitive rules. We encourage further studies to
examine these effects at larger model scales.

5. Conclusion
In this paper, we investigated the optimal sparsity of MoE
language models through the lens of downstream task per-
formance. By training families of Mixtral-style MoEs with
various number of experts, top-k routing, and model width,
and by evaluating them across pre-training, GRPO post-
training, and test-time compute, we show that the classical
“more experts is better” rule holds for knowledge-oriented
benchmarks such as TriviaQA and HellaSwag, but not for
mathematical reasoning benchmarks. On reasoning tasks,
downstream task loss starts to rise, and accuracy to fall, once
total parameters grow at a certain point; in this regime, mod-
els with more active parameters may achieve lower optimal
task loss, whereas those with extreme sparsity over-fit de-
spite lower pre-training loss. Neither reinforcement-learning
post-training nor additional test-time compute removes this
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trade-off. These findings update current scaling practice.
When computational budget is fixed, allocating FLOPs to
extra experts improves memorization, but improving reason-
ing ability requires matching growth in active parameters
or even shifting toward denser MoE layers once enough
compute is available.
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Odrzygóźdź, T., Sankowski, P., et al. Scaling laws for fine-
grained mixture of experts. In International Conference
on Machine Learning, 2024.

Martens, J. and Grosse, R. Optimizing neural networks with
kronecker-factored approximate curvature. In Interna-
tional Conference on Machine Learning, 2015.

Mirzadeh, I., Alizadeh, K., Shahrokhi, H., Tuzel, O., Bengio,
S., and Farajtabar, M. Gsm-symbolic: Understanding the
limitations of mathematical reasoning in large language
models. arXiv:2410.05229, 2024.

Mitra, A., Khanpour, H., Rosset, C., and Awadallah, A.
Orca-math: Unlocking the potential of slms in grade
school math. arXiv:2402.14830, 2024.

Muennighoff, N., Rush, A., Barak, B., Le Scao, T., Tazi,
N., Piktus, A., Pyysalo, S., Wolf, T., and Raffel, C. A.
Scaling data-constrained language models. In Advances
in Neural Information Processing Systems, 2023.

Muennighoff, N., Soldaini, L., Groeneveld, D., Lo, K., Mor-
rison, J., Min, S., Shi, W., Walsh, E. P., Tafjord, O.,
Lambert, N., et al. OLMoE: Open mixture-of-experts lan-
guage models. In International Conference on Learning
Representations, 2025a.

Muennighoff, N., Yang, Z., Shi, W., Li, X. L., Fei-Fei,
L., Hajishirzi, H., Zettlemoyer, L., Liang, P., Candès,
E., and Hashimoto, T. s1: Simple test-time scaling.
arXiv:2501.19393, 2025b.

OLMo, T. 2 OLMo 2 furious. arXiv:2501.00656, 2025.

OpenAI. GPT-4 technical report. arXiv:2303.08774, 2024a.

OpenAI. Openai o1 system card. arXiv:2412.16720, 2024b.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Gray, A.,
et al. Training language models to follow instructions
with human feedback. In Advances in Neural Information
Processing Systems, 2022.

Qwen. Qwen2.5 technical report. arXiv:2412.15115, 2025.

Qwen Team. Qwen3 technical report. arXiv:2505.09388,
2025.

Roberts, N., Chatterji, N., Narang, S., Lewis, M., and Hup-
kes, D. Compute optimal scaling of skills: Knowledge vs
reasoning. arXiv:2503.10061, 2025.

Schaeffer, R., Kazdan, J., Hughes, J., Juravsky, J., Price,
S., Lynch, A., Jones, E., Kirk, R., Mirhoseini, A., and
Koyejo, S. How do large language monkeys get their
power (laws)? In International Conference on Machine
Learning, 2025.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv:1707.06347, 2017.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang,
H., Zhang, M., Li, Y. K., Wu, Y., et al. DeepSeekMath:
Pushing the limits of mathematical reasoning in open
language models. arXiv:2402.03300, 2024.

Shazeer, N. Glu variants improve transformer.
arXiv:2002.05202, 2020.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
In International Conference on Learning Representations,
2017.

Shinn, N., Cassano, F., Gopinath, A., Narasimhan, K., and
Yao, S. Reflexion: Language agents with verbal rein-
forcement learning. In Advances in Neural Information
Processing Systems, 2024.

Snell, C. V., Lee, J., Xu, K., and Kumar, A. Scaling LLM
test-time compute optimally can be more effective than
scaling parameters for reasoning. In International Con-
ference on Learning Representations, 2025.

Soldaini, L., Kinney, R., Bhagia, A., Schwenk, D., Atkin-
son, D., Authur, R., Bogin, B., Chandu, K., Dumas, J.,
Elazar, Y., et al. Dolma: an open corpus of three trillion
tokens for language model pretraining research. In Pro-
ceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
2024.

Springer, J. M., Goyal, S., Wen, K., Kumar, T., Yue,
X., Malladi, S., Neubig, G., and Raghunathan, A.
Overtrained language models are harder to fine-tune.
arXiv:2503.19206, 2025.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 2024.

11



Optimal Sparsity of Mixture-of-Experts Language Models for Reasoning Tasks

Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay, Y.,
Chung, H. W., Chowdhery, A., Le, Q., Chi, E., Zhou, D.,
et al. Challenging BIG-bench tasks and whether chain-of-
thought can solve them. In Findings of the Association
for Computational Linguistics: ACL 2023, 2023.

Takano, R., Takizawa, S., Tanimura, Y., Nakada, H., and
Ogawa, H. Abci 3.0: Evolution of the leading ai infras-
tructure in japan. arXiv:2411.09134, 2024.

Taylor, R., Kardas, M., Cucurull, G., Scialom, T., Hartshorn,
A., Saravia, E., Poulton, A., Kerkez, V., and Stojnic,
R. Galactica: A large language model for science.
arXiv:2211.09085, 2022.

Tikhonov, A. and Ryabinin, M. It’s all in the heads: Using
attention heads as a baseline for cross-lingual transfer in
commonsense reasoning. In Findings of the Association
for Computational Linguistics (ACL), 2021.

Toshniwal, S., Du, W., Moshkov, I., Kisacanin, B.,
Ayrapetyan, A., and Gitman, I. OpenMathInstruct-2:
Accelerating AI for math with massive open-source in-
struction data. In Workshop on Mathematical Reasoning
and AI at NeurIPS’24, 2024a.

Toshniwal, S., Moshkov, I., Narenthiran, S., Gitman, D.,
Jia, F., and Gitman, I. OpenMathInstruct-1: A 1.8 mil-
lion math instruction tuning dataset. In Neural Informa-
tion Processing Systems Datasets and Benchmarks Track,
2024b.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, 2017.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi,
E. H., Narang, S., Chowdhery, A., and Zhou, D. Self-
consistency improves chain of thought reasoning in lan-
guage models. In International Conference on Learning
Representations, 2023.

Wang, X., Antoniades, A., Elazar, Y., Amayuelas, A., Al-
balak, A., Zhang, K., and Wang, W. Y. Generalization
v.s. memorization: Tracing language models’ capabilities
back to pretraining data. In International Conference on
Learning Representations, 2025.

Wang, Z., Li, X., Xia, R., and Liu, P. Mathpile: A billion-
token-scale pretraining corpus for math. In The Thirty-
eight Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track, 2024.

Xue, F., Fu, Y., Zhou, W., Zheng, Z., and You, Y. To repeat
or not to repeat: Insights from scaling llm under token-
crisis. In Advances in Neural Information Processing
Systems, 2023.

Yang, G. and Hu, E. J. Tensor programs iv: Feature learn-
ing in infinite-width neural networks. In International
Conference on Machine Learning, 2021.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. HellaSwag: Can a machine really finish your sen-
tence? In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, 2019.

Zhang, B. and Sennrich, R. Root Mean Square Layer Nor-
malization. In Advances in Neural Information Process-
ing Systems, 2019.

Zhang, H., Da, J., Lee, D., Robinson, V., Wu, C., Song,
W., Zhao, T., Raja, P. V., Zhuang, C., Slack, D. Z., et al.
A careful examination of large language model perfor-
mance on grade school arithmetic. In The Thirty-eight
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024.

Zhao, R., Meterez, A., Kakade, S., Pehlevan, C., Jelassi, S.,
and Malach, E. Echo chamber: Rl post-training ampli-
fies behaviors learned in pretraining. arXiv:2504.07912,
2025.

Zoph, B., Bello, I., Kumar, S., Du, N., Huang, Y., Dean,
J., Shazeer, N., and Fedus, W. St-moe: Designing stable
and transferable sparse expert models. arXiv:2202.08906,
2022.

Zyphra. dclm-dedup. https://huggingface.co/
datasets/Zyphra/dclm-dedup, 2024. Accessed:
2025-05-16.

12

https://huggingface.co/datasets/Zyphra/dclm-dedup
https://huggingface.co/datasets/Zyphra/dclm-dedup


Optimal Sparsity of Mixture-of-Experts Language Models for Reasoning Tasks

Table 1. Break-down of the 125 B-token pre-training corpus.

Source Type Tokens Corpus Hugging Face

High Quality Web

DCLM-Deduped High quality web 33.5B 788.5B Zyphra/dclm-dedup
Flan decontaminated High quality web 9.2B 18.5B allenai/dolmino-mix-1124
WebInstructFull High quality web 14.7M 29.7M TIGER-Lab/WebInstructFull

STEM Literature & Reference

peS2o Academic papers 31.1B 62.9B allenai/dolma
ArXiv STEM papers 11.0B 22.2B allenai/dolma
Wikipedia Encyclopedic 2.3B 4.7B -
Wikipedia & Wikibooks Encyclopedic 1.9B 3.9B allenai/dolma
Project Gutenberg Books 2.7B 5.5B allenai/dolma

Mathematics

OpenWebMath Math 6.6B 13.4B allenai/dolma
Algebraic Stack Math 6.6B 13.3B allenai/dolma
FineMath-4+ Math 5.1B 10.3B HuggingFaceTB/finemath
MathPile commercial subset train split Math 4.5B 9.2B GAIR/MathPile Commercial
TinyGSM-MIND Synthetic math 3.4B 6.9B allenai/olmo-mix-1124
OpenMathInstruct-2 Synthetic math 2.6B 5.2B nvidia/OpenMathInstruct-2
MathCoder2 Synthetic Synthetic Math 2.0B 4.1B allenai/olmo-mix-1124
StackMathQA Math 529.6M 1070.0M math-ai/StackMathQA
NaturalReasoning General reasoning 506.0M 1022.2M facebook/natural reasoning
NuminaMath-CoT train split CoT reasoning 221.0M 446.4M AI-MO/NuminaMath-CoT
OpenMathInstruct-1 train split Synthetic math 168.4M 340.2M nvidia/OpenMathInstruct-1
TuluMath Synthetic math 123.9M 250.4M allenai/olmo-mix-1124
Metamath OWM-filtered Math 42.3M 85.4M allenai/olmo-mix-1124
Orca-Math Synthetic math 33.5M 67.7M microsoft/orca-math-word-problems-200k
Dolmino SynthMath Synthetic math 15.7M 31.7M allenai/olmo-mix-1124
GSM8K train split Math 1.4M 2.8M allenai/dolmino-mix-1124
GSM8K train split Math 1.4M 2.8M openai/gsm8k
CodeSearchNet-owmfilter Math 1.1M 2.2M allenai/dolmino-mix-1124

Code

StackExchange CodeText 725.1M 1464.8M allenai/dolmino-mix-1124

Grand total 125.0B 973.4B

A. Training Setup
A.1. Pre-training Dataset Details

Table 1 summarizes the pre-training corpus: for each subset, it lists the Hugging Face repository, split identifier, and public
URL, alongside the original size and the number of subsampled tokens we used (125 B tokens in the 99:1 train/validation
split, as counted by the llm-jp tokenizer v3 with 99,487 tokens). Thus, the total token budget is fixed in strict accordance
with Kaplan’s scaling law (Kaplan et al., 2020), meaning the observed loss increase (and the accompanying puzzling
overfitting that mirrors behavior recently reported by (OLMo, 2025; OpenAI, 2024a)) cannot be attributed to any change in
data volume.

A.2. Post-Training Details

We use GRPO(Shao et al., 2024) with a batch size of 1024, train for 15 epochs, and truncate prompts and generated
sequences to 512 and 1024 tokens respectively. The actor’s learning rate is fixed at 5× 10−6; the temperature is set to 1.0,
the KL-penalty coefficient to 10−3, and 5 samples are used per prompt. Optimisation employs Adam with β = (0.9, 0.999),
ϵ = 10−8, and weight decay of 10−2. Following Zhao et al. (2025), we implemented a code-execution-based evaluator
supporting TinyGSM-style and OpenMathInstruct-1 outputs. For a width of 2048 with 16 or 64 experts, we swept the
learning rate (Fig. 8) and subsequently fixed it to 5× 10−6 for all GRPO experiments.
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Table 2. Detailed composition of the 125 B-token pre-training corpus without GSM8K and its synthetic variants (used for the ablation in
Section C.3). Token counts and raw corpus sizes are listed for each source, following the same category structure as Table 1.

Source Type Tokens Corpus Hugging Face

High Quality Web

DCLM-Deduped High quality web 33.5B 788.5B Zyphra/dclm-dedup
Flan decontaminated High quality web 9.2B 18.5B allenai/dolmino-mix-1124
WebInstructFull High quality web 14.7M 29.7M TIGER-Lab/WebInstructFull

STEM Literature & Reference

peS2o Academic papers 31.1B 62.9B allenai/dolma
ArXiv STEM papers 11.0B 22.2B allenai/dolma
Wikipedia Encyclopedic 2.3B 4.7B -
Wikipedia & Wikibooks Encyclopedic 1.9B 3.9B allenai/dolma
Project Gutenberg Books 2.7B 5.5B allenai/dolma

Mathematics

OpenWebMath Math 8.2B 13.4B allenai/dolma
Algebraic Stack Math 8.1B 13.3B allenai/dolma
FineMath-4+ Math 6.3B 10.3B HuggingFaceTB/finemath
MathPile commercial subset train split Math 5.6B 9.2B GAIR/MathPile Commercial
MathCoder2 Synthetic Synthetic Math 2.5B 4.1B allenai/olmo-mix-1124
StackMathQA Math 653.9M 1070.0M math-ai/StackMathQA
NaturalReasoning General reasoning 624.7M 1022.2M facebook/natural reasoning
NuminaMath-CoT train split CoT reasoning 272.8M 446.4M AI-MO/NuminaMath-CoT
TuluMath Synthetic math 153.0M 250.4M allenai/olmo-mix-1124
Metamath OWM-filtered Math 52.2M 85.4M allenai/olmo-mix-1124
Orca-Math Synthetic math 41.4M 67.7M microsoft/orca-math-word-problems-200k
CodeSearchNet-owmfilter Math 1.1M 2.2M allenai/dolmino-mix-1124

Code

StackExchange CodeText 725.1M 1464.8M allenai/dolmino-mix-1124

Grand total 125.0B 961.0B

A.3. Implementation & Training Environment

We executed all pre-training runs on the ABCI 3.0 supercomputer (Takano et al., 2024), equipped with NVIDIA H200 GPUs
with board-level power capped at 500 W per GPU. TTC experiments were conducted on the TSUBAME 4.0 supercomputer
at the Global Scientific Information and Computing Center, Institute of Science Tokyo. They used NVIDIA H100 SXM5 94
GB GPUs (four GPUs per node) and InfiniBand NDR200 interconnects for inter-node communication.

For pre-training, we extended the Megatron-LM1 codebase to add functionality needed for this study, with support for
pipeline, tensor, and expert parallelism. Reinforcement learning experiments were implemented using GRPO (Shao et al.,
2024) on top of the VerL2 framework. Model quality was assessed using lm-evaluation-harness3 and LargeLanguageMon-
keys4.

B. Evaluation Setup
We evaluate our models using the lm-evaluation-harness framework (Gao et al., 2024) across four key capability areas. All
evaluations employ standard few-shot prompting strategies unless otherwise specified.

We assess logical reasoning capabilities using Big Bench Hard (BBH) (Suzgun et al., 2023) with 3-shot Chain-of-Thought
(CoT) prompting. Mathematical problem-solving is evaluated using GSM8K (Cobbe et al., 2021) with 4-shot prompting and

1https://github.com/NVIDIA/Megatron-LM
2https://github.com/volcengine/verl
3https://github.com/EleutherAI/lm-evaluation-harness
4https://github.com/ScalingIntelligence/large_language_monkeys
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Figure 8. Learning-rate sweep for width = 2048. We varied the number of experts and swept the learning rate. For both 16 and 32
experts, 5× 10−6 produces the most stable training.

Table 3. Evaluation Benchmark Details
Dataset TriviaQA HellaSwag XWinograd BBH GSM8K GSM-Plus

Task QA MRC Commonsense
Reasoning

Logical
Reasoning

Math
Reasoning

Math
Reasoning

Language EN EN EN EN EN EN
# Instances 17,944 10,042 2,325 6,511 1,319 10,552
Few-shot # 4 4 4 3 4 (0 for TTC) 5
Metric Accuracy Accuracy Accuracy CoT Acc. Accuracy CoT Acc.

GSM-Plus (Li et al., 2024) with 5-shot CoT prompting. We evaluate comprehension abilities using TriviaQA (Joshi et al.,
2017) with 4-shot prompting. Common sense reasoning is assessed through HellaSwag (Zellers et al., 2019) and XWinograd
(EN) (Tikhonov & Ryabinin, 2021), both using 4-shot prompting setups. For Test-Time Compute (TTC) experiments
specifically, GSM8K evaluation is conducted under a zero-shot setting. To accommodate the variety of valid answer formats,
we extend the strict match patterns provided by the lm-evaluation-harness beyond the standard implementation.
Our matching criteria accept both the standard GSM8K format (####) and GSM8K-CoT formats prefixed with “The answer
is” or “Answer:”.

Table 3 provides comprehensive details for all evaluation benchmarks.

C. Additional Experiments
C.1. GRPO

Training on MATH 500 Dataset Following the analysis presented in Section 3.4, the inverted U-shaped relationship
between training loss and task accuracy persists even after applying GRPO. To verify that this phenomenon is not due to
performing GRPO on the GSM8K dataset, we conducted additional GRPO experiments on the MATH 500 dataset (Lightman
et al., 2024). As illustrated in Figure 9, GRPO on the MATH dataset yields consistent results with those obtained on the
GSM8K dataset, confirming that this inverted U-shaped relationship is robust across different GRPO training datasets.

C.2. Test-Time Compute

Evaluation Setup We evaluated both GSM8K(Cobbe et al., 2021) in a purely zero-shot setting using Self-Consistency
(SC) decoding(Wang et al., 2023), generating 27 independent continuations per problem and selecting the most frequent
answer with 128 samples per problem. Specifically, for each prompt we generated up to 1,024 tokens under temperature 0.6
and nucleus sampling (top-p = 0.95), drawing 128 independent continuations and selecting the most frequent answer.
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Figure 9. Comparison of GSM8K accuracy for models fine-tuned with GRPO on different training datasets (left: GSM8K, right:
MATH 500). Performance decline is consistently observed across different training datasets.
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Figure 10. GSM8K accuracy of model (d=1024) across different shot counts. Because few shot performance is unstable and dropped
significantly for models with a small number of experts, zero shot is used for Test-Time Compute.

Zero-shot VS Few-shot To set up Test Time Compute appropriately, we investigate how varying the number of prompt
shots affected each expert’s behavior (Figure 10). Few shot performance is unstable and dropped significantly for models
with a small number of experts, so we use zero shot inference for Test Time Compute. When few shot chain of thought is
used to standardize answer formats, the provided demonstration steps can be internalized as a fixed reasoning pattern by the
model. As a result, the model’s inherent inference capabilities may not be fully expressed, and its ability to generalize to
novel problems could be hindered (Kojima et al., 2022).

Temperature Figure 11 shows that the inverted U-shaped performance-decline trend holds across every temperature
setting, indicating that sampling temperature does not affect this behavior. This suggests that, although temperature controls
inference randomness, the primary drivers of performance decline are inherent to model architecture rather than temperature
settings.

Evaluation of Larger Generation Budget We extended the sample size used for Test-Time Compute as described in
Section 3.4, generating a larger set of candidate responses. We then measured the resulting accuracy across different
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Figure 11. Comparison of performance decline across different temperature settings (pass@1, d=1024). A consistent performance
decline is observed regardless of temperature, and overall accuracy increases as temperature decreases (i.e., approaches greedy).
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Figure 12. Accuracy across generation budgets with increased sample counts. With an active parameter count of 8 (top 8), the
performance decline is gradually alleviated as the budget increases, whereas with an active parameter count of 2 (top 2), the decline is
amplified, resulting in a more pronounced U shaped trend.

generation budgets to assess how increased sampling influences performance (Figure 12). For an active parameter count of
8 (top-8), the performance decline is gradually mitigated, whereas for an active parameter count of 2 (top-2), the decline
is instead amplified, resulting in a more pronounced U-shaped trend. Although increasing the sample count further may
provide additional insights, it remains challenging to identify a consistent mitigation pattern across all models.

Increasing Top-k During Inference We compared the performance under TTC for model with a hidden dimension of
2048, 128 experts, and top-2 routing by varying the inference-time top-k parameter. (Figure 13) Specifically, although
doubling top-k sometimes yielded temporary improvements in Pass@1, applying TTC ultimately showed that the original
top-2 setting maintained the highest performance, suggesting that no fundamental performance gain occurs.

C.3. GSM8K Overfitting Analysis

To investigate whether our model overfits to GSM8K due to the inclusion of GSM8K training data and its synthetic
derivatives, we conducted an ablation experiment removing GSM8K-related datasets from our pre-training corpus as listed
in Table 2.

We removed TinyGSM-MIND, both GSM8K train split instances, Dolmino SynthMath, OpenMathInstruct-1, and
OpenMathInstruct-2, which contain either the original GSM8K training data or synthetic problems derived from it.

The results are shown in Figure 14. We observe that the trends with respect to sparsity on GSM8K remain unchanged,
both for Pass@1 and TTC metrics. This indicates that while GSM8K training data and its synthetic derivatives do improve
GSM8K scores, they do not alter the underlying performance trends. However, after post-training, we observe some changes
in these trends, which we leave as future work to investigate further.
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can occasionally improve Pass@1, applying TTC ultimately shows that the original top-2 configuration delivers the highest performance.

1.7 1.8 1.9
Final training loss

0.05

0.10

0.15

0.20

0.25

Ac
cu

ra
cy

GSM8K (Pass@1)

1.7 1.8 1.9
Final training loss

0.2

0.3

0.4

0.5
GSM8K (TTC)

1.7 1.8 1.9
Final training loss

0.1

0.2

0.3

0.4
GSM8K (GRPO)

d=1024,k=4
d=2048,k=2
w GSM8K
wo GSM8K

Figure 14. GSM8K performance without GSM8K-related training data: Pass@1 (left), TTC with 128 budget (center), and after GRPO
(right)

C.4. Dataset Ablation

Table 1 shows a comparison between training on the full 1T tokens, training without web data, and our main experimental
setup used in this study. Even when training on 1T tokens, we find that GSM8K scores do not improve proportionally to
the number of tokens. Additionally, we compare experiments focused on math-centered training without mixing web data.
Here, we observe that even with 1T token training, GSM8K scores do not improve commensurate with the token count.
Furthermore, while math-focused training degrades performance on other tasks, it does not improve GSM8K performance.

Figure 15 presents the ablation results.

C.5. GSM8K Problem Analysis

We investigated whether models with varying numbers of experts exhibit differences in their ability to solve specific problems
on the GSM8K dataset.

Figure 16 shows the results. We observe that different sparsity levels solve different instances of the problems.
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Figure 15. Performance comparison across different model configurations as a function of training tokens. The graph shows ablation
results on various datasets, illustrating the effect of expert count and routing strategies on model performance.

Figure 16. Analysis of solvable problems across different numbers of experts on GSM8K. This graph displays the number of problems
that were commonly solvable or unsolvable across models with varying numbers of experts.
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