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ABSTRACT

Prior works on self-supervised pre-training focus on the joint training scenario,
where massive unlabeled data are assumed to be given as input all at once, and
only then is a learner trained. Unfortunately, such a problem setting is often im-
practical if not infeasible since many real-world tasks rely on sequential learning,
e.g., data are decentralized or collected in a streaming fashion. In this paper,
we conduct the first thorough and dedicated investigation on self-supervised pre-
training with streaming data, aiming to shed light on the model behavior under
this overlooked setup. Specifically, we pre-train over 500 models on four cate-
gories of pre-training streaming data from ImageNet and DomainNet and evaluate
them on three types of downstream tasks and 12 different downstream datasets.
Our studies show that, somehow beyond our expectation, with simple data replay
or parameter regularization, sequential self-supervised pre-training turns out to be
an efficient alternative for joint pre-training, as the performances of the former
are mostly on par with those of the latter. Moreover, catastrophic forgetting, a
common issue in sequential supervised learning, is much alleviated in sequential
self-supervised learning (SSL), which is well justified through our comprehensive
empirical analysis on representations and the sharpness of minima in the loss land-
scape. Our findings, therefore, suggest that, in practice, for SSL, the cumbersome
joint training can be replaced mainly by sequential learning, which in turn enables
a much broader spectrum of potential application scenarios.

1 INTRODUCTION

Recent advances in self-supervised learning (SSL) (He et al., 2020; Grill et al., 2020; Caron et al.,
2020; Jure et al., 2021) demonstrate competitive or even better transfer learning performance on
various downstream tasks, compared with supervised pre-training. Although waiving the cost of
human labeling, SSL usually requires massive unlabeled data to learn a powerful representation
model and benefits from significantly large-scale pre-training data, e.g., He et al. (2020) adopted
billion-scale data to pre-train better SSL. models. The common pre-training practice follows the
joint training (JT) setup, where massive unlabeled data are collected together before model training.
In reality, however, it is usually difficult to access a large amount of collective unlabeled data at
once. Instead, real-world data are usually accessed in a streaming fashion, e.g., data are generated
and collected sequentially chunk by chunk (Delange et al., 2021), or even decentralized and stored
in different servers (Lange et al., 2020); such a learning setup is known as sequential training
(ST). Despite much research effort and promising results achieved by JT, it inevitably suffers from
heavy data storage, prolonged training time, and finds itself incompetent when training data volume
expands over time. For ST, on the other hand, a learner can be sequentially trained with disjoint data
chunks, making it much more efficient than JT.

How to effectively and efficiently pre-train a representation model under the ST setup has been an
open problem. Despite the high efficiency, some continual learning research works (Goodfellow
et al., 2013; Kirkpatrick et al., 2017; Rebuffi et al., 2017) have shown that ST with supervised mod-
els tends to suffer from catastrophic forgetting (McCloskey & Cohen, 1989), having a significant
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performance degradation on the historical data chunks. Unlike the case of continual learning tasks,
in pre-training tasks, one expects the model to well generalize to downstream tasks rather than fo-
cusing only on the seen tasks (Chen et al., 2020a). Nevertheless, how well sequential self-supervised
models perform on downstream tasks remains unclear.

Parent
Class semantic tree hild /N /N N\ AN u u
Chi [ | | | | Class1 Class2 «  Class7  Class8
Domains | . . ’
1 2 3 4

¥ ] (¥ ] [¥ ][ ]
%W W W]
W (W W (W ]

|

i:cs::zrr]nc:ntalsequence " * ul * r * r *‘
d |

iF:?cl:ercr:anct:IS:equence ’ * E ‘ ‘ ‘

Di |

inlz:::r:ecn::fsequence ’ E E E E ‘

nereme rr MR R R

incremental sequence [

Collective data Streaming data

Figure 1: Illustration of streaming data and the corresponding collective data. Different colors
denote different classes, and border types distinguish different domains. We use the WordNet
Tree (Miller, 1998) to measure the semantic similarity of classes. Classes having the same parent or
ancestor in WordNet, marked with similar colors, share similar semantics in the class semantic tree.

To fill the research gap, we provide a thorough empirical study on self-supervised pre-training with
streaming data. In the pre-training stage, to mimic real-world data collection scenarios and for the
better dissection of sequential SSL, we consider streaming data with different degrees of distribution
shifts. As shown in Figure 1, we obtain four types of streaming data, including the instance incre-
mental sequence with negligible data distribution shifts, by randomly splitting ImageNet-1K (Rus-
sakovsky et al., 2015) into four independent and identically distributed (IID) data chunks, the random
class incremental sequence with moderate data distribution shifts, by randomly splitting 1K classes
of images into four disjoint chunks each with 250 classes, the distant class incremental sequence
with severe data distribution shifts, by splitting 1K classes of data into four chunks while maximiz-
ing the semantical dissimilarity among chunks, and the domain incremental sequence with severe
domain distribution shifts, by taking each domain in DomainNet (Peng et al., 2019) as a data chunk.

As for the evaluation, we consider three downstream tasks following Ericsson et al. (2021), includ-
ing few-shot evaluation and linear evaluation (also named many-shot classification) on 12 image
classification datasets (Kornblith et al., 2019b), and the Pascal VOC (Everingham et al., 2010) de-
tection task. Through extensive experiments with more than 500 pre-trained models, we thoroughly
investigate key roles in sequential SSL, including streaming data, downstream tasks and datasets,
continual learning methods, SSL methods, and the method efficiency in terms of time and storage.
We also thoroughly investigate the knowledge forgetting behavior of sequential SSL and supervised
learning (SL) models and provide a comprehensive empirical analysis of the underlying reason.

To the best of our knowledge, we are among the first to explore the sequential self-supervised pre-
training setting and the first to provide a thorough empirical study on self-supervised pre-training
with streaming data. We summarize the takeaways as well as our contributions as: i). Sequential SSL
models exhibit the on-par transfer learning performance as joint SSL models on streaming data with
negligible or mild distribution shifts. As for streaming data with severe distribution shifts or longer
sequences, i.e., the distant class incremental sequence, evident performance gaps exist between
sequential SSL and joint SSL models. Such performance gaps, however, can be mitigated effectively
and efficiently with unsupervised parameter regularization (Aljundi et al., 2018) and simple data
replay. ii). Based on the above finding, we conclude that the standard joint training paradigm may
be unnecessary for SSL pre-training. Instead, sequential SSL is performance-competitive but more
time-efficient and storage-saving and is well worth considering as the practical practice for self-
supervised pre-training with streaming data. iii). Compared with supervised learning (SL) models,
SSL models consistently show smaller performance gaps between ST and JT. Our comprehensive
investigation of learned representations demonstrates that sequential SSL. models are less prone to
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catastrophic forgetting than SL modelss)). Through the empirical analysis on the sharpness of
minima in the loss landscape, we nd that SSL models have wider minima than SL models, which
we hypothesize is the reason for less forgetting of SSL models.

2 REeLATED WORK

Self-supervised learning (SSL)SSL learns useful features by solving various pretext tasks using
supervisions generated from unlabeled training data, e.g., predicting rotations (Gidaris et al., 2018),
predicting cluster assignments (Caron et al., 2018), and solving instance discrimination (Wu et al.,
2018; Chen et al., 2020a; He et al., 2020; Grill et al., 2020). To achieve better performance in
the downstream task, recent studies of SSL have made efforts in either upstream pre-training or
downstream transfer (Zhang et al., 2021). Previous works (Caron et al., 2019; He et al., 2020) have
leveraged especially large datasets for pre-training, such as YFCC 100M (Thomee et al., 2016) and
Instagram 1B (Mahajan et al., 2018). Some recent works (Gururangan et al., 2020; Reed et al.,
2021) propose to pre-train with the downstream dataset for a better transfer. Our work still focuses
on the downstream-agnostic model pre-training. However, in realistic scenarios, access to massive
data is often streaming, and how to perform SSL with streaming data has not been studied before,
motivating our work.

Continual learning. Existing studies of continual learning (CL) (Delange et al., 2021) mainly
focus on supervised tasks and can be summarized into three categories, including regularization,
replay, and parameter-isolation. In regularization-based CL, knowledge preserving is achieved by
regularizing the parameter posterior of the new task not to deviate drastically from the prior (Aljundi
et al., 2018; Kirkpatrick et al., 2017; Zenke et al., 2017). Replay-based CL methods overcome
forgetting by saving samples of previous tasks in a replay buffer (Rebuf et al., 2017; Rolnick et al.,
2019; Wang et al., 2021; Yan et al., 2021b) and using them to regularize the learning of new tasks.
Last, isolation-based CL methods leverage different parameters for learning each task to preserve
the learned knowledge (Serra et al., 2018; Mallya & Lazebnik, 2018). Although works (Rao et al.,
2019; Aljundi et al., 2019) explore continual learning for some speci ¢ unsupervised tasks, few have
studied the transfer learning performance of sequential self-supervised models.

3 PROBLEM SETTING

In pre-training tasks, we train representation models on large-scale datasets, such as ImageNet (Rus-
sakovsky et al., 2015), and evaluate the transferability of learned representations on various down-
stream tasks (Chen et al., 2020a). In our empirical study, we adopt the prevailing MoCo-v2 (Chen
et al., 2020c) method to pre-train SSL models with diverse streaming data.

Types of streaming data. In pre-training, we consider streaming data with various distribution
shifts to mimic practical data collection scenarios. As shown in Figure 1, each type of streaming
data consists of sequential and disjoint data chunks, while collective data cover all available data. In
the instance incremental sequence, streaming data chunks are almost IID, which simulates the sce-
nario where data are continually collected under the same condition. In this case, there is negligible
distribution shift among sequential data chunks. In the random class incremental sequence, data in
disjoint chunks belong to different classes, which mimics the scenario where data are collected by
random keyword search on the Internet (Parisi et al., 2019). Here the distribution shift is moderate.
The distant class incremental sequence is similar to the random class incremental sequence except
that the semantic gaps between sequential data chunks in the distant sequence are larger, i.e., images
from different data chunks are semantically dissimilar. This data sequence has severe distribution
shifts between chunks. It mimics the scenario where data are crawled from websites with different
subjects. In the domain incremental sequence, data chunks are collected from different domains
with severe domain distribution shifts. A typical example is that large-scale autonomous driving
data in Han et al. (2021) are collected in different domains, such as different weather conditions
and cities, but share similar classes. The rst three types of streaming data are designed with Ima-
geNet (Russakovsky et al., 2015), while the domain incremental sequence consists of ve domains
in DomainNet (Peng et al., 2019). See Appendix A.1 for a detailed description.

Model pre-training. With these streaming data, we study both sequential training (ST) and joint
training (JT) for model pre-training. As illustrated in Figure 1, in sequential training, a model is
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sequentially trained with streaming data chunks, while in joint training, a model is repeatedly trained
with collective data, i.e., all seen data chunks. Moreover, we compare SSL with supervised learning
(SL) and mainly study the following pre-trained models: sequentially trained SSL models (SSL-ST),
jointly trained SSL models (SSL-JT), sequentially trained SL models (SL-ST), and jointly trained
SL models (SL-JT). See Appendix A.2 for details of the pre-training stage.

Figure 2: Linear and few-shot evaluation resultgarfidom class incremental sequenceOn the
left are the results of each dataset. On the right are averaged results across all left datasets.

Transfer to downstream tasks.We evaluate the transfer learning performance of pre-trained mod-
els using three typical downstream tasks: many-shot classi cation, few-shot classi cation, and ob-
ject detection. Following Chen et al. (2020a), we consider 12 classi cation datasets for downstream
evaluation. Speci cally, we conduct many-shot classi cation on all the above 12 datasets but con-
duct few-shot classi cation on 11 datasets except VOC2007, following Ericsson et al. (2021). In
both types of classi cation tasks, representations are xed for evaluation. In addition, we eval-
uate pre-trained models on the PASCAL VOC detection dataset following He et al. (2020). See
Appendix A.4 for more details of the downstream evaluation.

4 DISSECTION OF SEQUENTIAL SELFSUPERVISED PRETRAINING

We pre-train representation models on four types of streaming data and evaluate pre-trained models
on 12 downstream datasets with three downstream evaluation tasks. Note that models pre-trained
with ImageNet-based streaming data are evaluated on all three downstream tasks. Models trained
with the domain incremental sequence are only evaluated with few-shot classi cation, considering
the size of DomainNet is onl§=5 ImageNet. We report downstream evaluation results of the ran-
dom class incremental sequence, the distant class incremental sequence, and the domain incremen-
tal sequence in Figure 2, Figure 3, and Figure 4, respectively. Results of the instance incremental
sequence are illustrated in Appendix B.1 since the performance of SSL models on the instance in-
cremental sequence is similar to that on the random class incremental sequence without considering
the different cases for SL models. We also evaluate three types of ImageNet-based streaming data
on object detection and illustrate results in Figure 10 in Appendix.

4.1 How DOES TRANSFER LEARNING PERFORMANCE VARY WITH STREAMING DATR

We rst consider streaming data with various degrees of distribution shifts, i.e., streaming data with
negligible distribution shifts such as the instance incremental sequence, streaming data with mod-
erate distribution shifts such as the random class incremental sequence, and streaming data with
severe distribution shifts such as the distant class incremental sequence and the domain incremental
sequence. As shown in Figures 2-4, on all types of streaming data, the performance of sequential
SSL models generally increases with more streaming chunks, while sequential SL models do not
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Figure 3: Linear and few-shot evaluation resultslistant class incremental sequenceOn the left
are the results of each dataset. On the right are averaged results across all left datasets.

bene t from increasing data chunks. As for the performance on each type of streaming data, se-
guential SSL models surprisingly perform comparably to joint SSL models on streaming data with
negligible and moderate distribution shifts. On streaming data with severe distribution shifts, the
performance of sequential SSL models is evidently inferior to that of joint SSL models. The de-
tection evaluation results in Figure 10 in Appendix further support this observation. In addition,
we provide results of streaming data with longer chursafd random distribution shifts in Ap-
pendix B.2. Similarly, we nd the long sequence leads to visible but not signi cant gaps between
ST and JT models. In contrast, on all types of streaming data, sequential SL models perform espe-
cially worse than joint SL models. The above observations denote that, unlike traditional continual
learning tasks (Delange et al., 2021), although faced with possible visible performance gaps between
ST models and JT models, sequential SSL is still performance-promising in pre-training tasks with
streaming data.

4.2 ARE RESULTS CONSISTENT ACROSS DOWNSTREAM TASKS OR DATASETS

In pre-training tasks, we pay attention to the generalization of the learned representations to new
data or tasks rather than the performance on the training dataset. Taking a closer look at the re-
sults in Figures 2-4, we observe that, although joint SSL models achieve comparable performance
to joint SL models in linear evaluation, joint SL models signi cantly outperform joint SSL mod-

els in few-shot evaluation. This observation is also demonstrated in (Tian et al., 2020; Ericsson
et al., 2021). The main difference between the two evaluation protocols is that linear evaluation
involves more ne-tuning than few-shot evaluation, as introduced in Appendix A.4. Therefore, the
underlying reason for the observation is that supervised features are correlated with labels and more
discriminative, thus easy to directly transfer to downstream datasets similar to upstream pre-training
data (DomainNet or ImageNet). For example, SL models dominate most few-shot object or scene
classi cation tasks but fail on DTD (Cimpoi et al., 2014), a texture classi cation dataset sharing no
common classes with ImageNet or DomainNet. In contrast, self-supervised features are more gen-
eralized and comprehensive, thus requiring more ne-tuning for desirable downstream transfer. In
addition, on some downstream datasets, we have seemingly abnormal observations that ST models
may outperform JT models and the model performance may drop with the increase of chunk num-
ber. These phenomena are due to the so-called “negative transfer” (Wang et al., 2019), which is also
discussed in other model pre-training studies (Newell & Deng, 2020; Gururangan et al., 2020). That
is, pre-training with more data chunks does not necessarily bene t a speci ¢ downstream dataset if
the added training data are irrelevant to the downstream dataset. See Appendix B.3 for a concrete
example of “negative transfer” on Oxford-1lIT Pets (Parkhi et al., 2012) in pre-training with stream-
ing data. It is observed that sequential SSL models suffer less “negative transfer” than SL models
and continual learning methods largely prevent “negative transfer”.
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Figure 4: Few-shot evaluation resultsdifmain incremental sequenceOn the left are the results
of each dataset. On the right are averaged results across all left datasets.

4.3 DO CONTINUAL LEARNING METHODS HELP SEQUENTIALSSL?

As observed in Section 4.1, there still exist obvious performance gaps between sequential SSL mod-
els and joint SSL models, on streaming data with severe distribution shifts such as the distant class
incremental sequence and the domain incremental sequence. To this end, we study whether contin-
ual learning methods can help mitigate such gaps. Speci cally, we investigate two classic methods
in continual learning, i.e., data replay and MAS (Aljundi et al., 2018), which are effective to defy
knowledge forgetting in supervised classi cation tasks (Delange et al., 2021). When using data re-
play, we randomly reserve 10% data from each seen data chunk and add them to the current data
chunk for model pre-training. We also consider the combination of MAS and data replay, which is
referred to as MAS+ in the experiments. We denote SSL models trained with data replay as SSL-ST
w/Replay, SSL models trained with MAS as SSL-ST w/MAS, and SSL models trained with both
methods as SSL-ST w/MAS+. We report downstream evaluation results of the distant class incre-
mental sequence in Figure 3 and results of the domain incremental sequence in Figure 4. As shown
in Figure 4, data replay can totally eliminate the performance gaps between sequential SSL models
and joint SSL models on the domain incremental sequence. Results in Figure 3 also validate the
effectiveness of both continual learning methods in improving the transfer learning performance of
sequential SSL models trained with streaming data with severe distribution shifts. In short, we nd
methods devised for supervised continual tasks are especially promising to make sequential SSL
models perform comparably to joint SSL models on challenging streaming data. See Appendix A.3
for implementations of MAS and data replay in sequential SSL.

4.4 How ABOUT SSLMETHODS OTHER THANMOCO?

For simplicity, we choose MoCo-v2 (Chen et al., 2020c) in experiments and demonstrate that se-
guential SSL is performance-promising. To verify whether it also holds for other SSL methods,
we train BYOL (Grill et al., 2020) models on the challenging distant class incremental sequence,
both sequentially and jointly. Results of BYOL are shown in Figure 13 in Appendix B.4. Similar
to MoCo-v2, there still exist visible performance gaps between sequential SSL models and corre-
sponding joint SSL models. In contrast, SSL models exhibit much smaller performance gaps than
SL models, which further validates the potential of sequential SSL in pre-training tasks.

4.5 ANALYSIS OF METHOD EFFICIENCY

We then discuss the time and memory consumption of different training methods of SSL, including
sequential training (SSL-ST), ST with data replay (SSL-ST w/Replay), ST with MAS (SSL-ST
w/MAS), ST with MAS and data replay (SSL-ST w/MAS+), and joint training (SSL-JT). As shown

in Table 1, JT is very time-consuming especially when the data amount is large, while ST is able
to save a large amount of time under sequential training scenarios. To be specic, ST is about
2x faster than JT when there are 2 chunks of data, and is about 4x faster when the number of
chunks is 4. Moreover, when we use MAS and data replay to improve the performance of ST, the
time consumption of SSL increases a little but is still signi cantly faster than JT. As for storage
consumption, we can observe a similar phenomenon as shown in Table 1. In summary, sequential
SSL is much more time-ef cient and storage-saving than JT, especially when the data amount is
large or grows quickly. Such a result indicates that sequential SSL is a more favorable choice for
real-world pre-training applications, where data come in sequentially and grow daily.
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Table 1: Resource ef ciency of considered SStrable 2: The comparison of pre-training meth-

pre-training methods. We take the distant claggis in terms of the transfer performance gap be-
incremental sequence as an example and repgféen ST and JT models. We report the aver-
the training time (h) and required storage (GBaged accuracy gaps of linear evaluation across

of the model pre-trained with each data chunk2 downstream datasets. The lower, the better.
Note that all the following statistics are recorded  “accuracy gap (%) /Chunk 2 3 4

under the same hardware e_nvironment. The ~sL-sT (instance) 226 327 483
lower value means better ef ciency. SSL-ST (Instance) 041 102 104
Time (Storage) / Chunk 2 3 4 SL-ST (Random) 563 8.73 10.68
SSL-ST (Random) 042 094 113
SSL-ST 16.5(35) 16.5(35) 16.6(35) -
SSL-ST W/Replay 17.0(35) 185(42)  20.0 (46) SL-ST (Distant) 7.77 1250 1575
SSL-ST W/MAS 18.2(35) 18.1(35) 18.1(35) SSL-ST (Distant) 234 381 462
SSL-ST W/MAS+ 224(39) 24.4(42) 26.4(46) SSL-ST w/MAS (Distant) ~ 1.82 273  3.17
SSL-JT 31.1(70) 46.5(105) 66.6 (140) SSL-ST w/MAS+ (Distant) 1.47 2.01 2.10

Summary. We show the averaged accuracy gaps between ST models and the corresponding JT
models under linear evaluation in Table 2, for both SSL and supervised learning (SL). On streaming
data with negligible distribution shifts, SL exhibits evident accuracy gaps while SSL has negligible
gaps. On streaming data with moderate distribution shifts, SL exhibits larger accuracy gaps while
SSL still keeps the negligible gaps. On streaming data with severe distribution shifts, SL shows much
larger accuracy gaps, while SSL shows mild accuracy gaps. But such accuracy gaps of SSL can be
effectively mitigated with simple continual learning methods. To sum up, SSL exhibits signi cantly
smaller performance gaps between ST models and JT models than SL. The above difference between
SL and SSL models motivates us to further investigate the forgetting property in Section 5.

5 SELF-SUPERVISED MODELS FORGET LESS THAN SUPERVISED MODELS

In this section we rst analyze the knowledge forgetting of previous tasks from two perspectives.
In Section 5.1, we evaluate the transfer ability of both SL and SSL representations via the standard
backward and forward transfer analysis in continual learning (Lopez-Paz & Ranzato, 2017). In
Section 5.2, we adopt the CKA similarity (Kornblith et al., 2019a) and image reconstruction from
features (Zhao et al., 2020) to directly analyze the representation. Last but not least, in Section 5.3,
we provide our empirically justi ed hypothesis for why SSL models forget less than SL models.

5.1 BACKWARD AND FORWARD TRANSFER ANALYSIS OF SEQUENTIAL LEARNING

Following (Lopez-Paz & Ranzato, 2017), wi ) :
adopt the backward and forward transfer to ass:r able 3: Backward and forward transfer analy

the knowledge transfer in sequential Iearniné?.g of sequential Iearmngi. -
Backward transfer refers to the improvement of Data  Method TopB_‘i\’T(?c))pB TOTJ‘_"{T(/%F)B
performance on previously learned chunks when L 045 546 804 281
learning new chunks, where large negative trans-instance oo 261 350 755 863
fer is also known as catastrophic forgetting. For- SL 2063 703 034 00Ol
ward transfer measures the improvement in per-Random oo, ‘595" 135 1105 452
formance on the novel chunk with the accumu-—_ SL -40.43 -28.66 490 047
lation of knowledge from previous chunks. For Pt S5 1324 -11.06 1101 3.66
supervised continual learning, the performancé
is de ned as the accuracy on the associated test set, which is meaningful due to the consis-
tency of the training and test sets. Similarly, we conduct the whole analysis based on the per-
formance on the pre-training data chunks, instead of performing the evaluation on downstream
datasets. Speci cally, for the ease of comparison between SL and SSL, we measure the perfor-
mance by KNN classi cation accuracy on the representations of pre-training chunks, where the
labels are pr(a/igled jl'§t for evaluation, similar to Wu et al. (2018). Cor?:;:retely, the backward transfer
1 1

BWT = 4 [, t |4 Al A} andforwardtransfer FWE 21 [, Al Ay, metrics

used in Yan et al. (2021a) whefeis the sequence length}, refers to the accuracy on the chunk

using model learned at steépvhere the label space includes all observed classes up to ¢hanid

Ay, means the accuracy with the model learned from scratch. The results are shown in Table 3, and



Published as a conference paper at ICLR 2022

the implementation details are included in the Appendix C.2. We can obtain the following observa-
tions about forgettingi). Learning method: SSL itself is less prone to catastrophic forgetting than
SL, especially that SSL achieves positive backward transfer on the instance incremental sequence.
It illustrates that SSL is more suitable for streaming d#ja.Types of streaming data: The model
suffers progressively severe forgetting when the distribution shift increases for both SSL and SL
cases.iii). Example forgetting: It is observed that forgetting is less severe in top-5 classi cation
than top-1 classi cation, which indicates that the knowledge is not fully forgotten.

5.2 REPRESENTATION MEMORIZATION ANALYSIS OF SEQUENTIAL LEARNING

How do features forget in sequential training? We
study how learned features forget in sequential training
via Centered Kernel Alignment (CKA) (Kornblith et al.,
2019a). CKA is used to measure the similarity between
two representations of the same given samples. See Ap-
pendix C.3 for details of the CKA similarity. Speci -
cally, we randomly sample 50,000 images from the rst
data chunk on each type of streaming data. We use these
samples and sequentially trained models for CKA sim-
ilarity analysis. We report the CKA similarity values on
three types of ImageNet-based streaming data in Figure 5.
Each value is obtained by rst extracting features of sam-
ples with two different models and then computing the
CKA feature similarity value between the two features.
On all streaming data, we have three consistent observa-
tions about the CKA similarity between sequential mod-
els:i). SSL models all exhibit higher features similarity
to the initial model, compared with SL modelg). In
general, SSL models show higher features similarity be-
tween two sequential models in sequential training, cor']_J_— )

pared with SL modelsiii). Features similarity betweenf19ureé 5: CKA scores between sequen-

two sequential models decrease on streaming data viig!y trained models.

more severe distribution shifts, for both SSL and SSL. These observations suggest that features of
SSL models forget less and evolve more slowly than those of SL models in sequential training.

Image reconstruction by feature inversion for sequential modelsSimilar to Zhao et al. (2020), in

Figure 6, we visualize images reconstructed from both SL-ST and SSL-ST features using deep image
prior (DIP) (Ulyanov et al., 2018). To be speci ¢, we choose four images in the rst data chunk of
the challenging distant class incremental sequence and visualize features of four sequentially learned
models for both SSL and SL, respectively. As shown in Figure 6, in sequential training, features of
SSL models can always perfectly reconstruct the main information in original images. In contrast,
features of SL models lose more detailed information with more sequential data chunks, which
indicates SSL is much better at countering the knowledge forgetting in sequential training. Recalling
the evolving CKA similarity shown in Figure 5, the perfect reconstruction results of sequential SSL
models do not mean SSL models stop learning in sequential training. Instead, it indicates that SSL
does well in learning new knowledge while keeping previous knowledge.

Raw image Images reconstructed from SSL models Images reconstructed from SL models

Figure 6: Images reconstruction by inversing features from both SSL and SL models in sequential
pre-training.
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Table 4: Comparisons of the sharpness of minima between SL and SSL models. Lower is better.
Instance Random Class Distant Class
=0:1 =0:3 =0:1 =0:3 =0:1 =0:3
SL  0.47 0.94 0.21 0.94 0.19 0.94
SSL 0.14 0.68 0.08 0.66 0.12 0.71

5.3 HYPOTHESIS FOR DIFFERENT FORGETTING BEHAVIORS BETWEESL AND SSL

In this subsection, we dig into the different forgetting behavior between SL and SSL by analyzing
the sharpness of the minima in the loss landscape. Flat minima in the loss landscape are the minima
in which the change of losses is slow in its neighborhood. Note that the models having at min-
ima in the loss landscape tend to exhibit an impressive generalization ability (Keskar et al., 2016).
When starting with at minima, we expect that learning new chunks will have a minor effect on
the performance of existing chunks, as escaping the wide basin is dif cult. Therefore, we hypothe-
size that SSL encourages the model to seek out atter minima, which increases SSL's resistance to
catastrophic forgetting. To verify this hypothesis, we conduct experiments to compare the sharpness
of minima between SL and SSL models, where we apply a widely-used sharpness metric (Keskar
etal., 2016; Wen et al., 2018). Concretely, we rst de ne the neighbort@aaf mimina as:

C=fz2R": iz Ii ziiz I ii29 @
wheren denotes the number of parameters an@fers to the model parameter after training. Be-
cause SSL and SL models are trained with different loss objectives, such as cross-entropy loss and
the contrastive loss, we cannot directly analyze the sharpness with either objective. Considering
that we aim for a representation model, we propose to directly adopt the KNN classi er to evaluate

representations of both SL and SSL models. The KNN classi cation loss can be a discrete proxy of
loss functions. Then, the sharpness of loss minima is de ned as follows:

()= max o & )=max (LD )f(f)‘ .

)
whereg( % ) means the relative loss change from minimao the parameter® and the loss
functionf ( ) is the negative KNN classi cation accuracy with model parameter

As shown in Table 4, SSL indeed discovers atter minima compared to SL, which veri es our
hypothesis and provides an explanation for why SSL suffers less forgetting than SL. More imple-
mentation details are in Appendix C.4. Moreover, we also conduct the visualization of relative loss
changeg over a linear path like (Mirzadeh et al., 2020) in Appendix C.4. The loss change of SSL is
slower than that of SL along the linear interpolation path, demonstrating the atter minima of SSL.

6 DISCUSSIONS

This paper has conducted the rst thorough empirical evaluation to investigate how well self-
supervised learning (SSL) performs with various streaming data types and diverse downstream
tasks. Our experimental results and the empirical analysis conclude the three main niings:
Joint training is unnecessary for SSL with streaming data. Instead, sequential training with suitable
continual learning strategies is performance-competitive yet more ef cient, well worth considering
as a good alternativai). Sequential self-supervised pre-training shows a better capability of over-
coming catastrophic forgetting than sequential supervised pre-traifiing.We hypothesize that

SSL models have atter minima than SL models in the loss landscape, which seems reasonable for
the different forgetting behaviors between SL and SSL models. Moreover, We demonstrate this
hypothesis by a thorough empirical analysis of the sharpness of minima.

As for future directions, we rst call for more attention to sequential self-supervised learning for
understanding its underlying theories of knowledge forgetting and devising better approaches. Also,
we recommend considering sequential self-supervised training as a more ef cient representation
learning paradigm for real-world applications.
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APPENDIX

A EXPERIMENTAL SETUPS

A.1 TYPES OF STREAMING DATA

We consider four kinds of streaming data for the study, i.e., the instance incremental sequence,
the random class incremental sequence, the distant class incremental sequence, and the domain
incremental sequence. To exclude the effect of the number of images, we make sure that data chunks
in the same sequence have almost the same data amount. Here we provide more details about these
data sequences.

Instance incremental sequence. For the instance incremental sequence, we split the Ima-
geNet (Russakovsky et al., 2015) training data that consists of 1.28 million images with 1,000 classes
into four even chunks. We ensure that each data chunk includes the same 1,000 classes with the same
number of images for each class, which means these data chunks are independent and identically
distributed (1ID).

Random class incremental sequencer-or the random class incremental sequence, we randomly
split the 1,000 classes of ImageNet into four parts where each part has 250 classes. Since each class
of ImageNet has around 1,000 images, we can directly obtain four data chunks with almost the same
amount of images.

Distant class incremental sequence.To explore the data

sequence with severe distribution shifts among data chunks,

we consider the distant class incremental sequence. Follow-

ing (Yosinski et al., 2014), rather than randomly splitting the

1,000 classes, we leverage the WordNet Tree (Miller, 1998)

to obtain four even data chunks sharing the minimal seman-

tic overlapping. We rst build a 1000*1000 adjacent matrix

among the 1,000 classes by setting the value of similar classes

as 1 and the value of dissimilar classes as 0. To be speci ¢, we

take classes sharing the common parent node beneath the ninth

depth in the WordNet Tree as similar classes and vice versa.

Using the semantic similarity described in the adjacent ma-

trix, we then split the 1,000 classes into independent connected

components as shown in Figure 7. Finally, we merge these

imbalanced components into four almost even data chunks.

Concretely, the rst chunk “A includes 250 classes of 318,4999ure 7: The number of classes
images. The second data chunk ‘B’ includes 250 classed®f €ach connected component
321,488 images. The third data chunk “C' includes 251 clas&@¥n the adjacent matrix of 1,000
of 321,533 images. The fourth data chunk "D’ includes 244SSes in ImageNet.

classes of 319,687 images.

Domain incremental sequence.As for the domain incremental sequence, we consider a multi-
domain dataset called DomainNet (Peng et al., 2019). In our work, we adopt a domain incremental
data sequence made of four distant domains including “sketch’, “real', "painting' “quickdraw', and
“clipart’. There exist severe domain distribution shifts among data in these ve domains. Speci -
cally, data in the domain “quickdraw' mostly contain only lines without visual textures. As a result,
images from “quickdraw' are less informative and more visually distinct, compared with images
from those four domains, as shown in Figure 8. For each domain, we randomly select 48,129 im-
ages as a data chunk, except for "quickdraw' where we select 47,687 images.

A.2 DETAILS OF PRETRAINING

MoCo-v2. For the illustration purpose, we adopt a prevailing self-supervised learning (SSL)
method, MoCo-v2 (Chen et al., 2020c), to investigate the performance of SSL with streaming data.
MoCo-v2 uses a Siamese network consisting of two encoders. These two encoders are designed for
query images and key images, respectively, and share the same architecture where an MLP projec-
tion head , is on top of a backbone netwofk. Only the query encoder is updated by the gradients
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