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ABSTRACT

Active learning aims to reduce the labeling costs by selecting only samples that
are informative to improve the accuracy of the network. Few existing works have
addressed the problem of active learning for object detection, and most of them
estimate the informativeness of an image based only on the classification head,
neglecting the influence of the localization head. In this paper, we propose a novel
deep active learning approach for object detection. Our approach relies on mixture
density networks to provide a distribution for every output parameter of the net-
work. Through these distributions, our approach is able to compute, separately and
in a single forward pass of a single model, the epistemic and aleatoric uncertainty.
In addition, we propose another efficient approach to reduce the computational
cost of the mixture model. For active learning, we propose a scoring function that
aggregates uncertainties from both the classification and localization outputs of
the network. We demonstrate the benefits of our approach in PASCAL VOC and
COCO datasets. Our mixture model based object detection outperforms the cor-
responding original models with accuracy improvements up to 2.82% in the strict
method. In active learning, our approach outperforms the state-of-the-art methods
using a single model and, yields competitive accuracy compared to methods using
multiple models at a fraction of the compute cost. We empirically demonstrate that
aggregating uncertainties from both tasks is a key factor for the improvement. In
addition, we show that our approach scales to different object detection networks,
and datasets acquired actively using our approach can successfully be transferred
to different networks.

1 INTRODUCTION

Deep learning models can achieve high accuracy in object detection by leveraging a massive quantity
of labeled data (Liu et al., |2016; |Ren et al., [2015). While crawling a large amount of image data
is a trivial task, labeling this data is an expensive and time-consuming activity. An image typically
contains multiple objects, and each object requires a category and a bounding box. Therefore,
devising a smart labeling strategy becomes very desirable.

Active learning aims at selecting the smallest possible training set to solve a specific task (Cohn et al.,
1994)). Active learning methods involve the model in the selection of what images to learn from. By
doing this, they can boost the performance of the models (Beluch et al.; 2018} | Yoo & Kweon, 2019;
Chitta et al.}|2019) and reduce the labeling costs. A key component of active learning is the scoring
function that, usually based on the predictive uncertainty of the model, aims at providing a single
value per image representing its informativeness. The predictive uncertainty can be decomposed into
Aleatoric and Epistemic uncertainty (Hora, [1996). The former refers to the notion of randomness,
or the noise inherent in the observations, such as sensor noise, and can be attributed to occlusions,
lack of visual features, or object distance (Kendall & Gal, 2017} |[Feng et al., 2018). The latter
refers to the uncertainty caused by the lack of knowledge. Aleatoric uncertainty represents the non-
reducible part while the epistemic one can be reduced given enough additional data (Liu et al.| 2019).
Modeling and distinguishing these two types of uncertainty is very important when mining data as
aleatoric uncertainty is useful in large data situations and real-time applications, whereas epistemic
uncertainty is relevant for safety-critical applications and in small datasets (Kendall & Gal, 2017).
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Few works have addressed the problem of active learning for object detection. The first approaches
are extensions of image classification methods, computing pixel-level scores in the detector’s con-
fidence branch, and then aggregating them into a frame-level score (Aghdam et al., [2019). These
methods ignore the localization branch to compute an image’s informativeness score. More re-
cent approaches have shown promising results for modeling bounding box uncertainty in object
detection (Choi et al., 2019; [He et al., 2019). However, these methods, called Box-uncertainty,
model uncertainty as a single probability distribution, thus failing to decouple between epistemic
and aleatoric uncertainty. A common approach to decouple epistemic and aleatoric uncertainties
is to use multiple object detection networks such as ensembles (Haussmann et al.| 2020) or Monte
Carlo (MC) sampling (Gal & Ghahramani, 2016)). However, these methods become impractical as
they require much higher computational cost.

In this paper, we propose a novel active learning approach for deep object detection based on the
uncertainty of both the predicted object class and its bounding box. In contrast to other methods,
our approach relies on a mixture density network to learn the parameters of a Gaussian mixture
model (GMM) for each of the outputs of the object detector. Given the parameters of these GMMs,
our approach can explicitly compute, in a single forward pass of a single model, the aleatoric and
epistemic uncertainties for the classification and localization heads. We further improve the compu-
tational cost of our approach by proposing a more efficient modeling method for the classification
head. To train our mixture density based object detector, we propose a loss function that serves as
a regularizer for inconsistent data leading to more robust models. For active learning, our scoring
function aggregates localization and classification-based uncertainties for each object in the image
to obtain the final image’s informativeness score. We demonstrate the benefits of our approach in
two public datasets PASCAL VOC and COCO. Our mixture model based object detection outper-
forms the corresponding original models with accuracy improvements up to 2.82% on the strict loU
metric. When used for active learning, our approach outperforms single model based methods, and,
compared to methods using multiple models, our approach yields a similar accuracy while reducing
the forward time up to 92.68% compared to MC dropout. We empirically show that aggregating un-
certainties from the classification and localization heads is a key factor for such better performance.

2 RELATED WORK

Active Learning has been actively studied over the last two decades. The main idea is to choose
the most informative samples for a classifier. The excellent survey (Settles| |2012) well describes the
problem in the regime of low-level data.

Deep Active Learning has found an interest in the last few years with many works tackling the
problem from different directions. The work of |Beluch et al.| (2018)) trains an ensemble of neural
networks and then selects the samples with the highest score defined by some acquisition function,
i.e., entropy (Shannon, [2001)) or mutual information (Chitta et al., 2018). Concurrent works (Gal
et al., [2017; Kirsch et al.| 2019) explore similar direction, but by approximating the uncertainty
via MC-dropout (Gal & Ghahramanil 2016). The work of [Beluch et al.| (2018)) compares the ap-
proaches, decisively concluding that the ensemble approach reaches higher results at the cost of
more computational power. Other works have considered Bayesian (Tran et al.| 2019} Sinha et al.,
2019) or core-set (Sener & Savarese, 2018)) approaches. Most of these methods (Lewis & Catlett,
1994; |Gal & Ghahramani, [2016; Beluch et al.l 2018} |Sener & Savarese), 2018]) have been extended
in a straightforward way to the problem of object detection.

In addition to these methods, there are several methods which have been proposed specifically for
object detection. The work of |Aghdam et al.| (2019) proposes a solution by training a network that
computes dense object prediction probabilities for each unlabeled image, followed by computing
pixel-scores and aggregating them into a frame-level score. A different solution was given by |Kao
et al.| (2018) where the authors define two different scores: “localization tightness” which is the over-
lapping ratio between the region proposal and the final prediction; and “localization stability” that is
based on the variation of predicted object locations when input images are corrupted by noise. In all
cases, the images with the highest scores are chosen to be labeled. The work of Roy et al.|(2018)) pro-
poses a “query by committee” paradigm to choose the set of images to be queried. Another approach
is that of Desai et al.| (2019) where instead of directly querying bounding box annotations (strong
labels) for the most informative samples, they first query weak labels and optimize the model. Then,
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using a switching condition, the required supervision level is increased. Yet another approach has
been proposed in[Haussmann et al.|(2020), where an ensemble of object detectors provides potential
bounding boxes and probabilities for each class of interest. Then, a scoring function is used to obtain
a single value representing the informativeness of each unlabeled image. The work of[Yoo & Kweon
(2019) gives a heuristic but elegant solution, while reaching state-of-the-art results compared with
other single-model methods. The authors train a network in the task of detection while learning to
predict the final loss. In the sample acquisition stage, samples with the highest prediction loss are
considered as the most interesting ones and are chosen to be labeled.

Mixture Density Network has been widely used for several deep learning tasks in recent years. The
approach of |Choi et al.| (2018) focus on regression task of the steering angle and the works of |[He &
Wang| (2019); [Varamesh & Tuytelaars|(2020) attempt to solve a multimodal regression task. Other
work of [Yoo et al.|(2019) focus on density estimation and another approach of |Choi et al.| (2020)
attempt to solve the supervised learning problem with corrupted data. However, previous studies
in|Choi et al.| (2018); |He & Wang|(2019); |Varamesh & Tuytelaars| (2020) did not consider classifica-
tion task, which is an essential part of object detection, and all these previous studies did not estimate
and take into account two types of uncertainty of bounding box regression and classification tasks,
and also none of these works has explicitly addressed active learning for deep object detection. In the
next section, we introduce our approach for estimating both the aleatoric and epistemic uncertainty
in a single forward pass with a single model in the context of active learning for object detection.

3 ACTIVE LEARNING FOR OBJECT DETECTION

In this section, we introduce our active learning approach that uses only a single model for estimating
uncertainty with a single forward pass. As depicted in Figure|l| the key novelty of our approach is
a modification in the output layers to predict a probability distribution instead of a single value for
each output of the network. To this end, we propose to make use of a mixture density network where
the output of the network consists of the parameters of a GMM. That is the mean ¥, the variance
¥* and the mixture weight ¥ for the k-th component of the GMM. Given these parameters, we can
estimate the aleatoric u,; and epistemic u.;, uncertainties as (Choi et al., 2018)):

K K K
Uql :ZWkEk, uep:Zﬂ'kH/tk—Zﬂ’/ﬁHQ. (D
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Below we first introduce the mixture modeling for object detection for both localization and classi-
fication and then, we describe the scoring function to be used during active learning.

3.1 OBIECT DETECTION WITH UNCERTAINTY MODELING

As shown in Figure[I] our network builds upon Single Shot MultiBox Detector (SSD) (Liu et al.,
2016)), which is widely used in active learning studies, with a VGG16 backbone (Simonyan & Zis-
serman, 2015) and a MultiBox module (Erhan et al) 2014). Additionally, the network combines
predictions from multiple feature maps with different resolutions to naturally handle objects of vari-
ous sizes via the Extra layers. SSD predicts, on each location of the feature map, d default bounding
boxes with different sizes and aspect ratios. For each default box, the network predicts its coordi-
nates (via the localization head) and the class (via the confidence head). To introduce our approach,
we first focus on the regression task and then, extend it to the classification side.

Localization: Instead of predicting a deterministic value for each bounding box coordinate, our
algorithm outputs 3 groups of parameters for each bounding box: the mean (fis, fiy, fiw, and fip),
the variance (3, ¥, Yy, and Xp,), and the weights of the mixture (7., Ty, 7y, and 7p,).

Let {fr{f ﬂ’lf f)’g}szl be the bounding box outputs obtained using our approach. The parameters of
a GMM with K models for each coordinate of the bounding box are obtained as follows:
~ K
w_ exp(fy) k
To = oK~y Hb
> j—1 exp(fy)
where 7 is the mixture weight for each component, y is the predicted value for each output of the
bounding box, and X is the variance for each coordinate representing its aleatoric uncertainty. As

=py, SF=0(2F), be{z,y,w hl}, @)
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Figure 1: An overview of the proposed object detection network. The main difference with original
SSD (Liu et al., |2016) is in the localization and classification branches. Instead of having determin-
istic outputs, our approach learns the parameters of a K -component GMM for each of the outputs.

suggested in |Choi et al.| (2018) we use a softmax function to keep 7 in probability space and use a
sigmoid function to satisfy the positiveness constraint of the variance, E’g >=0.

For training the mixture density network for localization, instead of using the smooth L1 loss (Gir-
shick, |2015), we propose a localization loss based on the negative log-likelihood (NLL) loss to
regress the parameters of the GMM to the offsets of the center (z, y), width (w), and height (h) of
the default (anchor) box (d) for positive matches:

K
Lige(,1,9) = Z > Nijlog(d_ miFN (33 i, BiF) + ¢, 3)
i€Pos beB k=1
1, ifIoU>05 . (¢h—d) . (g—d) Gy - 9
Aij =147 I= T wlgh = Y Vg0 = log(ZY), g =1 h.
’ {O, otherwise. = 77 di, Iy di, u Og(dﬁu) Og(d’)

where NV is the number of positive matches, B is the offset of the bounding box coordinate, g gb is the
ground-truth (GT) of the j-th box, and A;; is an indicator function for matching the i-th default box
to the j-th GT box. In experiments, we set ¢ = e~ for the numerical stability of the log function.

Classification: We now focus on the classification branch of the object detector where we model
the output of every class as a GMM, see Figure Our approach estimates the mean /:Lk and variance

Ek for each class, and the weights of the mixture #* for each component of the GMM. We process
the parameters of the GMM following Eq.[2} and obtain the class probability distribution for the j-th
bounding boxes by applying Gaussian noise and variance El to u;, (Kendall & Gal, 2017):

:ﬂ{fr\/;%% v~ N(0, 1) )

For training, in this case, we propose a loss function that takes into account the IoU of the default
bounding boxes compared to GT and hard negative mining. More precisely, we formulate the classi-

fication loss as a combination of two terms L,°* and Lgeg representing the contribution of positive
and negatives samples:

K

LEos(x Z )\”Zw ”k —log Zep
=1

LNeg Z ZW (" — log( cm)»

i€ENeg k=1 p=0

®)

where C' is the number of classes, with 0 representing the background class, N is the number of
positive matches, éff is the ground-truth class for the i-th match, and M = 3 is the ratio of hard
negative mining (Liu et al.| [2016). In experiments, instead of using all the negative matches, we sort
them using mixture classification loss and choose top M x N as final negative matches for training.

Finally, the overall loss to train the object detector using mixture density network is defined as:

Pos Neg .
L(:E,C,l,g) = (LlOC(Iil’g)+L (I C) +L (I‘,C)), if N >'0- (6)
0’ otherwise.
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where NNV is the number of positive matches.

At inference, we can compute the coordinates of the bounding box R} and the confidence score for
each class P; by summing the components of the mixture model as follows:

Localization : Ry = Zwb,ub, Classification : Py = Z kL('ul). (7

_ k—1 Z Oezp(,u)

Improving parameter efficiency. Our approach to predict a probability distribution of the output
values involves modifying the last layer of the network and therefore incurs in an increment in the
number of parameters, especially in the classification branch. More precisely, assuming a feature
map of size K x K, C classes, D default boxes to be predicted, and each bounding box defined
using 4 coordinates, the number of parameters in the new layer added to estimate a K-component
GMM with 3 parametersis FF X FF x D x (4 x3x K)and F' x F x D x (C' x 2 x K + K), for the
localization and classification heads respectively. We can see that the number of parameters in the
classification branch is proportional to the number of classes leading to a larger computational cost.

In this section, we focus on improving the efficiency of the algorithm by reducing the number of
parameters in the classification branch. To this end, we eliminate estimating the variance X, to
reduce the number of parameters to F' x F' x D x (C' x K + K). This variance is used in the original
formulation to compute the class probability, the aleatoric uncertainty and to implicitly regularize the
training process towards low uncertainty solutions. Alternatively, we can obtain class probabilities
as cﬂ 17, and use them to estimate the aleatoric uncertainty as follows (Kwon et al., [2020):

Uql = Zﬂ- dwg ( )®2)a (8)

where diag(q) is a diagonal matrix with the elements of the vector q and ¢®? = gq”. In this case,
uqy is C' x C matrix where the diagonal elements represent the aleatoric uncertainty.

Finally, we modify the loss function for classification (similarly for localization) to explicitly pro-
mote solutions with low uncertainty as follows:

N c
05 1—uloc ik
LI (@e)== > A(1+ul Ew i —log(Y e, ©)
i€ Pos p=0

where ulg® = 1 de 5 ub, aggregates the aleatoric uncertainty of the coordinates of the bounding

box, and « controls the strength of this constraint. In our experiments, we set o = 4.

3.2 SCORING FUNCTION

The scoring function in active learning provides a single value per image indicating its informative-
ness. In our case, we estimate the informativeness of an image by aggregating all the aleatoric and
epistemic uncertainty values for each parameter of each bounding box present in the image.

Specifically, let U = {u%} be the set of uncertainties values (aleatoric or epistemic) of a group of
images where 1% is the uncertainty for the j-th object in the i-th image. For localization, u* is
the maximum value over the 4 bounding box outputs. We first normalize these values using z-score
normalization (7 = (u% — puy)/oy) to compensate the fact that the values for the coordinates
of the bounding box are unbounded and each image might have a different range of values. We
then assign to each image the maximum uncertainty over the detected objects u’ = max; @*/. We
empirically find that taking the maximum over the coordinates and the objects performs better than
by taking the average.

Using the algorithm described above we obtain four different normalized uncertamty values for
each image: epistemic and aleatoric for classification and localization, u = {uf,, ,u’; ,ul, ,ul, }
respectively. The remaining part is to aggregate these scores into a single one. We experiment
with two popular approaches, such as averaging or taking the maximum, as other active learning
studies (Haussmann et al.,2020). As shown in the appendix, taking maximum works better.
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Table 1: Accuracy of different instances of our approach compared to the original SSD network.
SGM and M DN refer to single and multiple Gausian models, and we apply those to localization
(Loc), classification (Cl), and their combination (Loc+Cl).

Method Head ToU > 0.5 ToU > 0.75 method head IoU > 0.5 IoU > 0.75
SSD - 69.29 £0.51 43.36 +1.24 SSD — 25.63+£0.40 11.93+0.60
SGM Loc 70.20 £0.27 45.39+£0.23 SGM Loc 27.20+£0.08 12.70+0.16
MDN Loc 70.09 +£0.22 46.01 £0.27 MDN Loc 27.67+£0.12 13.53+0.05
SGM Cl 69.95+0.41 44.25+0.26 SGM Cl 27.23+£0.12 12.50+0.08
MDN Cl 7047 £0.17 44.47 +0.06 MDN Cl 27.33+£0.09 12.67 +0.09
Ours Loc+Cl | 70.19+0.36 46.11 £0.38 Ours | Loc+CI | 27.70 £0.08 13.57 £0.19
Ours* | Loc+Cl | 70.45+0.06 46.18 +0.26 Ours* | Loc+Cl | 27.33+£0.04 13.33+0.12

(a) VOCO07 (b) COCO

Ualy* 3.60 Ugql,: 0.96 Uq, : 1.71 Uql,: —0.50 Ualy* —1.09 Ugl,: 8.80 Ualy: —0.19 Uql,: 1.58
Uepy: 1.06 Uep,: —0.19 Uepy: 11.45 Uep,: —0.38 Uepy —0.38 Uepe: 1.35 Uepy,: —0.35 Uep,: 10.06

Figure 2: Examples of aleatoric and epistemic uncertainties for inaccurate detections, see more
examples in the appendix. From left to right: Person is a false positive; Person bounding box is not
correct; A sheep is misclassified as a cow; A bird is misclassified as Aeroplane.

4 EXPERIMENTS

In this section, we demonstrate the benefits of our approach. We first study the impact of using
mixture modeling for object detector and then, analyze the proposed acquisition function in the
context of active learning.

Datasets: We use PASCAL VOC (Everingham et al.,|2010) and COCO (Lin et al., |2014) datasets.
For PASCAL VOC, which provides 20 object categories, we use VOC07 or VOCO07+12 for training
and evaluate our results on VOCO7 testing set. For COCO, which provides 80 object categories, we
use COCO train2014 for training and evaluate our results on val2017.

Experimental settings: We train our models for 120, 000 iterations using SGD with a batch size
of 32 and a maximum learning rate of 0.001. We use learning rate warm-up for the first 1,000
iterations and divide the learning rate by 10 after 80, 000 and 100, 000 iterations. We set the num-
ber of Gaussian mixtures to 4, see the appendix for ablation studies. Unless specified, we report
performance using the mean and standard deviation of mAP of three experiments with the standard
(IoU>0.5) and the strict (IoU>0.75) metrics.

4.1 OBJECT DETECTION WITH UNCERTAINTY MODELING

We first analyze the impact of using mixture density networks for object detection on VOC and
COCO. For COCO, we use a random subset of 5, 000 training images from train2014. We compare
the performance of our approach (Ours) and the more efficient version (Ours™) to the original SSD
and several network configurations either using single or multiple Gaussians for the classification or
localization heads. For the evaluation, we provide the average mAP of three experiments with the
standard metric (IoU>0.5) and the strict metric (IoU>0.75).

Table [Th and [Tb summarize the results of this experiment on VOCO07 and COCO, respectively. As
shown, all networks that include uncertainty modeling outperform the SSD on both datasets. The
improvement is larger in IoU>0.75 for those instances using uncertainty on the localization head,
probably due to the regularization effect of the proposed loss function (Choi et al.| |2019). As a
result, we obtain models that are robust to noisy data. We also observe that the accuracy is higher
for models using a mixture network compared to using a single Gaussian. Our approach using a
GMM and its more efficient variation outperforms all other variations in VOC07. In COCO, GMM
outperforms all other instances and baseline and the efficient variation provides competitive results.

Figure [2] shows representative examples of uncertainty scores for several images where the detector
fails to detect the object. As shown, each uncertainty value provides a different insight into some
particular failure. Localization uncertainties are related to the accuracy of the bounding box pre-
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Figure 3: VOCO07+12: a) Comparison to published work using a single model for scoring; b) Com-
parison to ensemble and MC-dropout; ¢c) Model parameters in milions and forward time in seconds.

diction, whereas classification uncertainties are related to the accuracy of the category prediction.
Interestingly, in these examples, even if the predictions are wrong, uncertainty values seem to be
uncorrelated suggesting each uncertainty could predict inaccurate results independently. From these
results, we can conclude that the proposed approach not only can compute uncertainty in a single
forward pass but also boosts the performance of the object detection network.

4.2 ACTIVE LEARNING EVALUATION

We focus now on evaluating the performance of our ap-  Typle 2: VOCO07: Active learning com-
proach to active learning on PASCAL VOC and COCO  parison to other methods.
datasets. We use an initial set of 2,000 and 5, 000 (Kao

et al.l [2018)) training images from VOCO07 and COCO, mAP in % (# images)

: : : : 1st2k)  2nd 3k)  3rd (4k)
respef:tlvely. Then, during the.actlve learnlng stage, for Random T 6540 6T
each image, we apply non-maximum suppression and we Entropy 6121 6681  68.08
compute the uncertainties for each of the “surviving” ob- B‘;{‘-C“fc'lceﬂa”ity g(l)gé 2‘6‘-22 22‘2‘8
. . . . . -dropou .. . .
jects. The scoring function aggregates these uncertainties Ensemﬂle 6020  66.75 68.54
using the maximum to provide the final informativeness Rangomm 6%2; gﬁgg 22‘4;

: : urs 62. 7. 4
score for the image. We score the set of unlabeled images Ours* 6291 6761  69.66

and select the 1,000 images with the highest score. We
repeat this process three times for VOC07 and eight times for VOC07+12 and COCO. For each
iteration, we train each model from scratch, using ImageNet pretrained weights as initialization. To
verify the influence of the initial training set, we ran 5 times the first iteration obtaining an average
mAP of 62.3 £ 0.09 on VOCO07 which suggests little variations when experiments use a different
initial subset of images.

PASCAL VOC: comparison to state of the art methods. Table 2] summarizes the performance
of our method compared to most relevant active learning approaches in the literature. As baselines,
we use random sampling on the original SSD and, in addition, random sampling using the proposed
architecture (referred as Random,i,). As shown, both instances of our approach consistently out-
performs all the other methods in every active learning iteration. Interestingly, although all methods
use the same initial subset of data for the first iteration, our approach yields slightly higher accuracy
in the first iteration which is consistent with our experiments in the previous section. Moreover,
using only 4, 000 images, our approaches outperform the accuracy achieved using the original SSD
trained with the entire dataset (see Table [Th).

We now compare our approach to existing single model-based approaches on VOC07+12. We con-
sider the state-of-the-art results reported in Yoo & Kweon|(2019) including LLAL (Yoo & Kweon,
2019) and core-set (Sener & Savaresel 2018)), in addition to simple baselines such as entropy (Shan-
non, 2001) and random sampling. We use the same open source used in Yoo & Kweon| (2019). As
shown in Figure 3, our method outperforms all the other single model-based methods.

Finally, we compare our approach with methods using multiple models such as ensemble and MC-
dropout active learning for object detection. For ensembles, we follow |Beluch et al.|(2018)), building
an ensemble of three independent models. For MC-dropout, we add dropout layers with p = 0.1
to the six convolutional layers composing the extra-layers module. We compute the image scores
using 25 forward passes (Beluch et al. [2018). For these two methods, we estimate the final image
informativeness score uy as the average entropy on the classification head. Figure[3p and Figure 3¢
show the performance comparison and compute costs of these methods, respectively. As shown, in
terms of performance, our approach performs on par with MC-dropout and ensembles. However,
our approach uses a single forward pass to estimate the uncertainties, which is more efficient than
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Figure 4: a) Accuracy comparison on COCO; b) Performance comparison using Faster-RCNN on
VOCO07; b) Transferability of datasets created using our approach.

ensembles and MC-dropout based methods. With respect to the number of parameters, MC-dropout
has the same number of parameters as SSD since dropout layers do not add any new parameters.
Our approach adds extra parameters for the estimation of the GMM and its parameter efficiency
version to the latest layers of each head and therefore, the number of parameters is larger than SSD.
In ensemble-based methods, the number of parameters is proportional to the number of models in
the ensemble. As shown, our proposed methods require significantly less computational cost than
MC-dropout and ensemble-based method. In short, our method provides the best trade-off between
accuracy and computational cost.

COCO: comparison to state of the art methods. We compare our approach to entropy, coreset
and ensembles using four independent models as suggested inBeluch et al.|(2018)). As baselines, we
consider random sampling using the original SSD and random sampling using our mixture model
network (Random,,;,.. Results for this experiment are shown in Figurefp. As shown, our approach
yields again higher accuracy in the first iteration and, more importantly, our approach consistently
outperforms the other active learning methods through every iteration. These results suggest our
approach generalizes to larger datasets that have a larger number of categories. Interestingly, the
standard deviation of the results of our method is, in general, smaller than that of the other methods,
suggesting that our approach is more stable than the others.

4.3 SCALABILITY AND TRANSFERABILITY

Our method is not limited to single-stage detectors. Here, in a first experiment we show how our ap-
proach can be applied to a two-stage detector such as Faster RCNN (Ren et al., [2015) with FPN (Lin
et all[2017). Figure[dp shows the performance and computational cost of our approach compared to
the the original model using the same data from VOC dataset as in Table[Th. As shown, the accuracy
of our approach outperforms while, in this case, minimizing the computational cost burden. Finally,
in the last experiment, we focus on the transferability of actively acquired dataset. To this end, we
compare the performance of different backbones such as VGG and Resnet-34, Resnet-50 (He et al.,
2016)) and Faster-RCNN trained using 4k samples acquired using our approach. For comparison, we
also report the accuracy obtained using random sampling selection. These two datasets corresponds
to the ones used to obtain results in Table 2] Results for this experiment are shown in Figure . As
shown, networks trained using samples selected by our method outperform the counterpart trained
using randomly selected samples. These results suggest that our approach not only scales to other
detection networks but also the datasets acquired using our approach can be transferred to other
architectures.

5 CONCLUSIONS

We have proposed a novel deep active-learning approach for object detection. Our approach relies
on mixture density networks to provide, in a single forward pass, a multi-modal distribution for ev-
ery output of the model. We can efficiently estimate the epistemic and aleatoric uncertainty for every
of these outputs. To train the mixture model, we have proposed a loss function that yields up to 2.8%
accuracy improvements when compared to the baseline models. For active learning, our scoring ag-
gregates the uncertainty from both the classification and localization heads of the model. Results in
public datasets demonstrates that our approach outperforms state-of-the-art active learning methods
using a single model and performs on par compared to MC-dropout and ensembles, but requiring a
significantly lower computational cost. A key factor for such better performance is the combination
of uncertainties from both tasks. We also demonstrated the scalability, and transferability of those
datasets actively acquired using our approach.
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A APPENDIX

A.1 SCORING AGGREGATION FUNCTIONS FOR ACTIVE LEARNING.

We compare the active learning results obtained using different functions to aggregate the uncer-
tainty scores. In particular, we consider four different instances of our approach: 1) The sum of
epistemic and aleatoric uncertainty on the localization head together with the entropy on the classi-
fication side; 2) The maximum value of those four measures; 3) The sum of epistemic and aleatoric
uncertainties for both localization and classification and 4) The maximum value of these four uncer-
tainties. The results for this comparison are shown in Table[3] Our approach using the maximum
value of epistemic and aleatoric uncertainties consistently outperforms all the other aggregation
functions for all the active learning iterations.

Table 3: VOCO07: Comparison of scoring aggregation functions for active learning.

Aggregation mAP in % (# images)
function Ist (2k) 2nd (3k)  3rd (4k)
uj 61.49 65.72 68.37
J€{uat, ucp, H}
max uj 61.49 65.94 68.67

€ {taty thepy H)

u | 6243 67.04  69.09

J€{ual, Uepy Ualo Uep, }

uj | 62.43 67.32 69.43

max
€ {taty Uepy tat, step, }

A.2 PARAMETER SENSITIVITY

A.2.1 ACCURACY AS A FUNCTION OF K

In the main paper, we presented experiments using k& = 4 as the number of components in the
mixture model. In Table ff] we analyze the sensitivity of our results with respect to the number of
components in the GMM. Specifically, we provide numbers for K = 2, K = 4, and K = 8. As
in the main paper, we repeat the experiment three times and provide the average mAP and standard
deviation for the standard metric (IoU > 0.5) and the strict metric (IoU > 0.75). We also provide
the number of parameters and the forward time for each of these instances. As shown, the accuracy
remains stable for these configurations with minor variations in mAP. However, there are significant
variations in terms of the number of parameters and forward time as the number of parameters is
proportional to K. Given these results, we selected ' = 4 as a good trade-off between accuracy
(strict and standard) and compute.

Table 4: Parameter sensitivity on VOCO07: Accuracy and compute as a function of the number of
components in the mixture model

#of rflixture IoU > OIgAP (Z(; %J <075 # of parameters (M) | Forward time (s)
2 70.29+0.29 45.98+0.38 37.6 0.025
4 70.19+£0.36  46.11+0.38 52.3 0.031
8 70.01£0.29  45.69+0.28 81.8 0.051
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A.2.2 ACCURACY AS A FUNCTION OF INPUT IMAGE RESOLUTION

In order to check for the robustness of our method with respect to the image size, here we compare
the performance of the network trained using higher resolution images (512 x 512). The experiment
is analogous to the experiment we showed in Table 1a in the main text. We compare the results of
SSD (Liu et al., 2016), with the results of our method. As we can see in Table E} as expected,
increasing the resolution of the input image yields a significant improvement in mAP score for all
the methods. For high-resolution input images, our method outperforms SSD in the standard metric
(IoU > 0.5) by 0.28pp, and shows significant improvement when evaluated in the strict metric (IoU
> 0.75), with an improvement of 2.49pp. That is, our method is notably better in those scenarios
where we need a higher intersection between the predicted bounding box and the ground truth.

Table 5: VOCO07: Accuracy as a function of the resolution of input image.

Method SSD 512 SSD 300
IoU>0.5 IoU>0.75 IoU > 0.5 IoU > 0.75
SSD 73.2240.35 45.74+0.70 | 69.29 £0.51 43.36 +1.24
Ours 73.50+£0.12 48.23+0.53 | 70.19 £0.36  46.11+ 0.38

A.3 SCORING AGGREGATION FUNCTIONS FOR ACTIVE LEARNING.

We summarize in Table [6] the overlap in the selection as a function of the uncertainty measure.
The overlapping ratio using both uncertainties is 48% and 33% on localization and classification,
respectively. More importantly, If we consider both uncertainties on localization and classification
together, the overlapping ratio decreases to barely 15%. This suggests that uncertainty measures
obtained for localization and classification are diversified and their combination improves the image
selection process.

Table 6: VOCO07+12: Overlapping ratio (in %) of selected images as a function of the type of
uncertainty used.

Localization Classification
Aleatoric  Epistemic | Aleatoric Epistemic
Ualy, Uepy, Ual, Uep,
Uql, 100 48 6 11
Uep, 48 100 7 14
Uql, 6 7 100 33
Uep, 11 14 33 100

A.4 UNCERTAINTY ANALYSIS

We now focus on analyzing the uncertainty estimates generated by our model. To this end, we
compute the epistemic uncertainty for two of our models trained using different training sets: the
entire dataset and a subset of 2,000 training images. Table [/a shows the aleatoric and epistemic
uncertainty values for each task as a function of the training data. For a fair comparison, these values
are computed as the average value of uncertainty for the objects that belong to the intersection of
instances of each model. As expected, in this case, the epistemic uncertainty of each task tends to
decrease as the number of training images increases.

We further analyze the ability of the model to predict the aleatoric uncertainty. That is, the noise
inherent in the observations such as sensor noise (Kendall & Gal,2017)). We train a model using the
entire dataset and evaluate its performance in the original test set and an additional test set created
by adding Gaussian noise N(0,0.01) to the original test set. The results of this experiment are
summarized in Table[7p. As in the epistemic comparison experiment, these values are computed as
the average value of uncertainty for the objects that belong to the intersection of the test set instances.
As shown, the aleatoric uncertainty estimated for each task tends to increase when noise is added to
the test set. Based on these results, we can conclude that our model predicts not only the ignorance
of the model predictions but also is able to predict noise in the data.
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Table 7: VOCO07: Aleatoric and epistemic uncertainties as a function of (left) training data and
(right) noise in the test set. The epistemic uncertainty decreases as the training set increases whereas
the aleatoric uncertainty increases as the noise in the test data increases.

Trainine data Localization Classification Test set Localization Classification
2 Aleatoric  Epistemic | Aleatoric Epistemic o Aleatoric  Epistemic | Aleatoric Epistemic
2000 3.0le”T  4.58¢72 | 7.02¢7 %  3.16e”© Original 3.23¢" T 389¢ % | 3.45¢ 3  1.92¢7°
5011 3.32¢”!  3.8le”? | 3.52e%  2.10e76 Noisy test set | 3.59¢™!  5.2le 2 | 4.18¢ %  1.72e7°
(a) (b)

A.5 MORE VISUAL EXAMPLES SELECTED BY OUR APPROACH

Figure [5] shows more representative examples selected by our active learning approach. Each nor-
malized uncertainty value provides a different insight into some particular failure. From left to right
and top to bottom: One of the several bounding boxes detected as person is false positive; One of
the several bounding boxes detected as cow is false positive; A horse is misclassified as a bird; A
motorbike is misclassified as bicycle; One of the several bounding boxes detected as person is false
positive; One of the several bounding boxes detected as horse is false positive; A bottle is misclassi-
fied as a TV/monitor; A sheep is misclassified as a bird; One of the several bounding boxes detected
as person is false positive; One of the several bounding boxes detected as person is false positive; A
person is misclassified as a chair; A toy (not in the VOC dataset) is misclassified as a person.

Uqy: 1.49 Ugqy,: 0.86 Uqy: —0.82 Uqp,: 1171 Uqly: 1.47 Ugl,: 0.63
Uepy 1039 uep,: —0.32 Uepy: —0.37  Uep,:1.31 Uepy:0.05  uep,: 1184

o e

Ualy: 3.45 Uql,t —0.57 Ualy: 1.56 Ugl,: —0.17 Ualy* Ualy* 0.74 Uql,: 1.06

Uepy 0.80 Uep,: 714

uepb:9.54 Uepe: 0.47 Uepy,

Uqly: 3.59 Ug,: —0.37 Uqly: 1.77 Ugl,: —0.75 Uqly: —0.39 Uql,: 749 Uqly: 0.47 Uql: 1.19
Uepy: —0.30 Uep: —0.39 Uepy,: 8.10 Uep: 0.06 Uepy,: —0.36 Uepe: 1.19 Uepy: —0.12 Uep,: 6.92

Figure 5: Examples of normalized aleatoric and epistemic uncertainties for inaccurate detections.
Best viewed digitally.

A.6 COMPARISON TO OTHER METHODS ON VOC07+12

In the main text, we present plots for active learning results using VOC07+12 in Figures 3a, 3b, and
3c. Tables [8] [0] and [T0] summarizes the actual numbers used to create the plots. As mentioned in
the paper, in Table [8] numbers corresponding to Random, Entropy, Core-set, and LLAL are copied
directly from |Yoo & Kweon|(2019). For MC-Dropout, to further verify the influence in the number
of forward passes, we include two instances: using 25 (the one included in the main text) and 50
forward passes. As we can see in Table [J] the variation in accuracy for these two approaches is
negligible while the compute needed is significantly larger for the one using 50 forward passes.
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Table 8: VOCO07+12: Comparison to published work using a single model for scoring. Numbers
taken from Yoo & Kweon|(2019). In bold the best values for each active learning cycle.

# of labeled images Random Entropy Core-set LLAL Ours
2k 60.824+0.19 61.23+0.81 62.36+£0.52 60.95+0.42 | 62.39+0.14
3k 64.23+0.22  63.57+£091 65.90+£0.43 64.91+0.47 | 66.68+0.15
4k 66.33£0.18 66.94+0.21 67.63+0.21 66.90£0.28 | 69.37+0.16
Sk 67.51£0.17 68.70+0.15 68.88+0.48 69.05+£0.45 | 71.01+£0.12
6k 68.60+0.50 69.82+0.11 69.44+0.32 70.35+0.55 | 72.66+£0.19
7k 69.2740.16  70.18+£0.27 70.16£0.13  71.494+0.66 | 73.95+0.16
8k 70.104+0.17 71.12+£0.12  70.83+0.12 72.13+0.60 | 74.78+0.12
9k 70.444+0.47 71.66+0.31 71.15£0.16 72.73+0.30 | 75.44+0.02
10k 71.17+£0.16  72.22+0.24 71.71£0.25 73.38+0.28 | 75.974+0.09

Table 9: VOCO07+12: Accuracy Comparison to MC-Dropout and ensemble. For MC-Dropout we
include two instances: using 25 forward passes and using 50 forward passes. In bold the best values
for each active learning cycle.

# of images | MC-droput (50 fwd) MC-droput (25 fwd)  Ensemble Ours Ours*
2k 60.59 + 0.26 60.59+0.28 60.20+0.93 | 62.39+0.14 62.65+0.14
3k 66.60 + 0.23 66.90+0.30 65.70+0.99 | 66.68+0.15 67.06+0.18
4k 68.90 £ 0.18 68.40+0.19 69.204+0.34 | 69.374+0.16 69.46+0.05
5k 70.60 + 0.45 70.804+0.41 71.50+0.18 | 71.01+0.12 70.90+0.26
6k 72.00 £0.12 71.9040.50 72.90+0.27 | 72.66+0.19 72.36+0.18
7k 73.67+0.15 73.81+0.03 74.29+0.04 | 73.95+0.16 73.30+0.05
8k 74.68 +£0.27 74.75+0.56 74.91+0.41 | 74.78+0.12 74.04+0.10
9k 75.49 +£0.13 75.58+0.23 75.89+0.25 | 75.44+0.02 74.70+0.22
10k 75.67 £ 0.48 76.01+0.19 75.904+0.33 | 75.974+0.09 75.44+0.07

Table 10: Model parameters in millions and forward time in seconds using a resolution of 300 x 300
for the input image and K = 4.

SSD  Ensemble MC-dropout | Ours Ours*
# of parameters (M) | 26.3 78.9 26.3 52.3 41.1
Forward time () 0.02 0.06 0.41 0.03 0.03
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