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Abstract

With the rapid advancement and increased use of deep
learning models in image identification, security becomes a
major concern to their deployment in safety-critical systems.
Since the accuracy and robustness of deep learning models
are primarily attributed from the purity of the training
samples, therefore the deep learning architectures are often
susceptible to adversarial attacks. Adversarial attacks are
often obtained by making subtle perturbations to normal
images, which are mostly imperceptible to humans, but
can seriously confuse the state-of-the-art machine learning
models. What is so special in the slightest intelligent pertur-
bations or noise additions over normal images that it leads
to catastrophic classifications by the deep neural networks?
Using statistical hypothesis testing, we find that Conditional
Variational AutoEncoders (CVAE) are surprisingly good at
detecting imperceptible image perturbations. In this paper,
we show how CVAEs can be effectively used to detect
adversarial attacks on image classification networks. We
demonstrate our results over MNIST, CIFAR-10 dataset and
show how our method gives comparable performance to
the state-of-the-art methods in detecting adversaries while
not getting confused with noisy images, where most of the
existing methods falter.
Index Terms—Deep Neural Networks, Adversarial At-
tacks, Image Classification, Variational Autoencoders,
Noisy Images

Introduction
The phenomenal success of deep learning models in image
identification and object detection has led to its wider
adoption in diverse domains ranging from safety-critical
systems, such as automotive and avionics (Rao and Frtunikj
2018) to healthcare like medical imaging, robot-assisted
surgery, genomics etc. (Esteva et al. 2019), to robotics and
image forensics (Yang et al. 2020), etc. The performance of
these deep learning architectures are often dictated by the
volume of correctly labelled data used during its training
phases. Recent works (Szegedy et al. 2013) (Goodfellow,
Shlens, and Szegedy 2014) have shown that small and
carefully chosen modifications (often in terms of noise) to
the input data of a neural network classifier can cause the
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model to give incorrect labels. This weakness of neural net-
works allows the possibility of making adversarial attacks
on the input image by creating perturbations which are
imperceptible to humans but however are able to convince
the neural network in getting completely wrong results that
too with very high confidence. Due to this, adversarial
attacks may pose a serious threat to deploying deep learn-
ing models in real-world safety-critical applications. It is,
therefore, imperative to devise efficient methods to thwart
such adversarial attacks.

Many recent works have presented effective ways in
which adversarial attacks can be avoided. Adversarial at-
tacks can be classified into whitebox and blackbox attacks.
White-box attacks (Akhtar and Mian 2018) assume access
to the neural network weights and architecture, which are
used for classification, and thereby specifically targeted to
fool the neural network. Hence, they are more accurate than
blackbox attacks (Akhtar and Mian 2018) which do not
assume access the model parameters. Methods for detection
of adversarial attacks can be broadly categorized as – (i)
statistical methods, (ii) network based methods, and (iii)
distribution based methods. Statistical methods (Hendrycks
and Gimpel 2016) (Li and Li 2017) focus on exploiting
certain characteristics of the input images or the final
logistic-unit layer of the classifier network and try to
identify adversaries through their statistical inference. A
certain drawback of such methods as pointed by (Carlini
and Wagner 2017) is that the statistics derived may be
dataset specific and same techniques are not generalized
across other datasets and also fail against strong attacks
like CW-attack. Network based methods (Metzen et al.
2017) (Gong, Wang, and Ku 2017) aim at specifically
training a binary classification neural network to identify
the adversaries. These methods are restricted since they do
not generalize well across unknown attacks on which these
networks are not trained, also they are sensitive to change
with the amount of perturbation values such that a small
increase in these values makes this attacks unsuccessful.
Also, potential whitebox attacks can be designed as shown
by (Carlini and Wagner 2017) which fool both the detec-
tion network as well as the adversary classifier networks.
Distribution based methods (Feinman et al. 2017) (Gao et
al. 2021) (Song et al. 2017) (Xu, Evans, and Qi 2017)
(Jha et al. 2018) aim at finding the probability distribution



from the clean examples and try to find the probability of
the input example to quantify how much they fall within
the same distribution. However, some of the methods do
not guarantee robust separation of randomly perturbed and
adversarial perturbed images. Hence there is a high chance
that all these methods tend to get confused with random
noises in the image, treating them as adversaries.

To overcome this drawback so that the learned models
are robust with respect to both adversarial perturbations as
well as sensitivity to random noises, we propose the use of
Conditional Variational AutoEncoder (CVAE) trained over
a clean image set. At the time of inference, we empiri-
cally establish that the input example falls within a low
probability region of the clean examples of the predicted
class from the target classifier network. It is important to
note here that, this method uses both the input image as
well as the predicted class to detect whether the input is an
adversary as opposed to some distribution based methods
which use only the distribution from the input images.
On the contrary, random perturbations activate the target
classifier network in such a way that the predicted output
class matches with the actual class of the input image and
hence it falls within the high probability region. Thus, it
is empirically shown that our method does not confuse
random noise with adversarial noises. Moreover, we show
how our method is robust towards special attacks which
have access to both the network weights of CVAE as well
as the target classifier networks where many network based
methods falter. Further, we show that to eventually fool our
method, we may need larger perturbations which becomes
visually perceptible to the human eye. The experimental
results shown over MNIST and CIFAR-10 datasets present
the working of our proposal. In particular, the primary
contributions made by our work is as follows.
(a) We propose a framework based on CVAE to detect the

possibility of adversarial attacks.
(b) We leverage distribution based methods to effectively

differentiate between randomly perturbed and adversar-
ially perturbed images.

(c) We devise techniques to robustly detect specially tar-
geted BIM-attacks (Metzen et al. 2017) using our
proposed framework.

To the best of our knowledge, this is the first work which
leverages use of Variational AutoEncoder architecture for
detecting adversaries as well as aptly differentiates noise
from adversaries to effectively safeguard learned models
against adversarial attacks.

Adversarial Attack Models and Methods
For a test example X , an attacking method tries to find a
perturbation, ∆X such that |∆X|k ≤ εatk where εatk is
the perturbation threshold and k is the appropriate order,
generally selected as 2 or ∞ so that the newly formed
perturbed image, Xadv = X+∆X . Here, each pixel in the
image is represented by the 〈R, G, B〉 tuple, where R, G, B ∈
[0, 1]. In this paper, we consider only white-box attacks,
i.e. the attack methods which have access to the weights
of the target classifier model. However, we believe that our

method should work much better for black-box attacks as
they need more perturbation to attack and hence should be
more easily detected by our framework. For generating the
attacks, we use the library by (Li et al. 2020).

Random Perturbation (RANDOM)
Random perturbations are simply unbiased random values
added to each pixel ranging in between −εatk to εatk.
Formally, the randomly perturbed image is given by,

Xrand = X + U(−εatk, εatk) (1)
where, U(a, b) denote a continuous uniform distribution in
the range [a, b].

Fast Gradient Sign Method (FGSM)
Earlier works by (Goodfellow, Shlens, and Szegedy 2014)
introduced the generation of malicious biased perturbations
at each pixel of the input image in the direction of the loss
gradient ∆XL(X, y), where L(X, y) is the loss function
with which the target classifier model was trained. For-
mally, the adversarial examples with with l∞ norm for εatk
are computed by,

Xadv = X + εatk.sign(∆XL(X, y)) (2)
FGSM perturbations with l2 norm on attack bound are
calculated as,

Xadv = X + εatk.
∆XL(X, y)

|∆XL(X, y)|2
(3)

Projected Gradient Descent (PGD)
Earlier works by (Kurakin, Goodfellow, and Bengio 2017)
propose a simple variant of the FGSM method by applying
it multiple times with a rather smaller step size than εatk.
However, as we need the overall perturbation after all the
iterations to be within εatk-ball of X , we clip the modified
X at each step within the εatk ball with l∞ norm.
Xadv,0 = X, (4a)

Xadv,n+1 = ClipεatkX

{
Xadv,n + α.sign(∆XL(Xadv,n, y))

}
(4b)

Given α, we take the no of iterations, n to be b 2εatkα +
2c. This attacking method has also been named as Basic
Iterative Method (BIM) in some works.

Carlini-Wagner (CW) Method
(Carlini and Wagner 2017) proposed a more sophisticated
way of generating adversarial examples by solving an
optimization objective as shown in Equation 5. Value of
c is chosen by an efficient binary search. We use the same
parameters as set in (Li et al. 2020) to make the attack.

Xadv = ClipεatkX

{
min
ε
‖ε‖2 + c.f(x+ ε)

}
(5)

DeepFool method
DeepFool (Moosavi-Dezfooli, Fawzi, and Frossard 2016) is
an even more sophisticated and efficient way of generating
adversaries. It works by making the perturbation iteratively
towards the decision boundary so as to achieve the ad-
versary with minimum perturbation. We use the default
parameters set in (Li et al. 2020) to make the attack.



Proposed Framework Leveraging CVAE
In this section, we present how Conditional Variational Au-
toEncoders (CVAE), trained over a dataset of clean images,
are capable of comprehending the inherent differentiable
attributes between adversaries and noisy data and separate
out both using their probability distribution map.

Conditional Variational AutoEncoders (CVAE)
Variational AutoEncoder is a type of a Generative Adver-
sarial Network (GAN) having two components as Encoder
and Decoder. The input is first passed through an encoder
to get the latent vector for the image. The latent vector is
passed through the decoder to get the reconstructed input of
the same size as the image. The encoder and decoder layers
are trained with the objectives to get the reconstructed
image as close to the input image as possible thus forcing
to preserve most of the features of the input image in the
latent vector to learn a compact representation of the image.
The second objective is to get the distribution of the latent
vectors for all the images close to the desired distribution.
Hence, after the variational autoencoder is fully trained,
decoder layer can be used to generate examples from ran-
domly sampled latent vectors from the desired distribution
with which the encoder and decoder layers were trained.

Fig. 1: CVAE Model Architecture
Conditional VAE is a variation of VAE in which along

with the input image, the class of the image is also passed
with the input at the encoder layer and also with the latent
vector before the decoder layer (refer to Figure 1). This
helps Conditional VAE to generate specific examples of a
class. The loss function for CVAE is defined by Equation 6.
The first term is the reconstruction loss which signifies how
closely can the input X be reconstructed given the latent
vector z and the output class from the target classifier
network as condition, c. The second term of the loss
function is the KL-divergence (DKL) between the desired
distribution, P (z|c) and the current distribution (Q(z|X, c))
of z given input image X and the condition c.

L(X, c) = E
[

logP (X|z, c)
]
−DKL

[
Q(z|X, c) || P (z|c)

]
(6)

Training CVAE Models
For modeling logP (X|z, c), we use the decoder neural
network to output the reconstructed image, Xrcn where
we utilize the condition c which is the output class of
the image to get the set of parameters, θ(c) for the neural
network. We calculate Binary Cross Entropy (BCE) loss of
the reconstructed image, Xrcn with the input image, X to

model logP (X|z, c). Similarly, we model Q(z|X, c) with
the encoder neural network which takes as input image
X and utilizes condition, c to select model parameters,
θ(c) and outputs mean, µ and log of variance, log σ2 as
parameters assuming Gaussian distribution for the condi-
tional distribution. We set the target distribution P (z|c) as
unit Gaussian distribution with mean 0 and variance 1 as
N(0, 1). The resultant loss function would be as follows,

L(X, c) = BCE
[
X,Decoder(x ∼ N (µ, σ2), θ(c))

]
−1

2

[
Encoder2σ(X, θ(c)) + Encoder2µ(X, θ(c))

−1− log
(
Encoder2σ(X, θ(c))

)]
(7)

The model architecture weights, θ(c) are a function of
the condition, c. Hence, we learn separate weights for
encoder and decoder layers of CVAE for all the classes.
It implies learning different encoder and decoder for each
individual class. The layers sizes are tabulated in Table I.
We train the Encoder and Decoder layers of CVAE on clean
images with their ground truth labels and use the condition
as the predicted class from the target classifier network
during inference.

Attribute Layer Size

Conv2d Channels: (c, 32)
Kernel: (4,4,stride=2,padding=1)

BatchNorm2d 32
Relu

Conv2d Channels: (32, 64)
Encoder Kernel: (4,4,stride=2,padding=1)

BatchNorm2d 64
Relu

Conv2d Channels: (64, 128)
Kernel: (4,4,stride=2,padding=1)

BatchNorm2d 128
Mean Linear (1024,zdim=128)

Variance Linear (1024,zdim=128)
Project Linear (zdim=128,1024)

Reshape (128,4,4)
ConvTranspose2d Channels: (128, 64)

Kernel: (4,4,stride=2,padding=1)
BatchNorm2d 64

Relu
ConvTranspose2d Channels: (64, 32)

Decoder Kernel: (4,4,stride=2,padding=1)
BatchNorm2d 64

Relu
ConvTranspose2d Channels: (32, c)

Kernel: (4,4,stride=2,padding=1)
Sigmoid

TABLE I: CVAE Architecture Layer Sizes. c = Number of
Channels in the Input Image (c = 3 for CIIFAR-10 and
c = 1 for MNIST).

Determining Reconstruction Errors
Let X be the input image and ypred be the predicted class
obtained from the target classifier network. Xrcn,ypred is
the reconstructed image obtained from the trained encoder
and decoder networks with the condition ypred. We define



the reconstruction error or the reconstruction distance as
in Equation 8. The network architectures for encoder and
decoder layers are given in Figure 1.

Recon(X, y) = (X −Xrcn,y)2 (8)

Two pertinent points to note here are:
• For clean test examples, the reconstruction error is bound

to be less since the CVAE is trained on clean train
images. As the classifier gives correct class for the clean
examples, the reconstruction error with the correct class
of the image as input is less.

• For the adversarial examples, as they fool the classifier
network, passing the malicious output class, ypred of
the classifier network to the CVAE with the slightly
perturbed input image, the reconstructed image tries to
be closer to the input with class ypred and hence, the
reconstruction error is large.

As an example, let the clean image be a cat and its slightly
perturbed image fools the classifier network to believe it is
a dog. Hence, the input to the CVAE will be the slightly
perturbed cat image with the class dog. Now as the encoder
and decoder layers are trained to output a dog image if the
class inputted is dog, the reconstructed image will try to
resemble a dog but since the input is a cat image, there will
be large reconstruction error. Hence, we use reconstruc-
tion error as a measure to determine if the input image
is adversarial. We first train the Conditional Variational
AutoEncoder (CVAE) on clean images with the ground
truth class as the condition. Examples of reconstructions
for clean and adversarial examples are given in Figure 2
and Figure 3.

(a) Input Images (b) Reconstructed Images
Fig. 2: Clean and Adversarial Attacked Images to CVAE
from MNIST Dataset

(a) Input Images (b) Reconstructed Images
Fig. 3: Clean and Adversarial Attacked Images to CVAE
from CIFAR-10 Dataset.

Obtaining p-value
As already discussed, the reconstruction error is used
as a basis for detection of adversaries. We first obtain
the reconstruction distances for the train dataset of clean
images which is expected to be similar to that of the train
images. On the other hand, for the adversarial examples,
as the predicted class y is incorrect, the reconstruction is

expected to be worse as it will be more similar to the
image of class y as the decoder network is trained to
generate such images. Also for random images, as they
do not mostly fool the classifier network, the predicted
class, y is expected to be correct, hence reconstruction
distance is expected to be less. Besides qualitative analysis,
for the quantitative measure, we use the permutation test
from (Efron and Tibshirani 1993). We can provide an
uncertainty value for each input about whether it comes
from the training distribution. Specifically, let the input
X ′ and training images X1, X2, . . . , XN . We first compute
the reconstruction distances denoted by Recon(X, y) for
all samples with the condition as the predicted class y =
Classifier(X). Then, using the rank of Recon(X ′, y′) in
{Recon(X1, y1), Recon(X2, y2), . . . , Recon(XN , yN )} as
our test statistic, we get,

T = T (X ′;X1, X2, . . . , XN )

=

N∑
i=1

I
[
Recon(Xi, yi) ≤ Recon(X ′, y′)

]
(9)

Where I[.] is an indicator function which returns 1 if
the condition inside brackets is true, and 0 if false. By
permutation principle, p-value for each sample will be,

p =
1

N + 1

( N∑
i=1

I[Ti ≤ T ] + 1
)

(10)

Larger p-value implies that the sample is more probable to
be a clean example. Let t be the threshold on the obtained
p-value for the sample, hence if pX,y < t, the sample X is
classified as an adversary. Algorithm 1 presents the overall
resulting procedure combining all above mentioned stages.
Algorithm 1 Adversarial Detection Algorithm
1: function DETECT ADVERSARIES (Xtrain, Ytrain, X, t)
2: recon ← Train(Xtrain, Ytrain)
3: recon dists ← Recon(Xtrain, Ytrain)
4: Adversaries ← φ
5: for x in X do
6: ypred ← Classifier(x)
7: recon dist x ← Recon(x, ypred)
8: pval ← p-value(recon dist x, recon dists)
9: if pval ≤ t then

10: Adversaries.insert(x)
11: return Adversaries

Algorithm 1 first trains the CVAE network with clean
training samples (Line 2) and formulates the reconstruction
distances (Line 3). Then, for each of the test samples
which may contain clean, randomly perturbed as well as
adversarial examples, first the output predicted class is
obtained using a target classifier network, followed by
finding it’s reconstructed image from CVAE, and finally by
obtaining it’s p-value to be used for thresholding (Lines 5-
8). Images with p-value less than given threshold (t) are
classified as adversaries (Lines 9-10).

Experimental Results
We experimented our proposed methodology over MNIST
and CIFAR-10 datasets. All the experiments are performed



in Google Colab GPU having 0.82GHz frequency, 12GB
RAM and dual-core CPU having 2.3GHz frequency, 12GB
RAM. An exploratory version of the code-base will be
made public on github.

Datasets and Models
Two datasets are used for the experiments in this paper,
namely MNIST (LeCun, Cortes, and Burges 2010) and
CIFAR-10 (Krizhevsky 2009). MNIST dataset consists of
hand-written images of numbers from 0 to 9. It consists of
60, 000 training examples and 10, 000 test examples where
each image is a 28× 28 gray-scale image associated with
a label from 1 of the 10 classes. CIFAR-10 is broadly used
for comparison of image classification tasks. It also consists
of 60, 000 image of which 50, 000 are used for training and
the rest 10, 000 are used for testing. Each image is a 32×32
coloured image i.e. consisting of 3 channels associated with
a label indicating 1 out of 10 classes.

We use state-of-the-art deep neural network image clas-
sifier, ResNet18 (He et al. 2015) as the target network
for the experiments. We use the pre-trained model weights
available from (Idelbayev ) for both MNIST as well as
CIFAR-10 datasets.

Performance over Grey-box attacks
If the attacker has the access only to the model parameters
of the target classifier model and no information about the
detector method or it’s model parameters, then we call such
attack setting as Grey-box. This is the most common attack
setting used in previous works against which we evaluate
the most common attacks with standard epsilon setting as
used in other works for both the datasets. For MNIST,
the value of ε is commonly used between 0.15-0.3 for
FGSM attack and 0.1 for iterative attacks (Samangouei,
Kabkab, and Chellappa 2018) (Gong, Wang, and Ku 2017)
(Xu, Evans, and Qi 2017). While for CIFAR10, the value
of ε is most commonly chosen to be 8

255 as in (Song et
al. 2017) (Xu, Evans, and Qi 2017) (Fidel, Bitton, and
Shabtai 2020). For DeepFool (Moosavi-Dezfooli, Fawzi,
and Frossard 2016) and Carlini Wagner (CW) (Carlini and
Wagner 2017) attacks, the ε bound is not present. The
standard parameters as used by default in (Li et al. 2020)
have been used for these 2 attacks. For L2 attacks, the ε
bound is chosen such that success of the attack is similar to
their L∞ counterparts as the values used are very different
in previous works.

Reconstruction Error Distribution: The histogram dis-
tribution of reconstruction errors for MNIST and CIFAR-
10 datasets for different attacks are given in Figure 4.
For adversarial attacked examples, only examples which
fool the network are included in the distribution for fair
comparison. It may be noted that, the reconstruction errors
for adversarial examples is higher than normal examples
as expected. Also, reconstructions errors for randomly per-
turbed test samples are similar to those of normal examples
but slightly larger as expected due to reconstruction error
contributed from noise.

(a) MNIST dataset

(b) CIFAR-10 dataset
Fig. 4: Reconstruction Distances for different Grey-box
attacks

p-value Distribution: From the reconstruction error val-
ues, the distribution histogram of p-values of test samples
for MNIST and CIFAR-10 datasets are given in Figure 5.
It may be noted that, in case of adversaries, most samples
have p-value close to 0 due to their high reconstruction
error; whereas for the normal and randomly perturbed
images, p-value is nearly uniformly distributed as expected.

ROC Characteristics: Using the p-values, ROC curves
can be plotted as shown in Figure 6. As can be observed
from ROC curves, clean and randomly perturbed attacks
can be very well classified from all adversarial attacks. The
values of εatk were used such that the attack is able to fool
the target detector for at-least 45% samples. The percentage
of samples on which the attack was successful for each
attack is shown in Table II.

Statistical Results and Discussions: The statistics for
clean, randomly perturbed and adversarial attacked images
for MNIST and CIFAR datasets are given in Table II. Error
rate signifies the ratio of the number of examples which
were misclassified by the target network. Last column
(AUC) lists the area under the ROC curve. The area for
adversaries is expected to be close to 1; whereas for the
normal and randomly perturbed images, it is expected to
be around 0.5.

It is worthy to note that, the obtained statistics are much
comparable with the state-of-the-art results as tabulated in



(a) p-values from MNIST dataset

(b) p-values from CIFAR-10 dataset
Fig. 5: Generated p-values for different Grey-box attacks

Type Error Rate (%) Parameters AUC
MNIST CIFAR-10 MNIST CIFAR-10 MNIST CIFAR-10

NORMAL 2.2 8.92 - - 0.5 0.5
RANDOM 2.3 9.41 ε=0.1 ε= 8

255 0.52 0.514
FGSM 90.8 40.02 ε=0.15 ε= 8

255 0.99 0.91
FGSM-L2 53.3 34.20 ε=1.5 ε = 1 0.95 0.63
R-FGSM 91.3 41.29 ε=(0.05,0.1) ε=( 4

255 , 8
255 ) 0.99 0.91

R-FGSM-L2 54.84 34.72 ε=(0.05,1.5) ε=( 4
255 ,1) 0.95 0.64

PGD 82.13 99.17 ε=0.1,n=12 ε= 8
255 ,n=12 0.974 0.78

εstep = 0.02 εstep= 1
255

CW 100 100 - - 0.98 0.86
DeepFool 97.3 93.89 - - 0.962 0.75

TABLE II: Image Statistics for MNIST and CIFAR-10.
AUC : Area Under the ROC Curve. Error Rate (%) : Per-
centage of samples mis-classified or Successfully-attacked

Table V (Given in the Appendix). Interestingly, some of
the methods (Song et al. 2017) explicitly report comparison
results with randomly perturbed images and are ineffective
in distinguishing adversaries from random noises, but most
other methods do not report results with random noise
added to the input image. Since other methods use varied
experimental setting, attack models, different datasets as
well as εatk values and network model, exact comparisons
with other methods is not directly relevant primarily due
to such varied experimental settings. However, the results
reported within the Table V (Given in the Appendix) are
mostly similar to our results while our method is able to
statistically differentiate from random noisy images.

In addition to this, since our method does not use any
adversarial examples for training, it is not prone to changes
in value of ε or with change in attacks which network
based methods face as they are explicitly trained with
known values of ε and types of attacks. Moreover, among

(a) MNIST dataset

(b) CIFAR-10 dataset
Fig. 6: ROC Curves for different Grey-box attacks

distribution and statistics based methods, to the best of our
knowledge, utilization of the predicted class from target
network has not been done before. Most of these methods
either use the input image itself (Jha et al. 2018) (Song
et al. 2017) (Xu, Evans, and Qi 2017), or the final logits
layer (Feinman et al. 2017) (Hendrycks and Gimpel 2016),
or some intermediate layer (Li and Li 2017) (Fidel, Bitton,
and Shabtai 2020) from target architecture for inference,
while we use the input image and the predicted class from
target network to do the same.

Performance over White-box attacks
In this case, we evaluate the attacks if the attacker has the
information of both the defense method as well as the target
classifier network. (Metzen et al. 2017) proposed a modified
PGD method which uses the gradient of the loss function
of the detector network assuming that it is differentiable
along with the loss function of the target classifier network
to generate the adversarial examples. If the attacker also has
access to the model weights of the detector CVAE network,
an attack can be devised to fool both the detector as well as
the classifier network. The modified PGD can be expressed
as follows :-
Xadv,0 = X, (11a)

Xadv,n+1 = ClipεatkX

{
Xadv,n+

α.sign
(

(1− σ).∆XLcls(Xadv,n, ytarget)+

σ.∆XLdet(Xadv,n, ytarget)
)}

(11b)



Where ytarget is the target class and Ldet is the recon-
struction distance from Equation 8. It is worthy to note
that our proposed detector CVAE is differentiable only for
the targeted attack setting. For the non-targeted attack, as
the condition required for the CVAE is obtained from the
target classifier output which is discrete, the differentiation
operation is not valid. We set the target randomly as any
class other than the true class for testing.

Effect of σ: To observe the effect of changing value of
σ, we keep the value of ε fixed at 0.1. As can be observed in
Figure 7, the increase in value of σ implies larger weight on
fooling the detector i.e. getting less reconstruction distance.
Hence, as expected the attack becomes less successful
with larger values of σ 8 and gets lesser AUC values 7,
hence more effectively fooling the detector. For CIFAR-10
dataset, the detection model does get fooled for higher c-
values but however the error rate is significantly low for
those values, implying that only a few samples get attacks
on setting such value.

(a) MNIST dataset

(b) CIFAR-10 dataset
Fig. 7: ROC Curves for different values of σ. More area
under the curve implies better detectivity for that attack.
With more σ value, the attack, as the focus shifts to fooling
the detector, it becomes difficult for the detector to detect.

Effect of ε: With changing values of ε, there is more
space available for the attack to act, hence the attack
becomes more successful as more no of images are attacked
as observed in Figure 10. At the same time, the trend for
AUC curves is shown in Figure 9. The initial dip in the
value is as expected as the detector tends to be fooled with
larger ε bound. From both these trends, it can be noted that

(a) MNIST dataset

(b) CIFAR-10 dataset
Fig. 8: Success rate for different values of σ. More value of
σ means more focus on fooling the detector, hence success
rate of fooling the detector decreases with increasing σ.

for robustly attacking both the detector and target classifier
for significantly higher no of images require significantly
larger attack to be made for both the datasets.

(a) MNIST dataset

(b) CIFAR-10 dataset
Fig. 9: ROC Curves for different values of ε. With more
ε value, due to more space available for the attack, attack
becomes less detectable on average.

Related Works
There has been an active research in the direction of
adversaries and the ways to avoid them, primarily these
methods are statistical as well as machine learning (neural
network) based which produces systematic identification
and rectification of images into desired target classes.

Statistical Methods: Statistical methods focus on ex-
ploiting certain characteristics of the input images and try



(a) MNIST dataset

(b) CIFAR-10 dataset
Fig. 10: Success rate for different values of ε. More value of
ε means more space available for the attack, hence success
rate increases

to identify adversaries through their statistical inference.
Some early works include use of PCA, softmax distribu-
tion of final layer logits (Hendrycks and Gimpel 2016),
reconstruction from logits (Li and Li 2017) to identify
adversaries. Carlini and Wagner (Carlini and Wagner 2017)
showed how these methods are not robust against strong
attacks and most of the methods work on some specific
datasets but do not generalize on others as the same
statistical thresholds do not work.
Network based Methods: Network based methods aim
at specifically training a neural network to identify the
adversaries. Binary classification networks (Metzen et al.
2017) (Gong, Wang, and Ku 2017) are trained to output
a confidence score on the presence of adversaries. Some
methods propose addition of a separate classification node
in the target network itself (Hosseini et al. 2017). The
training is done in the same way with the augmented
dataset. (Carrara et al. 2018) uses feature distant spaces
of intermediate layer values in the target network to train
an LSTM network for classifying adversaries. Major chal-
lenges faced by these methods is that the classification
networks are differentiable, thus if the attacker has access
to the weights of the model, a specifically targeted attack
can be devised as suggested by Carlini and Wagner (Carlini
and Wagner 2017) to fool both the target network as well as
the adversary classifier. Moreover, these methods are highly
sensitive to the perturbation threshold set for adversarial
attack and fail to identify attacks beyond a preset threshold.
Distribution based Methods: Distribution based meth-
ods aim at finding the probability distribution from the
clean examples and try to find the probability of the input
example to fall within the same distribution. Some of
these methods include using Kernel Density Estimate on
the logits from the final softmax layer (Feinman et al.
2017). (Gao et al. 2021) used Maximum mean discrepancy
(MMD) from the distribution of the input examples to
classify adversaries based on their probability of occurrence
in the input distribution. PixelDefend (Song et al. 2017)
uses PixelCNN to get the Bits Per Dimension (BPD) score
for the input image. (Xu, Evans, and Qi 2017) uses the
difference in the final logit vector for original and squeezed

images as a medium to create distribution and use it for
inference. (Jha et al. 2018) compares different dimension-
ality reduction techniques to get low level representations
of input images and use it for bayesian inference to detect
adversaries.

Some other special methods include use of SHAP sig-
natures (Fidel, Bitton, and Shabtai 2020) which are used
for getting explanations on where the classifier network is
focusing as an input for detecting adversaries.

A detailed comparative study with all these existing ap-
proaches is summarized through Table V in the Appendix.

Comparison with State-of-the-Art using
Generative Networks

Finally we compare our work with these 3 works (Meng
and Chen 2017) (Hwang et al. 2019) (Samangouei, Kabkab,
and Chellappa 2018) proposed earlier which uses Genera-
tive networks for detection and purification of adversaries.
We make our comparison on MNIST dataset which is
used commonly in the 3 works (Table III). Our results are
typically the best for all attacks or are off by short margin
from the best. For the strongest attack, our performance is
much better. This show how our method is more effective
while not being confused with random perturbation as an
adversary. More details are given in the Appendix.

Type AUC
MagNet PuVAE DefenseGAN CVAE (Ours)

RANDOM 0.61 0.72 0.52 0.52
FGSM 0.98 0.96 0.77 0.99

FGSM-L2 0.84 0.60 0.60 0.95
R-FGSM 0.989 0.97 0.78 0.987

R-FGSM-L2 0.86 0.61 0.62 0.95
PGD 0.98 0.95 0.65 0.97
CW 0.983 0.92 0.94 0.986

DeepFool 0.86 0.86 0.92 0.96
Strongest 0.84 0.60 0.60 0.95

TABLE III: Comparison in ROC AUC statistics with other
methods. More AUC implies more detectablity. 0.5 value
of AUC implies no detection. For RANDOM, value close
to 0.5 is better while for adversaries, higher value is better.

Conclusion
In this work, we propose the use of Conditional Variational
AutoEncoder (CVAE) for detecting adversarial attacks. We
utilized statistical base methods to verify that the adversar-
ial attacks usually lie outside of the training distribution.
We demonstrate how our method can specifically differ-
entiate between random perturbations and targeted attacks
which is necessary for some applications where the raw
camera image may contain random noises which should
not be confused with an adversarial attack. Furthermore,
we demonstrate how it takes huge targeted perturbation to
fool both the detector as well as the target classifier. Our
framework presents a practical, effective and robust adver-
sary detection approach in comparison to existing state-of-
the-art techniques which falter to differentiate noisy data
from adversaries. As a possible future work, it would be
interesting to see the use of Variational AutoEncoders for
automatically purifying the adversarialy attacked images.
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Appendix
Use of simple AutoEncoder (AE)
MagNet (Meng and Chen 2017) uses AutoEncoder (AE)
for detecting adversaries. We compare the results with
our proposed CVAE architecture on the same experiment
setting and present the comparison in AUC values of the
ROC curve observed for the 2 cases. Although the paper’s
claim is based on both detection as well as purification
(if not detected) of the adversaries. MagNet uses their
detection framework for detecting larger adversarial pertur-
bations which cannot be purified. For smaller perturbations,
MagNet proposes to purify the adversaries by a different
AutoEncoder model. We make the relevant comparison
only for the detection part with our proposed method. Using
the same architecture as proposed, our results are better for
the strongest attack while not getting confused with random
perturbations of similar magnitude. ROC curves obtained
for different adversaries for MagNet are given in Figure 11

Fig. 11: ROC curve of different adversaries for MagNet

Use of Variational AutoEncoder (VAE)
PuVAE (Hwang et al. 2019) uses Variational AutoEncoder
(VAE) for purifying adversaries. We compare the results
with our proposed CVAE architecture on the same ex-
periment setting. PuVAE however, does not propose using
VAE for detection of adversaries but in case if their model
is to be used for detection, it would be based on the
reconstruction distance. So, we make the comparison with
our proposed CVAE architecture. ROC curves for different
adversaries are given in Figure 12

Use of Generative Adversarial Network (GAN)
Defense-GAN (Samangouei, Kabkab, and Chellappa 2018)
uses Generative Adversarial Network (GAN) for detecting
adversaries. We used L = 100 and R = 10 for getting
the results as per our experiment setting. We compare
the results with our proposed CVAE architecture on the
same experiment setting and present the comparison in
AUC values of the ROC curve observed for the 2 cases.
Although the paper’s main claim is about purification of
the adversaries, we make the relevant comparison for the
detection part with our proposed method. We used the

Fig. 12: ROC curve of different adversaries for PuVAE

same architecture as mentioned in (Samangouei, Kabkab,
and Chellappa 2018) and got comparable results as per
their claim for MNIST dataset on FGSM adversaries. As
this method took a lot of time to run, we randomly chose
1000 samples out of 10000 test samples for evaluation due
to time constraint. The detection performance for other
attacks is considerably low. Also, Defense-GAN is quite
slow as it needs to solve an optimization problem for
each image to get its corresponding reconstructed image.
Average computation time required by Defense-GAN is
2.8s per image while our method takes 0.17s per image
with a batch size of 16. Hence, our method is roughly 16
times faster than Defense-GAN. Refer to Figure 13 for the
ROC curves for Defense-GAN.

Fig. 13: ROC curve of different adversaries for DefenseGan

Reporting the results in robust detection risk
form
(Tramèr 2021) argued that most of the results reported for
detection form are inconsistent and there seems to be a
fair chance for works to over-claim the detection results.
(Tramèr 2021) shows a reduction from robust detection for
a given ε bound to robust purification of images within ε

2 by
the same margin of error. This means that a robust detector
being able to detect all adversaries within ε bound is
equivalent to a robust (but inefficient) purifier that purifies
all adversaries within ε

2 bound. While, using Area Under
the Curve (AUC) of the full ROC curves can be a good
way for comparison of different detectors, we additionally



present results in the robust detection risk form (Equation
12) as suggested by (Tramèr 2021). The upper bound on
value of robust risk (Rεadv−det) can be obtained by Equation
13. We choose appropriate FPR from the ROC curve such
that the robust risk (Rε,upperadv−det) gets minimised. The results
for grey-box attacks are reported in table IV.

Rεadv−det ≤ FPR+ FNR+ Enormal (12)

Rε,upperadv−det = Mint(FPRt + FNRt + Enormal) (13)

Type Parameters Rε,upperadv−det
MNIST CIFAR-10 MNIST CIFAR-10

FGSM ε=0.15 ε= 8
255 0.04 0.38

FGSM-L2 ε=1.5 ε = 1 0.21 0.79
R-FGSM ε=(0.05,0.1) ε=( 4

255 , 8
255 ) 0.05 0.39

R-FGSM-L2 ε=(0.05,1.5) ε=( 4
255 ,1) 0.22 0.81

PGD ε=0.1,n=12 ε= 8
255 ,n=12 0.16 0.59

εstep = 0.02 εstep= 1
255

CW - - 0.08 0.47
DeepFool - - 0.18 0.61

TABLE IV: Robust detection statistics for MNIST and
CIFAR-10. Enormal for MNIST is 0.022 and for CIFAR-10
is 0.089



References Concepts Datasets Attack Primary Major Advantages of our
Established Used Types Results Shortcomings Proposed Work

(Hendrycks
and Gimpel
2016)

PCA whitening
on distribution
of final softmax
layer

MNIST,
CIFAR-
10, Tiny-
ImageNet

FGSM(l∞),
BIM(l∞)

AUC ROC
for CIFAR-10:
FGSM(l∞) = 0.928,
BIM(l∞) = 0.912

Not tested for strong
attacks, Not tested to
differentiate random
noisy images

Ability to
differentiate from
randomly perturbed
images, evaluation
against strong attacks
and target classifier.

(Li and Li
2017)

Cascade classi-
fier based PCA
statistics of in-
termediate con-
volution layers

ILSVRC-
2012

L-BGFS
(Similar to
CW)

AUC of ROC: 0.908 Not tested for strong
attacks, standard
datsets, for random
noises

Ability to
differentiate from
randomly perturbed
images, evaluation
against strong and
wider attacks.

(Metzen et
al. 2017)

Binary
classifier
network with
intermediate
layer features
as input

CIFAR-
10

FGSM
(l2,l∞),
BIM
(l2,l∞),
DeepFool,
Dynamic
BIM
(Similar to
S-BIM)

Highest detection
accuracy among
different layers:
FGSM = 0.97,
BIM(l2) = 0.8,
BIM(l∞) = 0.82,
DeepFool(l2) = 0.72,
DeepFool(l∞) =
0.75, Dynamic-BIM
= 0.8 (Average)

Need to train
with adversarial
examples, hence do
not generalize well
on other attacks, not
evaluated for random
noisy images

No use of adversaries
for training, ability
to differentiate
from randomly
perturbed images,
more robust to
dynamic adversaries,
better AUC results

(Gong,
Wang, and
Ku 2017)

Binary
classifier
network trained
with input
image

MNIST,
CIFAR-
10,
SVHN

FGSM(l∞),
TGSM(L∞),
JSMA

Average accuracy
of 0.9914 (MNIST),
0.8279 (CIFAR-10),
0.9378 (SVHN)

Trained with
generated
adversaries, hence
does not generalize
well on other
adversaries, sensitive
to ε changes

No use of adversaries
for training, ability
to differentiate from
randomly perturbed
images

(Carrara et
al. 2018)

LSTM on dis-
tant features at
each layer of
target classifier
network

ILSVRC
dataset

FGSM,
BIM, PGD,
L-BFGS
(L∞)

ROC AUC: FGSM =
0.996, BIM = 0.997,
L-BFGS = 0.854,
PGD = 0.997

Not evaluated
for differentiation
from random noisy
images, on special
attack which has
access to network
weights

No use of adversaries
for training, ability
to differentiate from
randomly perturbed
images, evaluaion on
l2 attacks

(Feinman
et al. 2017)

Bayesian
density
estimate on
final softmax
layer

MNIST,
CIFAR-
10,
SVHN

FGSM,
BIM,
JSMA, CW
(l∞)

CIFAR-10 ROC-
AUC: FGSM =
0.9057, BIM = 0.81,
JSMA = 0.92, CW
= 0.92

No explicit test for
random noisy images

Ability to
differentiate between
randomly perturbed
images, better AUC
values

(Song et al.
2017)

Using PixelDe-
fend to get re-
construction er-
ror on input im-
age

Fashion
MNIST,
CIFAR-
10

FGSM,
BIM,
DeepFool,
CW (L∞)

ROC curves given,
AUC not given

Cannot differentiate
random noisy images
from adversaries

Ability to differenti-
ate between randomly
perturbed and clean
images

(Xu,
Evans, and
Qi 2017)

Feature squeez-
ing and com-
parison

MNIST,
CIFAR-
10,
ImageNet

FGSM,
BIM,
DeepFool,
JSMA, CW

Overall detection
rate: MNIST =
0.982, CIFAR-10 =
0.845, ImageNet =
0.859

No test for randomly
perturbed images

Ability to
differentiate from
randomly perturbed
images, better AUC
values

(Jha et al.
2018)

Using bayesian
inference from
manifolds on
input image

MNIST,
CIFAR-
10

FGSM,
BIM

No quantitative re-
sults reported

No comparison with-
out quantitative re-
sults

Ability to
differentiate from
randomly perturbed
images, evaluation
against strong attacks

(Fidel,
Bitton, and
Shabtai
2020)

Using SHAP
signatures of
input image

MNIST,
CIFAR-
10

FGSM,
BIM,
DeepFool
etc.

Average ROC-AUC:
CIFAR-10 = 0.966,
MNIST = 0.967

Not tested for ran-
dom noisy images

No use of adversaries
for training, ability
to differentiate from
randomly perturbed
images

TABLE V: Summary of Related Works and Comparative Study with these Existing Methods
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