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Abstract

Even in low dimensions, sampling from multi-modal distributions is challenging.
We provide the first sampling algorithm for a broad class of distributions — includ-
ing all Gaussian mixtures — with a query complexity that is polynomial in the
parameters governing multi-modality, assuming fixed dimension. Our sampling
algorithm simulates a time-reversed diffusion process, using a self-normalized
Monte Carlo estimator of the intermediate score functions. Unlike previous works,
it avoids metastability, requires no prior knowledge of the mode locations, and re-
laxes the well-known log-smoothness assumption which excluded general Gaus-
sian mixtures so far.

1 Introduction

Sampling from a distribution whose density is only known up to a normalization constant is a
fundamental problem in statistics. Formally, given some potential V' : R? — R such that
Ik e V@) dz < oo, the sampling problem consists in obtaining a sample from some distribution
p such that p is e-close to the target 1 oc e~" with respect to some divergence while maintaining
the complexity, i.e., the number of queries to V' and possibly to its derivatives, as low as possible.
Depending on the shape of the distribution, the typical complexity of existing sampling algorithms
can significantly differ.

Log-concave and ''PL-like" distributions As in Euclidean optimization, a common assumption
in the sampling literature is to assume that p is log-concave and log-smooth or equivalently, that V/
is convex and smooth. Specifically, when the potential V' is assumed to be a-strongly convex and to
have an L-Lipschitz gradient, the popular Unajusted Langevin Algorithm (ULA) is known to achieve
fast convergence [Durmus_and Moulines, D017, Dalalyan and Karagulyar, P0TY]. Because strong-
log concavity implies uni-modality, thus excluding many distributions of interest, this assumption
was further relaxed to p verifying an o~ !-log-Sobolev inequality, later interpreted as a Polyak—
Lojasiewicz type condition on KL(+|x) for the Wasserstein geometry [Blanchef and Balfe, POTS].
Under these conditions, ULA was shown to achieve e-error in Kullback-Leibler (KL) divergence in
O(Lza’Qde’l) queries to V'V [[Vempala and Wibisond, Z0T9]. While these polynomial guarantees
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do go beyond the uni-modal setting, we show in the next paragraph that most existing algorithms
still fail to sample from truly multi-modal distributions.

Multi-modal distributions Designing sampling algorithms for multi-modal distributions is an
active area of research. However, most existing sampling algorithms are limited in at least two of
the following ways:

1. The query complexity is exponential in the parameters of the problem. For instance, when
the global a-strong convexity of V is relaxed with a-strong convexity outside a ball of

radius R, the log-Sobolev constant of p degrades to O(egLRza) [Ma“et all, 2OTY, Prop.
2]. In practice, this does not simply translate to poor worst case bounds: practitioners are
well aware that when dealing with multi-modal distributions, ULA-based algorithms suffer
from metastability, where they get stuck in local modes, leading to slow convergence [Deng
efall, PO20].

2. Guarantees are obtained under a log-smoothness assumption; we show in Sec. B2 that
even for Gaussian Mixtures, which is arguably the most basic multi-modal model, this
assumption may not be verified.

3. Explicit a priori knowledge on the target distribution is required for the algorithm to con-
verge. For instance, importance sampling requires a proposal distribution whose "effective"
support must cover sufficiently well the one of the target; however, since V' can only be
evaluated point-wise, the access to such a support is unclear. In fact, this limitation goes
beyond the multi-modal setting in some cases: no matter the log-Sobolev constant of the
target, similarly to euclidean gradient descent, ULA still requires an a priori bound on the
inverse smoothness constant of V' and sufficiently small step size in comparison in order to
converge.

Generally speaking, finding a sampling algorithm that addresses even the first limitation is not pos-
sible. Recent results provide lower-bounds on the complexity of sampling from a multi-modal dis-
tribution: they are exponential in the dimension, as shown in Cee_ef all [2OT8, Th K.1], Chakl [2024,
Th 3.3] and He and Zhang [2075, Th. 3]. However, when the dimensionality is fixed, the question
of whether the three limitations can be addressed remains. In fixed dimension, can we sample from
a broad class of multi-modal distributions with a polynomial number of queries in the parameters
of the problem, (e.g. L, R, o) and without prior knowledge on these parameters?

Our contributions Our work answers this question positively. We provide a sampling algorithm
that addresses the three limitations outlined above. First, we show that our algorithm has polyno-
mial complexity in all the problem parameters but the dimension, thus enabling to efficiently sample
from highly multi-modal distributions in fixed dimension. Second, we show that unlike most exist-
ing results, our guarantees hold under relaxed regularity assumptions that cover general Gaussian
mixtures. Third, our algorithm yield guarantees without prior knowledge on the parameters of the
distribution.

The workhorse of our algorithm is made of two key ingredients: the reverse diffusion scheme, that
transfers the sampling problem into a score estimation problem with different levels of noise, and
self-normalized importance sampling, to estimate these noisy scores using only query access to V'
and additional Gaussian samples. Both reverse diffusion [Huang et all, 20744,R, He ef all, P024]
and self-normalized importance sampling [Huang et all, 2075, lao ef all, Z02T, Ruzayqat et all,
2073, Ding et all, 2073, Saremi ef all, P024] were already used separately to sample in a Bayesian
setting, where only the log-density of the target is available. However, these works either offer
no theoretical guarantees or fail to improve upon existing results. In this article, we combine both
reverse diffusion and self-normalized importance sampling in a single algorithm, allowing us to
recover the first polynomial time guarantees to sample from highly multi-modal distributions in
fixed dimension.

This paper is structured as follows. First, we survey related work on multi-modal sampling in Sec-
tion [ and present our main result in Section B. Then, we detail our sampling algorithm in Section 8
and provide the key ingredients for the proof in Section B.



2 Related work

Before detailing our sampling algorithm in Section B, we review the main alternatives to ULA when
sampling from a multi-modal distribution and the guarantees they offer. We show that existing
approaches suffer from at least two of three drawbacks outlined in the introduction: exponential
query complexity, a restrictive smoothness assumption that excludes general Gaussian mixtures (as
shown later in Sec. B2), and unavailable prior knowledge of the distribution.

Proposal-based algorithms At a high level, proposal-based algorithms use a proposal distribution
that is easy to sample from and that can either be directly used as a proxy for the target, or, alter-
natively, whose samples will be rejected (respectively re-weighted) to obtain approximate samples
from the target; the corresponding algorithm for the latter case is the well-known rejection sampling
(respectively importance sampling) scheme. Guarantees for these methods typically assume that
the target distribution is log-smooth. Furthermore, they must use carefully designed proposals that
require prior knowledge of the target distribution that is often unavailable in practice.

For instance, when the target is L-log-smooth and with finite second moment mo, one can design
and sample from a proxy distribution that is e-close in TV to the target using O((Lmge=1)O(d))
queries to the potential function V' and its gradient VV' [He and Zhang, P075]. While this bound
is indeed polynomial in fixed dimension, the design of the proxy requires an e-approximation of
the global minimum of V' which can only be achieved if ms, therefore the location of the mass, is
explicitly available; this is rarely the case in practice.

Similarly, if we further assume that the target is a-strongly log-concave outside of a ball of radius R,
one can achieve an e-precise approximation of the target distribution in TV with polynomial number
of queries to VV when d is fixed via an importance sampling scheme [Chak, 2074, Th. 2.3]. In this
case, the proposal is such that it coincides with the target when the potential of the target is above
some cutoff, and is flat elsewhere. While there exists a cutoff value ensuring the log-concavity of
the proposal, thus allowing its efficient sampling, this value depends on the unknown constants L, R
and « [ChaK, 2074, Prop. 5.1].

Tempering-based algorithms Instead of directly sampling from j oc e~V these algorithms start
by sampling from a flattened version of j given by 1 o e=#V for small 3, and gradually increase
[ to 1, a strategy sometimes also referred to as annealing. When y is assumed to be a finite mixture
of the same shifted a-strongly log-concave and L-log-smooth distribution, Cee ef all [Z0OTS] proved
that for a well-chosen (stochastic) sequence of flattened distributions %, sampling up to precision
¢ in KL can be achieved in poly(L, a~?, w;ﬁn, d,e~!, R) queries to VV, where R is the location
of the furthest mode and wy,;, the minimum weight in the mixture. However, this setting is quite
restrictive: for Gaussian mixtures for instance, it only handles the case where the covariance matrices
are identical for all components. Furthermore, the algorithm requires explicit knowledge of R which
is unavailable.

Follmer Flows Instead of directly sampling from the target distribution 1 oc eV, Follmer Flows
start from a simple (e.g. Gaussian or Dirac mass) distribution that is progressively interpolated
to the target using a Schrodinger bridge. When the initial distribution is a Dirac mass at 0, this
bridge solves a closed-from SDE [Wang et all, PZ021, Theorem 3] which can thus be discretized to
generate samples from the target. In the context of Bayesian inference, where one only has access
to the unnormalized density, [Vargas et al] [Z027] estimated the drift of the resulting SDE via neural
methods; in particular no guarantees on the sampling quality are provided. In Huang et al] [Z025],
hao_efall [Z02T1], Ruzayqat et al] [Z023], Ding et al] [2023], the drift is estimated via a Monte-Carlo
method. While in appearance, these works provide strong polynomial guarantees, a closer look
shows that these guarantees only hold if the function f(z) = eV @+l=l?/2 i Lipschitz, smooth
and bounded from below; we show in Appendix BT that this assumption is quite restrictive.

Diffusion-based methods Over the past few years, diffusion-based algorithms, and especially
reverse diffusion, that we shall review in details in Sec. B, have emerged as solid candidates for
multi-modal sampling. In essence, they allow to transfer the sampling problem into the problem
of estimating the scores of intermediate distributions that are given by the convolution of the initial
distribution with increasing levels of Gaussian noise. Under an e-oracle of these intermediate scores,



it has been shown that diffusion-based methods could yield an e-approximate sample of the target
in poly(e~!) time under milder and milder assumptions [Chen ef all, Z023h,a, Benfon ef all, 2074,
Liet all, 2024, Contorti et all, 2025, Gentiloni-Silver: and Ocelld, 2025, Cordero-Encinar et all,
2075]. This framework has been applied with tremendous empirical success in generative modeling,
where numerous samples of the target are already available and one seeks to produce new samples
from the target, for several years now [Song and Ermon, Z0TY, Ho efall, 2020, Borfol ef all, POT,
Chen_ef all, 2074]. However, it was only quite recently that this framework has been applied in a
Bayesian context, where only an unnormalized density of the target, instead of samples, is avail-
able [Huang et all, 20243,0, He_ef all, 2074, Grenionx_ef all, 2074, Akhound-Sadegh et all, 2024]. In
a work closely related to ours, Huang et all [2024hK] showed that if the intermediate scores remain
L-log-smooth for any noise level, which in particular implies that the target itself is L-log-smooth,
their algorithm could reach a complexity of O(eL” 108" (Ld+m2)/€)) with m, the second order mo-
ment of the target. In Heef all [Z024], the smoothness assumption is relaxed with a sub-quadratic
growth assumption V' (x) — V(z*) < L||z — z*||?, where z* is any global minimizer of V, yet at
the price of an oracle access to V' (z*); under these assumptions, the authors manage to obtain a
complexity that is at best O(Ld/Qe*deL“I*”2+“1N”2) where x v is the final output sample. Under
the reasonable (and desirable) assumption that E[||z x||?] &~ ma, Jensen’s inequality yields an over-

all O(Ld/ 2e—dellle” “2+m2) complexity. In particular, both these works suffer at least two of the
limitations mentioned in the introduction, making them ill-suited for multi-modal sampling.

3 Presentation of the main result and application to Gaussian Mixtures

3.1 Main result

As in the works mentioned above, we rely on the recent advances on reverse diffusion and focus on
the task of estimating the intermediate scores. Using an estimator that is described in Sec. B, we
recover polynomial sampling guarantees for densities verifying the assumptions described hereafter.
Assumption 1 (Semi-log-convexity) We assume that ;1 < e~V is such that log(u) is C? and verifies
V2log(u) = —B1, or equivalently V?V = B1, for some 3 > 0.

This assumption shall be referred to as semi-log-convexity, by analogy with the functional analysis
literature [Miknlincer_and_Shenfeld, 2073, Theorem 3]. Note that is has also been referred to as
1-sided Lipschitzness for VV' [Genfiloni-Silveri_and Ocelld, P025]. It relaxes the classical log-
smoothness assumption which implies the additional lower bound V2V = —31,. In particular,
unlike the latter, a mixture of semi-log-convex densities remains semi-log-convex [Marshall ef all,
1979, Chap. 16.B]; we provide a quantitative version of this statement in Sec. B2 in the case of
Gaussian mixtures.

Assumption 2 (Dissipativity) We assume that 1 < e~V is such that there exists a > 0,b > 0 for
which its potential satisfies (N V (z),z) > a||z||®> — bfor all x € R%.

This assumption is referred to as dissipativity as common in the sampling and optimization liter-
ature [Raginsky et all, 2017, Zhang et all, 2017, Erdogdu and Hosseinzadeh, PZ0021]. Note that
this assumption relaxes strong convexity outside of a ball which can be equivalently re-written as
(VV(x) = VV(y),z —y) > allxz —y||*> — b for all pairs (z,y) € RY, also referred to as strong dis-
sipativity [Eberle, DOT3, Erdogdu et all, Z027]. We show in Sec. B that unlike strong-dissipativity,
a mixture of dissipative distributions remain dissipative.

Theorem 1 [Main result, informal] Suppose that Assumptionll and Q hold. Then, for all ¢ > 0, there
exists a stochastic algorithm whose parameters only depend on € (and not on the parameters of the
problem), that outputs a sample X ~ p such that E[KL(u,p)] < €8473(b+d)/a? in O(poly(e~%))
queries to V, where < hides a universal constant as well as log quantities in d,e", 3, a, b.

In particular, when d is fixed, this algorithm can output a sample from a distribution that is e-close
to j1 in expected KL in poly((b+ 1)/a, B, e~ 1) running time.

Our algorithm addresses the three limitations outlined in the sections above. When the dimension d
is fixed, we obtain a polynomial query complexity. This guarantee does not assume log-smoothness
and applies to general Gaussian mixtures, as will be shown in the next subsection. Moreover, this
guarantee does not require running the algorithm with any explicit knowledge of the target distribu-
tion’s constants a, b, 3.



Algorithm A ptions Oracle Complexity (Total Variation)
ULA [Maeiall, Pard) ((a+ L)1jpy>r — L)1a < V2V(z) < LI; | VV,L O(e'*H 1 (L/a)2de™?)
Proposal-based [He and Zhang, Z0Z5] V2V <L,my <M V,VV,M,L | O(LMe "))

RD + ULA [Huang et all, PU74H] V2 log(py)|| < L, ma < 00 vV 0L log™(Ld+m2/9))

RD + Rejection Sampling [Heetan, oz | V(z) — V(z*) < Lijz — 2*||?, ma < 00 V,V* O(L4/4e=d2e(Llz" [P +m2)/2)
RD + Self-normalized IS (ours) V2V < Bly, (VV(2),3) > allz]* = b Vv O(WdBU3/2\/b + d/ae=(4+?))

Table 1: Complexity of sampling algorithms. We denote by z* a global minimizer of V, by
V* = V(z*) the global minimum of V, by ms the second moment of the target, by p; the density
of the forward process (see Sec. B), and || - || the operator norm for matrices. In RD + ULA, RD
refers to a Reverse Diffusion algorithm and ULA to how the intermediate scores are estimated. Even
though originally stated in KL for our work and the one of He'ef-all [P0024], all the complexities are
w.r.t. the Total Variation distance (obtained via the Pinsker inequality).

Overall comparison We summarize in Table Il how our algorithm compares to previous ap-
proaches in terms of assumptions, oracles required to run the algorithm and resulting complexity.
Along with the work of He and Zhang [Z075], our algorithm is the only one that is polynomial in the
parameters of the distribution when d is fixed. Furthermore, while our dissipativity assumption is
stronger than finite second moment, we relax the log-smoothness assumption by semi-log-convexity
which notably covers general Gaussian mixtures. Finally, as mentioned above, because their algo-
rithm requires an e-approximation of the global minimum of V, they require an explicit upper-bound
on the second order moment of y+ which may not be available in practice.

Numerical illustration In Figure D, we consider a standard task in the literature: sampling from
a mixture of 16 equally weighted Gaussians with unit variance and centers uniformly distributed
in [—40, 40)? [Midgley et all, 2073]. We compare our algorithm against Unadjusted Langevin Al-
gorithm (ULA) and to the reverse diffusion algorithm of Huang et all [20744] (RDMC). We also
implemented the zeroth-order method of Heef-all [20724]], but it failed to converge. ULA was initial-
ized from N/(0, I3) and run for 5 x 10* steps. All three methods used the same discretization step
size h = 0.01. Our reverse diffusion algorithm and RDMC were both run with 500 reverse diffusion
steps and both used 100 samples to estimate the intermediate scores. As discussed in Sec. B, while
our samples are simply drawn from a Gaussian distribution, the samples used in RDMC are drawn
from a auxiliary, multi-modal distribution generated via an inner ULA step. In this experiment, this
inner ULA was initialzed with a standard Gaussian and was run for 100 steps; in particular, we
emphasize that while ULA and our algorithm were roughly given the same computational budget,
the one given to RDMC was a hundred times superior. As a result, ULA and our algorithm took
approximately one minute to run on a computer locally and the RDMC method required over an
hour. We observe that unlike the two others, our algorithm successfully recovers all the modes.

In Figure [, we monitor the convergence
of the same three algorithms as a func-

tion of the problem difﬁculty, measured Convergence vs. Between-mode distance
i 30
by the dlstgncx? be.twef.:n the.modes. Here, . — U =
the target distribution is a mixture of three E RDMC ' 4
. [} ‘/_l/
Gaussians in two dimensions. It has equal £ 207 st Our algorithm =
. L @ =
weights 1/3, equidistant modes located at 2. =
a distance R from the origin, and different 3 3
covariances (I,1/2,1/4). The final error 5 | |y gt —
is measured in Wasserstein distance, be- e 50 75 100 125 150 135 200
cause it can be easily approximated using Between-mode distance R

samples: we use 500 samples generated

by the sampling algorithm and 500 sam- . Lo .

ples from the true target distribution. We Figure 1: Error in Wgsserstem distance as a function of
allowed each of the three algorithms 106  the between-mode distance.

queries to the potential V' or to its gradient:

we performed 10 iterations for ULA, we used 100 steps of reverse diffusion for our algorithm and
RDMC. We used 100 inner steps of ULA for RDMC that was initialized with a standard Gaussian.
We used 100 particles for score estimation for RDMC and 10000 for our algorithm. As expected, as
the between-mode distance grows with R, our algorithm yields the lowest error.



3.2 Application to Gaussian mixtures

We now apply our results to derive provable sampling guarantees for general Gaussian mixtures.
Apart from the very recent exception of Lyfras and Mertikopoulod [Z075] that we discuss below,
note that despite their wide popularity, no sampling guarantees were yet derived for general Gaus-
sian mixtures. Indeed, unless they verify some specific assumptions such as identical covariance
matrices among components [Cordero-Encinar_ef all, 2075, Lemma B.1], general Gaussian mix-
tures do not satisfy the log-smoothness assumption, thus they do not fit the framework of many
previously discussed works. In fact, their gradient may not even be Holder continuous: consider
the simple counter-example of a two-dimensional mixture ¢ = 0.5M(0,%1) + 0.5N (0, X2) with
covariances X1 = diag(1,0.5) and X5 = diag(0.5,1). On the diagonal = y, the score is
Vlog(p)(x,z) = —3/2(z,x), while near the diagonal, right above it for instance, the score be-
haves asymptotically as Vlog(u)(z, ) ~z— 400 —(22,2); we provide a rigorous analysis in Ap-
pendix B Fortunately though, Gaussian mixtures do verify Assumptions -0, as we next show.

Proposition 2 Let pp = >0, w; N (w;, ;) and denote \pin, > 0 (resp. Apaz) the minimum (resp.
maximum) eigenvalue of the covariance matrices %;. It holds that —V? log(u) < Ii/ Amin and that
forall z € RY, (=V log(p)(x), z) > [|2[*/(2Xmaz) — Amaz max; (|| il /Amin)*.

The proof is deferred to Appendix B3. Combined with Theorem [, Proposition @ shows that we
can sample any Gaussian mixture with average precision ¢ in KL in O(poly(x, R, d, )\;filn, e 1))
queries to V where R = max; ||u;|| and & = Ajaz/Amin- There exists a relatively recent literature
seeking to relax the log-smoothness assumption. For instance, [Chatteri et al] [Z019], Erdogdu and
Hosseinzadeh [20721], Nguyen et all [PZ071] work under weak smoothness, i.e. a-Hdlder continuous
gradient of the potential for «v in [0, 1] (recall that a=1 recovers the smooth case). However, as shown
above, this relaxation is not sufficient yet to cover general Gaussian mixtures. The only reference
we know of that does is the work of Lyfras and Merfikopoulog [2075], who used a regularized
version of Langevin to relax the global smoothness condition with local Lipschitz smoothness and
polynomial growth of the Lipschitz constant. Yet crucially, their complexity bound scales as a
polynomial of the Poincaré constant of . We prove in Appendix B4 that for the mixture y =
0.5N (Ru, AmaxIg) + 0.5N (—Ru, AminIg) with u any unit vector and 0 < Amin < Amax, this

constant is at least (R2e®’/(22max)) /2. In particular, this method still degrades exponentially with
the multi-modality parameter R.

4 Our sampling algorithm

In this section, we introduce the reverse diffusion framework and explain how it reduces the sampling
problem to that of estimating the scores along the forward Ornstein-Uhlenbeck (OU) process.

4.1 Reverse diffusion: from sampling to score estimation

Reverse diffusion methods emerged as an alternative to Langevin-based samplers in order to over-
come metastability and were first introduced to the ML community in Song et al] [Z071]. They rely
on the so-called forward process

{ dX, = — X,dt +/2dB, "

XO"’,“?

-40 -20 0O 20 40

Figure 2: From left to right: our algorithm vs. ULA vs. Huang et all [20244]. The color scheme
indicates the probability density value of the distribution we want to sample from (dark is low prob-
ability density, bright is high probability). The blue dots are the samples produced by the algorithm.



which corresponds to the standard OU process initialized at y, that is a specific case of a Langevin
diffusion targeting a standard Gaussian, that we will denote m. Note that since the target of this
process, the standard Gaussian, is 1-strongly log-concave, the resulting process converges expo-
nentially fast to the equilibrium. In order to sample from pu, reverse diffusion algorithms rely on
the semi-discretized backward process: given a horizon T that we discretize as 0 = tg < t; <
c-ty_1 <ty =T, the latter writes

dY; = Yidt + 2V log(pey_, ) (Ye)dt + V2B, t €]T —tn_p, T —tn o), ()

with Yy ~ pr and where p; is the distribution of the forward process Eq. [ at time ¢. Note that this
reverse process cannot be readily implemented for two reasons: first, it requires the knowledge of the
intermediate scores V log(py, ) which are not available in closed form. Second, it requires sampling
from the distribution pr. Nevertheless, if one can access a proxy s;, of the scores V log(pz, ), and
considering 7" large enough so that pr ~ 7, we can implement instead

dY; = Yidt + 254, (Yi)dt + V2dBy, t €]T —tn—p, T — tn— (k1)) (3)

with Yy ~ 7 and where all iterations can be solved in closed form. Because the forward process
Eq. M converges exponentially fast, we can expect the initialization error Y, ~ 7 instead of Yy ~ pr
to be small after a short time 7. Furthermore, if the proxies s;, are sufficiently accurate, one can
expect that the process output by the approximate scheme Eq. @ has a distribution that is close to the
target u. Over the past three years, several works provided quantitative bounds of the error induced
by the discretization, the use of an approximate score and the initialization error with respect to
different divergences and under various assumptions [Borfoli_ef-all, DO21, Cee ef all, D027, Chenl
ef-all, P073K,a, Conforfief-all, Z075]. Yet, we shall rely exclusively on the following theorem as it is
the most suited to our framework.

Theorem 3 (Conforfief-all [Z025]) Assume that p < eV has finite Fisher-information w.r.t. 7 the
standard gaussian density in R®:

I(p,m) = / |z — VV (2)|?du(z) < +oo.

Then, for the constant step-size discretization ty, = kT /N, denoting p the distribution of the sample
Y output by Eq. B, it holds that

N
_ 1 T
KL(p,p) S (d+ma)e™ " + N > IViog(py,) — stellz2p,, ) + N2,
k=1

where my is the second order moment of i and where < hides a universal constant.

The previous theorem shows that under mild assumptions that notably allow for multi-modality,
the problem of sampling from p can be transferred into a score approximation problem along the
forward process. In the next subsection, we present an estimator for these intermediate scores that
is tractable given the knowledge of the unnormalized density p oc e~V .

4.2 Derivation of an estimator

The key observation to derive an estimator of the intermediate scores is that the forward process
Eq. [ is nearly available in closed form. However, this closed form may be written in different
manners.

Different expressions of the scores Consider Eq. [ integrates to X; = v\ Xo + vV1 — M\ 72,
where \; = e~ 2%, Z is a standard d-dimensional Gaussian, and X, is a random variable simulating
the target distribution. The corresponding density convolves the target density with a Gaussian, as

ptv(z)_\/11—Af(¢1x—xt)*\/%“(\/%>’ @

where 7 is a standard Gaussian and p(-) o« exp(—V(+)) is the target distribution. From this expres-
sion, we can obtain different formulas for the scores. We retain

L. Viegp} (2) = 5=Eye [V log 11 ("%’)] Yl ~ocp (3}—?’) x N(y;0, (1 = M\)I)




2. Viogp} (z) = S g~ Ny 0,1)
‘ =
3. Viegpl () = 25 (Byaly) — ), gl ~p (o) x Ny, 1= M)D)
E, [yu( 20w
4. Viegpy () = ot | (WQ> » y~N(y0,1).

Derivations can be found in Appendix Al The second [Akhound-Sadegh et all, 2024], third [Huang
ef_all, 207242, He_ef all, D024, Grenionx_ef_all, P2024)], and fourth [Saremi_ef all, P(1724]] identities
have been used to build Monte Carlo estimators of the score. Hence, one natural way to group these
identities is by how difficult it is to draw the samples y. The second and fourth identities sample from
a Gaussian distribution, whereas the first and third identities sample from an auxiliary multi-modal
distribution from generating y|x. As ¢ gets closer to zero, this auxiliary distribution resembles the
original target, so sampling from it progressively becomes as difficult as sampling from the original
target density. This observation explains why, unsurprisingly, Huang et all [20244], He ef-all [2024]]
do not improve upon existing results. Another way to group these identities is whether or not they
require evaluating the score of the target distribution: identities one and two do and are referred to as
TSI estimators, referring to the Target Score Identity (TSI) used to obtain them [Borfoliefall, 2074];
identities three and four do not and are referred to as DSI estimators, referring to a Denoising Score
Identity (DSI) used to obtain them [He efall, ?(075]. Combinations of TSI and DSI estimators have
also been considered [Phillips et all, 2024, He ef all, P075].

A self-normalized estimator We now focus on the estimator of the scores that we use. Itis a
rewrite of the fourth identity and is a ratio of expectations under Gaussians

L1 E[GeVE G-y
v _ t
Viog(pt) () = T vy

with ¥; ~ N(0, (1 — e=2*)I,) which is easy to simulate. While conventional statistical wisdom
may suggest using independent samples to estimate both the numerator and the denominator, we
voluntarily choose to correlate them and implement instead

) o Z;’L:lyler(et(Z*yi))
Sunl2) = T S ovEey ®

i=1€

where the y; are independent Gaussians such that y; ~ N(0, (1 — e'=2%)1;) ; we refer to this
estimator as self-normalized as common in the sampling literature [[Agapiou et all, PZ0T7]. The key
property of self-normalized estimators is that they remain nearly bounded: in our case, it holds
uniformly in z that

E[max; [|yi|] dlog(n)

1_e2t  T_e-2t’
This boundedness will allow us to derive a non-asymptotical control on the quadratic error that we
present in the next section.

E[ll3e.n(2)]ll <

We now explain how this differs from previous work. While this estimator was already considered
in [Saremi_ef-all, 2024, the authors did not use it within the reverse diffusion pipeline and more
importantly, we are the first work to derive quantitative guarantees for this estimator, which is one
of our core contributions. Similarly, an estimator close to this one was considered in the context of
Follmer Flows [liao"ef all, D021, Ruzayqat et all, 2073, Ding et all, 2073] in order to approximate
the shift in the corresponding Schrodinger bridge. We show in Appendix BTl that while this shift
is itself close to the intermediate scores that we seek to approximate, the resulting self-normalized
estimator is more degenerate. Namely, as discussed above, their guarantees are significantly weaker.

5 Sketch of proof of the main result

The proof is decomposed in three steps: (i) we derive a non-asymptotic bound on the quadratic error
of the estimator presented in Eq. B (ii) we show that under Assumptions -2, the integrated error of



this estimator (that appears in the bound of Theorem B) can be fully controlled by the zeroth and
second order moments of the ratio ®; = p?V /p} . where p?" (respectively p)) is the density of
the forward process defined in Eq. [ initialized at 2 (respectively p) (iii) we provide a quantitative
bound on these moments as well as other relevant quantities and we conclude with Theorem 3.

Proposnlon 4 (Non- asymptotlc bound on the quadratic error) For all z € R%, n and t > 0 denoting

V' (respectively p)’) the density of the forward process defined in Eq. [ mztzalzzed at p? < e 2V
( respectzvely poce”V), Zoy (respectively Zy ) the normalizing constant of p? (respectively 1) and
7 the density of the standard Gaussian, it holds that

e o zvetd
E [[[3¢,n(2) — Viog(p} ) (2)[]*] < W <1+9t( )(}/(())ZZV)> ’

with 0,(2) = Alog(p?" ) (2) — 22IE + |V log () (2)II? + |V log (p7Y) ()| + 1.

The complete proof is left to Appendix O yet we briefly sketch the main arguments. We split the
expectation on the event A where the empirical denominator D of Eq. B (respectively the empirical
numerator V') is not too small (respectively not too large) with respect to its expectation D (respec-
tively || N||) and on the complementary A. Over A, we use a second-order Taylor expansion to
make the variances of both the numerator and the denominator appear, and compute them explicitly.
Conversely, the quadratic error of the estimator remains almost bounded on A. We use Chebyshev’s
inequality to upper-bound P(A) and make the variances of the numerator and of the denominator
appear again, which concludes the proof.

Remark 5 Generic bounds on self-normalized estimators were derived in Agapiou et al] [PUI7,
Theorem 2.3]. Yet, we show in Appendix B3 that if used in our context, they would involve at least an
extra 1/(p}") factor which can cause the integrated error [ E [||3;,(2z) — V1og(py)(2)|1?] dp; (2)
to diverge.

Then, we need to control the Laplacian of the forward processes as well as their gradient appearing
in 6; in the former proposition. As mentioned in the previous section, the intermediate scores can
be re-written as . v
v z—e 'Ky, Y
Vlog(pt )(Z) = 1— 67t2t )
le ez

with g; . (z) oc e”V(@e™ = ﬁ’m) Now we note that if u o e™" is dissipative, so is gy .;
in particular we can quantitatively bound its second order moment and a fortiori, upper-bound
1V log (p) ) (=)

Proposition 6 (Regularity bounds on the forward process) Suppose that Assumption @ holds. Then,
forall z € R? and t > 0, it holds that

|| e~ 2t 2e" %" (2b+d
1V 108(p}) ()2 < ol (2 4+ sy ) + 22t

o2t .
AIOg(py)( ) < = efw)z (Qa(jll‘ Hefz D) + 2b+d> .

The complete proof is left in Appendix IDA. This result implies that the 6; term defined in Proposi-
tion B is at most of order of order 6;(z) ~ (1 + ||z||?) w.r.t. 2. In particular, the average integrated
error E[||3¢,n(2) — Vlog(p}')|I? 12(p )] can be upper-bounded with respect to the zeroth and the sec-

ond order moments of the ratio ®; = p2V /p} . In the next proposition, we show that these moments
are bounded under the semi-log-convexity assumption. By a slight abuse of notation, we shall denote
m;(®¢) = [ ||z|"®¢(z)dz the i-th moment of ®;.

Lemma 7 (Bounds on the moments of the ratio) Assume that < e~V has finite second moment
mo and that Assumption [ holds. Then,

mo(®,) < (Z;/‘z td(ml . 72t) + 672t)d’
2et(d+2) 2 2/d
ma(Dy) § ZQ‘EZV) (B(1— —2t) + e—2t)d+2 [m2 +d(B+1) + 2dlog (BM(O) )} ,

where Zoyy (respectively Zy) is the normalization constant of e =2V (respectively e~V ) and where
in the right-hand-side refers to the constant m ~ 3.14.



The proof of this lemma is deferred to Appendix B. It relies on a key result in Mikulincer and
Shenfeld [20723, Lemma 5] where it is shown that for 5-semi-log convex distributions, the following

bound holds: (B — D)e2t
—1)e™
V21 — V2log(p}') =
Og(ﬂ) Og(pt ) — (1 —6_2t)(ﬂ—1)+1
In particular, the right-hand-side remains bounded w.r.t. 8 whenever ¢t > 0, which allows to avoid
an exponential dependence in S in our final bounds. It suffices now to control Z(u, ), mo and 1(0)
in order to apply Theorem B and conclude.

Lemma 8 Assume that ;1 o< e~V is such that Assumption I and B hold: V*V =< Bl; and
(VV(z),x) > allz||® — b for some a > 0,b,3 > 0. Then,

mo < (b+2d)/a,

Z(p,m) < 2(b+2d)/a+20d,

log (1£(0)=%/4) < 48b/(da) + 27 + log(2/a) .

Here again, the w in the right-hand-side refers to the constant w =~ 3.14.

Ig.

The proof is left to Appendix DI. We can now state our main result.

Theorem 9 Under Assumptions 0 and B, if we run the algorithm of Eq. B with T = log(1/e),
N = 1/¢, ty, = kT /N and with the stochastic score estimators 5y, 1, defined in Eq. B with nj, =
de=29+3) then, denoting p the stochastic distribution of the output Yy, it holds that

E[KL(u,9)] S B8 (b+d)/a?,

where < hides a universal constant as well as log factors with respect to d,e*, a, b, B. In particular,
the error above is achieved in Zgzl ny, = de 2192 queries to V.

The proof is deferred to Appendix B and is mainly an application of the results collected above.

6 Conclusion

In this article, we successfully applied the reduction from sampling to intermediate score estimation,
initiated over the past three years by Chen efall [2023H,a], Conforfirefall [Z025], Benfon efall [2024],
to the problem of low dimensional multi-modal sampling. Using the self-normalized estimator of
the scores, our results provide polynomial query complexity guarantees in fixed dimension, apply to
general Gaussian mixtures, and do not require prior knowledge of the target distribution’s constants.
Interesting future directions include extending theoretical guarantees to more general multi-modal
distributions with heavy tails for instance.

We note that our sampling algorithm is based on time-reversed diffusions, which have recently
gained traction for sampling from unnormalized densities. Our method stands out by offering rigor-
ous, non-asymptotic theoretical guarantees on query complexity, especially in the presence of score
estimation error that we precisely quantify. Such theoretical guarantees are scarce and we believe
our results are therefore a meaningful and timely contribution to the field.

7 Acknowledgements

This work was supported by the Agence Nationale de la Recherche (ANR) through the JCJC WOS
project and the PEPR PDE-AI project (ANR-23-PEIA-0004). We thank Pierre Monmarché for his
help in proving Lemma [3.

References

Sergios Agapiou, Omiros Papaspiliopoulos, Daniel Sanz-Alonso, and Andrew M Stuart. Importance
sampling: Intrinsic dimension and computational cost. Statistical Science, 2017.

Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos,
Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, et al.
Iterated denoising energy matching for sampling from Boltzmann densities. In ICML, 2024.

10



Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Nearly d-Linear con-
vergence bounds for diffusion models via stochastic localization. In ICLR, 2024.

Adrien Blanchet and Jérdome Bolte. A family of functional inequalities: Lojasiewicz inequalities
and displacement convex functions. Journal of Functional Analysis, 2018.

Valentin De Bortoli, James Thornton, Jeremy Heng, and A. Doucet. Diffusion Schrodinger Bridge
with applications to score-based generative modeling. In NeurlIPS, 2021.

Valentin De Bortoli, Michael Hutchinson, Peter Wirnsberger, and Arnaud Doucet. Target score
matching. arXiv preprint arXiv:2402.08667, 2024.

Martin Chak. On theoretical guarantees and a blessing of dimensionality for nonconvex sampling.
arXiv preprint arXiv:2411.07776, 2024.

Niladri S. Chatterji, Jelena Diakonikolas, Michael I. Jordan, and Peter L. Bartlett. Langevin monte
carlo without smoothness. In AISTATS, 2019.

Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative modeling:
User-friendly bounds under minimal smoothness assumptions. In /ICML, 2023a.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru Zhang. Sampling is as easy as
learning the score: theory for diffusion models with minimal data assumptions. In /CLR, 2023b.

Sitan Chen, Vasilis Kontonis, and Kulin Shah. Learning general Gaussian mixtures with efficient
score matching. In COLT, 2024.

Giovanni Conforti, Alain Durmus, and Marta Gentiloni Silveri. Score diffusion models without
early stopping: finite Fisher information is all you need. SIAM Journal on Mathematics of Data
Science (SIMODS), 2025.

Paula Cordero-Encinar, O Deniz Akyildiz, and Andrew B Duncan. Non-asymptotic analysis of diffu-
sion annealed Langevin Monte Carlo for generative modelling. arXiv preprint arXiv:2502.09306,
2025.

Arnak S Dalalyan and Avetik G Karagulyan. User-friendly guarantees for the Langevin Monte Carlo
with inaccurate gradient. Stochastic Processes and their Applications, 2019.

Wei Deng, Guang Lin, and Faming Liang. A contour stochastic gradient Langevin dynamics algo-
rithm for simulations of multi-modal distributions. In NeurIPS, 2020.

Zhao Ding, Yuling Jiao, Xiliang Lu, Zhijian Yang, and Cheng Yuan. Sampling via Foéllmer Flow.
arXiv preprint arXiv:2311.03660, 2023.

Alain Durmus and Eric Moulines. Nonasymptotic convergence analysis for the unadjusted Langevin
algorithm. The Annals of Applied Probability, 2017.

Andreas Eberle. Reflection couplings and contraction rates for diffusions. Probability Theory and
Related Fields, 2013.

Murat A Erdogdu and Rasa Hosseinzadeh. On the convergence of Langevin Monte Carlo: The
interplay between tail growth and smoothness. In COLT, 2021.

Murat A. Erdogdu, Rasa Hosseinzadeh, and Shunshi Zhang. Convergence of Langevin Monte Carlo
in chi-squared and Rényi divergence. In AISTATS, 2022.

Marta Gentiloni-Silveri and Antonio Ocello. Beyond log-concavity and score regularity: Improved
convergence bounds for score-based generative models in W2-distance. In /CML, 2025.

Louis Grenioux, Maxence Noble, Marylou Gabrié, and Alain Oliviero Durmus. Stochastic localiza-
tion via iterative posterior sampling. In ICML, 2024.

Jiajun He, Wenlin Chen, Mingtian Zhang, David Barber, and José Miguel Herndndez-Lobato. Train-
ing neural samplers with reverse diffusive KL divergence. In AISTATS, 2025.

11



Ye He, Kevin Rojas, and Molei Tao. Zeroth-order sampling methods for non-log-concave distribu-
tions: Alleviating metastability by denoising diffusion. In NeurIPS, 2024.

Yuchen He and Chihao Zhang. On the query complexity of sampling from non-log-concave distri-
butions. In COLT, 2025.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020.

Jian Huang, Yuling Jiao, Lican Kang, Xu Liao, Jin Liu, and Yanyan Liu. Schrodinger-Follmer
sampler. IEEE Transactions on Information Theory, 2025.

Xunpeng Huang, Hanze Dong, Hao Yifan, Yi-An Ma, and Tong Zhang. Reverse diffusion Monte
Carlo. In ICLR, 2024a.

Xunpeng Huang, Difan Zou, Hanze Dong, Yi-An Ma, and Tong Zhang. Faster sampling without
isoperimetry via diffusion-based Monte Carlo. In COLT, 2024b.

Yuling Jiao, Lican Kang, Yanyan Liu, and Youzhou Zhou. Convergence analysis of Schrodinger-
Follmer sampler without convexity. arXiv preprint arXiv:2107.04766, 2021.

Holden Lee, Andrej Risteski, and Rong Ge. Beyond Log-concavity: Provable Guarantees for Sam-
pling Multi-modal Distributions using Simulated Tempering Langevin Monte Carlo. In NeurIPS,
2018.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling with
polynomial complexity. In NeurIPS, 2022.

Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Towards non-asymptotic convergence for
diffusion-based generative models. In ICLR, 2024.

Tosif Lytras and Panayotis Mertikopoulos. Tamed Langevin sampling under weaker conditions. In
AISTATS, 2025.

Yi-An Ma, Yuansi Chen, Chi Jin, Nicolas Flammarion, and Michael I Jordan. Sampling can be
faster than optimization. Proceedings of the National Academy of Sciences, 2019.

Albert W Marshall, Ingram Olkin, and Barry C Arnold. Inequalities: theory of majorization and its
applications. Springer, 1979.

Laurence Illing Midgley, Vincent Stimper, Gregor N.C. Simm, Bernard Schoélkopf, and José Miguel
Herndndez-Lobato. Flow annealed importance sampling bootstrap. In ICLR, 2023.

Dan Mikulincer and Yair Shenfeld. On the Lipschitz Properties of Transportation Along Heat Flows.
Springer International Publishing, 2023.

Dao Nguyen, Xin Dang, and Yixin Chen. Unadjusted langevin algorithm for non-convex weakly
smooth potentials. Communications in Mathematics and Statistics, 2021.

Angus Phillips, Hai-Dang Dau, Michael John Hutchinson, Valentin De Bortoli, George Deligianni-
dis, and Arnaud Doucet. Particle denoising diffusion sampler. In ICML, 2024.

Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via stochastic
gradient Langevin dynamics: a nonasymptotic analysis. In COLT, 2017.

Hamza Ruzayqat, Alexandros Beskos, Dan Crisan, Ajay Jasra, and Nikolas Kantas. Unbiased esti-
mation using a class of diffusion processes. Journal of Computational Physics, 2023.

Saeed Saremi, Ji Won Park, and F. Bach. Chain of log-concave Markov chains. In ICLR, 2024.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In NeurIPS, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In ICLR, 2021.

12



Francisco Vargas, Andrius Ovsianas, David Fernandes, Mark Girolami, Neil D. Lawrence, and Niko-
las Niisken. Bayesian learning via neural Schrodinger-Follmer flows. In AABI, 2022.

Santosh Vempala and Andre Wibisono. Rapid convergence of the unadjusted Langevin algorithm:
Isoperimetry suffices. In NeurIPS, 2019.

Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, and Can Yang. Deep generative learning via s-
Schrodinger bridge. In ICLR, 2021.

Yuchen Zhang, Percy Liang, and Moses Charikar. A hitting time analysis of stochastic gradient
Langevin dynamics. In COLT, 2017.

13



Appendix Table of contents

A __EXxpressions the intermediate scores

B Addifional discussions

b.Z2 Details on the non-smooth examplg . . . . . . . . . .. ... ... ... .....

b.3 Proot of Proposition 2

b.4 Discussion on Lytras and Mertikopoulos [2025). . . . . . . . ... .. 0.

B.5  Discussion on Agapiou etal. [201/] . . . .. ... ... 0000

IL__Proot of Proposition 4

D__Froof of Proposition 6 and

E__FProol of L.emma /

Lemma 3§

14

15

17
17
17
18
19
20

22

26
27
27

28

34



A Expressions the intermediate scores

We next provide derivations of the Monte Carlo estimators of the intermediate scores discussed in
section B

The probability law along the reverse diffusion path has density

py(x):\/11—At”<¢1$—,\t>*\/%“(\/%) ©

where 7 is a standard Gaussian and p(-) o exp(—V(+)) is the target distribution

Case 1: write the convolution as an integral against the proposal distribution We have

Lo O ()=
\%
xr) = — i d = = Z, d 7
pt ( ) Z)\t /ye]Rd'u \/)Tt m y Z)\t f( y) y ( )
where we denoted the integrand by f(x,y). We can compute the score
V! (x) _ [Vi@y)dy _ z—y\ _ [flzy)
Viegp, (z) = —+ = /Vlogu dy . (8
! pl(x) [ flz,y)dy [ f(,y)dy

From this, we can either define a Monte Carlo estimator as

1 T —y
Viegp (x) = \/TTEW {V logﬂ( oW )} ;o yle ~oc f(z,y) ©)

where f(x,y) is a smoothened version of the target distribution distribution. Replacing = with a
standard Gaussian. Or else, by unpacking f(z, y) and using the proposal as the sampling distribution
as the integration variable y appears in it,

1 Ey |[Viegu (52 ) p (S5
Vlogp} () = | (“f> (Wt)], yw(L) (10)
e Bk V=
Case 2: write the convolution as an integral against the target distribution We now have
L () () =2
v
T)=— —— |7 = —_— x, (11)
be ( ) Z)\t /yeRd : \/)\7 1 - )\t = ZAt f y
where we now denote the integrand by f (z,y). We can compute the score
Vol (x) _ [ Vf(z,y)dy
Vlogp)/ = (12)
¢ (@)= pt() J f(zy)dy
1 / -y f(z,y)
=——— [ Viogn ( ) dy . (13)
V1= VI=X\ ff(l‘,y)dy
From this, we can either define a Monte Carlo estimator as
1 T—vy
VIOgPt (r) = ﬁ y\z {Vlogw (mﬂ ) y|x ~ox f(x,y) (14)

where f(z,y) is a smoothened version of the target distribution distribution. Or else, by upacking
f(x,y) and using the target as the sampling distribution as the integration variable y appears in it,

1 B, [Viegn (J2%) 7 (%)) y
Viogpy (x) = T Ey[ﬂ(fj%)] Al y~u(m) (15)

which is not very useful given that sampling the target is hard in the first place. However, we can
use the proposal distribution as the sampling distribution as the integration variable y appears in it
as well. To see this, recall that

n (%) N(fﬁ 0 Id) = VI = AN (& = 5;0,(1 = A)]a) (16)

= \/1—)\tN :l/,ZC,(l _)\t)ld) (17)
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This leads to

1 Ey[(y—a)u (jg—)]
= L= ~N(y;z, (1— M),
—x

1 E. [ (P
VI= A K. [ (23

Using a change of variables, we obtain

Vlogpy (x)

z~N(z;0,14).

—1 E[Yiexp(-V(E))]

Vlog(Pz/)(x) —1_ A E[exp(—V( J,\Xt)ﬂ

with Y; ~ N(0, (1 — \) 1)
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B Additional discussions

B.1 Follmer Flows
B.1.1 Comparison with our work

Instead of implementing a reverse diffusion process, Follmer Flows Huang et al] [Z075], [iao ef all
[202T], Ruzayqat et al] [2023] seek to implement the following Schrodinger bridge:
dX; = b( Xy, t)dt + dWe, X9 =0,
with b(z,t) = VlegE[f(x + Wi_)] and where f is given by
P
TdAN(0,1a)
with p the target density; for such a process, we have that X; ~ pu. We refer the reader to the
notations of Proposition [4 to observe that the shift b(x, t) is given by

b(x,t) = V1og Q_ 1og(t)/2(7/ V1),

= %(v logp‘_/log(t)/Q(x/\/i) - V10ng'(CC)) )

with 7 is the density of the standard Gaussian. Hence, up to the Gaussian term and a time-rescaling,
the shift is exactly given by the intermediate scores of the reverse diffusion. However, because of the
Gaussian correction, an extra exponential term appears in the associated self-normalized estimator
of the shift: in Huang et al] [2075], liaa ef all [20721]], Ruzayqat et all [Z023], the authors implement

b f) = S (@ VT =tz — VV (24 V1 — tz))eVEtVImtz) et VI=t|?/2
(z,t) = S e V@I le VIt /2 ’

with z; n-i.i.d. samples from the standard Gaussian distribution. We suspect that because of the extra

. / 12 . . . . .
exponential terms ell*TV1=t%1%/2 45 discussed below, their estimator provide appealing guarantees
only under very stringent assumptions.

B.1.2 Theoretical guarantees

The theoretical complexity bounds derived in the works of Huang et al] [2025], liao-ef-all [2021]],
Ruzayqgat et al] [2023] quantitatively rely on the assumptions that f = m is Lipschitz, has

Lipschitz gradient and is bounded from below. In particular, assume for instance that y is a standard
Gaussian centered at some point ¢ € RY. In this case, the ratio f reads

T 2
Fla) = 2 el

which verifies none of the assumptions above if ¢ # 0. More broadly, even if f verifies these assump-
tions, the resulting quantities degrade exponentially with the mismatch between 2 — — log(u)(z)
and x — |z||?/2. As noted in [Vargas et al] [2022], this limitation is not only a theoretical artifact;
in practice, these methods are very unstable and fail to convergence on simple examples.

B.2 Details on the non-smooth example

Consider the mixture ;1 = 0.5N(0,%;) + 0.5M(0,%2) with ¥ = diag(1,0.5) and ¥; =
diag(0.5,1). For (x,y) € R?, it holds that

(2, 2y)e™ =" /270" 4 (2, y)e = V)2
e—T?/2-y® 4 e—x?—y?/2 ’

—Vlog(p)(z,y) =
Hence, when © = y, we have —V log(u)(z,y) = 3/2(x, ). Now for y = x + 7, the score reads

(LC, 2% + 2n)e—w2/2—mz—2nx—n2 + (2{177 T+ n)e—xz—x2/2—nw—n2/2
e—r?/2—x%—2nz—n? +671:27:02/2777507772/2

—Vlog(p)(z,x +n) =

_ (@224 2)e 2 4 (2,34 1)
e—nr—n*/2 11
~Yr——+oo (2'Ta $) .
In particular, —V log(u) is not Holder.
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B.3 Proof of Proposition 2

Recall we denote Mg, := IgniAr,n(2i),  Amax = Max; Amax(X;). We write:

i ( (. — ) "2 — ) ) Zwlgsz

with @; = w;(2m)~Y/2 det(3;) /2.

Bound on the Hessian. The Hessian of p writes:

VHlogi(r) = S VA(e) =~y Vi) V(e)”
Since

Voi(z) = =S (x — ) ¢i(x)

V2gi(x) = [B7 (@ — ) ( — ) "2 = 571 ¢i(a)
We have

szwz —Zwm S — )
p
szv $iw =Z 7@ = ) (@ — ) TET - 87

Denoting 7;(x) := %X) and s;(x) = =37 H(x — p;) we get

V?log pu(x Z% si(z)T =571 - (Z %‘(l“)si(x)> Z%‘(x)sa(@")
= Covy(y)[si( Z Vil

where the first term is a covariance matrix of the vectors s;(z) under the weights 7; (x), hence which
is a positive semi-definite matrix. Therefore:

Iy
-V21 ) < = )
og pu(x Z% Z AI S v,

Bound on the drift. For the (negative) score of the mixture we have:
—V log u(x Z ~i(z )
Hence

Yi(@) (S (@ — i), x)

|
'M“

N
Il
—

(=Vlog pu(x),z)

T T ¢ _ Htz_ Ty—1
'71()( b 'z My 55 :C)ZZ%(%) W, X,

A
i=1 max

Il
VM*@

©
Il
=

where we have used Ei_l > ﬁ[d for the first term. Now for the second term, using Cauchy-
Schwartz and Young’s inequality:

- - i lll]] 1
pi 57w < - 157 ] < S < (1 + llpl 1)
)\Idn 2)\1dn
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Hence, using that Y, v;(z) = 1 and that ), v; ()| p:[|* < max; ||p;]|* we have:

p
)2 1
(Vo (2,21 2 32w (3 = gy el + ol
i—1 Amax an
1 p

( i) Il = g el

Inax Ign i—1

> (o~ ) el = g me

[EdlS (Iqu—II)
| N - max | Nl
2)\max e i * AIdn
B.4 Discussion on Lytras and Mertikopoulos [2025]

To justify our claims at the end of Section BZ, we first need some preliminary background on
Poincaré constants. Let ¢ € P,.(R?). We say that g satisfies the Poincaré inequality with constant
Cp > 0ifforall f € VVO1 ’Q(q) (functions with zero-mean with respect to ¢ and whose gradient is
squared integrable with respect to q):

/ P2 (@)dg(x) < ClIV 2y, @1

and let C'p(q) be the best constant in Eq. I, or 400 if it does not exist. We show that in the

l[ell?
case where 1 = 1/2N (¢, Amaz) + 1/2N (—¢, Apin ) the Poincaré constant is at least 2¢ Zxmaz /|| c||?
therefore the resulting sampling complexity in Lytras and Mertikopoulos [2025, Theorem 3] is at
el
least O(poly(||c[|?eZ maz , e~ 1)).
Proposition 10 Let p = 1/2N (¢, Apazla) + 1/2N (—c, Aminda) with Apaz > Amin > 0 and
lc]| > 0. It holds that

2
ch?ez%

Cp(u) > 5

Proof. Denoting u = ¢/||c|| and defining g : R — R as

g(t) = =1 if t < —lc][/2,
g(t) =2t/e| if —[lefl/2 <t <|le][/2,
g(t) =1 if ¢ > |lell/2,

consider the test function f(x) = g(z"u). Denoting p; = N(¢, Amazla), 2 = N(—¢, Aninla),
we start to upper-bound the Dirichlet energy I = [ ||V f||2du:
2 ||CH

= W( XNU]I: 2 ~ 2

Now remark that for X ~ pu;, the random variable X T is also a one dimensional gaussian: if
X ~ py, it holds that X Tu ~ N (||c||, Amaz) and if X ~ o, it holds that X Tu ~ N'(—||¢|l, Amin)-
In particular, the Dirichlet energy re-writes as

_ 2 —llel —3|c — el =3¢l
I = HCH2 ((I)(Q\/m) - (I)(2 /;)\me) + CI)(2 /7)\min) - (I)(Q /7)\min)) )

where ® is the cumulative density function of the standard Gaussian. In particular, [ is upper-
bounded as

40(zAd) lel P
[ < —2V2meal 2 (] _erf( ) <
llcll? [[c]|? V2 naz [l

Now there remains to lower-bound the variance term. The variance reads

Var, (f) = / P2 = 1/2(E,, [2(X)] + Eu[2X)])
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The first term can be lower-bounded as

B [F2(X)] 2 Prons [X T > 1

TRk

el
= (P —_— ),
( 2 \% )\rﬂax )
>1/2.
Conversely, it holds that E,,,[f?(X)] > 1/2 and a fortiori Var,(f) > 1. Hence we recover that
lell®
Var,(f) _ [le2esie
I - 2 ’
which concludes the proof. O

B.5 Discussion on Agapiou et all [20T7]

In Agapiou et all [POT7], for v dominated by 7, denoting g the unnormalised density ratio
dv g(u)
dm (u) = [ g(u)dm(u

the authors derived error bounds for self-normalised estimators: for any test function ¢ : R? — R,
the expectation of ¢ under v, denoted v/(¢), is estimated via

D iy Pxi)g(ai)
2121 g(w;) ’

with (x;) n-iid samples drawn from 7. In Theorem 2.3, they provide the following quadratic error

o 3r(1691)! e (9)1/
El(v(9) = "(69)] § T e

with my(h) = m(|h(-) — w(h)|") and d,e € (1,+oo[ such that 1/d + 1/e = 1. Now recall that,
denoting Y; ~ N(0, (1 — e=2%)1,) the score along the forward is given by

v (¢) =

(22)

-1 E[Ye V(EGEY))]

Vv —
Viog(p ) () = T— = gvere—voy

y 2
-1 fye—V(et(z—y))G*#L%dy

_ p—2t llyll2 ’
1 ¢ fe*v(et(zfy))e_ﬂl—yﬁdy

-1
At

(B (B

, S ] - . . S 1 .
where v(z) o e~V (€' (z=2))¢” 207 In particular, denoting 7(z) o e 20—+~ | the quadratic
error of the self-normalized estimator reads

& () VleanV () = L S vig(y) 2
|| t,n( ) 2 g Dy ( )” - (1 7672t)2 E:L 1g(yz) EZNV[Z] 5
1 i—1 Pk (Yi)9(yi ?
i 22(22 o e toal)

with ¢ = dv/dn, (y;) n-iid samples drawn from 7 and ¢ : RY — R the projector on the k-th
coordinate. Hence, the bound Eq. P2 of [Agapiou et al] [2017] provides the following upper-bound

d

”2 Z |¢kg|2d l/d ( )1/6 )

4
— (g)

15¢,n(2) — Vog py (=
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We show in the next paragraph that, when integrated against p)’, this upper-bound is vacuous. By
Jensen’s inequality, it holds that

mae(9)/2¢) > ma(g)1/2,
m(|org*) /D > 7(|prg*)1/2.

Hence, the previous right-hand side of is lower-bounded as

d

Z:’w (Ixglt) /Pmac(9)!/* S 37( '“M' ”—3m2(g)iﬂ<|¢kg|2>-

nm(g)* n(g ~ nm(g)*

;M

=1 k=1

We now compute explicitly each of the quantities in the right-hand-side above using Proposition [l.
First we have

=12

(g) = (27r(1—6‘2t))_d/2/ V(e e T T e

—td \%
=e " Zyp/ (2).
Then, the variance term reads

|z

t __=lZ
(2’/T(1 _ e—2t))—d/2 /(e—V(e (z—z)) _ e_tdvay(z))Qe 2<1"372t)dx,

= e " Zoyp}" (2) = 2¢7 2 Zoy Zypy (2)p}" (2) + (e 2y )?py (2)° .

Finally, the second order moment term reads

ma(g)

(B3

d
> mllongl) = (2m(1 - 22 [ eV e gy,
k=1

= e "tV (2)0(2),
where we denoted
0(2) == Zov (1 — e 2)2(Alog(p7") (2) + ||V 1og(p;¥) (2)[|> + d/(1 — e~%")).

Hence, once integrated against p}/, our lower bound reads

d
3ma(g) 2td Z22v P?V(Z) td Z22v P?V(Z)z
7(|ory pY (2)dz = 22 [ Oz dz — 2e O(z dz
[ R ot 2 v [o) i E) 2y [etC)
(2)

P (
V z

dZ2v /@
Z)

Combining Proposition B and Lemma [, we have that the third term is always finite. For the specific

2
case V(x) = @ we show that the second term also remains finite while the first diverges thus
making the overall lower bound diverge. First, we recall that for this choice of potential, we have
v =2
py(2) xe 2
=112

Y () oce

from what we obtain

O(2) = Zoy (|22 + 2A=e~202A—e ) re )

2—e—2t
—t 2

v lle
M x 67 2(1—e—2t/2)
pi ()2 2 2t ’
2V N2 [z1“(A—e—"")
Ptv (=) ox e 2(1—e—2t/2)
p (2)3

In particular, we obtain that the second term is bounded and that the first term diverges to infinity
making the overall bound of [Agapiou et al] [Z0T7] vacuous.

21



C Proof of Proposition 4

Before starting the proof, we recall the following identities.

Proposition 11 (Tweedie’s formulas) Denoting p;” the density of the forward process X initialized
atppoc eV, and Yy ~ N(0, (1 — e=2%)1y), it holds for all z € R? that

\% et V((z=Y)et
P (2) = Z=Ele” V0], (23)
that
' v B Yo~V (-10e")

VIOg(pt )(Z) = (1 _ e_gt)E[e_V((z_yt)et)] ’ (24)

and that

E[Y,Y, e~ V(=Y I,
2 v _ t

v log(pt )(Z) *(1 — E_Qt)Q]E[G_V((Z_Y")Gt)] - (1 — 6_2t) (25)

— (Vlog(py)(2)))(Vlog(p ) (2)" .

Proof. Recall that p}” is the law of the variable
Xt = €7tX0 + B17672t s

with Xy ~ p and By the standard Brownian motion evaluated at time s. Hence, using Bayes formula,
we have

t”2

1 _llz—ze™
\4 — — S1—e—2t) ,—V(z)
pi(2) = /pt(2|33)dpo($) T ZV(1 — e 20)d/2(2)d/2 /Rde 2= e dx.

After taking the logarithm and differentiating with respect to z, we obtain

_lz—ee=?)?
—(z —zet)e 2= V@) dy
vaM=@ = :

\
(1—e2) f[pae 20 e V@)dy

To obtain the Hessian, we differentiate the formula above. The Jacobian of the numerator is given
by

_llz—zeTt)2 1 _llz—zeTt)2
Iy [ e 2= eV @y 4 — | (- ze ) (z—ze ) Te 20— e V@ y
Rd 1—e" Rd

from which we can deduce

_lz—we??
1, Jra(z —ze7t)(z —ze ) Te 20— e~ V@)qy
\V& log(pY)(z) =— A=) + R

lz—ze=t|2
(1 _ ef2t)2 fRd e 2(1-e2%) e*V(m)dx
o 7tH2
(fpa(z — ze e 20=720 e V@ dg)( [oa(z — we e 20-777 e~V (@) dg) T

_llz—ze=t)? llz—ze

_lz—zemt2

(1= e2)2( [, e 20— V(@) da)?

_llz—wem )2
_ I N Jpa(z —ze ™) (z —ze ) Te™ 20=720 e~ V(@) dy
(1 —e2t)

_llz—ze=t)2

(1—e2)2 [, e 207 e~ V(@)dy
— (Vlog(p}')(2))(Vlog(py ) (2)) "

In order to rewrite the quantities above as expectations, we make the change of variable y = z—xe™
so that z = (z — y)e! and we obtain for the density p; :

t

\% et \% Y:)et
Pl (2) = SB[V (G0N,
1%
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where Y; ~ N (0, I;(1 — e=2t)). Conversely, the score rewrites as

E[-Y;eV((z=Y1)e)
Vlog(pf )(2) = (1 — e 2)E[e-V(G-Y0eD]’

and the Hessian rewrites as

T = V((z=Ye)e")
vy (1= g ~(V1oE(ol ) ()T oo ) ()

V2log(p!)(2) =

O

For the rest of the proof we shall drop the dependence in z and write §; ,,(z) = % with the empirical

numerator N = — 2=i=1 y’iiev_(; C7v 4nd denominator D — S e~V (e"(2=v:)) where we recall
Yi NAN (0, (1 — e~2t)1,). In the following proposition, we explicitly compute the variances of N
and D using the formulas above. In what follows, we shall denote N = E[N] and D = E[D]

Proposition 12 (Variance of estimators) Let ¥, . .., Yy, i.id. distributed as N'(0, (1 — e=2%)Iy).

Denote by 7 a standard normal density, and by N (2) and ﬁ(z) the numerator and denominator of
the estimator defined in Eq. B. We have:

2V —td
Dy Zave
n

(2108(2)(2) ~ 2B 4 19052 17(2) )

P (2) Zave
Zave

E[IN - N|I*] <
E(|D - D|*] <

Proof. For the numerator, we have

~ —1 n yie_v((z_yi)et)
N-N=-") " Hew—

i=1

+N,

hence, since the y;, i = 1,...,n are i.i.d. distributed as Y; ~ N(0, (1 — e~2%)1y),

Yte_v((Z—Yt)Et) - EE {||§Q|2€_2V((Z_Yt)et):|
n

1—e 2

B[N - M) = 2E - N(2)

(1 _ e—2t)2

Taking in the trace in the log hessian identity in Proposition [l yields

Yi||2e—2V ((z=Y3)e) ] Alog(w -
gl t|<1_e—2t>2 = (ato() - T2 6()+\|wog( V)I2) Y Zove .

Similarly, we have

hence we get using again Proposition [,

~ 1 t t 2V()NZ e*td
E[(D — D)?] = - (E[efw((zfme )] — E[e=A(—Y0)e >]2> < %. (26)

O

We can now prove Proposition B.

Proof. Define the event A = (D >nD) N (||N|| < x||N||) where y < 1, > 1 are positive scalars
to be chosen later. We start to decompose the quadratic error as:

I

2 2

. 2
N_N
D D




We now separately analyze the first and the second term. For the first term, define
6:Rx R* - R
2

(z.p) |2 = 5|

P
The gradient and Hessian of § are given by

-2 (N 2| . N
Vﬁ(x p) (ﬁ - %v % - <%a 5>) )
—1, (Lz — %)T
V20(z,p) = =2 N mp 2 Y
PANE-D) 3| 2 D)

We thus make a Taylor expansion of order 2 of (N, D) around (N, D): there exists (a random)
t € [0, 1] such that

O(N,D) = (N, D) +VO(N,D)" (N — N,D — D)
+%(1\7—N7D—D) V20(N;, D;)(N — N,D — D).

where we denoted N; = N + (1 — {)N and D; = {D + (1 — {)D. The two first terms in the
expansion are null and we are left with

o 1 [, - N; N . R
O(N,D) = — <N—N2—2 2-t __ N—-NYD-D
(8.0) = 55 \IN = NI - 225~ 5.8 = M)(D - D)
|V 2 tN>
+ [ 3= — , =
( D i D
1 N Al N:[|| NV R
< |V — N\|2+2H2t H il + 2= (|51 | (D —D)* | .
t» b, b; D

Hence, almost surely over A

~ 2
N N 1
b (1

D D

|5

Hence, after taking the expectation and applying Cauchy-Schwarz, we obtain

(5)w-nr).

N 2
N N

6K
f)_DH Lal = o2 o

E[N - N|*] +

2
5 R
B

Now recall that D = p} Zye~'? and that & = Vlog(p}’) which, combined with Proposition [2

yields for the first term:

E[|N — N|?] P Zyy e ( oy Alog(m) ) 2V 2)
< Al 1
n2D?2 = n2(p))2(Zv)2n Og(pt ) = + |V Og( )”

for the second term:

= || B0 - N2 2E(D - DY2

al

(;)2E[<D ~ D)),

6K

6/£pt Zoyetd
D2

7 (p!)?(Zv)’n

Alog

1/2
S8 V108 )

IV tog (o} ) | (A Lo (47" -

N ~ A
—|||IN=N|||D-D| <
5[ 1-x110-D1 <

and for the last term:
2 2
5'1) K ) (D—D) < 5k%p;Y Zov et

7D PV P2y Y eI
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Hence we finally obtain

N 2
N NH . 3 Zaye'd Alog(r) V2

6
B D] | < g I stob N [B1es() ~ TG 4 1910521
t

2V Alog(m) K\ V|2
27

Let us now handle the quadratic error of the estimator on the complementary A. We have, using
Young’s inequality ||a — b||? < 2(||a]|® + ||6][?),

P(A) +2E {]lg

D D

max; Hyi\lz}
(1—e2t)2

il

1 <2‘

Now, recall that X; = ||y;||?(1—e~2¢)~! are n independent variables such that for all i, X; ~ x2(d).
Using Holder inequality for some p > 1, the second term can be upper-bounded as

max; y[®

Ellg (1— e 2)2

1 1
} <7 _e_QtE[m?fo]l/p]P’(A)l /p

1 . 1 _—
= m(”E[Xﬁ)l/pP(A)l Yr < m"l/p(ﬂhr 2p)P(A) 17,
where we used in the penultimate inequality that the max is smaller than the sum, and in the last one

that E[X71] = [T}, (d + 2i) when X; ~ x%(d) combined with the fact that the geometric mean is
lower than the arlthmetlc mean.

We now upper bound the probability of the event A = (D < D) U (|N|| > «||N||). By Cheby-
shev’s inequality, using 1 < 1, it holds that

E[(D — D)? pi" Zove!t U
P(D < D) < D2(5 — 1)2 = n(py Zv)2(n—1)2 "~ n(np—1)2"

Similarly, recalling that || N|| = D||V log(p;")|].

Y 7 — N2
P(||N| > &[|N|) < m
v 2 Alo ,
= nHVIog(py)H?(,i_ 1)2 <Alog(pt ) 1 _g( ™) + ||Vlog( )H )

We now make a disjunction of cases: if |Vlog(p;)|| > 1, we pick n = 1/2 and k = 3/2 so we
recover

~ 2
g_g| 1i| <2 [aog(e) - 20 4oy 910a(o)) 2]
n'/P(d 4 2p) [8U ovy  Alog(m) V(12 o
+W[ (m g(pf") - T— 5 +IVlog(p)l +1)}
U {Alog(pfv) flog( ™) +2|Vlog(p} )llﬂ
I S (s tog) - 25T o)1 1) +1]
We thus pick p = log(n) to get
Alog( )

N 2
N N 16¢%(d + 21og(n)) oV 5
5o ] < oD [ () - S5 1) 1]
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Combining this with the bound Eq. 7 eventually yields

62 og(n (6]
< Py v (8 108(e2Y) — TEEG + 19! + 19 103217 41) 1]

where we used the inequality

S8 1 log (Y
Alog( )

1-—

IV log (pt) | {A log(p7") - }1/2

<5 (I 1086} ) I + Alog() - IV Io(Y)1?) -

|2 < 1, we instead pick = 1/2 and k = 1 + ———-——. We obtain

In the case where ||V log(p;) 2V Toe (7]

that

P(A) < % (Alog(pf ) — fiof( m IV 1og (p)) II* + 1)

and as previously, for p = log(n) we get

~ 2
N N 16€?(d + 21og(n)) oy Alog(m) V2
Hﬁ_D ]lA S ’rL(l—e_Qt) |:U (Alog(pt )—m—FHVIOg(pt)” +1>+1:| .

E

For this choice of «, 7, the bound on A becomes

~ 2
N N 4U Alog( ) 1/2 Alog(n)
B |5 -3 14| <50 (6|ans2) - TEG 4 (V108 )I| + Alog(Y) - T2 +6)
] ] 4aU Alo
< 2 (7at0g(6") - TGN 4 61V 108 (02" 2+ 1))

Thus, we obtain as previously

32¢2(d + 2log(n))
n(l —e=2)

Alog(m)

5 < U (al0g(p?") — 2T 4 910812 + 1V lom (0212 1) +1]

O

D Proof of Proposition B and Lemma B

Before starting the proofs, we recall the following usefull lemma that bounds the second order
moment of dissipative distributions.

Lemma 13 Let V be such that (VV (z),z) > al|z||> — b. Then for p o< eV, denoting ms the
second moment of L, it holds that my < b'g—d.

Proof. Define the Laplacian of pas L(f) = Af — (VV, V f) for f sufficiently smooth. By integra-
tion by parts, it holds that

[ E@) @) =0,

In particular, for f(z) = ||z||?, we recover [(VV (z),V f(z))du(xz) = 2d. For V dissipative, it
implies

a/||x||2du(a:) <2d+b,

or equivalently mo < (b + 2d)/a. O
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D.1 Proof of Lemma 8

Proof. The first inequality was shown in the Lemma above. For the Fisher information, it holds that
Zpm) = [ 19V (@) - olPdu(o).

<2 / (VV(z),VV (z)e™V )/ Zyyda 4 2ms

= 2/AVdu(w) + 2ma,

There remains to lower-bound 14(0). Denote 2* a global minimizer of V. By dissipativity, it must
hold that ||z*||> < b/a. Now observe that

1
V(z*) -V (0) :/ (z*) T V2V (ta*)z*dt < Blla*||*.
0
Combined with the fact that for all z € R?, it holds that V(x) — V(2*) > 0, be recover that
V(z) —V(0) > —B||=*||* > —Bb/a. Furthermore, for 0 < § < 1, we have

1
Viz) —V(0) = /0 (VV (tz), z)dt,
_ /1(VV(tx), 2)dt + V(62) — V(0),
61
2/ (VV (tx),tz)/tdt — Bb/a,
)

1
;/mmW—ww—mm,
)

= a||x|\2/2 — a(52\|x||2/2 + blog(d) — Bb/a.
In particular, for § = 1/ /2, we obtain
V(z) = V(0) > allz|?/4 = b(B/a +1og(2)/2).

Hence, we have
)

1(0) = m,
1
T e VE@-VOds
< 1
- fe—al\wll2/4+b(ﬁ/a+log(2)/2)dgg
— ¢~ b(B/a+log(2)/2) (a/2)d/2(27r)_d/2 ]

Since 5/a > 1 and log(2)/2 < 1, we recover that 10g(u(0)’2/d) < 4pb/ad 4 27 + log(2/a).

O

D.2 Proof of Proposition f

Recall that the intermediate scores read
z = e_tEQt,z [Y}

Viog(p/)(2) = —— 25—
_llemta—z?
with ¢, ,(x) o e~V(@)e 20-<720) | In particular, if V' is dissipative with constant a, b then it holds
that
e e tr — 2)
1—e 2

eft

1-— e_Qt(

(=Vlog(gr,2) (@), ) = (VV(z) + )

> allz[|* — b+ e ll? = (2, 2)).
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Now recall that e ~t||z|2 — (2, x) > —e||z||?/4 which yields

(=Vlog(gqr,.)(x), x) > allz|> — b+ ||2]*/(4(1 — %))
Hence, using Lemma [[3, it holds that

20+ ||12112/(2(1 — e~ 2t)) + d
E,, [Iv]? < 2 AN (a D+d
Hence we recover that
2|2 2e= 2R, [|IY]?]
/ ? dt,z
||Vlog(pt )(Z)H < (1—e2t)2 A

2|21 e (2(2b+d) I [El )

T (1—e26)2 (1 —e2t)2 a e

I?

N (2 N e 2t ) 2e724(2b + d)
(1 —em2t)2 a(l —e=2t) a(l—e-2t)2 °
Similarly, recall that

e~ 2t Cov,, . (X)
Vlog(p) ) (2) ~ ¥ log(m)(2) = 1 (oteel) )

—2t

from which we can deduce Alog(pi") < 7%=z Eq, . [[|Y']|?] which yields again

_ot 2
oV e |E4| 2b+d
Alog(pt )< (1 — e—2t)2 (Qa(l —e~2t) + a '

E Proof of Lemma 7

Before starting the proof, we recall the result of Mikulincer and Shenfeld [Z023].

Proposition 14 Let i be a 3-semi-log-convex probability distribution. Then, denoting p)’ the distri-
bution of the forward process in Eq. [l and T the density of the standard Gaussian, it holds for all
z € R that

(B—1)e~*

e H)(B-1)+1

V?log(m)(2) — V2 1og(p; ) (2) < Iy. (28)
Proof. Define the Ornstein-Uhlenbeck semi-group (); as

lyll?

@) :/ glze™ + V1 —e2y)em 2 (2m) " dy

1 (u) *7llu_67t;“2 (2) /24
= ———— [ glu)e 20-¢77H (27)" u,
V1—e 2 /
for all function g integrable w.r.t. the standard Gaussian measure. Taking g as f = ‘di—ﬁ with 7 the
standard Gaussian, we obtain that
2 Jlu—e"tz)?
Quf)(=) = Wels e H T du

1 / —V(w)
_— e
ZyvV1— e 2t

lul2(1—e=28) —jju)2+(z,ue "ty —e =222
2(1—e—2t) du

1 / —V(u)
e e e
Zv\/ 1-— 6_2t

—luet =22+ |z)2—e =2t 2|2
2(1—e—2t) du

1 / —V(u)
—_— e e
Zv\/ 1—e 2

L2 flue=t—z|2

e  ue—t—s

e /e—V(u)e 2(1—e—2%) dqy .
Zv\/l — e*zt

In particular, we remark that Vlog(Q:(f)) = Vlog(p}) — Vlog(w). Now, the quantity
Vlog(Q:(f)) was studied in Miknlincer and Shenfeld [P023] and they prove in Lemma 5 that for

all z
(1—pB)e
I—e(B-1)+1

V2 1og(Q(f))(2) = la,

28



which is equivalent to

(B—1)e

V2 log(m)(2) — V?1og(p; ) (2) < 1—e2)(B—1)+1

d -

Before proving Lemma [, we introduce this preliminary result on the evolution of ®;.
Lemma 15 (Evolution of the ratio) Let t > 0, it holds that

0P, = @, (Alog(®y) — (Vlog(®,), Viog(m)) + ||V 1og(®:)[|* + 2(VIog(p, ), Viog(®:))) -

Proof. Recall that the log-density log(p}”) evolves as

dylog(p,) = Alog(py) + [ Vlog(p!)I” = (Viog(pt'), Vlog(m)) — Alog(m).

Hence, we deduce that log(®;) evolves as
0y log(®;) = Alog(®y) — (Vlog(®4), Vlog(m)) + [[Vlog(p?¥ ) I* — |V log (p} ) || -

The difference of quadratic terms can be expressed as

IV 1og (") 11> — [V 1og(pt )| = [V 1og(®:) + Vlog(p} ) [I* — [V log(p) I?

= ||V log(®) || + 2(V log(p;"), V 1og(®1)) ,
which allows to recover
By log (@) = Alog(®y) — (Viog(®y), Vlog(m)) + ||V log(®:)[|* + 2(V log (p}), V1og(1)) -
O

We now provide the proof of Lemma [1.

Proof. Until the rest of the proof, the dependence on z of the integrand shall be implied unless
expressed explicitly. We start by differentiating m(®;) with respect to ¢:

8,577’10(‘1),5) z/ﬁt(btdz

= / ©; (Alog(®;) — (Vlog(®y), Vlog(m)) + ||V log(@4)||* + 2(V log(p;), Viog(®1))) dz
where we used Lemma 3 to compute 9;®;. Using integration by parts, the first term reads
[ v log(@)d =~ [(78, Tiog@0)d = - [ 6,7 ()|
hence the first and the third terms cancel and we recover
Opmo(Py) = 2 /<v log(p;'), V®;)dz — /<v log(m), V®;)dz.

Using integration by parts again, we recover
Ogmo(Dy) = /Alog(w)@tdz - 2/A10g(p2/)(1>tdz
= 2/(Alog(7r) — Alog(p}))®:dz — /Alog(w)@tdz

= dmo(®;) + 2 /(A log(m) — Alog(p; ) ®edz .

Using Proposition [, since y is 3-semi-log-convex, the term (A log(m) — Alog(p}’)) can be upper-

bounded uniformly by % so we eventually get

2(8 —1)e~2t >
A= p-D+1)

5‘tm0(<I>t) S dmg((pt) (1 +
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Hence we can use Gronwall’s lemma which yields

t 28 — e
mo (@) < mo(Pp) exp (d/o (1 + (e (B-1)+ 1) ds) .

Denoting by Zy (resp. Zy) the normalizing constant of e~V (resp. e=2""), the term mq(®) reads

2V 7 —2V (z) 7)2
mo(@o):/po (z)d —av [c d (Zv) .

W Zav) VO T Zy

Finally, let us compute the integral above. Making the change of variable u = ¢~2%(3 — 1) we have
du = —2( — 1)e~2ds which yields

O _ e
/0 e E-1+1" " /ﬁ—l F—u

— [log(8 — w)] ¥V
=log(B— (B — 1))
=log(B(1—e ") +e ).

Hence we recover

mo(®y) < e(zv)?

< (B - e 4 e O

In order to recover a bound on the second moment of ®,;, we need several intermediate results. We
first prove that the maximum of the ratio decreases through time.

Lemma 16 (Decrease of the maximum of ®) The maximum of the ratio ®; decreases with t.

Proof. Let z; be a point where @, attains its maximum and denote M; = log(®;)(z;). By the
implicit function theorem, z; is differentiable hence we can compute 9y M; as

Oy My = Oy log(®y)(2¢) + (O 2¢, V log(®y) (1))
= Alog(®¢)(2t) -

Since z; is a maximum, we have in particular A log ®;(z;) < 0 which implies that M; decreases.
O

We then derive an upper-bound on the maximum of a log-smooth distribution.

Prop(()isition 17 (Upper-bound of the maximum) If p is B-semi-log-convex then it holds that g—’: <
B8 \2
(35)"
Proof. Recall that the density of u can be re-written as
d,u e—(V(Z)—V*)
dz [ VEVIdz”
where V, the minimum of V attained for some z,. By definition e~ (V(*)=V+) < 1 for all 2. Further-
more, since V' verifies V2V < 31, we are ensured that
2

which implies in particular that

vl

1 5
fe—(V()—szS(%) -

Using the previous result, we can derive an upper-bound on the integrated squared gradient at 0.
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Lemma 18 (Upper-bound integrated gradient) Let 1 oc e~" be a 3-semi-log-convex measure. De-
noting 1(0) the density of p with respect to the Lebesgue measure at 0, it holds that

/ 1V log(pY )[I>(0)ds < —log (1(0)) + glog (%) .

Proof. Denoting 7 the density of the standard d dimensional Gaussian, recall that the density p;”

evolves as
ot =9 (s viog (2))
Orlog(p/) =~y

—(Vlog(py), Vlog(m)) — Alog(n)

= Alog(p}') + [Viog(p} ) — (Viog(p}'), Vlog(r)) — Alog().

In particular, for z = 0 this yields

d¢log(p;)(0) = Alog(py") (0) + [V log(p;)[|*(0) — Alog(m)(0),

which can also be re-written as

ApY

which implies

t
| IV 1080} 0)ds = log (o) (0) ~ log o) / Alog(m)(0) — Alog(p)) (0)ds.
0
Using the uniform upper-bound of Proposition [4, the second term can upper-bounded as
t —2s
(B—1)e
Al — Al ds <d d
/ og(m Og(pt )(0) 5> /O (1—e2)(B—-1)+1 $

1 1
e 5 RS

log(B(1—e ) +e ).

N N

Furthermore, Proposition T4 shows that —V? log (py ) = Thus, using Proposition

B
B(l—e2t)fe 2"
[[7, we recover that log(p}”) (0) < 4log (W) — 21og(2m). In particular, we recover

t , d d d
[ 19105} 2(0)ds < —tog (5 0)) + 5 108(5) ~ 5 log2m). O

We can now bound the first order moment of ®,

Lemma 19 Let p be a B-semi-log-convex measure with finite second moment ma. It holds that

(@0) < G0 tasn) (g1 _ =2ty 4 =20y <F+ —2log (1(0)) + d1 ( >+2f>
mi(®t) < Zov e e og (i og

Proof. We differentiate m;(®;) and we recover

Oymy (P) = /@t (Alog(®;) — (Vlog(®y), Viog(m)) + [[V1og(®:)|* +2(Vlog(p}'), Viog(®y))) ||zl dz

Integration by parts of the first term yields

/ D1 A log(®y) | 2/|dz = — / @,V Tog(@0) 1] + (Vb o)z

hence the squared gradients terms cancel and we recover

atml(@t):/@Vlog(pY)fVlog(w),V@QHszz7/<V<I>t, Ydz
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Let us denote by A the first term above. Integration by parts yields:

2 yde

A= /q)t(Alog(ﬂ) —2A log(py))||z||dz+/@t<V10g(7r) —2Vlog(p}), T

~ [ @utog(m)lldz + 2 [ @i(alog(m) - Alog(p} )zl
= (d+ 1)m1(<l>t)+2/¢>t(Alog(7r) —Alog(p}’))uzlldz+2/<I>t<Vl0g(7r) — Viog(p)),

- /<I>t<Vlog( ) e+ 2/(I)t<V10g(7r) ~Vlog(n)),
z
—)dz
1]
Using the upper bound given in Proposition M, we get 2 [ ®,(Alog(m) — Alog(py’))|z]ldz <

Qdel( +). Similarly, we re-write the second term as

z

2/<I>t<Vlog(7r)—Vlog(pt) - ”)dz—Q/‘I)t(Vlog (;I:V) (2) = Vlog (ptv> (0), = )dz

/<I>t<V10g <7:V) (0),ﬁ>dz

)2t
(B _(15)(1 i)e—Qt) T + 2V log(py ) (0)|mo(®y) -

Let us now handle the term B = — [(V®,, ”—§”>dz In one dimension, B = 2®,(0) < max(®;)

and for d > 2, we have
po B0,

2]

< 2mq(Py)

121l
:/ <I>t(d—1)dz+/ q)t(d—l)dz
Br Il 5 2l
d— d—1
< max(@t)/ dz—|— ——mgo(Py)
Br Il R
274/2 d—1
= i L ———mg(Py).
max( t)F(d/Q)R + 7 mo(Py)
Using Lemma I8 and Proposition [[4, we have that max(®;) < max(®y) = (2"2 max(?ﬁ ) <

(Z)%(5)4/2, Hence, if we pick R = (Zaymo(®,)T(d/2)/2%) """

upper-bound for B:

[=1/291/2=1/d e get as an

ZQ
B < L a5 (80 Zay 23) T T (d)2)

27} d-—1
< Tvvdﬁ(mO(@t)sz/Z\%) 2
2V
In particular, we recover that

(B—1)e~?
B-D1—e2)+1

+2[|Vlog(p;") (0)[lmo(®¢) +—meo (1) Zov /Z3) T, (29)

Oymq(®) < (d+1) (1 +2 > my(Py)

hence using Gronwall lemma, we have that

m1(®y) < V(B — e7) + e ) imy (@)

t t(d+1) =2t —2t\d+1
v iaq D (B(1 - =) 4 o)
+ QA [||Vlog(ps )( Mimai (@) + /dB(mo(®s) Zov /| Z3) T ] ST (B(1 — e~ 25) 4 ¢—25)d+1 ds.
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Using Lemma [, we have that mq(®,) < %e”(ﬁ(l — e72%) 4 e72%)4 hence the first term of the
integral is upper-bounded as:

/t e 5@ Dm,(9,) ||V log(pY ) (0) / (V1 O]l - d
0 (B(1 — e725) + ¢ 25)d+1 o8 (r) B(l—e2%) +e 2 >

By Cauchy-Schwarz it holds that

—S

" Viog(p)(0) e~ ' e 2
- 1 2d ds.
o L —em) b e L/”VOg“ Ol A (Bl =)+ e

The integral term is given by

¢ e 2s 1! 1
/ 5 R 2ds = 7/ —Qdu
o (B(1—e2%) +e %) 2 Je—2e (B(1—u)+u)
— 1 [ 1 }1
T 21-8)" Bl—u)+uc”
— - 1)
T21-pB) Bl-e ) e
B 1—e 2t
2(8(1—e ?) +e7%)
Similarly,
d—1 7S(d+1) d t e—2s 4
D) T <
/0 mo(®s) (B(1— e=25) + ¢—25)d+1 5 /o (B(1 —e=25) 4+ e25)2 5
1—e 2t
2B - ) e )
Hence, we obtain
Z\2/ t(d+1) —2t —2t\d+1 Zav
(@) £ e D (B(1-em2) e 2 ( 2 (B0) + ~2log(u(0)) + dlog ( 5 ) +/dB
2V \%
Vi(z) 2
Finally, m, (®g) = (2/‘2 [ Iz er v dz = (?2/‘2 ma(p). o

We can now derive our upper-bound on mg (D).

Proof. We start by differentiating mo(®P):

Dyma(®,) :/||z\|28t<1>tdz
= / 12)12(div(V®:) — (Vy, Viog(m)) + 2(Vlog(py ), VO;))dz
_ —/2(2,V<I>t>dz + /(Alog(w) 9 log(p} )11 ®edz + 2/<v log(r) — 2log (pY ), 2)®yd=
_ 9 / Alog(r)Pydz — / Alog()|12][2®ydz — 2 / (V log(), 2)ydz

2/(Alog(7r) - Alog(py))HzH%I)tdz + 4/<V log(m) — Vlog(pf),z)fbtdz
= deo(q)t) + dmg(q)t) + 2m2(¢>t)

2/(Alog(7r) — Alog(py))||z|>®.dz + 4/<v log(m) — Vlog(p; ), z)®edz .
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The first term [ (Alog(m) — Alog(p}’))||z[|*®;dz is upper-bounded by %
and for the second term we have

/(Vlog(w) — Vlog(p}),z)®:dz = /(Vlog( ) (2) — Vlog( ) (0), 2)®@;dz

/v1og( ) 2)®;dz

L—1)e 2
S/ (1—2—%)(;6— gl ez + g (p) ) 0] / ELXE

_ (B—1)e*
S (l—e2)(B—-1)+1

dmg ((I)t)

ma(®) + ||V 1og (p,) (0) [ (@) .

Hence we recover

2(8 — 1)
(I—e2)(B—-1)+1

‘We now use the Gronwall lemma to obtain

Oy (®y) < (d+2) (1 + ) ma(Pe)+4]|V log(py ) (0)[|my (1) +2dmo (D) .

(@) < ) (31 o) (m2<<1>0> v2 [ CRCm@IToslpy )OI+ dmo(@s))ds)

(5(1 _ 6728) + 6728)(d+2)

Recalling the upper-bound m; (®;) < et @+ (B(1 — e72t) + e~2)4+1C where C is defined in
Lemma [[Y, we upper-bound the integral term as

—s(d+2) \val v
/0 e G m;(%))ﬂeoi()pdﬁ C/ ) _2€)||Vlog( s)(O)HdS

o—25
2
¢ / B(l—e25) + e 29)2 / IV log(py) (0)]|2ds

—o i [ iveseh)o)kas.

IN

Similarly,

6725

t (d+2) t
P,)ds <
|, e e < [ Gy
1—e2
T2

Hence we recover that

ma(®y) < T2 (B(1— ™ 2) 4 ¢~ 2)d+2 <m2(<1>0) +2C  —2log (1(0)) + dlog(%) + d) .

Using the expression of C, we recover eventually that
t(d+2) 772
2¢t )ZV

1—e~2t)pe—2t)d+2
Zow ) )

ma(p) +d(8+ 1) — 4log (1(0)) + 2dlog(%)} .

O

ma(Py) <

F Proof of Theorem 9

Proof. As Proposition B shows, the average error of the estimator can be upper-bounded as

dlog(n)e"Zovpi" (2) [__Jl2lI?  b+d

. — Vioe(nY) ()12
E[”Stﬂl(z) V1 g(pt )( )H ] Sz na(Zv)Q(py(z))g (1 — 6_2t)4 (1 — e_gt)g
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Hence, the average integrated error reads

B[ 80n(2) — Viog(o} ) (2) P2}
< d6d+2 log(n)QQt(dJrl) {szmQ(q)t)eft(dJ&) N ng(b + d)mo(q)t)eft(dJrZ)
na(l —e=2t)4 (Zv)? (Zv)?
We then apply the upper-bounds in Lemma [ and in Lemma B and we recover

d+3 oo(n 62t(d 1)
E| / [50n(2) — Vo (8} ) (22dpe(2)] S L2 jzagQ((l)— e—;rf o

(30)

We thus set n as n = dmax(e 21+ =5y — ¢=2(d+D+1 and we eventually get for ¢ < t <
log(1/€) that

) ef3(b+d

1[50 () - Vios(o}) ) Pap ()] 5 TG0

Hence, plugging again the bounds of Lemma B in Theorem B, we recover the desired result. O

a2
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, ad-
dressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes], ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (12 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evalu-
ation. While "[Yes] " is generally preferable to " ", it is perfectly acceptable to answer "

" provided a proper justification is given (e.g., "error bars are not reported because it would be too
computationally expensive" or "we were unable to find the license for the dataset we used"). In
general, answering " "or "[NA] " is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question,
in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

¢ Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Check-
list'"',

¢ Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: the abstract and introduction list our contributions, i.e. novel complexity
guarantees for a sampling algorithm that simulates a time-reversed diffusion with a specific
estimator of the intermediate scores.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]

Justification: we discuss the limitations of our theoretical results in the Related Work sec-
tion.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: For each theoretical result, we worked with justified assumptions, making
all the dependencies of the problem clear. We provide clear and detailed proofs in the
appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]

Justification: Our experiments are simple and illustrative of our theory. We provide details
on how to reproduce them.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: our experiments are illustrative, we do not use specific datasets.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: our experiments are simple and we detail their setup.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]

Justification: our experiments illustrate a theoretical result on the convergence rate of an
algorithm. The goal is not investigate the stochasticity of results across different runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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9.

10.

Justification: Our experiments are simple. We detail how long they take to run on a local
computer.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

» The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: In our opinion, this paper does not address societal impact directly, and con-
siders the generic problem of sampling from a distribution.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: In our opinion the paper does not have direct positive or negative social im-
pact.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11.

12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper does not present such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: we coded our our own experiments that are illustrative of our theoretical
result.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/
dataset d has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]
Justification: we document the setup of our experiments.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.
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14.

15.

16.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: our experiments do not involve crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: our study does not involve risk for participants.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs are not a part of this research project.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
r.1.v) for what should or should not be described.
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