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ABSTRACT

Web-based “deep research” agents aim to solve complex question-answering
tasks through long-horizon interactions with online tools. These tasks remain
challenging, as the underlying language models are often not optimized for
long-horizon reasoning and exploration. Prior work has proposed workflows
for constructing instruction-tuning datasets, often leveraging knowledge graphs.
However, such methods typically lack fine-grained control over difficulty and
quality, yielding synthetic data that falls short of capturing the complexity required
for long-horizon reasoning. Furthermore, many studies conflate data and training
effects by comparing models trained under different optimization recipes, making
it difficult to isolate and evaluate the effectiveness of the data itself. We introduce
a two-pronged data synthesis pipeline that generates question–answer pairs by
progressively increasing task complexity until a frontier baseline web agent fails.
The baseline agent plays multiple roles in this process: attempting the questions,
validating factuality, checking for alternative answers, and enforcing filtering. To
evaluate the effectiveness of our synthesis methods, we adopt a controlled training
setup based on distillation from strong web agents. Experiments across multiple
web-based benchmarks show that our dataset1—despite being smaller—enables
the training of more effective web agents than existing datasets. In particular, our
data exhibits twice the diversity in tool-use actions, allowing models trained on it
to achieve stronger performance while avoiding repetitive tool-calling behaviors.

1 INTRODUCTION

With the rapid emergence of Large Language Models (LLMs) as agents for downstream tasks, their
capabilities in web search, data analysis, coding, and related functions have expanded significantly,
giving rise to a class of web-based “deep research” agents (OpenAI, 2025; Li et al., 2025a;c; Nguyen
et al., 2025). These agents, especially when implemented as single-agent systems, often engage
in long-horizon, multi-turn tool-use sequences that can span hundreds of steps (OpenAI, 2025).
Such capabilities, however, do not come by default in most pre-trained LLMs, even those tuned
for multi-turn conversation and function calling (Yang et al., 2024; 2025). It is well admitted that
building effective web agents requires two primary pillars: data synthesis and model optimization
(Li et al., 2025c;a;b; Tao et al., 2025; Gao et al., 2025). Data synthesis focuses on curating and
constructing challenging question–answer (QA) datasets that elicit multi-turn reasoning and tool
use, while optimization typically involves supervised finetuning (SFT) and/or reinforcement learning
(RL). Because both the training process and the underlying LLM strongly influence downstream
performance, it is often difficult to isolate the effectiveness of the data synthesis pipelines or the
resulting training sets. In this paper, we aim to address this gap by focusing exclusively on validating
data synthesis methods under a controlled training recipe: distillation from strong web agents.

Prior work has explored several strategies for generating synthetic question–answer (QA) data. Some
approaches construct knowledge graphs from which QA pairs are derived (Li et al., 2025a; Tao et al.,
2025; Gao et al., 2025), while others apply iterative transformations such as obfuscating details or

1Subject to institutional approval, we plan to open-source the dataset later. See the Appendix for some
examples.
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Figure 1: Overview of our ProgSearch two-pronged synthetic data generation pipeline. In the
top-down approach, a tree-of-facts is constructed from a seed entity and complex QA pairs are
synthesized via an iterative refinement method. The bottom-up approach selects a rare entity and
iteratively generates a multi-constraint question about that entity. Synthesized data is then passed
through quality and uniqueness filtering process to rule out problematic samples.

injecting new facts to form questions (Gao et al., 2025). Quality filtering—though implemented in
diverse ways—is a common step in these methods. However, these methods often lack fine-grained
control over question difficulty when evaluated against strong post-trained web agents, as such agents
were not incorporated into the synthesis process. As a result, the generated data may fail to produce
the desired difficulty level needed to challenge and improve an already capable agent. While effective
for training agents from base LLMs, these approaches tend to yield limited gains when fine-tuning
instruction- or reasoning-tuned models, or LLMs already optimized for tool use.

In this paper, we introduce a two-pronged data synthesis pipeline called Progressive Search or
ProgSearch for generating question–answer pairs through iterative refinement (Figure 1). The
difficulty and complexity of questions are gradually escalated by progressively incorporating new
supporting facts, with a baseline web agent used to regulate difficulty. The first prong adopts a
top-down approach, where a tree-of-facts (rather than a knowledge graph) is constructed, and QA
pairs are synthesized by incrementally integrating facts along the tree branches. The second prong
follows a bottom-up approach, where a fixed rare entity serves as the ground truth anchor, and
progressively harder questions are generated through obfuscation and fact fusion. In both approaches,
the baseline web agent plays a central role in the progressive refinement process: acting as a solver
to gauge question difficulty, a questioner to synthesize QA pairs, a researcher to extract supporting
facts from the web, and an evaluator to ensure factual accuracy and compliance with constraints.

To demonstrate the effectiveness of our synthesis process and the resulting QA dataset in comparison
with existing open-sourced alternatives (Shi et al., 2025; Gao et al., 2025), we employ a strong,
well-tuned multi-turn web agent based on GPT-OSS (Agarwal et al., 2025) to generate distillation
trajectories via rejection sampling (Touvron et al., 2023), retaining only those that conclude with
answers consistent with the ground truth. These trajectories form the training data for supervised
finetuning of Qwen3-8B (Yang et al., 2025) and Qwen2.5-7B-Instruct (Yang et al., 2024). With only
the training data source being varied, we then evaluate the tuned checkpoints on widely used web QA
benchmarks—GAIA (Mialon et al., 2023), HLE (Phan et al., 2025), and BrowseComp (Wei et al.,
2025)—under a strict contamination blocklist (Nguyen et al., 2025).

The experiments show that despite being smaller in size, our dataset delivers stronger downstream
performance, yielding gains of up to 8% on Qwen3-8B and 23% on Qwen2.5-7B. Ablation studies
further show that trajectories in our data contain up to 4× more tool-calling actions than those in prior
datasets (Shi et al., 2025), highlighting the greater complexity and reasoning depth of our synthesized
QA pairs. Post-SFT, checkpoints trained on our synthesized data also demonstrate more diverse tool
use, which directly translates into stronger benchmark performance.
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2 RELATED WORKS

Web-based or deep research, agentic systems, which are designed to solve complex and search-
intensive questions (Mialon et al., 2023; Phan et al., 2025), have recently gained significant interest.
Such systems essentially consist of large language models (LLMs) connected with the Internet via
searching and browsing tools, as well as occasionally coding tools (OpenAI, 2025; Alzubi et al., 2025).
While there have been multi-agent approaches to build such a deep research system (MiroMind,
2025; Zhang et al., 2025; Alzubi et al., 2025), others have sought to build singular agents where a
single LLM engages in a multi-turn interaction with the tools, either in React style (Yao et al., 2023;
Agarwal et al., 2025; Li et al., 2025a;c) or with customized memory managements (MoonshotAI,
2025; Nguyen et al., 2025). These singular agents are often fine-tuned specifically for long-horizon
tasks via instruction-tuning (SFT) and/or reinforcement learning (RL), often with synthetic question
answering (QA) data created at scale via diverse synthesis pipelines - the focus of this paper.

The training of LLMs with synthetic data is no stranger in the field (Wang et al., 2022; Gunasekar
et al., 2023; Qin et al., 2025). For long-horizon web agents, existing datasets like HotpoQA (Yang
et al., 2018) or 2WikiMultihopQA (Ho et al., 2020) have been indeed used (Li et al., 2025c). But
using them to train an already well-tuned LLM might be ineffective because they are too easy for
modern reasoning LLMs, or they are already contaminated during the models’ pretraining stage.
This prompted various works to propose different synthetic QA data generation pipelines (Li et al.,
2025a; Gao et al., 2025; Shi et al., 2025). There are numerous ways to construct such a synthesis
pipeline. Some seek to construct knowledge graphs that web documents (Li et al., 2025a; Tao et al.,
2025; Lu et al., 2025). Others propose to use iterative refinement processes to create questions
through obfuscation (Gao et al., 2025; Shi et al., 2025; Liu et al., 2025; Lu et al., 2025; Li et al.,
2025b; Wu et al., 2025). Nonetheless, fundamentally, previous approaches have either not make
use a live web agent to gauge the data difficulty in a controllable manner that would align the data
to agents’ capabilities (Li et al., 2025a), or lack various procedures and constraints that would rule
out low-quality data, such as questions with multiple plausible answers. Practically, many previous
works do not provide sufficient details to reproduce their pipelines or have not open-sourced their
datasets fully (Tao et al., 2025; Li et al., 2025b), nor there have been a systematic analysis of the
various data synthesis process that is independent from the training algorithms.

Our ProgSearch synthesis pipeline is different from previous work in many ways. First, ours is
a two-pronged top-down and bottom-up comprehensive pipeline. The top-down prong builds and
leverages both a hierarchical knowledge structure, called tree-of-facts, as well as iterative processes
that gradually increase the question difficulty by stitching segments of knowledge one-by-one. The
bottom-up seek to build complex questions that point to a rare entity with low risk of contamination.
Second, our pipeline uses a strong baseline web agent for many purposes, including to measure the
data difficulty. Third, our pipeline employs many aggressive filtering measures to ensure question
quality, rule out vague questions with alternative solutions and factuality.

3 METHODOLOGY

Figure 1 illustrates our data synthesis pipeline, which begins by collecting a set of “information”
seeds. The seed set is divided into two subsets. One subset is used in the top-down synthesis process
(§3.1), where a tree-of-facts is constructed for each seed, and question–answer pairs are iteratively
synthesized with increasing complexity based on the fact tree. The other subset is used in the bottom-
up procedure (§3.2), where a novel rare entity is first selected from the seed’s topics. This entity
anchor serves as the ground truth answer, while corresponding questions are generated iteratively
through a solver–questioner hardening loop. These two processes target synthetic question generation
from different angles and perspectives, promoting diversity in question styles and structures. All
question–answer pairs are then passed through a rigorous consolidated filter (§3.3) to remove low-
quality samples and ensure they are realistic. In the Appendix, we provide more details about prompts
used (A.2) as well as formal algorithms that describes our synthesis procedures (A.1).

Collection of Seeds. Our data synthesis process begins with a set of information seeds, which can be
documents, statements or questions mentioning people, places, facts, etc. Among various possible
sources (e.g., web documents (Tao et al., 2025)), we select question sets from existing open-source
datasets (Ho et al., 2020). Although these questions are outdated, often trivial for modern agents,
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Figure 2: Top-down synthetic data generation with tree-of-facts.

and have likely contaminated the training process of recent LLMs — making them unsuitable for
direct fine-tuning — they remain valuable for extracting diverse topics, domains, and entities that
drive our synthesis pipeline. We gather these questions, perform domain/topic categorization for each
sample, and rebalance the mixture by filtering out over-represented domains/topics (e.g., movies).
The resulting curated set serves as the seed source for our synthetic data generation pipeline.

Baseline Web Agent. Our pipeline extensively leverages a baseline web agent G, a multi-turn
reasoning LLM (OpenAI, 2025b; Yang et al., 2025) equipped with three basic tools: search,
browse, and python. This agent is essential not only for acquiring new knowledge from the
web to construct challenging question–answer (QA) pairs, but also for attempting the generated
questions in realistic settings to assess their difficulty. By varying its instruction prompt, the agent
can assume different roles within the pipeline. As a solver (Gs), it is tasked with answering a concrete
question using the available tools. As a questioner (Gq), it generates questions and, when needed,
the corresponding ground-truth answers conditioned on context. As a researcher (Gr), it conducts
web-based exploration to produce factual information given entities or input facts.

3.1 TOP-DOWN SYNTHESIS WITH TREE-OF-FACTS

Our top-down synthesis approach, illustrated in Figure 2, aims to generate data in which both the
questions and ground truths are novel relative to a given information seed. Prior work has typically
relied on knowledge graphs, where nodes represent documents, facts, or entities (Li et al., 2025a;
Tao et al., 2025), and these graphs may be shared or independent across synthesized QA pairs. In
contrast, we construct a tree-of-facts, where each node encodes a relational fact linking entities. This
structure enables the systematic derivation of QA pairs with progressively increasing difficulty.

Tree-of-facts Construction. Given an information seed mentioning a key entity E0 (e.g., a person,
place, or fact), we initialize the root node N0(E0) that hosts content F0 = E0. For instance, if
E0 = “Stanford”, the root node hosts this entity. We then use the researcher agent Gr to search the
Internet and extract relational facts F1 = E0E1 that connects E0 with a novel entity E1; e.g., F1

can be “Stanford is in Palo Alto”. A new node N1(F1) is created as a child of N0. This process also
records source citations, which are later used for fact verification (§3.3). To expand from N1(F1), we
again prompt Gr to extract new facts F2 related to entities in F1 (i.e., E0E1), but explicitly exclude
entities already mentioned in its ancestor nodes (i.e., E0). In other words, we seek facts about E1 that
are novel relative to E0, for example, F2 can be “Palo Alto is in the Bay Area”. More generally, given
a non-root node Nj(Fj) with ancestors Aj = {N0(F0), Na(Fa), Nb(Fb), ...}, where each ancestor
node Nk(Fk), a new fact Fj+1 is discovered from Nj(Fj) as

Fj+1 = Gr(“Extract new fact related to entities in Fj but exclude the ones in {F0, Fa, Fb, ....}”)

The corresponding node Nj+1(Fj+1) is then created as a child of Nj(Fj). The exclusion constraint
is crucial: it prevents circular links and ensures each child hosts a novel fact that is contextually
connected through the tree but not redundant with its ancestors. By traversing a branch of such linked
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Figure 3: Bottom-up data synthesis process with rare entity anchor.

facts, we can later synthesize complex multi-hop questions as we describe next. Algorithm 1 in the
Appendix describes the tree construction process in a formal manner.

Progressive Data Synthesis. New QA pairs are generated by iteratively prompting the questioner
(Gq) with a progressively expanding set of facts derived from the tree-of-facts. Specifically, we
decompose the tree into a queue of depth-first-search (DFS) branches B = {b1, b2, ..., bn}, where
each branch contains nodes connected only through vertical ancestor–descendant relationships,
excluding horizontal sibling links. Branches are disjoint, meaning that if one branch contains a set of
ancestors, no other branch can include them.

To synthesize data, we begin with the first branch b1. Its facts are added to a fact pool P , which is
then provided to the questioner (Gq) tasked with generating a complex QA pair (q1, a1) grounded
exclusively in P . The generated pair is validated against the standards described in §3.3. If it fails
this validation check, we inform the LLM in the next turn with feedback for it to retry. Once a valid
pair is produced, the synthesized question q1 is given to the agent solver Gs. If the solver’s answer a∗1
is consistent with the ground truth a1 (i.e., a∗1 = a1), the task is deemed too easy for the agent. In that
case, we dequeue the next branch b2, expand the fact pool P with its facts, and repeat the process,
producing a QA pair (q2, a2). Note that (q2, a2) is expected be more complex than its predecessors as
the question generator must incorporate the new facts from b2. This cycle continues until we obtain
a pair (qk, ak) for which the solver’s output a∗k disagrees with the ground truth ak, indicating that
the question exceeds the solver’s capability. In practice, this iterative synthesis is realized through a
multi-turn conversation with the LLM, where complexity gradually increases as new branches are
incorporated. If no valid QA pair is generated after the cycle reaches a maximum number of iterations
or exhausts all nodes of the tree, no QA pair is produced and the seed is discarded. Algorithm 2 in
the Appendix formulates the top-down approach in details.

3.2 BOTTOM-UP SYNTHESIS WITH RARE ENTITY ANCHOR

In contrast to the top-down approach, the bottom-up approach aims to construct challenging questions
centered on a fixed rare entity anchor as the ground truth. The process begins with the agent Gr
electing a rare entity to serve as the answer. An iterative procedure then progressively generates
harder questions targeting this entity. Figure 3 visually describe this synthesis process.

Entity Anchor Acquisition. The criteria for the anchor is that it ought to be rare, realistic, diverse,
short-form and concrete, which fits the standards outlined in §3.3. To acquire such an anchor, given
a seed, we instruct the researcher agent Gr to come up with a set of candidate entities {Ec

1, E
c
2, ...}

from the same topical domain as the seed. Then, using a web-scale popularity signal, such as
aggregated Google search trends, we select the least popular candidate Êc as the ground truth. This
design is motivated by two factors: (i) rare entities are typically more obscure on the web, requiring
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greater reasoning effort to identify; and (ii) rare entities are likely to be underrepresented in standard
pre-training corpora, thereby reducing the risk of contamination in pre-trained models.

Progressive Data Synthesis. After the anchor Êc is obtained, we instruct the questioner agent Gq to
come up with an initial question q0 whose ground truth is â = Êc. The initial question q0 then enters
a progressive hardening loop. In the first iteration, we instruct the solver agent Gs to solve q0 and
produce its answer a0 and explanation (reasoning) r0 for it. The explanation r0 contains a list of facts
that support the answer a0. If a0 = â, we seek harden q0 by providing the researcher agent Gr with
(q0, r0) and instructing it to rewrite a harder question q1 with the goal to fool the solver. During this
hardening process, the agent is incentivized to obfuscate and abstract key details from the previous
question q0 as well as removing easily identifiable giveaways, while ensuring that such obfuscation
would not lead to legitimate alternative solutions. The agent is also encouraged to search the web
to relevant information that could be incorporated into the question making. This questioner-solver
loop is repeated until the questioner produce a question qi that solver fails to produce an answer
consistent with the ground truth â. The procedure then returns (qi, â) as the synthesized QA pair. In
the Appendix, Algorithm 3 formulates this bottom-up synthesis process with formal details.

3.3 CONSOLIDATED FILTER

As mentioned, our pipeline employs an aggressive filtering process to eliminate low-quality samples
during both internal iterative data generation (described in §3.1, §3.2) and after QA pairs are finalized,
in a stage we term the consolidated filter. This stage applies several criteria:

• Question standard: Effective training questions must satisfy key properties. First, they should
seek a single, concrete short-form answer to allow unambiguous verification. Second, they
must be natural and readable, spanning diverse topics and domains. Third, they should exhibit
sufficient complexity, requiring multi-hop, compositional, abductive, mathematical, or temporal
reasoning. Fourth, the ground-truth answer should not be trivially deducible from the question
or common sense, and the critical supporting facts should not be explicitly stated in the question.
During synthesis, the generator is instructed to follow these standards; afterward, a strong LLM
with majority voting ensures compliance, discarding any QA pairs that fail to meet them.

• Factuality verification: Ensuring factual and contextual accuracy is paramount. For each
generated QA pair, we collect the web sources and supporting facts used to synthesize the data
pair, then prompt an LLM with majority voting to verify that they fully support the question and
its ground truth. QA pairs are discarded if contradictions or ambiguities are detected.

• Dealing with alternative answers: Our question-hardening process obfuscates facts about
entities to enlarge the search space. This can unintentionally produce alternative answers that,
while inconsistent with the ground truth, still satisfy the question’s constraints. For example, the
answer to “Which is a popular weighing unit?” can be either “kilogram” or “pound”. In such
cases, agents generating these alternatives risk being unfairly penalized, even if their browsing
results and trajectory context fully support the answers. To address this, the baseline agent G
first attempts the question. If its response conflicts with the ground truth, we extract its tool
outputs and prompt an LLM with majority voting to decide whether those outputs reasonably
support the alternative. If they do, the QA pair is discarded.

Resulting Training Dataset. Following the pipeline described above, we synthesize a modest
training QA-pair dataset, termed “Progressive Search” (ProgSearch). We start by collecting seeds
from a small subset of 2WikiMultihopQA (Ho et al., 2020), consisting of roughly 40K questions.
To rebalance domain coverage, we filter out overrepresented categories such as TV shows and
movies. After synthesis and filtering, we obtain about 12K high-quality QA pairs. Applying rejection
sampling to generate distillation trajectories—detailed in §4.1—further reduces the usable SFT
dataset to approximately 6K samples. As shown in §4.2.1, trajectories in ProgSearch contain an
average of 20 tool calls, with some complex examples reaching up to 94.

4 EXPERIMENTS

This section presents our experiments and ablation studies evaluating the effectiveness of our data
synthesis process and the resulting ProgSearch dataset in improving web agents. In §4.1, we report
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SFT experiments across multiple datasets under a contamination blocklist. In §4.2, we provide
additional analyses that highlight the advantages of our dataset over baseline methods.

4.1 SETUP & RESULTS

SFT Training. To directly assess the effectiveness of synthetic datasets, we train agents on them and
evaluate performance across web-based benchmarks. We compare our ProgSearch (12K samples)
against two recent open-source methods: Taskcraft (Shi et al., 2025) (20K samples) and Asearcher
(Gao et al., 2025) (35K samples). Other prior studies (Li et al., 2025a; Tao et al., 2025; Li et al.,
2025b) have proposed alternative data synthesis schemes, but their datasets are either not released,
too small to be usable (hundreds of samples), or insufficiently described for replication.

Using these datasets, we employ a simple multi-turn agent powered by gpt-oss-20b (Agarwal et al.,
2025) to perform rejection sampling (RS), where trajectories are rolled out for each input question,
and only those concluding with answers consistent with the ground truth are retained. The reason we
choose rejection sampling is because previous works have bundled their data synthesis pipelines with
distinct customized reinforcement learning (RL) algorithms (Li et al., 2025a; MoonshotAI, 2025;
Nguyen et al., 2025), making an independent analysis of datasets infeasible. Instead of favoring and
bias any of those algorithms, and in order to isolate data contribution from training techniques, we
conduct RS because it is relatively established technique and used commonly across different works
(Touvron et al., 2023; Li et al., 2025c; Tao et al., 2025). The process results in 5.5K ProgSearch
samples, 7.7K Taskcraft samples, and 20K Asearcher samples. The retained trajectories include both
“thinking” tokens and tool-calling actions.

We fine-tune Qwen3-8B (Yang et al., 2025) and Qwen2.5-7B-Instruct (Yang et al., 2024) on these
datasets, adapting tool calls to their default model-specific templates using <tool call> tags, and
placing “thinking” tokens within <think> tags. Training is conducted with a learning rate of 5e−7

and a batch size of 500K tokens.

Benchmarks. We evaluate on four widely used web-based benchmarks: FRAMES (Krishna
et al., 2024), GAIA (Mialon et al., 2023), Humanity’s Last Exam (HLE) (Phan et al., 2025), and
BrowseComp (Wei et al., 2025). FRAMES, GAIA, and BrowseComp are browsing-intensive,
whereas HLE focuses more on scientific reasoning. For GAIA, we use the text-only evaluation set
(103 samples), and for HLE, we evaluate on the full text-only subset comprising 2,158 questions.

Contamination Prevention. Since the evaluation benchmarks are publicly available online, web-
based agents may inadvertently access hosting sites where ground-truth answers are directly visible.
If an agent simply retrieves these answers without performing reasoning or tool use, the evaluation
becomes contaminated. For example, up to 3.4% of HLE samples can be affected in this way
(Han et al., 2025). While some prior studies have not documented or implemented contamination
safeguards (Li et al., 2025c;a; Tao et al., 2025; MoonshotAI, 2025), others mitigate this risk by
enforcing blocklists that prevent agents from visiting specific sites (OpenAI, 2025;a; Nguyen et al.,
2025). Following this practice, we block huggingface.co and gr.inc , ensuring that any attempted
access results in a “404 Not Found” response.

Main Results Table 1 reports accuracy numbers of different checkpoints across benchmarks under the
contamination blocklist. For Qwen3-8B, training with ProgSearch yields improvements of 16% on
FRAMES, 11% on GAIA, 3.8% on HLE, and 4% on BrowseComp over the base model. Compared
to Taskcraft (Shi et al., 2025) and Asearcher (Gao et al., 2025), ProgSearch consistently delivers
larger gains, most notably an additional 11% improvement on FRAMES. For Qwen2.5-7B-Instruct,
ProgSearch also achieves significant gains over the base model, with improvements of 18%, 10%,
2%, and 0.5% on FRAMES, GAIA, HLE, and BrowseComp, respectively. These results highlight the
effectiveness of our data synthesis approach. Appendix A.4 provides additional results.

4.2 ANALYSES

In this section, we conduct a series of ablation studies to provide more insights into our method.
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Table 1: Performances of models fine-tuned with ProgSearch, Taskcraft (Shi et al., 2025) and
Asearcher (Gao et al., 2025) across four benchmarks (evaluated under our contamination blocklist).

Models FRAMES GAIA HLE BrowseComp
Qwen3-8B 45.6 30.5 6.1 1.2

+ Taskcraft 53.1 34.4 7.5 2.8
+ Asearcher 50.3 29.0 7.3 2.4
+ ProgSearch (Ours) 61.1 41.2 9.9 5.2

Qwen2.5-7B-Instruct 17.5 8.9 4.3 0.7
+ Taskcraft 28.1 15.2 2.7 0.8
+ Asearcher 33.4 15.5 3.6 1.2
+ ProgSearch (Ours) 51.6 25.0 5.7 1.7

4.2.1 TOOL USAGE OF REJECTION SAMPLING DATA

To assess a dataset’s ability to support effective long-horizon rollouts, we examine whether it contains
sufficiently long trajectories. Table 2 reports the average number of tool calls per trajectory, as well
as per-tool usage, based on rejection-sampled data from our gpt-oss-20b baseline agent. On average,
ProgSearch trajectories include 20.43 tool calls—twice as many as Asearcher (Gao et al., 2025) and
four times more than Taskcraft (Shi et al., 2025). Counting user and tool-result turns, this translates
to an average of 41.43 long-horizon turns per trajectory. In terms of per-tool usage, ProgSearch drives
significantly more search actions relative to browse and python, suggesting stronger support
for training agents to leverage search more extensively. Overall, these results indicate that ProgSearch
provides richer long-horizon trajectories, better preparing agents to tackle complex tasks.

Table 2: The average number of total tool calls per trajectory, number of search, browse and
python actions per trajectory of different rejection sampling SFT datasets as produced by the
standard multi-turn gpt-oss-20b agent.

Dataset # tool calls # search # browse # python
TaskCraft 5.43 2.92 2.47 0.01
Asearcher 10.86 6.33 4.06 0.44
ProgSearch (Ours) 20.43 13.81 6.53 0.04

4.2.2 TOOL USAGE OF TRAINED CHECKPOINTS

Having examined tool usage in the SFT datasets, we ask how such data influences the behavior of
downstream fine-tuned agents. Table 3 reports tool usage statistics and performance of different
Qwen3-8B models evaluated on FRAMES and GAIA. Surprisingly, our data does not substantially
increase tool calls compared to baseline datasets. On FRAMES and GAIA, the model trained
with ProgSearch averages 11.8 and 15.5 unique tool calls per trajectory, only about one more than
Taskcraft, yet achieves up to 10% performance gains. This suggests that our data elicits more effective
tool use in web agents without inflating tool usage. By contrast, Asearcher (Gao et al., 2025) induces
significantly more tool calls but yields lower accuracy.

Another notable metric is the tool call failure rate (#Error), which reflects how often models produce
invalid syntax or parameters. As shown in Table 3, our ProgSearch achieves the lowest failure rate,
improving performance while also reducing wasted time and context tokens.

4.2.3 DOMAINS & EXAMPLES

To better illustrate the characteristics of our data, Table 4 presents a representative multi-hop
question–answer pair generated by our ProgSearch synthetic pipeline. The question is highly
complex, requiring multiple hops, extensive search, and reasoning to reach the answer. Notably, the
gpt-oss-20b agent used to produce the SFT data required 93 tool calls to arrive at the correct solution,
indicating that it is a highly complex problem. Table 5 in the Appendix shows more more such
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Table 3: Statistics of tool usages and performances of Qwen3-8B checkpoints trained with ProgSearch
and baseline datasets, as evaluated on FRAMES and GAIA. Respectively, #Total is the average number
of tool calls (including duplicates), #Unique is number of unique tool calls , #Error is the tool call
failure rate (e.g., syntax error or invalid tool parameters), and Acc. is the benchmark accuracy.

Dataset FRAMES GAIA
#Total #Unique #Error↓ Acc.↑ #Total #Unique #Error↓ Acc.↑

TaskCraft 12.3 10.8 1.7% 53.1 17.8 14.6 3.5% 34.4
Asearcher 19.2 15.1 3.5% 50.3 24.2 19.6 3.2% 29.0
ProgSearch 12.7 11.8 0.5% 61.1 16.8 15.5 1.9% 41.2

examples. Figure 4 further compares domain coverage across datasets. Our dataset spans topics and
subjects relatively evenly, with a slight bias toward “history,” likely because such questions are easier
to answer than those from other domains. By contrast, Taskcraft is heavily concentrated in “Science,”
“Art,” “Politics,” and “Other”. We believe the broader topical diversity of our data contributed to
stronger downstream web agent performance.

Table 4: An example of multi-hop question-answer pair produced by our data synthesis pipeline, its
ground truth and the number of tool calls needed for the gpt-oss-20b agent to correctly solve it.

Question: Which company, headquartered in Sherburn-in-Elmet with a second production
facility in Newington, manufactures the cross-linked polyolefin foams—including injection-
molded closed-cell ethylene-vinyl acetate foam with minimum tensile strength 100 psi,
minimum elongation 150 %, maximum 15 psi compression deflection at 25 % strain,
skin thickness 0.010–0.025 inches, and thermal conductivity 0.034–0.046 Wm−1K−1

at 20C—used as high-density protective inserts in Coffin Case Classic Series gig bags
endorsed by a band that in 2005 recorded demos in their own 48-track PlanetGrey studio in
New York City’s East Village using Samson micro-wireless guitar transmitters operating in
the former UHF TV channel reclaimed 801–805 MHz band?
Answer: Zotefoams
Agent’s # tool calls: 93

Figure 4: Broad category distribution ProgSearch, ASearcher, and TaskCraft datasets.

5 CONCLUSION

In conclusion, our two-pronged synthesis pipeline offers a principled way to create higher-quality
training data for web agents. By progressively raising task difficulty and leveraging a frontier baseline
agent for validation and filtering, we produce datasets that are more diverse, factually reliable, and
aligned with long-horizon reasoning demands. Despite being smaller in size, the resulting data
enables stronger performance across benchmarks, demonstrating that careful design and controlled
complexity can be more impactful than sheer scale in advancing the effectiveness of web agents.

9
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6 STATEMENTS

Use of LLMs. We did not use LLMs during the writing of the textual content of the paper. We only
used LLMs to fix bugs in Latex codes for diagrams, styles and figures.

Reproducibility Statement. We plan to open-source our full datasets, subject to approval from
institutional leaders and regulatory advisors.
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A APPENDIX

A.1 DETAILS ON DATA SYNTHESIS ALGORITHMS

For top-down approach, Algorithm 1 explains the algorithmic process of building tree-of-facts, as
described in §3.1. Algorithm 2, meanwhile, explains the top-down data synthesis procedure. For
bottom-up approach, Algorithm 3 lays out the process of synthesizing harder questions given a entity
anchor.

Algorithm 1 BuildTreeOfFacts: Recurisively build a tree of facts, given a seed F0 = E0

Input: Researcher Gr, parent node N , root node N0, depth dmax, current depth d (default 0),
expansion factor k

Output: Tree T with n nodes {N,N1, N2...Nn−1}
1: // At recursive entry, input node N is the root node N0 that

hosts F0 = E0 = seed entity, e.g., ‘‘Stanford’’
2: if d ≥ dmax then
3: Return N
4: end if
5: //Recursively expand the tree depth-first-search
6: A ← {Am, Am−1, ..., A0} = {parent(N), parent(parent(N)), ..., N0} //ancestor set
7: F ← {Fm, Fm−1, ...F0} where Fj = Ej−1Ej is fact hosted by Aj that connect Ej−1 with Ej

8: F = EEm ← fact hosted by N
9: for i = 1 to k do

10: F̂i ← Gr(“Extract new fact related to entities in F but excludes ones in F ”)
11: //Extract new fact related to E but not {Em, Em−1, ..., E0}
12: N̂i(F̂i)← new node that host F̂i

13: Make N parent of N̂i(F̂i)

14: BuildTreeOfFacts(Gr, N̂i(F̂i), N0, dmax, d+ 1)
15: end for
16: Return N

Algorithm 2 TopDownGen: Generating QA pairs with tree of facts

Input: Researcher Gr, Solver, Gs Questioner Gq, Validator Gv, queue of tree-of-facts branches
B = {b1, b2, ..., bn}

Output: (q, a) question-answer pair or null
1: C = [∅] //Conversation
2: F = {F1, F2, ..., Fk} ← Pop a branch from B
3: p← “Generate QA from facts F” //initial prompt
4: while Until B = ∅ or len(C) > lmax do
5: Push p→ C //Append new prompt to conversation
6: (q, a)← Gq(C) //Generate new QA pair from current conversation
7: if Gv(q, a, C) =“not valid” then
8: //inform reason for validation failure
9: p← “QA invalid, feedback is: ....”

10: else if Gs(q) = a then
11: //Solver attempts successfully, question too easy
12: F ← Pop a new branch from B
13: p← “Question too easy, make a harder with, incorporate new facts F”
14: else
15: //Hard QA pair successfully generated
16: Return (q, a)
17: end if
18: end while
19: Return null
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Algorithm 3 BottomUp: Generating QA pairs with rare entity anchor Êc

Input: Researcher Gr, Solver, Gs Questioner Gq , Validator Gv , anchor Êc

Output: (q, a) question-answer pair or null
1: q0 ← Gq(“Generate question q0 with ground truth â = Êc ”)
2: a0, r0 ← Gs(q0) //solve q0 and produce answer a and explanation r
3: a, r, q ← a0, r0, q0
4: while a = â or maximum iteration reached do
5: //Enter hardening loop
6: q′ ← Gr(“Research to rewrite a harder q′ given q, use facts from r ”)
7: a′, r′ ← Gs(q′) //solve q′ and produce answer a′ and explanation r′

8: a, q, r ← a′, q′, r′

9: end while
10: if a = â then
11: //Question generation has failed
12: Return null
13: else
14: Return (q, â)
15: end if

A.2 PROMPT USED FOR DATA SYNTHESIS

We use various prompts to instruct LLMs and agents to performance different tasks through our data
synthesis process. Below are some of them, including fact seeker prompts, verification prompts,
validation prompts, etc.

Fact seeker: to instruct web agents to research and find more facts from seed.

Collect {num facts} more facts about all the entities, details and
topics mentioned or implied in the below question or fact by going
to the internet to search and read web pages, then explicitly list
out all the facts along with their exact URL reference sources. All
facts must be backed by one or many URL sources. DO NOT use your
own knowledge. DO NOT state a false fact or make up a fact. DO
NOT guess a URL source. DO NOT output a fabricated URL source or
example URL, or URLs with dots. The URLs must be real and valid
existing URLs, complete and exact and accessible. DO NOT include any
punctuation after the URLs.

When you conduct the research, if possible, always prioritize sources
from **Wikipedia**, governments, educational, academic, trustworthy
news organizations** over less reputable sources. If knowledge or
answer section is contradicting with knowledge from other sources,
investigate further by doing more searching and browsing into the web
pages of reputable sources. When sources are contradicting with each
other, always prioritize sources from the most reliable, recent and
consistent sources.

The facts must be relevant or of interest and meaningful, and concern
real-world entities or details. DO NOT generate facts that are
related to metadata, ads, headers, footers, web-page navigation,
URLs, etc. DO NOT create facts about the titles. If the document
is a web page or PDF that has some technical issue, DO NOT generate
facts about the technical issues. DO NOT concern about the copyright
of the document or how to read the document. If no real-world
entities or details are mentioned in the document, simply answer
"No facts found".

Each fact should be self-contained, and unambiguous, and can be used
as independent fact without needing to reference to the document
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or existing facts. Avoid using references or pronouns. Each fact
must be specific and detailed, and not general or vague. Each fact
must not be a common knowledge, general definition or a well-known
fact, but instead must be uncommon enough that it often requires a
knowledgeable human to search the Internet to find out.

Produce the facts in the following format:

Fact 1:

- Fact: fact 1...

- Sources:

https://url 1 a.xyz/

https://url 1 b.xyz/

https://url 1 c.xyz/

...

Fact 2:

- Fact: fact 2 ..

- Sources:

https://url 2 a.abc/

https://url 2 b.abc/

https://url 2 c.abc/

...

Fact 3: ...

Question or Fact: {question}

Fact seeker with exclusion: to instruct web agents to research and find more
facts from seed but exclude certain information. Used to build and expand trees
of facts so that no new tree nodes do not form circular connections.

Collect {num facts} more facts about all the entities, details and
topics mentioned or implied in the below main question or fact by
going to the internet to search and read web pages, then explicitly
list out all the facts along with their exact URL reference sources.

However, DO NOT conduct research or search and seek facts for the
entities or details that are explicitly mentioned in the excluded
information.

For example, if the main question or fact reference "A and B", and
the excluded information is "A and C", then DO NOT conduct research
or search and seek facts for "A" or "C", instead only seek facts for
"B".

All facts must be backed by one or many URL sources. DO NOT use
your own knowledge. DO NOT state a false fact or make up a fact.
DO NOT guess a URL source. DO NOT output a fabricated URL source
or example URL, or URLs with dots. The URLs must be real and valid
existing URLs, complete and exact and accessible. DO NOT include any
punctuation after the URLs.

When you conduct the research, if possible, always prioritize sources
from **Wikipedia**, governments, educational, academic, trustworthy
news organizations** over less reputable sources. If knowledge or
answer section is contradicting with knowledge from other sources,
investigate further by doing more searching and browsing into the web
pages of reputable sources. When sources are contradicting with each
other, always prioritize sources from the most reliable, recent and
consistent sources.

15
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The facts must be relevant or of interest and meaningful, and concern
real-world entities or details. DO NOT generate facts that are
related to metadata, ads, headers, footers, web-page navigation,
URLs, etc. DO NOT create facts about the titles. If the document
is a web page or PDF that has some technical issue, DO NOT generate
facts about the technical issues. DO NOT concern about the copyright
of the document or how to read the document. If no real-world
entities or details are mentioned in the document, simply answer
"No facts found".

The URLs must be full and directly point to the site, but should
not contain any sub-section hashtag, such as "#", "#section",
"#subsection", etc. Ensure that the URLs you provide are exactly
identical to the URLs you found in the search results or browsing
activities.

Each fact should be self-contained, and unambiguous, and can be used
as independent fact without needing to reference to the document or
existing facts. Avoid using references or pronouns.

Each fact must be specific and detailed, and not general or vague.
Each fact must not be a common knowledge, general definition or a
well-known fact, but instead must be uncommon enough that it often
requires a knowledgeable human to search the Internet to find out.

Produce the facts in the following format:

Fact 1:

- Fact: fact 1...

- Sources:

https://url 1 a.xyz/

https://url 1 b.xyz/

https://url 1 c.xyz/

...

Fact 2:

- Fact: fact 2 ..

- Sources:

https://url 2 a.abc/

https://url 2 b.abc/

https://url 2 c.abc/

...

Fact 3: ...

Main question or fact: {question}
Excluded information: {exclude info str}

Verification with ground truth

Given the following question and the ground truth answer, verify if
the agent answer is semantically equivalent and consistent to the
ground truth answer. To be consistent with the ground truth answer,
the agent answer may not necessarily exactly the same lexically
as the ground truth, instead it reflects its true intention and
information consistent with reference response, given the context
of the question, without any contradiction or missing information.

Answer shortly yes or no only.

## Cases where you should answer ’yes’ are:
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* The following are some case studies for you to understand your
task, but they are not an exhaustive list.

* Numbers: If the agent answer and ground truth are numbers or words
about numbers, they are consistent if the numbers are semantically
and numerically the same. Otherwise, answer ’no. In terms of
approximation, numbers are ‘different‘ unless they are identical
up to the 5th decimal digit.

* Mathematical expression: If the answers are math expressions, they
can be of different formats, such as Latex expressions, numbers,
fractions, words. You must compare the agent answer and ground
truth by their semantic meaningfully value, not by their formats.
If the expressions are not exactly the same, but the mathematically
solutions are identical or the expressions can be evaluated to the
same value, then they are ‘similar‘ and you should answer yes. The
folowing are some examples: "\boxed{1/2}" and "$0.5$" are ‘similar‘,
"\boxed{\frac{3}{4}}" and "3/4" and "0.75" are ‘similar‘, "a/b" and
"\frac{a}{b}" and "a \frac{1}{b}" are ‘similar‘, "\frac{-a}{b} +
\frac{c}{d}" and "\frac{c}{d} - \frac{a}{b}" are ‘similar‘. Meanwhile,
"0.5" and "1/3" are ‘different‘, "Answer is \boxed{(a + b)(a - b)}"
and "\boxed{aˆ2 + bˆ2}" are ‘different‘ because $(a + b)(a - b) =
a2 - bˆ2 \neq aˆ2 + bˆ2$. For large numbers, approximation is not
considered ‘similar‘, so for example, "123456" and "123457" are
‘different‘.

* Date and time: If the responses are about date and time, the
two responses are the ‘similar‘ if they are meaningfully the same
regardless formats such as date-month-year or dd-mm-yyyy, etc. If
so, answer ’yes’. However, they are ‘different‘ if the reference
response indicate a date or month with details, while the AI response
is lacking key information and presents only the year. If so, answer
’no’.

* Comparison: If the question is about comparison or binary choice
and the agent answer semantically, meaningfully and logically
reflects the same choice as the ground truth answer, then both are
‘similar‘ and you should answer ’yes’. For example of question "is
A better than B?", and the ground truth answer is "no", then agent
answer is ‘similar‘ as ground truth if it is something like "no", "A
is not better than B", "B is better than A". In another example of
"Which one is better, C or D?" and the ground truth answer is "C",
then the agent answer is ‘similar‘ if it is "C", "C is better than
D". However, the agent answer will be ‘different‘ it is "D" or "D
is better than C" or "I do not have information", in which case you
should answer ’no’.

* Extra content: If agent answer accurately and logically indicate
the same answer to the question as the ground truth answer, then it
is ‘similar‘ even if the AI response is providing extra information
or being verbose. In this case you should answer ’yes’. However,
if the extra information is contradicting with the reference answer
in some way, then it is ‘different‘ from the reference response. In
this case you should answer ’no’.

* Refusal/Abstinence: If the agent answer is claiming that it
does not have enough information to answer, refusing or abstaining
from producing an answer, the agent answer is ‘similar‘ as ground
truth only if the ground truth is also a refusal, abstinence
response, which is claiming the question is "unanswerable" or missing
information. If the ground truth is visible, concrete, and not a
refusal, then the agent answer is definitely ‘different‘ from the
ground truth.

## Cases where you should answer ’no’ are:
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* Mentions of reference: If the agent answer does mention the ground
truth answer but its intention and meaning are contradicting with the
ground truth answer in the context of answering the user question,
then they are ‘different‘ (You answer ’no’). For example of question
"Which one comes first, D or E" and the ground truth answer is
"E". The agent answer is ‘different‘ if it is "D and E both comes
at the same time", "D comes before E", "E comes after D", etc. *
Date and time: If the ground truth answer contains date and month,
but the agent answer only mentions year, then they are ‘different‘
(You answer ’no’). * Missing information: If the AI response is
incoherently and ambiguously missing a key information, leading
you to fail to tell if the AI response is consistent with reference
answer from the context of the question, then they are ‘different‘
(You answer ’no’).

DO NOT use your own knowledge to verify the question-answer pair. DO
NOT use any tool! Answer shortly yes or no only. DO NOT explain or
say anything else.

Validation against question-answer standards

Verify if the following question-answer pair is valid. Answer
shortly yes or no only. The pair is not valid (answer ’no’) if:
- The question is not human-like, readable and understandable. -
The question is not inquiring about a single entity, seeking for a
concise and singular answer, instead inquire about multiple entities
or seeking for long form answer. - The question is not complex,
involving complex multi-hop reasoning, compositional reasoning,
and/or abductive reasoning, or mathematical or temporal reasoning.
- The answer is directly answerable from the question, or even
mentioned directly or indirectly in the question. - The answer is
a refusal, stating the question is not answerable, or not found.

The pair is valid (answer ’yes’) if: - The question is inquiring
about a single entity, seeking for a concise and singular answer.
- The question should involve complex multi-hop reasoning,
compositional reasoning, and/or abductive reasoning, or mathematical
or temporal reasoning. The question should be difficult to answer,
involves searching and browsing the internet to answer. The concepts
and components of the question span multiple facts and entities. -
The answer is concrete, non-intuitive, and not directly answerable
from the question.

DO NOT use your own knowledge to verify the question-answer pair. DO
NOT use any tool. Answer shortly yes or no only. DO NOT explain or
say anything else.

Question: {question}
Answer: {answer}

QA generation given facts

Based on a list of relevant facts below, create a very difficult
multi-hop question that require extensive search and browsing to
answer accurately. Also produce the answer.

Both the question and answer must SOLELY be based on the facts below!

The question must be inquiring about a single entity, seeking for a
concise and singular answer.

The question must link ALL entities and objects mentioned in those
facts together. The question must exhibit linkages between the
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entities and details. The question should involve complex multi-hop
reasoning, compositional reasoning, and/or abductive reasoning, or
mathematical or temporal reasoning.

The question should not mention any involved entities explicitly by
instead use the facts above to reference the entities. To prevent
ambiguity, only one entity can be mentioned by named, or can be
referenced by a common sense knowledge.

The person answering the question won’t have access to the facts
below directly, but will have access to the Internet to retrieve
those facts. THEREFORE, the question MUST be clear from any
ambiguity or subjective assumption.

The question *MUST NOT* have a possible alternative answer that can
be found by searching the Internet, other than the answer you provide
based on the facts! To achieve that, the question must be clear,
unambiguous, use the facts to imply the intended entities.

You must incorporate as many entities and details as possible into
the question, and create indirect linkages between such entities
using the facts below. In other words, the question should involve
as many as entities and subjects as possible, and the relationships
between them must be linked by the facts below. You may use the
facts to reference an entity directly, but do not use too much such
that it is easy to guess what it is.

The answer to the question must *NOT* be long form, but instead must
be concise and direct and singular.

NEVER use your own knowledge to derive the answer to your question.
NEVER use your own knowledge to create the question. The answer
to the question must be based on the facts below solely and only.
DO NOT include any URL sources in the question or answer. DO NOT
use any tool. DO NOT include special highlighting such as **,
*, or other markdown formatting. DO NOT include sentence-ending
punctuations in the answer part, But do include them in the question
part (e.g. "?"). Provide a basic explanation for the answer.

Here is an example of the expected question: "Which university,
established in the late 19th century in the southern United States
and renowned for its engineering and technology programs, is the
alma mater of a person whose graduation preceded their 2011 blog post
sketch by seven years|a sketch they claimed may have been inspired by
a song about enjoying food made with insects, which itself references
a product from a company founded in the same year as a major print
media strike or two years earlier, and whose headquarters returned
to a downtown location of a city that also saw the formation of a nu
metal band with an acronym as its name?"

Your question and answer should be in the same style as the example
above.

Follow the following output format. DO NOT include any other text or
comments.

Question: the question ... ?

Answer: the answer ...

Explanation: the explanation ...

--- # Facts:

{facts}
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Bottom up approach - Initial Question (Q0) creation prompt

You are a question-generation assistant creating an search intensive
questions.

CRITICAL RULES - ABSOLUTELY FORBIDDEN:

NO exact years (not even decade references like "1940s" or "late
1940s")

NO specific locations (no countries, cities, islands, continents)

NO organization names (no universities, companies, institutions)

NO award names or specific titles

NO exact numbers (ages, counts, dates)

NO names of any people, places, or things

ONLY USE:

Vague time references: "several decades ago", "in the past century",
"recently"

General geography: "from a warm region", "island nation", "northern
area"

Abstract descriptions: "achieved recognition", "made contributions",
"worked in academia"

Relative terms: "multiple works", "various achievements", "several
collaborations"

Create ONE question whose answer is NEW ENTITY. The question must
be so vague that hundreds of people could potentially match it, but
through research, only one would fit all the criteria.

UNIQUENESS REQUIREMENT:

The question MUST have exactly ONE correct answer (NEW ENTITY)

No alternative correct answers should exist

Combine multiple vague clues that together uniquely identify NEW
ENTITY

Each individual clue should be common, but their intersection should
be unique

Verify that no other entity satisfies ALL the combined criteria

FORMAT: [Question - Your created Question]

Answer: [Write the actual entity name]

Remember: If your question contains ANY specific detail that could
narrow down the search significantly, you have failed.

Bottom up approach - Solver LLM Prompt

You are an expert research assistant trying to solve challenging
questions by searching the web.

Given a question, you must:

1. Search for information systematically

2. Reason through the clues step by step

3. Arrive at a specific answer

4. Explain HOW you found the answer (what searches, what clues led
you there and what were the give away in the question, that led you
to the answer)

Format your response as: Answer: [Your answer]
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Reasoning: [Detailed explanation of how you found it - what searches
you did, what clues you followed, what information led you to the
answer]

Bottom up approach - Difficulty enhancement loop

You are a question hardener. Given:

1. A question that was too easy

2. The correct answer

3. HOW the solver found it (their reasoning)

Your job: Make the question MUCH harder by removing/obscuring the
clues the solver used.

RULES: Remove any detail the solver explicitly used to find the
answer

Make descriptions more vague

Remove any uniquely identifying features

Keep the answer the same

Make it require more inference steps

You can also add a clue to make it unique.

UNIQUENESS PRESERVATION:

Ensure the harder question still has exactly ONE correct answer

While removing obvious clues, maintain enough subtle clues that
uniquely identify the answer

Could any other entity satisfy all the remaining criteria, if so,
then the question is not unique, you need to add a clue to make it
unique.

The combination of remaining vague clues must still uniquely point to
the correct answer

FORMAT (strict):

Harder question

Answer: <same answer>

A.3 MORE SYNTHESIZED PROGSEARCH EXAMPLES

Table 5 provides additional examples of our datasets. These examples are among those that our
baseline gpt-oss-20b agents spent the most effort in correctly solving them.

A.4 ADDITIONAL EXPERIMENTS

Table 6 shows the performances of gpt-oss-20b as fine-tuned with different datasets, which were
produced via rejection sampling with gpt-oss-20b by itself. The results show that our ProgSearch
dataset still demonstrate improvements over baseline datasets, although the margin is relatively small.
This is because gpt-oss-20b is already a well-trained. Furthermore, a one-time rejection sampling
procedure, especially by itself and not by a stronger model, is not effective in pushing the performance.
Instead, a more effective reinforcement learning approach may be needed.
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Table 5: More examples of multi-hop question-answer pair produced by our data synthesis pipeline,
its ground truth and the number of tool calls needed for the gpt-oss-20b agent to correctly solve it.

Question: By tracing a narrative from multi-level excavations at an early Elamite
administrative site and a 407 AH Kufic-inscribed wooden pulpit in central Iran’s oldest
mosque, over a 115 m steel-arch 1935 bridge dubbed “Victory,” past villages logged as
zero and 31 residents in Lur-majority districts, ascending to a 4 050 m Jurassic-Cretaceous
dolomitic limestone summit in a 250 km Zagros corridor, where an Austrian geologist first
recorded a 1 700 × 600 m glacial lake at 2 380 m elevation later publicized by the first
female Fellow of the Royal Geographical Society, noting rainbow trout averaging 292.5
mm in its depths, whose outflow passes through that 31-inhabitant settlement into a 32
000 km² catchment feeding a 203 m-high embankment dam with eight Ansaldo turbines
producing 520 MW and 1 783 GWh annually—which conservation unit, established in
1989, encompasses these alpine lakes and rivers?
Answer: Oshtorankouh Protected Area
Agent’s # tool calls: 84

Question: Which 1975 single, co-written by the composer credited under a pseudonym
whose IPI Base letter denotes a legal entity rather than a natural person, produced by the
Panamanian-born bassist-producer Enrique Antonio Silvester alongside the arranger of
Minnie Riperton’s chart-topping 1974 single, recorded at the New York studio housed in
the former Loew’s Sheridan movie theater at 401 West 57th Street, features the walking
bass line played by the same musician who laid it down on the gospel-inspired 1961 Top
10 hit, appears on the album whose one-word title mirrors the key adjective of the 39-
system drum-independence method authored by its session drummer, and spent one week
at number one on the U.S. R&B chart before peaking at number five on the Billboard Hot
100?
Answer: Supernatural Thing
Agent’s # tool calls: 83

Question: Which vast covered commercial complex, inscribed on the UNESCO World
Heritage List in July 2010 under criteria (ii), (v), and (vi) at the 34th session in Brası́lia with
a core area of 28.9733 hectares and a buffer zone of 75.4082 hectares, was first registered
as Iran National Heritage Site No. 782 on 8 September 1932, includes the Blue Mosque as
a constituent, lies in the city where the monarch who granted the Persian Constitution and
established the Majles did so forty days before his death in October 1906, and shares its
province with a village at 1 077 m whose population fell from 201 to 167 between the 2006
and 2011 censuses then rose to 186 by 2016, while also giving name to the initial leg of a
mid-1970s “hippie trail” overland journey recounted in a blockbuster 1975 travelogue ?
Answer: Tabriz Historic Bazaar Complex
Agent’s # tool calls: 80

Question: Which hotel inhabits a 21-story glass-roofed atrium first unveiled in 1967 by a
firm founded in 1953 by a 1950 graduate of an institute whose College of Design spans
five schools from Architecture to Music and where a legislature-funded GIS center was
launched in 1995, features one of the world’s first suspended glass elevator systems and
served as a filming location for a 1986 thriller, underwent a mid-1970s expansion that
grew its 42 original suites to 57 across three interconnected towers and 1,260 guest rooms
total—evoking at civilian scale the unfinished 1,617-foot excavation of an 1856 mountain
tunnel—and stands in the state that completed its 1:250,000-scale wetlands mapping in
1984 and home-ports a 113-foot, Class I DPS research vessel?
Answer: Hyatt Regency Atlanta
Agent’s # tool calls: 86
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Table 6: Performances of gpt-oss-20b fine-tuned with ProgSearch, Taskcraft (Shi et al., 2025) and
Asearcher (Gao et al., 2025) across four benchmarks (evaluated under our contamination blocklist).
The datasets were generated with a baseline gpt-oss-20b agent.

Datasets FRAMES GAIA HLE BrowseComp
Taskcraft 80.1 62.8 19.8 21.5
Asearcher 78.7 63.5 21.5 21.2
ProgSearch 80.9 64.2 21.1 21.7
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