

WHEN CASE GETS RARE: A RETRIEVAL BENCHMARK FOR OFF-GUIDELINE MEDICAL QUESTION ANSWERING

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Across medical specialties, clinical practice is anchored in evidence-based guidelines that codify
012 best studied diagnostic and treatment pathways. These pathways work well for the majority of pa-
013 tients but routinely fall short for the long tail of real-world care not covered by guidelines. Most
014 medical large language models (LLMs), however, are trained to encode common, guideline-focused
015 medical knowledge in their parameters. Current evaluations test models primarily on recalling and
016 reasoning with this memorized content, often in multiple-choice settings. Given the fundamental
017 importance of evidence-based reasoning in medicine, it is neither feasible nor reliable to depend
018 on such memorization in practice. To address this gap, we introduce OGCAREBENCH, a long-
019 form retrieval-focused benchmark aimed at evaluating LLMs at answering clinical questions that
020 require going beyond typical guidelines. Extracted from published medical case reports and vali-
021 dated by medical professionals, OGCAREBENCH contains long-form clinical questions requiring
022 free-text answers, providing a systematic framework for assessing open-ended medical reasoning in
023 rare, case-based scenarios. Our experiments reveal that even the best-performing baseline (GPT-o3-
024 mini) correctly answers only 51% of our benchmark with open-source models only reaching 36%.
025 Augmenting the models with retrieved medical articles improves this performance to up to 75%
026 (using GPT-5) highlighting the importance of evidence-grounding for real-world medical reason-
027 ing tasks. OGCAREBENCH thus establishes a foundation for benchmarking and advancing both
028 general-purpose and medical language models to produce reliable answers in challenging clinical
029 contexts.
030
031

1 INTRODUCTION

032 Large language models (LLMs) are actively being explored in healthcare settings for many use cases and hold the
033 potential to transform clinical decision-making and ultimately enhance patient outcomes (Yan et al., 2024; Abrar
034 et al., 2024; Shool et al., 2025). Realizing this potential requires evaluations that reflect the diversity and complexity
035 of real clinical scenarios. Most current benchmarks, however, test models' recall of medical knowledge through exam-
036 style questions (Ben Abacha & Demner-Fushman, 2019; Krithara et al., 2023), typically in multiple-choice settings
037 (Jin et al., 2019; 2021; Pal et al., 2022; Hendrycks et al., 2021; Zuo et al., 2025). While long-form question-answering
038 datasets exist, they are largely patient-oriented and not designed for clinician-facing decision support (Hosseini et al.,
039 2024; Nguyen et al., 2023; Singhal et al., 2023a; Zhu et al., 2020). This leaves an important gap: current evaluations
040 rarely test whether models can generate expert-level, long-form answers that are appropriately grounded in evidence.
041 Evidence grounding is especially crucial in medicine, where clinical guidance evolves rapidly, authoritative references
042 are essential for trust, and patient care often involves rare conditions and atypical presentations. In such settings,
043 memorization alone is insufficient; models must be able to integrate and synthesize knowledge dynamically from
044 external sources to support real-world clinical decision-making.
045

046 In this work, we aim to evaluate LLMs in settings that reflect how physicians actually approach complex clinical
047 problems. To do so, a benchmark must satisfy three key properties: (1) it should be grounded in real patient cases
048 reflecting the variability and nuance of actual clinical practice, (2) it should adopt a long-form question-answering
049 (LFQA) format to capture the open-ended reasoning physicians require, as opposed to multiple choice questions,
050 and (3) it should be non-trivial, demanding expert-level domain knowledge, mirroring the complexity of real-world
051 decision-making. Guided by these principles, we focus on simulating scenarios in which physicians must consult
052 external resources to determine appropriate clinical procedures for patients whose cases fall outside standard guidelines
053 or involve rare, off-guideline presentations.

To serve this purpose, we use published medical case reports. Case reports document novel, rare, or unprecedented
clinical occurrences such as unusual case presentations, atypical diagnostic mechanisms or non-standard treatments.

Figure 1: When a physician encounters a rare patient case, using traditional search is time-consuming. Many models currently focus on multiple choice. While there are several models for long-form QA tasks, they have different focuses. We therefore suggest RAG to get clinically reliable responses. OGCAREBENCH serves as a tool for benchmarking RAG in rare patient cases.

Physicians often consult them when typical guideline references, such as UpToDate or standard specialty guidelines (UpToDate, 2025), are insufficient to manage complex or unusual cases. For each case report, we apply semi-automatic methods (§3) to extract a question and answer pair centered around the significant contribution of the report—which could be a novel diagnosis, novel treatment, or a test associated with a rare occurrence of a disease. We refer to this medical benchmark of **Off-Guideline Case Reports** as OGCAREBENCH. Our dataset contains 235 cases across 10 medical specialties (see Table 1). All questions and answers are validated by experienced physicians to ensure accuracy and fidelity to real-world clinical reasoning.

Our evaluation of several state-of-the-art general-purpose and medical domain-specific models reveals that LLMs struggle to provide expected responses to rare cases. These results highlight the limitations of relying on parametric memory of the models alone when handling rare cases, underscoring the necessity of retrieval augmentation in answering complex medical scenarios. Therefore, we expand our horizon to evaluating performances under retrieval, which is known to enhance the performance of medical question answering (Neha et al., 2025). We create a retrieval corpus of 53,617 case reports covering 12 medical specialties, drawn from publicly available reports. We find providing retrieved documents in the context of the question significantly increases model performance in most models. However, a notable gap exists between the performance of open-source models and proprietary models, and future contributions to enhance open-source models’ ability to reason rare cases will be necessary. In summary, we make the following contributions:

- We introduce OGCAREBENCH, a benchmark derived from published medical case reports, designed to evaluate language models on realistic rare clinical scenarios.
- We empirically demonstrate the shortcomings of both medical and general-purpose models in open-ended rare-case reasoning, underscoring the limitations of their standalone use for supporting physicians in real clinical settings.
- We show that retrieval augmentation enhances performance in expert-level tasks, emphasizing its necessity in building robust systems in the medical domain.

108 2 RELATED WORK

110 **Models and Datasets Focused on Medicine** Medical question-answering (QA) models have significantly evolved
 111 (Shool et al., 2025; Yan et al., 2024). A large portion focuses on and is mostly tested on multiple-choice question
 112 answering (Han et al., 2025; Wu et al., 2023; Singhal et al., 2023b; Bolton et al., 2024), often using exam-style
 113 benchmarks for evaluation (Shool et al., 2025; Krishnaram et al., 2023; Jin et al., 2019; 2021; Pal et al., 2022; Hendrycks
 114 et al., 2021; Zuo et al., 2025). Models and datasets with LFQA style are often patient-oriented (Li et al., 2023; Hosseini
 115 et al., 2024; Nguyen et al., 2023; Singhal et al., 2023a; Zhu et al., 2020) or based on general clinical knowledge
 116 (Garcia-Ferrero et al., 2024; Bolton et al., 2024; Krishnaram et al., 2023) rather than case-conscious reasoning. Recently,
 117 there have been studies focusing on case-based models and dataset (Xu et al., 2025; Nori et al., 2025). Qiu et al. (2025)
 118 and Wu et al. (2025) especially focuses on using case reports to construct benchmark on final diagnosis, its reason, and
 119 treatments. We broaden the focus and convey the novelty of the case report, whether it may be diagnosis, treatment,
 120 or clinical examinations that are presented in a novel way.

121 **Retrieval augmentation in expert domains** Retrieval augmentation generation (RAG) is known to enhance the performance in knowledge-intensive tasks (Lewis et al., 2021), providing a promising foundation for domain-specific reasoning (Lee et al., 2025). Using RAG in areas requiring domain expertise mitigates the limitation of memorization by integrating curated professional context as shown by examples from legal domain (Zheng et al., 2025; Hou et al., 2024). With medicine, prior studies have shown that incorporating RAG enhances the performance in various medical QA, ranging from multiple choice to case-based reasoning (Xiong et al., 2024; Dong et al., 2025; Ke et al., 2025; Chen et al., 2025). However, use of RAG in various rare-case scenarios and case-based retrieval corpus still remains a gap, and we address this by evaluating rare-case questions using RAG.

129 130 3 OGCAReBENCH: A BENCHMARK OF OFF GUIDELINE MEDICAL CASES

132 Medical case reports document novel or rare clinical occurrences. They are typically published to document and highlight unusual conditions, atypical disease courses, unexpected complications, new diagnosis mechanisms, or unique treatment strategies. Case reports appear in specialty journals such as, Journal of Clinical Case Reports, BMJ Case Reports, general medical journals like NEJM, and online repositories. To better understand how case reports are used in practice by physicians, we conducted informal interviews with 10 physicians from different US based institutions with specialties ranging from emergency medicine, rheumatology, internal medicine, infectious diseases, oncology, and surgery. We surmised that while not all practitioners rely on case reports—fields like infectious diseases or emergency medicine rarely need to consult them—specialties such as surgery, internal medicine, and oncology often turn to case reports. Physicians reported that when encountering cases that fall outside standard clinical guidelines¹, they rely on case reports and series alongside consultation with colleagues or specialty networks to identify relevant precedents and guide their clinical decision-making. This is supported by studies showing that only 55% to 57% of guideline-recommended treatments are implemented in routine practice (McGlynn et al., 2003; Runciman et al., 2012).

143 To construct a dataset that emphasizes such rare, patient-specific cases, we synthesize our benchmark, OG-
 144 CAREBENCH, from these reports. Starting from all open-access case reports available on PubMed Central (PubMedCentral, 2003), we filter for cases with novel content and persistent rarity, then extract question-answer pairs
 145 using LLMs. To simulate realistic clinical scenarios beyond the scope of the original reports, we apply controlled
 146 modifications to these questions, ensuring they are distinct from the documented cases. Finally, all modified questions
 147 undergo physician annotation to validate both accuracy and clinical relevance. We outline the benchmark construction
 148 in Figure 2 and detail it below. An example of a case report along with the created question-answer pair is provided in
 149 Figure 3.

151 152 3.1 DATASET CREATION

154 **Step 1: Collecting and filtering case reports** PubMed Central (PMC) provides access to a large collection of open-access medical articles through a File Transfer Protocol (FTP) service, which we use to download relevant articles
 155 (PubMedCentral, 2003). To distinguish case reports from other types of medical articles, we leverage the open-access
 156 journal list provided by PMC and identify case reports based on the venues in which these journals are published,
 157 focusing on those known to regularly feature case report (see Table 15). Using this approach, we compile a total of
 158 53,617 reports, which are then subject to further verification and processing for inclusion in our dataset. We treat this

160 ¹Clinical practice guidelines set by major societies like American College of Cardiology (ACC/AHA), the American College of
 161 Rheumatology (ACR), and the National Comprehensive Cancer Network (NCCN), and others codify large bodies of evidence and
 162 are regularly updated by broad expert panels.

Figure 2: OGCaReBench creation pipeline.

corpus as the data store for retrieval-augmented evaluation. To construct a dataset centered on rare cases, we filter this collection to remove reports which meet any of the following criteria: (1) the case report was published in or before 2022. (2) more than three articles cite the case report. (3) the case report is cited by more than one non-case report article. The rationale for these filters is as follows: recently published case reports retain novelty for a few years; case reports cited fewer than a conservative three times are assumed to represent persisting rarity; and case reports cited multiple times by non-case report articles are excluded, as these follow-up studies are indicators that the case has been further explored and potentially resolved into a standard guideline. Based on these criteria, we obtain 28,219 reports.

Step 2: Extracting raw question-answer pairs Among the filtered case reports, we randomly select a subset of 1,100 to constitute the dataset. Using GPT-4o (2024-05-01-preview), we extract two key elements from each report: (1) the case presentation as a timeline providing a sequence of procedures in patient care, and (2) the most significant contribution of the report, defined as the rationale for its publication. Reports whose significance reflects solely the application of standard procedures to a rare disease, rather than the introduction of a novel intervention, are discarded as the resulting questions and answers will be trivial. The question is then formulated by presenting all procedures preceding the decision point that reflect the significance, asking for the next appropriate step. For example, the most significant contribution of a report might be in developing a new diagnostic test for a condition where all standard diagnostics are inconclusive. In this case, the question will include the patient’s history up until the point where the new test was performed and ask what the next step should be. This procedure simulates a scenario where a physician encounters a similar case and has run out of standard guideline-recommended options. The corresponding answer for this question would be the subsequent significant step which in this example is the new diagnostic test. Finally, we use the LLM to verify that the answer was directly connected to the identified significance, thereby confirming the integrity of the question-answer generation process.

Table 1: Distribution of Case Reports across Specialties

Specialty	All Reports	OGCaRe-Bench
Basic Sciences	4437	9
Dentistry	1627	3
External Health	3192	12
Intensive Care	2458	9
Internal Medicine	11530	105
Neurology	1715	7
OBGYN	1601	—
Oncology	1004	7
Orthopedics	2349	17
Pediatrics	1576	6
Surgical Studies	9408	60
General Medicine	1396	—
Others	2165	—
Total	53617	235

Step 3: Adding distractors to generated questions Questions generated in Step 2 are further modified to increase their realism. As our goal is to simulate a situation where physicians consult case reports as guidance for treating their own patients, it is essential that the questions represent unforeseen scenarios and are presented differently from the original reports from which they were derived. To achieve this, we introduce controlled modifications—referred

216
217
218**Stop exsanguination by inflation: management of aorta-esophageal fistula bleeding**

PMCID: PMC10924743

219 I. INTRODUCTION

220 An aortoesophageal fistula (AEF) is an abnormal connection between the aorta and the esophagus usually secondary to
 221 a thoracic aortic aneurysm (TAA) or foreign body ingestion. The presentation typically aligns with Chiari's triad of mid-
 222 thoracic pain, sentinel arterial hemorrhage, and exsanguination after a symptom-free interval. Primary AEFs are very rare,
 223 with a reported incidence of 0.02% and 0.07% in autopsy studies ... (Omitted for brevity).

224 II. CASE PRESENTATION

225 A **59-year-old male** with no known previous medical history presented to a Level 1 trauma center after being discovered
 226 by EMS in a large volume of red blood. The event was unwitnessed by bystanders, so it was assumed that the
 227 mechanism was a traumatic fall with a resulting head bleed. During transportation patient lost pulses but returned
 228 to spontaneous circulation after cardiopulmonary resuscitation. The patient's initial vital signs in the trauma bay
 229 were a blood pressure of 129/40 mmHg, a heart rate of 101 beats/min ... (Omitted for brevity).

230 III. DISCUSSION

231 ... (Omitted for brevity) EMS may assume a traumatic event seeing a massive pool of blood and can further obscure the
 232 diagnosis by bandaging the body parts and presenting the story that implies a traumatic mechanism for bleeding. With in-
 233 creasing rates of aortic aneurysms within our aging population, AEFs may preset to trauma personnel. In all successful
 234 cases where massive upper gastroesophageal bleeding was stopped, an esophageal balloon or a Sengstaken–Blakemore tube
 235 (SBT) was utilized, and this allowed for the temporary stabilization and had bought time for exact CT diagnosis and surgi-
 236 cal intervention ... (Omitted for brevity).

237 QUESTION

238 A 61-year-old gentleman with no significant past medical history was discovered by paramedics surrounded by hemor-
 239 rhage, with an unobserved incident thought to result from an accidental tumble causing intracranial hemorrhage. During
 240 transport, the patient became pulseless ... (Omitted for brevity) ... Management included somatostatin analog administra-
 241 tion and activation of massive hemorrhage protocol with 2 units whole blood and 15 packed RBCs transfused. The patient
 242 also received empiric antibiotics given concern for aspiration. Cardiac surgery and IR were urgently consulted. **What is the**
 243 **most appropriate immediate intervention for hemorrhage control?**

244 ANSWER

245 Inflation of an esophageal balloon or **Sengstaken–Blakemore tube** to tamponade the bleeding.

246 Figure 3: Example of case report and corresponding final question-answer pair. Timeline is **bolded** and significance
 247 is in **blue**. Abstract before the introduction and conclusion after the discussion are omitted for brevity and irrelevance.
 248 The question asks the direct next step given the patient details (marked **red**), and the answer is related to the significant
 249 point of the case report. Link for full text: <https://pmc.ncbi.nlm.nih.gov/articles/PMC10641966/>.

250
 251
 252
 253 to as distractions—using Claude 4 Opus. These modifications include altering patient demographics (e.g., age and
 254 ethnicity), substituting medical terminology with semantically equivalent expressions, integrating comorbidities that
 255 do not affect the original condition, and other related adjustments (see Figure 9 for the full prompt). Importantly,
 256 while the questions are modified, the answers are preserved; distractions are applied only to the extent that the clinical
 257 plausibility of the case remains intact and the correct answer remains unaffected. To validate this process, three
 258 physicians specializing in internal medicine are presented with subsets of the original question, modified question, and
 259 corresponding answer. Their evaluation confirms the medical coherence of the modifications. Such distractions mirror
 260 the challenges physicians face in real-world settings where unrelated comorbidities may exist.

261
 262
 263 **Step 4: Dataset verification by experts** We assess the medical validity of the question-answer pairs through annotations
 264 provided by three physicians from Step 3. The experts are presented with the modified questions and asked to
 265 evaluate them. The evaluation criteria are as follows: (1) the question and answer should be medically aligned, and
 266 (2) the question should require domain-specific medical expertise rather than general medical knowledge held by the
 267 public. We ask them to rate the pairs on a scale of 1 to 5—1 indicating that question-answer pair is not realistic under
 268 any circumstances and 5 indicating that the question is realistic and the answer correctly addresses the question. Only
 269 question-answer pairs rated 4 or 5 are retained, yielding 235 instances in the final dataset. Detailed instructions we
 provide the physicians are in Figure 12.

270 3.2 DATA STATISTICS
271

272 We summarize the dataset statistics split across medical specialties in Table 1. We use the original corpus for all
273 53617 case reports extracted in Step 1 as our retrieval store. The case reports collected are represented by 12 dis-
274 ciplines: basic sciences, dentistry, external health, intensive care, internal medicine, neurology, OBGYN, oncology,
275 orthopedics, pediatrics, surgical studies, and general medicine. Both the full set and OGCAREBENCH are heavily
276 inclined toward Internal Medicine and Surgical Studies. For internal medicine, this is due to its overlap with other spe-
277 cialties and it also encompassing a variety of sub-disciplines such as hepato-biliary-pancreatic and vascular medicine.
278 For surgical studies, each case is unique and hence more case reports are written about them. While there is no
279 instance of OBGYN in OGCAREBENCH, there are surgical studies cases involving maternity care in the dataset.
280 Each question in OGCAREBENCH consists of 1-2 paragraphs, and an-
281 swers are often 1-2 sentences (length distribution is reported in Table 2).

282 3.3 EVALUATION METRIC
283

284 To evaluate the performance of a model using OGCAREBENCH, we feed
285 the question to the model with an instruction to generate a free form nat-
286 ural language answer. To evaluate the alignment between the gold answers
287 extracted from the case reports and the responses generated by the mod-
288 els, we use an LLM-as-a-judge to assess equivalence (specifically, we use
289 GPT-4o). In our early experiments, we find that model responses have
290 varying formats and lengths, ranging from brief phrases to long paragraphs
291 that include background and rationale. To focus on the main clinical con-
292 tent, we prompt the judge with a few-shot example to output “equivalent” or “mismatch” (see Figure 11 for full
293 prompt). Model response is judged as equivalent if the primary clinical procedure recommended matches the pro-
294 cedure specified in the gold answer. Conversely, a response is considered a mismatch if the contents do not overlap or
295 the gold answer appears in the output but not prioritized as the main procedure. Similarly, broad or vague recom-
296 mendations are labeled as mismatches when the gold answer requires a specific clinical procedure, as our benchmark
297 emphasizes detailed, case-based clinical reasoning. Our primary metric is a simple percentage of answers in the
298 benchmark predicted correctly by the model.

300 4 EVALUATION SETUP
301

302 We consider two evaluation setups, (1) a baseline setup in which an
303 LLM is expected to rely on its own parametric knowledge without
304 any retrieval, and (2) a setup where we first perform retrieval on our
305 datastore to find the most relevant case reports and provide the re-
306 trieval documents to the model’s context to generate the answer. For
307 the retrieval augmented generation (RAG) setup, we first validate the
308 performance of different retrieval models and use the top-performing
309 ones for final evaluation.

310 4.1 BASELINE EVALUATION
311

312 We benchmark both state of the art general-purpose and medical do-
313 main models as baselines. For general-purpose models, we evaluate:
314 GPT-03-mini (OpenAI, 2025c), GPT-5 (OpenAI, 2025b), Llama 3.3
315 (70B Instruct) (Meta AI, 2024), Claude 4 Sonnet (Anthropic, 2025),
316 and Thinking Claude 4 Sonnet (Anthropic, 2025). For models specializing in medical question answering, we evaluate:
317 OpenbioLLM-Llama 3 (70B) (Ankit Pal, 2024), MedGemma (27B-text) (Sellergren et al., 2025), and Llama 3-Med42
318 (70B) (Christophe et al., 2024). In addition, we also evaluate GPT-4o-search-preview (OpenAI, 2025a) which, as the
319 name suggests, is search-enabled in that it relies on web search (instead of our retrieval datastore) to generate the final
320 answers. We include this baseline to attest to the importance of our retrieval store in solving this benchmark. We
321 prompt the models to answer the question with one best answer (see Figure 10a). Restrictions such as not outputting
322 thoughts and a word limit are added to medical QA models to avoid having unusually lengthy output (see Figure 10b).
323 We also considered Meditron (70B) (Chen et al., 2023) and Clinical Camel (70B) (Toma et al., 2023), but we dropped
them since their primary focus is multiple-choice question answering and therefore generated responses by always

Table 2: Token statistics for the retrieval corpus and queries and answers from OGCAREBENCH (Computed using Contriever’s tokenizer (Izacard et al., 2022)).

Category	Avg. tokens	Max tokens
Corpus	2730.21	24271
Question	403.26	696
Answer	29.48	120

Table 3: Maximum context lengths of a subset of models we evaluate with RAG.

Model	Context Length
GPT-5	400K
GPT-03-mini	200K
Llama 3.3 70B Instruct	128K
Claude 4 Sonnet	1M
Thinking Claude 4 Sonnet	1M
MedGemma-27b-text-it	128K
Llama 3-Med42-70B	8K
OpenBioLLM-Llama 3-70B	8K

324 outputting answer choices when given questions from OGCAREBENCH (even though no choices were provided in
 325 the question).
 326

327 4.2 RETRIEVAL AUGMENTED EVALUATION 328

329 **Evaluating Retrieval Methods** To identify the most effective retrieval models for our downstream generation task,
 330 we evaluate a comprehensive set of 15 models encompassing sparse, general purpose, and biomedical models. For the
 331 sparse baseline, we employ BM25 (Robertson & Zaragoza, 2009), a model known for its strong performance across
 332 various benchmarks, including BEIR (Thakur et al., 2021). Our general-purpose models include All-MiniLM-L12-
 333 v2², E5-small-v2 (Wang et al., 2024), Contriever and Contriever-MSMARCO (Izacard et al., 2022), and the BGE
 334 family (Xiao et al., 2024), which integrates dense, sparse, and multi-vector strategies. For the biomedical domain,
 335 we assess MedCPT (Jin et al., 2023), PubMedBERT (Gu et al., 2021), MedEmbed series (Balachandran, 2024), and
 336 BMRetriever(Xu et al., 2024), a medically pre-trained and fine-tuned instruction-following model. We also exper-
 337 iment with two-stage retrieval process. Following the initial retrieval, we rerank the top 100 candidates using the
 338 PubMed-pretrained MedCPT-cross-encoder (Jin et al., 2023), which has demonstrated state-of-the-art performance on
 339 biomedical information retrieval tasks. To assess performance of retrieval, we report results using Recall@k, MRR,
 340 and nDCG with respect to the ground-truth case report (from which the question and answer are derived), which
 341 together capture different aspects of retrieval effectiveness. Instruction used for BMRetriever is in Figure 5.
 342

343 Given the long lengths of our corpus and queries, along with the context-window limitations summarized in Table 2
 344 and Table 3, we employ a text processing strategy to optimize document representation. Documents are chunked
 345 with a maximum length of 512 tokens and a stride of 128. We then aggregate passage-level scores using a two-level
 346 Maximum Passage (MaxP) strategy (Dai & Callan, 2019). The effectiveness of this chunking approach is further
 347 validated in Appendix A.2.
 348

349 **Retrieval Augmented Generation** We select the best-performing retrievers (see Table 5) from each of the three
 350 categories—sparse, general purpose, and biomedical-BM25, BGE, and BMRetriever—to incorporate into the retrieval
 351 augmented evaluation. Each of the seven LLMs used in baseline experiments is integrated into the pipeline, except for
 352 GPT-4o-search-preview, which incorporates web-search by default. We evaluate the model performance using the top
 353 1, 3, and 5 retrieved case reports as context, as well as an oracle setting in which the ground-truth source case report of
 354 the question is input. For OpenbiolLM and Llama 3-Med42-70B, which have a small context window of 8K tokens,
 355 case reports exceeding the limit are truncated from the end. Given that the average length of our case reports is 2,730
 356 tokens (see Table 2), including five reports as context for these two models would make a similar setting as using three
 357 after truncation. Consequently, we do not test the 5-retrieved reports for them.
 358

359 5 RESULTS AND FINDINGS 360

361 **Baselines without retrieval struggle** Table 4 shows the baseline per-
 362 formance of the base models evaluated with OGCAREBENCH with-
 363 out retrieval augmentation. To validate our LLM-based evaluation, we
 364 randomly select 45 baseline results evenly spread across GPT-o3-mini
 365 (best performance), MedGemma (lowest performance), and Llama3-
 366 Med42 (mid level performance) to be validated by internal medicine
 367 physicians. We task them to label whether the GPT evaluation of
 368 matching model-generated answers and gold answers reflects true clin-
 369 ical judgment, yielding an agreement of 93%.
 370

371 We find that general-purpose models overall outperform medical spe-
 372 cialized ones. A reasoning model GPT-o3-mini performs the best
 373 (51.5%), followed by GPT-5 and Llama 3.3. Claude 4 Sonnet and its
 374 reasoning variant trail behind. Surprisingly, GPT-4o-search-preview
 375 performs the lowest among general-purpose models at 39.1%, entail-
 376 ing that its built-in search often fails to find the right document to refer
 377 to. Despite domain specialization, medical LLMs perform poorly with MedGemma, the latest offering from Google,
 378 on the lower end among all models at 36.2%. These results show that both state-of-the-art general-purpose models and
 379 models for medical tasks struggle when presented with complex rare medical questions. Subpar baseline performance
 380 suggests that memorization from pretraining alone is insufficient for handling such cases. Performance of GPT-5 and
 381

382 Table 4: Overall baseline performance.
 383 Subfield-level results are provided in Ap-
 384 pendix A.1

Model	Accuracy
GPT-5	44.7
GPT-o3-mini	51.5
GPT-4o-search-preview	39.1
Llama 3.3 70B Instruct	45.1
Claude 4 Sonnet	41.7
Thinking Claude 4 Sonnet	40.9
MedGemma-27b-text-it	36.2
Llama 3-Med42-70B	42.1
OpenBioLLM-Llama 3-70B	39.6

²<https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2>.

378 GPT-o3-mini suggests that reasoning could offer some advantage in handling rare, case-based scenarios, while Thinking
 379 Claude 4 Sonnet doesn't follow this trend. We also speculate that OpenAI's models' performance could be due to
 380 recent efforts in improving health-related information communication (OpenAI, 2025b) which might include training
 381 with domain specific data. Open-source LLMs in particular remain further behind compared to the proprietary models.
 382

383 Table 5: Retrieval results across state of the art retrievers. Values are in percentage.
 384

Type	Model	Params	Recall@1	Recall@3	Recall@5	Recall@10	Recall@100	Recall@1000	MRR@5	nDCG@10
General Purpose	BM25	N/A	49.4	60.0	65.1	72.8	88.5	97.0	55.5	60.4
	All-MiniLM-L12-v2	33.4M	19.1	29.4	31.9	39.1	68.1	92.3	24.3	28.5
	E5-small-v2	33.4M	33.2	42.6	47.2	53.6	78.7	94.0	38.6	42.8
	Contriever-msmarco	110M	34.9	46.4	51.1	59.6	80.4	94.0	41.1	46.3
	Contriever	110M	34.9	46.8	53.2	60.0	78.7	91.5	41.6	46.6
	BGE-small-en-v1.5	33.4M	43.4	56.2	63.0	71.9	92.3	98.3	50.2	56.3
	BGE-base-en-v1.5	109M	49.4	61.7	68.1	77.4	91.1	98.7	56.3	62.3
Finetuned	BGE-large-en-v1.5	335M	61.7	74.8	80.9	86.0	95.3	98.3	69.2	73.8
	BGE-m3	560M	44.3	56.2	58.3	66.0	89.4	97.4	50.1	54.6
	MedCPT	109M	15.7	26.0	31.1	37.0	66.0	92.8	21.2	25.7
	Pubmedbert-base-embeddings	109M	33.6	46.3	52.3	61.3	88.5	97.0	40.7	46.5
	MedEmbed-small-v0.1	33.4M	37.0	48.5	56.2	68.1	88.5	98.7	43.7	50.5
	MedEmbed-base-v0.1	109M	42.6	58.7	63.8	72.3	90.3	99.1	50.9	54.1
	MedEmbed-large-v0.1	335M	51.9	64.6	68.9	75.7	92.3	97.9	58.8	63.5
	BMRetriever-410M	410M	56.6	70.2	73.2	78.7	93.6	99.1	63.3	67.6

394 **Retrieving the right document is hard for complex medical queries** Table 5 presents the retrieval performance of
 395 state-of-the-art retrievers. The results demonstrate that OGCAEBENCH is a challenging retrieval benchmark, with
 396 only two models achieving a Recall@1 above 50%. For RAG systems, this indicates that the retrieved context is
 397 likely to miss crucial information more than half of the time, thereby reducing the quality and accuracy of generated
 398 answers. Although Recall@k approaches 100% at very high values of k (100–1,000), providing such a large number
 399 of documents as context to LLMs is impractical. Results with simple truncation are reported in Appendix A.5.

400 As shown in Table 6, incorporating a strong
 401 biomedical reranker, MedCPT-Cross-Encoder,
 402 consistently improves the performance of most
 403 retrieval models. However, reranker leads to per-
 404 formance degradation for several larger retriever
 405 models, suggesting that simply adding a special-
 406 ized reranker is not a guaranteed solution. In some
 407 cases, it may even reduce the quality of the final
 408 retrieved context, potentially resulting in poorer
 409 LLM responses. Results for a general-purpose
 410 reranker are provided in Appendix A.6.

411 **Retrieval augmentation improves results for**
 412 **large context models, but gap remains in others.**
 413 Retrieval augmentation generation (RAG) pro-
 414 duces substantial performance gains across nearly
 415 all evaluated LLMs. GPT-5 and Thinking Claude
 416 4 Sonnet are two models with the most remark-
 417 able performance across all three context sizes. In
 418 particular, GPT-5 combined with top five retrieved
 419 case reports as context with BGE-Large as the retrieval model achieves the highest accuracy at 75.3%, surpassing the
 420 oracle performance of the weakest model (OpenBioLLM). General-purpose reasoning models (GPT-5, GPT-o3-mini,
 421 Thinking Claude 4 Sonnet) consistently outperform other models. Among medical models, MedGemma exhibits
 422 competitive performance and notable improvement, and Llama 3-Med42 performs comparably. OpenBioLLM ex-
 423 hibits notably subpar performance, especially when using three case reports as context. With this result, we find three
 424 important aspects that affect the performance of the model in rare-case scenarios:

425 Table 6: Percentage improvement in retrieval using a
 426 reranker (MedCPT-Cross-Encoder).

Model	Recall@10↑	nDCG@10↑
All-MiniLM-L12-v2	66.5	88.4
E5-small-v2	28.5	35.7
Contriever-msmarco	17.8	20.1
Contriever	15.7	20.2
BGE-small-en-v1.5	14.7	15.6
BGE-base-en-v1.5	6.0	8.9
BGE-large-en-v1.5	1.2	2.1
BGE-m3	-3.0	-11.0
MedCPT	39.2	63.0
Pubmedbert-base-embeddings	19.4	28.8
MedEmbed-small-v0.1	9.4	18.2
MedEmbed-base-v0.1	3.0	10.9
MedEmbed-large-v0.1	0.7	-0.5
BMRetriever-410M	-1.7	-6.8

427 • **Retrieval performance is a critical factor influencing RAG performance.** In most settings, BGE-Large backed
 428 LLMs deliver the best performance among the three retrievers tested. When comparing the best performing lan-
 429 guage model across retrievers, using BGE-Large yields the highest accuracy, reflecting its highest retrieval quality.

432 Table 7: Performance of RAG with different retrieval methods and context length. Δ stands for the percentage
 433 improvement from baseline. For retrieval with BGE, BGE-large-en-v1.5 was used.

# Reports	Model	BM25	Δ BM25	BGE	Δ BGE	BMRet.	Δ BMRet.	Oracle
1	GPT-5	63.4	18.7	67.2	22.5	68.5	23.8	88.1
	GPT-o3-mini	61.7	10.2	67.2	15.7	63.0	11.5	81.3
	Llama 3.3 70B Instruct	58.7	13.6	64.7	19.6	57.0	11.9	79.6
	Claude 4 Sonnet	57.9	16.2	65.1	23.4	63.8	22.1	81.7
	Thinking Claude 4 Sonnet	59.6	18.7	68.9	28.0	63.4	22.5	82.6
	MedGemma-27b-text-it	51.5	15.3	62.6	26.4	56.2	20.0	78.7
	Llama 3-Med42-70B	54.9	12.8	61.3	19.1	55.7	13.6	80.4
	OpenBioLLM-Llama 3-70B	49.4	9.8	57.9	18.3	51.5	11.9	72.8
3	GPT-5	68.9	24.2	72.8	28.1	72.3	27.6	–
	GPT-o3-mini	65.5	14.0	71.9	20.4	68.9	17.4	–
	Llama 3.3 70B Instruct	54.5	9.4	66.0	20.9	61.7	16.6	–
	Claude 4 Sonnet	56.6	14.9	67.7	26.0	64.3	22.6	–
	Thinking Claude 4 Sonnet	66.0	25.1	73.6	32.7	66.4	25.5	–
	MedGemma-27b-text-it	51.5	15.3	63.0	26.8	55.3	19.1	–
	Llama 3-Med42-70B	51.9	9.8	56.2	14.0	53.2	11.1	–
	OpenBioLLM-Llama 3-70B	40.4	0.8	48.1	8.5	37.9	-1.7	–
5	GPT-5	70.6	25.9	75.3	30.6	70.2	25.5	–
	GPT-o3-mini	66.8	15.3	71.5	20.0	69.8	18.3	–
	Llama 3.3 70B Instruct	57.4	12.3	63.8	18.7	60.0	14.9	–
	Claude 4 Sonnet	62.1	20.4	67.7	26.0	66.0	24.3	–
	Thinking Claude 4 Sonnet	66.0	25.1	73.6	32.7	67.7	26.8	–
	MedGemma-27b-text-it	43.8	7.6	56.2	20.0	50.6	14.5	–

457
 458 BMRetriever generally follows, achieving higher accuracy overall compared to BM25, aligning with their relative
 459 retrieval performance.

460

- 461 • **Context window size, as well as the number of documents incontext affects the performance.** Models with
 462 limited context capacity (Llama 3-Med42, OpenBioLLM) of 8K tokens exhibit the lowest gains, particularly when
 463 using three case reports as context. In contrast, MedGemma shows significant improvements with RAG due to its
 464 large context window, even though it has the lowest baseline performance. Moreover, different models reach their
 465 own peak at different context lengths, suggesting the tradeoff between a long context to process and ensuring the
 466 answer’s presence among the retrieved documents.
- 467 • Finally, **model’s reasoning ability effects RAG performance.** GPT-5 and Thinking Claude 4 Sonnet achieve
 468 the best result across all retrievers and context lengths, underscoring the importance of reasoning in consulting
 469 external sources. Although Thinking Claude 4 Sonnet does not have a notable baseline performance, it demonstrates
 470 remarkable improvement when augmented with retrieval, achieving 32.7% gain with five case reports as context and
 471 BGE-Large as retriever. GPT-o3-mini also performs competitively, while its improvement is small due to its already
 472 high baseline. These patterns highlight crucial reasoning capacity for transforming retrieved content into clinically
 473 sound responses.

474 Overall, RAG improves the performance of the models and thus proves essential for rare-case reasoning, transforming
 475 subpar baseline performance into clinically significant results. Full RAG result is provided in Table 7.

477 6 CONCLUSION

479 Our work suggests that reliable medical LLMs must move beyond memorization and towards benchmarks that reflect
 480 real-world clinical reasoning. OGCAREBENCH highlights rare, case-based scenarios where current models fall short.
 481 RAG fills this gap by curating the cases to focus on, exhibited by significantly enhanced performance. Together,
 482 OGCAREBENCH shows retrieval as a crucial component for building clinically reliable LLMs and establishes a new
 483 benchmark for supporting physicians when faced with uncommon clinical cases. Retrieval performance, context
 484 window, number of documents used as context, and the reasoning ability all play essential roles when it comes to
 485 RAG. We hope this benchmark expands the field of open-ended rare-case reasoning in the medical domain and thereby
 486 supports physicians.

486 **REPRODUCIBILITY STATEMENT**

487

488 We provide the OGCAREBENCH dataset as supplementary material in csv and json format. “Title” is the title of the
 489 source case report that the question-answer pair was derived from, “pmc_id” is PMC ID of the source case report,
 490 and “Classification” indicates its specialty. The prompts for dataset construction process in §3.1 are in Appendix C,
 491 including significance and timeline extraction, question-answer pair creation, controlled modification, model prompts
 492 for evaluation, and evaluating answer and model response equivalence. The full dataset and code will be publicly
 493 released upon publication.

494

495 **REFERENCES**

496

497 Moaiz Abrar, Yusuf Sermet, and Ibrahim Demir. An empirical evaluation of large language models on consumer
 498 health questions, 2024. URL <https://arxiv.org/abs/2501.00208>.

499 Malaikannan Sankarasubbu Ankit Pal. Openbiollms: Advancing open-source large language models for healthcare
 500 and life sciences. <https://huggingface.co/aaditya/OpenBioLLM-Llama3-70B>, 2024.

501

502 Anthropic. Introducing claude 4: Opus 4 and sonnet 4. <https://www.anthropic.com/news/clause-4>,
 503 May 2025.

504 Abhinand Balachandran. Medembed: Medical-focused embedding models, 2024. URL <https://github.com/abhinand5/MedEmbed>.

505

506 Asma Ben Abacha and Dina Demner-Fushman. A question-entailment approach to question answering. *BMC
 507 Bioinformatics*, 20(1), October 2019. ISSN 1471-2105. doi: 10.1186/s12859-019-3119-4. URL <http://dx.doi.org/10.1186/s12859-019-3119-4>.

507

508 Elliot Bolton, Abhinav Venigalla, Michihiro Yasunaga, David Hall, Betty Xiong, Tony Lee, Roxana Daneshjou,
 509 Jonathan Frankle, Percy Liang, Michael Carbin, and Christopher D. Manning. Biomedlm: A 2.7b parameter lan-
 510 guage model trained on biomedical text, 2024. URL <https://arxiv.org/abs/2403.18421>.

511

512 Shan Chen, Pedro Moreira, Yuxin Xiao, Sam Schmidgall, Jeremy Warner, Hugo Aerts, Thomas Hartvigsen, Jack
 513 Gallifant, and Danielle S. Bitterman. Medbrowsecomp: Benchmarking medical deep research and computer use,
 514 2025. URL <https://arxiv.org/abs/2505.14963>.

515

516 Zeming Chen, Alejandro Hernández-Cano, Angelika Romanou, Antoine Bonnet, Kyle Matoba, Francesco Salvi, Mat-
 517 teo Pagliardini, Simin Fan, Andreas Köpf, Amirkeivan Mohtashami, Alexandre Sallinen, Alireza Sakhaeirad, Vini-
 518 tra Swamy, Igor Krawczuk, Deniz Bayazit, Axel Marmet, Syrielle Montariol, Mary-Anne Hartley, Martin Jaggi,
 519 and Antoine Bosselut. Meditron-70b: Scaling medical pretraining for large language models, 2023.

520

521 Clément Christophe, Praveen K Kanithi, Tathagata Raha, Shadab Khan, and Marco AF Pimentel. Med42-v2: A suite
 522 of clinical llms, 2024. URL <https://arxiv.org/abs/2408.06142>.

523

524 Zhuyun Dai and Jamie Callan. Deeper text understanding for ir with contextual neural language modeling. In *Pro-
 525 ceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval,
 526 SIGIR ’19*, pp. 985–988. ACM, July 2019. doi: 10.1145/3331184.3331303. URL <http://dx.doi.org/10.1145/3331184.3331303>.

527

528 Xuanzhao Dong, Wenhui Zhu, Hao Wang, Xiwen Chen, Peijie Qiu, Rui Yin, Yi Su, and Yalin Wang. Talk before
 529 you retrieve: Agent-led discussions for better rag in medical qa. *ArXiv*, abs/2504.21252, 2025. URL <https://api.semanticscholar.org/CorpusID:278208163>.

530

531 Felix J. Dorfner, Amin Dada, Felix Busch, Marcus R. Makowski, Tianyu Han, Daniel Truhn, Jens Kleesiek, Mad-
 532 humita Sushil, Jacqueline Lammert, Lisa C. Adams, and Keno K. Bressem. Biomedical large languages models
 533 seem not to be superior to generalist models on unseen medical data, 2024. URL <https://arxiv.org/abs/2408.13833>.

534

535 Iker Garc’ia-Ferrero, Rodrigo Agerri, Aitziber Atutxa Salazar, Elena Cabrio, Iker de la Iglesia, Alberto Lavelli,
 536 Bernardo Magnini, Benjamin Molinet, Johana Ramirez-Romero, Germán Rigau, Jose Maria Villa-Gonzalez, Ser-
 537 ena Villata, and Andrea Zaninello. Medmt5: An open-source multilingual text-to-text llm for the medical do-
 538 main. In *International Conference on Language Resources and Evaluation*, 2024. URL <https://api.semanticscholar.org/CorpusID:269042766>.

539

540 Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng Gao,
 541 and Hoifung Poon. Domain-specific language model pretraining for biomedical natural language processing. *ACM*
 542 *Transactions on Computing for Healthcare*, 3(1):1–23, October 2021. ISSN 2637-8051. doi: 10.1145/3458754.
 543 URL <http://dx.doi.org/10.1145/3458754>.

544 Tianyu Han, Lisa C. Adams, Jens-Michalis Papaioannou, Paul Grundmann, Tom Oberhauser, Alexei Figueroa,
 545 Alexander Löser, Daniel Truhn, and Keno K. Bressem. Medalpaca – an open-source collection of medical con-
 546 versational ai models and training data, 2025. URL <https://arxiv.org/abs/2304.08247>.

547 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Mea-
 548 suring massive multitask language understanding, 2021. URL <https://arxiv.org/abs/2009.03300>.

549 Pedram Hosseini, Jessica M. Sin, Bing Ren, Bryceton G. Thomas, Elnaz Nouri, Ali Farahanchi, and Saeed Hassan-
 550 pour. A benchmark for long-form medical question answering, 2024. URL <https://arxiv.org/abs/2411.09834>.

551 Abe Bohan Hou, Orion Weller, Guanghui Qin, Eugene Yang, Dawn Lawrie, Nils Holzenberger, Andrew Blair-Stanek,
 552 and Benjamin Van Durme. Clerc: A dataset for legal case retrieval and retrieval-augmented analysis generation,
 553 2024. URL <https://arxiv.org/abs/2406.17186>.

554 Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand Joulin, and Edouard
 555 Grave. Unsupervised dense information retrieval with contrastive learning, 2022. URL <https://arxiv.org/abs/2112.09118>.

556 Di Jin, Eileen Pan, Nassim Oufattolle, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What disease does this patient
 557 have? a large-scale open domain question answering dataset from medical exams. *Applied Sciences*, 11(14), 2021.
 558 ISSN 2076-3417. doi: 10.3390/app11146421. URL <https://www.mdpi.com/2076-3417/11/14/6421>.

559 Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W. Cohen, and Xinghua Lu. Pubmedqa: A dataset for biomedical
 560 research question answering, 2019. URL <https://arxiv.org/abs/1909.06146>.

561 Qiao Jin, Won Kim, Qingyu Chen, Donald C Comeau, Lana Yeganova, W John Wilbur, and Zhiyong Lu. Medcpt:
 562 Contrastive pre-trained transformers with large-scale pubmed search logs for zero-shot biomedical information
 563 retrieval. *Bioinformatics*, 39(11), November 2023. ISSN 1367-4811. doi: 10.1093/bioinformatics/btad651. URL
 564 <http://dx.doi.org/10.1093/bioinformatics/btad651>.

565 Yu He Ke, Liyuan Jin, Kabilan Elangovan, Hairil Rizal Abdullah, Nan Liu, Alex Tiong Heng Sia, Chai Rick Soh,
 566 Joshua Yi Min Tung, Jasmine Chiat Ling Ong, Chang-Fu Kuo, Shao-Chun Wu, Vesela P. Kovacheva, and Daniel
 567 Shu Wei Ting. Retrieval augmented generation for 10 large language models and its generalizability in assessing
 568 medical fitness. *npj Digital Medicine*, 8(1):187, 2025. doi: 10.1038/s41746-025-01519-z. URL <https://doi.org/10.1038/s41746-025-01519-z>.

569 Anastasia Krithara, Anastasios Nentidis, Konstantinos Bougiatotis, and Georgios Paliouras. Bioasq-qa: A manually
 570 curated corpus for biomedical question answering. *Scientific Data*, 10(1):170, 2023. ISSN 2052-4463. doi: 10.1038/s41597-023-02068-4. URL <https://doi.org/10.1038/s41597-023-02068-4>.

571 Juntae Lee, Jihwan Bang, Seunghan Yang, Kyuhong Shim, and Simyung Chang. Chain-of-rank: Enhancing large
 572 language models for domain-specific rag in edge device. In *North American Chapter of the Association for Com-
 573 putational Linguistics*, 2025. URL <https://api.semanticscholar.org/CorpusID:276558046>.

574 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler,
 575 Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. Retrieval-augmented generation
 576 for knowledge-intensive nlp tasks, 2021. URL <https://arxiv.org/abs/2005.11401>.

577 Yunxiang Li, Zihan Li, Kai Zhang, Ruilong Dan, Steve Jiang, and You Zhang. Chatdoctor: A medical chat model
 578 fine-tuned on a large language model meta-ai (llama) using medical domain knowledge, 2023. URL <https://arxiv.org/abs/2303.14070>.

579 Elizabeth A McGlynn, Steven M Asch, John Adams, Joan Keesey, Jennifer Hicks, Alison DeCristofaro, and Eve A
 580 Kerr. The quality of health care delivered to adults in the united states. *New England journal of medicine*, 348(26):
 581 2635–2645, 2003.

582 Meta AI. Llama 3.3 model card and prompt formats. https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/, 2024.

594 Fnu Neha, Deepshikha Bhati, and Deepak Kumar Shukla. Retrieval-augmented generation (rag) in healthcare: A
 595 comprehensive review. *AI*, 6(9), 2025. ISSN 2673-2688. doi: 10.3390/ai6090226. URL <https://www.mdpi.com/2673-2688/6/9/226>.

596

597 Vincent Nguyen, Sarvnaz Karimi, Maciej Rybinski, and Zhenchang Xing. MedRedQA for medical consumer ques-
 598 tion answering: Dataset, tasks, and neural baselines. In Jong C. Park, Yuki Arase, Baotian Hu, Wei Lu, Derry
 599 Wijaya, Ayu Purwarianti, and Adila Alfa Krisnadhi (eds.), *Proceedings of the 13th International Joint Con-
 600 ference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for
 601 Computational Linguistics (Volume 1: Long Papers)*, pp. 629–648, Nusa Dua, Bali, November 2023. Association
 602 for Computational Linguistics. doi: 10.18653/v1/2023.ijcnlp-main.42. URL <https://aclanthology.org/2023.ijcnlp-main.42>.

603

604

605 Harsha Nori, Mayank Daswani, Christopher Kelly, Scott Lundberg, Marco Tulio Ribeiro, Marc Wilson, Xiaoxuan
 606 Liu, Viknesh Sounderajah, Jonathan Carlson, Matthew P Lungren, Bay Gross, Peter Hames, Mustafa Suleyman,
 607 Dominic King, and Eric Horvitz. Sequential diagnosis with language models, 2025. URL <https://arxiv.org/abs/2506.22405>.

608

609 OpenAI. Gpt-4o search preview. <https://platform.openai.com/docs/models/gpt-4o-search-preview>, 2025a.

610

611 OpenAI. Introducing gpt-5. <https://openai.com/index/introducing-gpt-5/>, 2025b.

612

613 OpenAI. Introducing openai o3 and o4-mini. <https://openai.com/index/introducing-o3-and-o4-mini/>, April 2025c. Published Apr 16, 2025.

614

615 Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa : A large-scale multi-subject multi-
 616 choice dataset for medical domain question answering, 2022. URL <https://arxiv.org/abs/2203.14371>.

617

618 PubMedCentral. Pmc open access subset. <https://pmc.ncbi.nlm.nih.gov/tools/openftlist/>, 2003.
 619 Bethesda (MD): National Library of Medicine. 2003– [cited YEAR MONTH DAY].

620

621 Pengcheng Qiu, Chaoyi Wu, Shuyu Liu, Weike Zhao, Ya Zhang, Yanfeng Wang, and Weidi Xie. Quantifying the
 622 reasoning abilities of llms on real-world clinical cases. *ArXiv*, abs/2503.04691, 2025. URL <https://api.semanticscholar.org/CorpusID:276812970>.

623

624 Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25 and beyond. *Found. Trends
 625 Inf. Retr.*, 3(4):333–389, April 2009. ISSN 1554-0669. doi: 10.1561/1500000019. URL <https://doi.org/10.1561/1500000019>.

626

627 William B Runciman, Tamara D Hunt, Natalie A Hannaford, Peter D Hibbert, Johanna I Westbrook, Enrico W Coiera,
 628 Richard O Day, Diane M Hindmarsh, Elizabeth A McGlynn, and Jeffrey Braithwaite. Caretrack: assessing the
 629 appropriateness of health care delivery in australia. *Medical Journal of Australia*, 197(2):100–105, 2012.

630

631 Andrew Sellergren, Sahar Kazemzadeh, Tiam Jaroensri, Atilla Kiraly, Madeleine Traverse, Timo Kohlberger, Shawn
 632 Xu, Fayaz Jamil, Cian Hughes, Charles Lau, Justin Chen, Fereshteh Mahvar, Liron Yatziv, Tiffany Chen, Bram
 633 Sterling, Stefanie Anna Baby, Susanna Maria Baby, Jeremy Lai, Samuel Schmidgall, Lu Yang, Kejia Chen, Per
 634 Bjornsson, Shashir Reddy, Ryan Brush, Kenneth Philbrick, Mercy Asiedu, Ines Mezerreg, Howard Hu, Howard
 635 Yang, Richa Tiwari, Sunny Jansen, Preeti Singh, Yun Liu, Shekoofeh Azizi, Aishwarya Kamath, Johan Ferret,
 636 Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane
 637 Riviere, Louis Rouillard, Thomas Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec,
 638 Michelle Casbon, Elena Buchatskaya, Jean-Baptiste Alayrac, Dmitry Lepikhin, Vlad Feinberg, Sebastian Borgeaud,
 639 Alek Andreev, Cassidy Hardin, Robert Dadashi, Léonard Hussenot, Armand Joulin, Olivier Bachem, Yossi Matias,
 640 Katherine Chou, Avinatan Hassidim, Kavi Goel, Clement Farabet, Joelle Barral, Tris Warkentin, Jonathon Shlens,
 641 David Fleet, Victor Cotruta, Omar Sanseviero, Gus Martins, Phoebe Kirk, Anand Rao, Shravya Shetty, David F.
 642 Steiner, Can Kirmizibayrak, Rory Pilgrim, Daniel Golden, and Lin Yang. Medgemma technical report, 2025. URL
 643 <https://arxiv.org/abs/2507.05201>.

644

645 Ofir Ben Shoham and Nadav Rappoport. Medconceptsqa: Open source medical concepts qa benchmark, 2024. URL
 646 <https://arxiv.org/abs/2405.07348>.

647

Sina Shool, Sara Adimi, Reza Saboori Amleshi, Ehsan Bitaraf, Reza Golpira, and Mahmood Tara. A systematic review
 648 of large language model (llm) evaluations in clinical medicine. *BMC Medical Informatics and Decision Making*, 25
 649 (1):117, 2025.

648 Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan Scales, Ajay
 649 Tanwani, Heather Cole-Lewis, Stephen Pfohl, Perry Payne, Martin Seneviratne, Paul Gamble, Chris Kelly, Abubakr
 650 Babiker, Nathanael Schärl, Aakanksha Chowdhery, Philip Mansfield, Dina Demner-Fushman, Blaise Agüera y
 651 Arcas, Dale Webster, Greg S. Corrado, Yossi Matias, Katherine Chou, Juraj Gottweis, Nenad Tomasev, Yun Liu,
 652 Alvin Rajkomar, Joelle Barral, Christopher Semturs, Alan Karthikesalingam, and Vivek Natarajan. Large language
 653 models encode clinical knowledge. *Nature*, 620(7972):172–180, August 2023a. ISSN 1476-4687. doi: 10.1038/
 654 s41586-023-06291-2. URL <https://doi.org/10.1038/s41586-023-06291-2>.

655 Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Le Hou, Kevin Clark, Stephen Pfohl, Heather
 656 Cole-Lewis, Darlene Neal, Mike Schaeckermann, Amy Wang, Mohamed Amin, Sami Lachgar, Philip Mansfield,
 657 Sushant Prakash, Bradley Green, Ewa Dominowska, Blaise Aguera y Arcas, Nenad Tomasev, Yun Liu, Renee Wong,
 658 Christopher Semturs, S. Sara Mahdavi, Joelle Barral, Dale Webster, Greg S. Corrado, Yossi Matias, Shekoofeh
 659 Azizi, Alan Karthikesalingam, and Vivek Natarajan. Towards expert-level medical question answering with large
 660 language models, 2023b. URL <https://arxiv.org/abs/2305.09617>.

661 Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. Beir: A heterogenous
 662 benchmark for zero-shot evaluation of information retrieval models, 2021. URL <https://arxiv.org/abs/2104.08663>.

663 Augustin Toma, Patrick R. Lawler, Jimmy Ba, Rahul G. Krishnan, Barry B. Rubin, and Bo Wang. Clinical camel:
 664 An open expert-level medical language model with dialogue-based knowledge encoding, 2023. URL <https://arxiv.org/abs/2305.12031>.

665 UpToDate. Uptodate: Trusted, evidence-based solutions for modern healthcare. <https://www.wolterskluwer.com/en/solutions/uptodate>, 2025.

666 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Majumder, and Furu
 667 Wei. Text embeddings by weakly-supervised contrastive pre-training, 2024. URL <https://arxiv.org/abs/2212.03533>.

668 Chaoyi Wu, Weixiong Lin, Xiaoman Zhang, Ya Zhang, Yanfeng Wang, and Weidi Xie. Pmc-llama: Towards building
 669 open-source language models for medicine, 2023. URL <https://arxiv.org/abs/2304.14454>.

670 Kevin Wu, Eric Wu, Rahul Thapa, Kevin Wei, Angela Zhang, Arvind Suresh, Jacqueline J. Tao, Min Woo Sun,
 671 Alejandro Lozano, and James Zou. Medcasereasoning: Evaluating and learning diagnostic reasoning from clinical
 672 case reports, 2025. URL <https://arxiv.org/abs/2505.11733>.

673 Shitao Xiao, Zheng Liu, Peitian Zhang, Niklas Muennighoff, Defu Lian, and Jian-Yun Nie. C-pack: Packed resources
 674 for general chinese embeddings, 2024. URL <https://arxiv.org/abs/2309.07597>.

675 Guangzhi Xiong, Qiao Jin, Zhiyong Lu, and Aidong Zhang. Benchmarking retrieval-augmented generation for
 676 medicine, 2024. URL <https://arxiv.org/abs/2402.13178>.

677 Ran Xu, Wenqi Shi, Yue Yu, Yuchen Zhuang, Yanqiao Zhu, May D. Wang, Joyce C. Ho, Chao Zhang, and Carl Yang.
 678 Bmretriever: Tuning large language models as better biomedical text retrievers, 2024. URL <https://arxiv.org/abs/2404.18443>.

679 Shicheng Xu, Xin Huang, Zihao Wei, Liang Pang, Huawei Shen, and Xueqi Cheng. Reverse physician-ai relationship:
 680 Full-process clinical diagnosis driven by a large language model, 2025. URL <https://arxiv.org/abs/2508.10492>.

681 Lawrence K. Q. Yan, Qian Niu, Ming Li, Yichao Zhang, Caitlyn Heqi Yin, Cheng Fei, Benji Peng, Ziqian Bi, Pohsun
 682 Feng, Keyu Chen, Tianyang Wang, Yunze Wang, Silin Chen, Ming Liu, and Junyu Liu. Large language model
 683 benchmarks in medical tasks, 2024. URL <https://arxiv.org/abs/2410.21348>.

684 Lucia Zheng, Neel Guha, Javokhir Arifov, Sarah Zhang, Michal Skreta, Christopher D. Manning, Peter Henderson,
 685 and Daniel E. Ho. A reasoning-focused legal retrieval benchmark. In *Proceedings of the Symposium on Computer
 686 Science and Law on ZZZ, CSLAW '25*, pp. 169–193. ACM, March 2025. doi: 10.1145/3709025.3712219. URL
 687 <http://dx.doi.org/10.1145/3709025.3712219>.

688 Ming Zhu, Aman Ahuja, Da-Cheng Juan, Wei Wei, and Chandan K. Reddy. Question answering with long multiple-
 689 span answers. In Trevor Cohn, Yulan He, and Yang Liu (eds.), *Findings of the Association for Computational Lin-
 690 guistics: EMNLP 2020*, pp. 3840–3849, Online, November 2020. Association for Computational Linguistics. doi:
 691 10.18653/v1/2020.findings-emnlp.342. URL <https://aclanthology.org/2020.findings-emnlp.342>.

702 Yuxin Zuo, Shang Qu, Yifei Li, Zhangren Chen, Xuekai Zhu, Ermo Hua, Kaiyan Zhang, Ning Ding, and Bowen Zhou.
703 Medxpertqa: Benchmarking expert-level medical reasoning and understanding, 2025. URL <https://arxiv.org/abs/2501.18362>.
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

APPENDIX

LIMITATIONS

OGCAREBENCH has a few limitations. First, the case reports are published and updated regularly, and it is likely that our filtered subset of 28,219 reports, as well as the cases included in OGCAREBENCH, will no longer satisfy the filter criteria as medical knowledge advances. This might make the rare cases part of the guideline reducing the utility of the benchmark in a few years. Therefore, future efforts may require updating the datasets or developing a dynamic version of OGCAREBENCH to mitigate data depreciation. This issue of benchmark saturation is however not unique to medical domain and has been explored extensively in the literature. It has additional challenges in medicine as expert annotation is required. Second, case reports vary in quality; some recommend the use of a specific product on behalf of a company. While we exclude such instances in OGCAREBENCH, they remain in the retrieval corpus. This may lead to the recommendation of certain products during RAG. Third, certain questions may have more than one clinically appropriate next step, and it is feasible that those are not captured by our answer. Although physician validation reduces this risk, multiple answers may still exist in some instances, given the complex nature of clinical practice. Finally, there are other venues to handle rare cases, such as platforms only accessible by physicians. They are the edge cases that are not covered by using case reports as our sources, and in practice RAG will not be able to solve them, as it is not included in any publicly available retrieval corpus.

DISCLAIMER

OpenBioLLM is included as one of our baselines as it has been included in multiple prior studies (Shoham & Rappoport, 2024; Dorfner et al., 2024). However, the model is released without an accompanying paper, data description, or detailed methodological description. Therefore, its performance should be interpreted with consideration and we include it for completeness and comparability with existing benchmarks.

A ABLATION STUDY

A.1 BASELINE IN SUBFIELDS

Table 8: Baseline performance across surgery studies and internal medicine.

Model	Surgery	Internal
GPT-5	40	48.6
GPT-o3-mini	50	54.3
GPT-4o-search-preview	43.3	40
Llama 3.3 70B Instruct	35	46.7
Claude 4 Sonnet	41.6	42.9
Thinking Claude 4 Sonnet	43.3	43.8
MedGemma-27b-text-it	36.6	40
Llama 3-Med42-70B	43.3	45.7
OpenBioLLM-Llama 3-70B	40	38.1

Table 8 shows baseline results for two major disciplines: surgical studies and internal medicine. Most models exhibit better accuracy for internal medicine, with the exception of GPT-4o-search-preview and OpenBioLLM. GPT-5 and Llama 3.3 have a significant performance gap of over 8%.

A.2 COMPARISON OF CHUNKING METHODS

Table 9 presents the results of our chunking experiments on two top-performing retrievers, BGE-large and BMRetriever. We compared different combinations of chunking and truncation. Our chunking strategy used a maximum length of 512 tokens with a stride of 128, while truncation was a simple cut-off at 512 tokens. The results demonstrate that applying chunking to both the corpus and the query is essential for achieving high performance in our use case.

Table 9: Retrieval results using different chunking methods.

Model	Corpus	Query	Recall@1	Recall@3	Recall@5	Recall@10	Recall@100	Recall@1000	MRR@5	nDCG@10
BGE-large-en-v1.5	chunk	chunk	61.7	74.8	80.9	86.0	95.3	98.3	69.2	73.8
	chunk	truncation	60.9	74.9	80.9	86.0	95.3	98.3	68.7	73.4
	truncation	truncation	35.7	52.8	60.9	67.2	88.5	98.7	45.4	49.2
BMRetriever-410M	chunk	chunk	56.6	70.2	73.2	78.7	93.6	99.1	63.3	67.6
	chunk	truncation	55.3	70.1	72.8	78.7	93.2	98.7	62.1	66.7
	truncation	truncation	31.9	46.4	53.6	61.3	80.9	96.6	39.9	45.8

Table 10: Retrieval results using different context lengths.

Model	Max Len	Recall@1	Recall@3	Recall@5	Recall@10	Recall@100	Recall@1000	MRR@5	nDCG@10
BMRetriever-410M	512	56.6	70.2	73.2	78.7	93.6	99.1	63.3	67.6
	1024	50.6	63.0	68.1	74.5	87.7	97.9	57.3	62.1
	2048	26.4	45.1	50.2	57.9	82.6	93.2	36.2	42.3

A.3 EFFECTS OF CONTEXT LENGTH

To evaluate the impact of context length, we conducted an experiment with BMRetriever, which supports a maximum context length of 2,048 tokens and was tested with a fixed stride of 128. The results, presented in Table 10, indicate that merely increasing the context window does not necessarily yield improved performance—particularly for long, domain-specific medical queries such as those in our dataset.

A.4 EFFECT OF STRIDE VALUES

Table 11: Retrieval results using different stride values.

Model	Stride	Recall@1	Recall@3	Recall@5	Recall@10	Recall@100	Recall@1000	MRR@5	nDCG@10
BGE-large-en-v1.5	128	61.7	74.9	80.9	86.0	95.3	98.3	69.2	73.8
	256	54.0	68.5	76.6	81.3	94.5	98.7	62.6	67.6
	384	51.1	65.5	70.2	76.2	94.9	98.7	58.7	59.5
	512	47.7	63.0	69.4	77.9	91.5	98.3	56.1	62.1
BMRetriever-410M	128	54.5	68.5	72.8	78.7	93.2	98.7	61.8	66.4
	256	53.2	64.3	71.1	76.6	93.6	99.1	59.8	64.3
	384	48.1	61.3	70.2	74.9	90.2	98.7	56.1	61.1
	512	43.4	57.0	63.0	67.7	88.9	97.4	50.7	55.2

To see the effect of different stride values, we conducted experiments on the two top-performing retrievers, BGE-large and BMRetriever models, with a fixed maximum context length of 512. The results, as detailed in Table 11, revealed that a stride of 128 consistently outperformed other configurations. Consequently, this stride value was selected for all subsequent experiments.

A.5 RETRIEVAL RESULT UNDER SIMPLE TRUNCATION

Table 12 reports retrieval performance under a simple truncation strategy with a maximum context length of 512 tokens for both corpus and queries. As expected, performance is consistently lower than with the chunking strategy, with no model achieving Recall@1 above 50%. This highlights underscore the importance of chunking and reveal substantial room for improvement in modern retrievers, particularly for rare-case retrieval.

A.6 RETRIEVAL RESULTS USING GENERAL PURPOSE RERANKER.

Table 13 reports the performance of the general-purpose BGE-reranker-large (Xiao et al., 2024) when applied to the top-100 candidates. Consistent with the findings presented in the main paper, BGE-reranker-large exhibits a notable decline in performance. This result highlights even state-of-the-art rerankers struggle to perform effective reranking within the context of OGCAREBENCH.

Table 12: Retrieval results using simple truncation.

Type	Model	Params	Recall@1	Recall@3	Recall@5	Recall@10	Recall@100	Recall@1000	MRR@5	nDCG@10
Sparse	BM25	N/A	49.4	60.0	65.1	72.8	88.5	97.0	55.5	60.4
General Purpose	All-MiniLM-L12-v2	33.4M	5.1	9.4	11.5	15.7	41.3	68.1	7.4	9.8
	E5-small-v2	33.4M	13.2	23.4	28.5	32.8	59.6	83.0	18.9	22.9
	Contriever-msmarco	110M	13.2	25.5	29.8	35.7	64.7	85.5	19.3	23.8
	Contriever	110M	15.7	24.7	27.2	32.8	51.5	72.3	20.2	23.8
	BGE-small-en-v1.5	33.4M	31.9	46.0	51.5	61.3	83.0	95.3	39.2	45.3
	BGE-base-en-v1.5	109M	22.6	37.9	44.3	54.0	83.0	96.6	30.6	37.2
	BGE-large-en-v1.5	335M	35.7	52.8	60.9	67.2	88.5	98.7	45.4	49.2
	BGE-m3	560M	20.0	26.8	34.9	41.7	70.2	89.4	24.7	29.4
Finetuned	MedCPT	109M	11.9	17.9	21.7	28.9	56.6	88.5	15.5	19.4
	Pubmedbert-base-embeddings	109M	17.9	34.0	40.9	52.3	82.1	97.0	26.4	33.8
	MedEmbed-small-v0.1	33.4M	27.2	40.0	49.8	57.4	82.6	96.6	35.1	41.2
	MedEmbed-base-v0.1	109M	23.8	40.0	44.7	56.6	79.1	96.2	31.9	39
	MedEmbed-large-v0.1	335M	30.2	43.8	50.2	60.9	86.4	97.0	37.9	44.5
	BMRetriever-410M	410M	31.9	46.4	53.6	61.3	80.9	96.6	39.9	45.8

Table 13: Percentage improvement in retrieval using a reranker (BGE-reranker-large).

Model	Recall@10↑	nDCG@10↑
All-MiniLM-L12-v2	-24.8	-34.4
E5-small-v2	-26.1	-36.7
Contriever-msmarco	-33.6	-44.1
Contriever	-33.3	-41.4
BGE-small-en-v1.5	-43.9	-52.7
BGE-base-en-v1.5	-46.2	-56.8
BGE-large-en-v1.5	-50.5	-59.1
BGE-m3	-50.0	-60.4
MedCPT	-24.1	-23.7
Pubmedbert-base-embeddings	-43.7	-50.3
MedEmbed-small-v0.1	-48.2	-53.7
MedEmbed-base-v0.1	-57.0	-60.4
MedEmbed-large-v0.1	-52.2	-63.5
BMRetriever-410M	-49.7	-60.2

A.7 ERROR MODES FOR RAG

Retrieval Success + RAG Incorrect is greater than Retrieval Fail + RAG Correct or Retrieval Fail + RAG Incorrect, suggesting that medical reasoning is a challenging task even when a correct document is provided. Models with good performance (GPT-5, Thinking Claude 4 Sonnet) have low Retrieval Success + RAG Incorrect, implying that pointing to the correct document often results in an accurate answer if the model’s performance is good. Their high Retrieval Fail + RAG Correct also emphasizes the necessity of reasoning ability in answering challenging medical questions, which aligns with our findings in the paper.

The significance of the case reports are categorized into three types: treatment, test, and diagnosis. Correspondingly, OGCAREBENCH’s questions are categorized into one of three significances. Figure 4a shows the distribution of significance over OGCAREBENCH. The dataset is dominated by treatment, whereas test and diagnosis form smaller proportions. This imbalance is natural in clinical case reports, as many of the novelties are within the boundary of treatment compared to a new disease or a detection method.

We conduct error analysis by investigating the significance of Retrieval Success + RAG Incorrect examples. Figure 4b shows the distribution of significance by models. Test and diagnosis questions’ Retrieval Success + RAG Incorrect are similar throughout the models, and treatment makes most of the difference. This indicates good-performing models make difference during answering treatment-related questions. Similarity of test and diagnosis across multiple models also imply some questions may be naturally hard to answer. As GPT-5 and Thinking Claude 4 Sonnet have lower number of test and diagnosis counts, they show a positive performance gap through answering those questions correctly. This suggests that reasoning capabilities improve performance on more challenging questions.

918
919
920
921
922
923
924 Table 14: Retrieval and RAG performance breakdown for each model. BGE retriever with 3 context documents used.
925 RS = Retrieval Success, RF = Retrieval Failure, RC = RAG Correct, RI = RAG Incorrect.

Model	RAG Acc.	RS + RC	RF + RC	RS + RI	RF + RI
GPT-5	72.8	144	27	32	32
GPT-o3-mini	71.9	137	32	39	27
Llama 3.3 70B Instruct	66.0	131	24	45	35
Claude 4 Sonnet	67.7	135	24	41	35
Thinking Claude 4 Sonnet	73.6	144	29	32	30
MedGemma-27b-text-it	63.0	122	26	54	33
Llama 3-Med42-70B	56.2	111	21	65	38
OpenBioLLM-Llama 3-70B	48.1	94	19	82	40

963 (a) Significance (treatment, test,
964 diagnosis) distribution of the full
965 dataset.

966 (b) Significance distribution of RAG incorrect despite retrieval success cases by model.

967 Figure 4: Distribution of significance for error analysis.

972 B CASE REPORT VENUES
973
974

975 Case Reports Plast Surg Hand Surg	Case Rep Cardiol	SAGE Open Med Case Rep
976 Int J Med Pharm Case Reports	JACC Case Rep	Case Rep Genet
977 J Clin Cases Rep	Case Rep Clin Med	Case Rep Dent
978 J Clin Case Rep	Case Rep Surg	Int Med Case Rep J
979 Case Rep Pancreat Cancer	Trauma Case Rep	Case Rep Ophthalmol
980 Arch Clin Case Rep	Case Rep Pulmonol	Autops Case Rep
981 Respir Med Case Rep	Clin Med Insights Case Rep	J Med Case Reports
982 Case Rep Neurol Med	Clin Pract Cases Emerg Med	Gynecol Oncol Case Rep
983 Case Rep Transplant	Case Rep Endocrinol	Clin Med Rev Case Rep
984 J Vasc Surg Cases Innov Tech	Med Case Rep Short Rev	Psychiatry Res Case Rep
985 Clin Nephrol Case Stud	Clin Case Rep Rev	Gen Thorac Cardiovasc Surg Cases
986 Arch Med Case Rep	Case Rep Emerg Med	MOJ Clin Med Case Rep
987 Endocrinol Diabetes Metab Case Rep	Prof Case Manag	IDCases
988 J Cardiol Case Reports	Ann Clin Case Rep	J Cardiol Cases
989 Am J Med Case Rep	Case Reports Immunol	Spinal Cord Ser Cases
990 Med Mycol Case Rep	Int Clin Med Case Rep J	Oxf Med Case Reports
991 Case Rep Psychiatry	IJU Case Rep	Case Rep Otolaryngol
992 J Surg Tech Case Rep	JCEM Case Rep	Case Rep Ophthalmol Med
993 Clin Med Case Rep	Case Rep Dermatol	JAAD Case Rep
994 Ann Clin Med Case Rep	J Pediatr Surg Case Rep	ACG Case Rep J
995 Surg Case Rep	Am J Ophthalmol Case Rep	Case Rep Crit Care
996 Case Rep Orthop	Case Rep Vet Med	Clin Case Stud
997 Case Rep Perinat Med	GMS Ophthalmol Cases	CASE (Phila)
998 Case Rep Radiol	Case Rep Womens Health	Eur Heart J Case Rep
999 Open J Clin Med Case Rep	Case Rep Gastrointest Med	Case Rep Infect Dis
1000 Case Stud Eng Fail Anal	Case Rep Oncol Med	Cases J
1001 BJR Case Rep	J Surg Case Rep	Case Stud Chem Environ Eng
1002 Case Rep Dermatol Med	Clin Case Rep	Indian J Ophthalmol Case Rep
1003 Case Rep Pediatr	BMJ Case Rep	Urol Case Rep
1004 CEN Case Rep	Case Rep Anesthesiol	J Med Case Rep
1005 Case Rep Urol	Case Reports Hepatol	Int J Surg Case Rep
1006 Case Rep Obstet Gynecol	Int J Case Rep Imag	J Investig Med High Impact Case Rep
1007 Asploro J Biomed Clin Case Rep	Case Rep Nephrol	Case Rep Hematol
1008 Respiril Case Rep	Case Rep Pathol	Int J Clin Case Rep Rev
1009 HeartRhythm Case Rep	Neurocase	AACE Clin Case Rep
1010 Retin Cases Brief Rep	Cold Spring Harb Mol Case Stud	Case Stud Transp Policy
1011 JBJS Case Connect	J Endourol Case Rep	Case Rep Rheumatol
1012 Case Rep Med	Oral Health Case Rep	Arch Clin Med Case Rep
1013 JMM Case Rep	Radiol Case Rep	Epilepsy Behav Case Rep
1014 Case Rep Vasc Med	APSP J Case Rep	

1014 Table 15: Journal names of the corpus of 53,617 case reports. Extracted from PMC commercially available file list
1015 provided by: https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_non_comm_use_pdf.csv
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027 **C PROMPTS AND INSTRUCTIONS**
1028
1029**BMRetriever Instruction****Query template.** Given a question, retrieve relevant documents that best answer the question. *<query>***Passage template.** Represent this passage\n passage: *<passage>*1032
1033 Figure 5: Instruction used by BMRetriever.
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
1081
1082
1083**GPT-4o prompt for significance extraction**1084
1085
1086 Please carefully read the provided case report text or abstract. Identify whether the report describes any unique
1087 clinical actions from the following list:

1088 Novel treatment or drug introduced

1089 Existing treatment used in a new way or indication

1090 New surgical or procedural technique applied

1091 Innovative combination of treatments or devices

1092 Novel diagnostic test or imaging method used

1093 Advanced molecular/genetic testing guiding treatment

1094 Unique point-of-care or biomarker test employed

1095 Use of AI or machine learning for diagnosis or treatment planning

1096 Novel intervention to manage unexpected treatment complications

1097 Off-label drug use with unique dosing or delivery method

1098 Personalized or precision medicine approach in therapy

1099 New integrated multidisciplinary care strategy

1100 Innovative use of telemedicine or remote monitoring in clinical management

1101 New rehabilitation or follow-up protocol applied

1102 Novel preventive or screening intervention implemented

1103 Ethical or legal decision-making impacting treatment

1104 Use of newly developed medical devices or technologies for treatment

1105 For each identified action, briefly summarize what it is and how it is unique or novel in this case report. If
1106 none apply, output exact string “no” (without quote marks) only. If there are multiple points, only describe the
1107 **MOST SIGNIFICANT POINT**, most likely mentioned in the abstract.1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129 Figure 6: GPT-4o Prompt we used to extract significance from the case reports. The output is used to create the
1130 question-answer pairs.1131
1132
1133

1134
1135
1136
1137
1138
1139
1140
1141
1142

GPT-4o prompt for timeline extraction

1143
1144 You will receive a clinical case presentation. Your task is to carefully parse and organize all clinical information
1145 strictly as a chronological timeline, listing events sequentially based on when they occurred or inferred
1146 from context. Include ALL significant events: arrival, initial presentation, interventions, medications adminis-
1147 tered, diagnostic tests and results, progression events, clinical decisions, and final diagnosis.
1148

1149 Patient Arrival: Infer when and how the patient initially presented.
1150

1151 Initial Clinical Presentation: Initial symptoms, vital signs, mental status, or general condition upon arrival.
1152

1153 Early Medications and Interventions: Any initial treatments or interventions (medications, fluids, oxygen, etc.)
1154 performed upon or soon after presentation.
1155

1156 Diagnostic Tests and Results: Tests ordered, procedures performed, and their outcomes. Infer order based on
1157 context if not explicitly stated.
1158

1159 Clinical Progression: Any changes in the patient's condition over time, including improvements, deteriora-
1160 tions, or significant clinical events.
1161

1162 Final Diagnosis or Impression: The final diagnosis, clinical assessment, or conclusion.
1163

1164 Avoid categorizing by types of events; instead, present them sequentially as they unfold in real clinical prac-
1165 tice. Use exact sentences from the case report for building the timeline. DO NOT include any information
1166 that is not the a part of case presentation. Within the case presentation, include any information necessary for
1167 clinical decision making, such as the patient refusing or requiring certain diagnostic tools.
1168

1169 Output should be formatted in similiar way as this for parsing purpose:
1170

- patient information
- initial symptoms and patient state
- following timeline in chronological order
- ...
- final timeline of the case report

1171
1172
1173
1174
1175
1176
1177
1178
1179 Figure 7: GPT-4o Prompt we used to extract timeline from the case reports. The output is used to create the question-
1180 answer pairs.
1181
1182
1183
1184
1185
1186
1187

1188
1189
1190
1191
1192
1193
1194
1195**GPT-4o prompt for question-answer pair generation**

You are given a timeline and significant point of a medical case report. The significance refers to the new technique that the case report introduces. It can be surgical method, treatment, etc. Significance mentions the “new” item and explains why it is new. Timeline is an ordered list of bullet-style events exactly as they appear in the case report.

Create one question-answer pair asking for the immediate next step at the moment just before the action happens. The question should be the steps before taking the “new” action introduced in the significance. It should include all the steps before the decision point of “new” action. If there are multiple significant points in the input, choose the most complicated and unique one.

The question should not be based on an outcome but asking what is the significance or next step in treatment, or whether certain treatment/test could be done for this specific case, what to keep in mind during the treatment, etc. It should not ask about the past.

Extract a concise answer, using only exact sentence(s) from the timeline. The answer must be verbatim, not paraphrased.

This is a text only communication, so neither question nor answer should be referring to images, tables, or any other non-text media.

Output:

Context: Clearly list EVERY step of the timeline BEFORE this decision point in chronological order without leaving out any bulletpoints. ANY POINTS AFTER THE DECISION POINT SHOULD NOT BE IN THE CONTEXT. patient arrival, symptoms, vital signs, prior history, treatments/interventions, medications administered, diagnostic tests and their results, and clinical progression events—strictly up to this decision point should be included. If two consecutive elements of timeline are “decided to do xxx” and “xxx was performed”, state it only once.

Question: Given this information, what is the immediate next appropriate clinical step? (Note: Adapt this to fit the situation, e.g., “next appropriate test”, “next appropriate treatment”, etc.)

Answer: State the exact next clinical step taken, using precise procedural or diagnostic terminology. Only use information explicitly stated in the timeline. THIS SHOULD NOT BE INCLUDED IN THE END OF THE CONTEXT. THIS IS THE **NEXT** STEP AFTER THE QUESTION STATEMENT.

The response should be outputted in json format:

```
{
  "Context": "contents",
  "Question": "contents",
  "Answer": "contents"
}
```

Figure 8: GPT-4o Prompt we used to create question-answer pairs from the case reports. Output “Context” and “Question” are combined to form the question.

1242
1243
1244
1245
1246
1247
1248
1249

1250 Claude 4 Opus prompt for controlled question modification

1251 You are given three items: (1) a detailed clinical query, (2) its corresponding concise query, (3) the answer.
1252

1253 Your task is to rewrite the ****detailed query**** following the instructions below:
1254

1255 Instructions:
1256

- 1257 1. Identify all overlapping content between the detailed and concise queries.
1258
- 1259 2. You must ****preserve**** the meaning of all overlapping content exactly yet ****modify**** the words or ex-
pressions.

- 1260 - Keep the core meaning ****unchanged****, but vary the surface form:
1261
- 1262 - Use synonyms, abbreviations, or different phrasing.
1263
- 1264 - Do NOT alter the medical intent or expected answer.
1265
- 1266 - Example: "Management of acute MI" → "Initial treatment of a heart attack".
1267

- 1268 3. Identify the non-overlapping parts of the detailed query:
1269
- 1270 - Use synonyms, abbreviations, or different phrasing.
1271
- 1272 - Adjust numerical values by adding or subtracting within medically reasonable ranges.
1273
- 1274 - Altering the logical flow, sentence structure, or clinical context.
1275

- 1276 4. Add ****extra distracting medical content**** that are medically plausible but irrelevant to the answer:
1277
- 1278 - Comorbidities - Symptoms, tests, and treatments.
1279
- 1280 - Background information.
1281
- 1282 - Past but resolved medical history.
1283
- 1284 - Family history that does not affect the answer.
1285
- 1286 - Redundant or vague phrases.
1287

1288 ****IMPORTANT:****

- 1289 - The revised detailed query should look ****substantially different**** from the original, while remaining ****med-**
1290 **ically plausible****.
1291
- 1292 - It must still be ****answerable by the original answer****.
1293
- 1294 - Return ****only the modified detailed query****.
1295

Figure 9: Claude 4 Opus prompt we used to “distract” questions. The detailed question is the full question from Figure 8 output. The concise question is the part that is necessary to derive the answer, while a detailed question usually conveys details unnecessary to reach the answer. Concise question remains semantically unchanged while other details are notably modified.

1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

(a) General-purpose model prompt

You are a helpful medical assistant answering expert-level medical questions. You will receive a detailed clinical question about a patient case. Answer the question with one best answer. Do not generate multiple answers.

(a) Prompt for general-purpose models.

(b) Medical domain model prompt

You are a helpful medical assistant answering expert-level medical questions. You will receive a detailed clinical question about a patient case. Answer the question with one best answer. Do not generate multiple answers. Do not include analysis, steps, or thoughts, and restrict response to less than 100 words.

(b) Prompt with content and length restriction, for medical domain models

Figure 10: Prompts for generating responses with the questions from OGCAREBENCH.

1350
1351
1352
1353**1354 GPT-4o prompt for evaluating answer and model response equivalence**1355
1356
1357
1358
1359

You are given two texts: a gold standard answer and a response. Both describe the next step in medical procedure for a specific patient. Your task is to determine whether the response conveys the same medical intent as the gold answer.

1360
1361

Follow these steps:

1362
1363
1364
1365

Identify the core medical action(s) in the gold answer. Express them as concise medical actions (e.g., “start chemotherapy,” “perform lobectomy,” “order CT scan”). Ignore extra details like dose, frequency, or technique unless they fundamentally change the type of action.

1366
1367

Identify the core medical action(s) in the response. Use the same criteria.

1368
1369

Compare the two sets of actions:

1370
1371
1372
1373

Consider them equivalent if they refer to the same kind of medical action, even if wording differs. If the main medical procedure is similar and other details somewhat aligns, two texts are equivalent.

1374
1375
1376
1377

Mark as mismatch if the response suggests a different type or intent of medical procedure. If two texts include similar medical procedure but their importance differs greatly, or their main medical procedure differs, mark as mismatch.

1378
1379
1380

Pay special attention to whether the response changes the stage or intent of medical procedure (e.g., monitoring vs. intervention, surgery vs. medication). This counts as mismatch.

1381
1382
1383

Some texts have reasons or rationale explaining their main content. Do not use this part to determine equivalence or mismatch.

1384
1385

Write your evaluation in plain text as:

1386
1387

Equivalence if the response implies the same medical intent as the gold answer.

1388
1389

Mismatch if the response implies a different medical intent.

1390
1391
1392

The output format should be: “Equivalent” or “Mismatch”. Do not output any other texts.

1393
1394

Few-shot examples

[Omitted for brevity]

1395
1396
1397
1398

Figure 11: GPT-4o prompt we used to evaluate the answer and LLM equivalency. The few-shot examples are drawn from data that was excluded from the final dataset but received relatively high ratings (scored 3 out of 5).

1401
1402
1403

1404
1405
1406
1407**1408 Instruction for the annotators**

1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

There are 7 columns in the spreadsheet:

Title: title of the case report where the query and answer were derived from.

Classification: the topic of the case report.

Link: link to the case report. If you have any confusion or want to review the case report for validation, please use this link. If the query is straightforward, you don't need to validate with the case report.

Query: question presenting the case that is similar to the case report and asking the next step at a potentially confusing decision point, related to the significant point, or the reason why the case report was written. The query will not be a direct iteration of the case report, as we added distractions to make the query more interesting and difficult to answer.

Answer: answer to the query, derived from the case report.

Rating: your rating of the query-answer pair, in 1 to 5 scale.

Comments: your comments about the query-answer pair. Feel free to leave it blank. You do not have to justify your rating or write detailed comments.

We removed the GPT responses to avoid potential hallucinations they may cause on the annotation.

Rating and Comments columns are for you to fill with your opinions. We want to simulate a situation where a doctor is looking up a case report for reference, and whether the action will be taken or not is up to the doctor. Our goal is to test if the models are reliable for that purpose using our dataset. The gold answers on the spreadsheet reflect the answer presented by the case report, whether it is the standard or not. We want to confirm that our information extraction was successful and that our queries are not too easy or obvious and correct (okay if the answer is not a common action).

To serve these purposes, the rating should be based on these criteria:

- The answer should be answering the query.
- The query should not be asking too “easy” question. The query should require knowledge from medical professionals to be answered.
- There are some hallucinated data (e.g., answer is already stated on the question). We did our best to filter them using a model, but if you see malformed data, feel free to rate it as 1 without further consideration.

These are okay:

- The answer is not gold standard (The goal is to create a dataset reflecting the case report’s action taken.)
- The answer is not detailed
- The answer is too specific to the patient (Some information, such as numbers, may be too specific to the patient, but the doctor potentially searching this case will also see the same information.)

Figure 12: Instruction given to three annotators to verify question-answer pairs.