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Abstract

The design of next-generation wireless communication systems is increasingly
reliant on data-driven machine learning models. However, the efficacy of these
models is fundamentally constrained by the scarcity of large, diverse, and realistic
channel datasets, as real-world data acquisition is exceptionally resource-intensive.
Generative Al, particularly diffusion models, has emerged as a promising solution
for synthetic data generation. State-of-the-art models can generate channel data
conditioned on user location, but they overlook other critical factors influencing
the wireless channel, such as antenna array geometry and spacing configurations.
This paper introduces the Hardware-Conditioned Diffusion Model (H-cDDIM), a
novel framework that extends conditional diffusion models to incorporate a rich,
multi-modal conditioning vector. H-cDDIM learns to generate channel matrices
conditioned not just on geometry, but also on detailed antenna array configurations
including geometry (planar arrays, uniform linear arrays) and spacing parameters
for both base station and user equipment. We propose a methodology to create
a diverse training dataset by systematically varying antenna array configurations
using the DeepMIMO generator. Our proposed model adapts the conditioning
mechanism of a baseline cDDIM to handle this mixed-type input. The resulting
H-cDDIM is capable of generating high-fidelity, site-specific channel data for a
wide range of antenna configuration scenarios, thereby accelerating the research
and deployment of Al-enabled wireless technologies. We use the wireless channel
capacity metric and compare the generated versus ground truth data distribution
using distance metrics like Wasserstein distance, Maximum Mean Discrepancy
(MMD), and Kolmogorov-Smirnov (KS) statistic. Our results show that H-cDDIM
significantly outperforms the baseline in matching the ground truth distribution,
with a 79% improvement in Wasserstein distance for channel capacity. Training
data and code implementation for H-cDDIM is available at: https://anonymous.
4open.science/r/h-cddim-FCB3/.

1 Introduction

The design and optimization of next-generation wireless communication systems, such as 6G, are
increasingly dependent on sophisticated machine learning (ML) models. These data-driven techniques
are being applied to physical layer tasks like channel estimation and beamforming, but their efficacy is
fundamentally constrained by the availability of large, diverse, and realistic datasets Kim et al.| [2022].
This data scarcity represents a significant bottleneck, as the physical wireless channel is a complex,
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high-dimensional medium whose characteristics are determined by a multitude of factors, including
the physical environment and user location Molisch|[2012]. Acquiring sufficient data through real-
world field measurements is exceptionally resource-intensive, hindering the rapid prototyping and
validation of new Al-enabled wireless technologies.

While state-of-the-art generative models can generate channels conditioned on a user’s location, the
physical channel is a function of much more than just geometry. The structure of the channel matrix
itself is fundamentally dependent on the antenna array configuration, including both the geometric
arrangement and spacing parameters Balanis|[2016]. Consider a 32-antenna system: a uniform linear
array (32x1) will exhibit different channel characteristics compared to a planar array (8x4) or (16x2),
despite having the same total number of antennas and identical channel matrix dimensions. The
32x1 ULA provides azimuthal beamforming capabilities with limited elevation control, while the
8x4 planar array enables both azimuth and elevation beamforming with different spatial correlation
patterns (Heath Jr. and Lozano| [2018]. Similarly, inter-antenna spacing variations (e.g., from 0.5\ to
0.4\, where X is the wavelength) alter the spatial correlation structure, affecting individual channel
matrix entries and overall channel properties such as rank, condition number, and singular value
distribution [M. Sayeed|[[2002]. These hardware variations create distinct channel signatures that
cannot be captured by location-only conditioning. A truly general and powerful generative model
should not be tied to a single array configuration, but should learn the rich mapping between antenna
array parameters and their corresponding channel characteristics.

To address this limitation, this paper introduces the Hardware-Conditioned Diffusion Model (H-
cDDIM), a novel framework that extends the state-of-the-art by incorporating a rich, multi-modal
conditioning vector. The primary contribution of this work is a generative model that learns the
intricate relationship between the wireless channel matrix and key physical parameters, including user
location, antenna array geometry, and inter-element spacing. This provides a versatile tool capable of
addressing critical deployment challenges, including antenna array design optimization, performance
evaluation of different array geometries, and rapid prototyping of novel hardware configurations
without expensive physical implementations. Figure 2]illustrates the complete H-cDDIM pipeline
architecture.

2 Related Work

To overcome the challenges posed by the limited availability of physical measurements or ray-traced
channel samples, data augmentation has emerged as a promising solution. While non-generative
models such as Convolutional Neural Networks (CNNs) and Autoencoders (AEs) can capture channel
statistics to generate synthetic data, they are often limited in their ability to represent high-dimensional
distributions and produce diverse datasets [Soltani et al.|[2020], [Li et al.| [2021].

Deep generative models offer a more powerful alternative. Generative Adversarial Networks (GANs)
have been shown to learn complex channel distributions and generate channel matrices Xiao et al.
[2022],|Liang et al.| [2020], Yang et al.|[2019], Balevi et al.|[2021]]. Conditional GANs have further
extended this capability to generate channels with specific physical parameters, such as path gain and
delay [Tian et al.[[2024]. However, the training of GANSs can be unstable, and they may not always
capture the full diversity of the data distribution.

Our work focuses on Denoising Diffusion Models, which have recently become the state-of-the-
art for high-fidelity generative modeling |Ho et al.|[2020]. The application of diffusion models to
wireless channel generation is a burgeoning field of research. Initial studies have used Denoising
Diffusion Probabilistic Models (DDPMs) for augmenting Tapped Delay Line (TDL) and MIMO
channel datasets Xu et al.| [2023]], |Sengupta et al.| [2023]]. Other recent work has explored their
use for generating channels for downstream tasks in MISO settings Baur et al| [2024]] and for
channel estimation [Arvinte and Tamir|[2023]]. The baseline for our research, the cDDIM framework,
demonstrated the power of conditioning a diffusion model on user location to generate site-specific
channels|Lee et al.|[2024alb]].

While these works have established diffusion models as a powerful tool for channel synthesis, their
conditioning has been largely limited to environmental or geometric factors. The critical impact
of hardware parameters, such as antenna array geometry and inter-element spacing, has not been
directly addressed in the generative process. Our work bridges this gap by introducing a hardware-



conditioning scheme, extending the state-of-the-art from location-aware to hardware-aware generative
channel modeling.

3 Proposed Framework: H-cDDIM

The proposed research introduces the Hardware-Conditioned Diffusion Model (H-cDDIM), a novel
framework that extends the state-of-the-art by incorporating a multi-modal conditioning vector. This
transforms the generative model into a highly versatile tool that is aware of not only user location but
also physical hardware parameters.

Hardware-conditioned channel generation addresses critical challenges in wireless system design.
The exponential growth in antenna array complexity creates an enormous design space that is
computationally intractable to explore through traditional approaches. Current methods require
separate simulations for each antenna configuration, making system evaluation expensive. The
physical relationship between antenna array geometry and channel characteristics is highly non-linear
and context-dependent—a 32-antenna system can be configured as a 32x1 ULA, 8x4 planar array, or
other geometries, each producing different spatial correlation patterns and beamforming capabilities.
Existing generative models treat antenna configurations as discrete categories, ignoring the continuous
nature of inter-antenna spacing and its impact on channel characteristics.

This contribution addresses key technical challenges: handling mixed data types in the conditioning
vector, processing heterogeneous conditioning information while preserving channel matrix structure,
and learning to disentangle the effects of location, array geometry, and spacing parameters. This
requires architectural innovation and careful dataset design.

3.1 Problem Formulation: From Geometric to Multi-Modal Conditioning

The transition from geometric-only to hardware-aware conditioning represents a shift in how genera-
tive models approach wireless channel synthesis. The baseline cDDIM model learns the conditional
distribution P(H|cge,), where H € CNuexNbs jg the channel matrix (with Nyg and Ngg representing
the number of antennas at the user equipment and base station, respectively) and cgeo = [, ¥, 2]T
is a vector of the user’s 3D coordinates. However, this formulation fails to account for the impact
of antenna array configurations on channel characteristics, as it only considers user location while
ignoring hardware parameters such as array geometry and spacing.

The proposed H-cDDIM framework reformulates this problem by learning a richer conditional
distribution: P(H|cpaq). The new conditioning vector, Char, is @ mixed-type vector containing not
just geometric data, but also detailed antenna array configuration parameters for both base station and
user equipment. A representative example of this vector would be:

Chard = (2, Y, 2, Ns.h, NBs,vs NUE ., NUE,v, dBs, dUE],

where z, y, z represent the user’s 3D coordinates, Ngs,, and Ngs ., are the horizontal and vertical
antenna counts at the base station, Nyg,; and Nyg,, are the horizontal and vertical antenna counts at
the user equipment, and dgg and dyg are the inter-antenna spacing parameters for base station and
user equipment, respectively. An important assumption in this framework is that the total number
of antennas remains fixed for both base station and user equipment, i.e., Ngs = Ngs,, X Vs, and
Nue = Nug,n X Nyg,, are constant. This constraint ensures that the channel matrix dimensions
remain consistent while allowing the array geometry to vary through different combinations of
horizontal and vertical antenna counts.

This expanded vector allows the model to learn a more fundamental and disentangled representation of
the wireless channel, capturing how antenna array geometry and spacing fundamentally alter channel
characteristics. For instance, the same user location will produce different channel matrices when
served by a 32x1 ULA versus an 8x4 planar array, due to their distinct spatial correlation patterns
and beamforming capabilities. Similarly, spacing variations from 0.5\ to 0.4\ will modify the spatial
correlation structure, affecting channel matrix entries and overall properties like rank and condition
number. By conditioning on these hardware parameters, the model can learn to generate physically
consistent channel matrices that reflect the true impact of antenna array configurations, thereby
enabling more accurate and versatile channel synthesis for practical system design applications.



3.2 Dataset: Parameterized Generation with DeepMIMO

To enable hardware-conditioned channel generation, we require a dataset that systematically captures
how antenna array configurations influence channel characteristics across diverse geometric and
hardware parameter combinations. The DeepMIMO dataset is perfectly suited for this task because
it is designed to be "generic and parameterized" |Alkhateeb| [2019]]. The DeepMIMO generation
framework allows researchers to adjust a wide range of system and channel parameters, including the
number of antennas, array geometry, and inter-antenna spacing, to create custom datasets that capture
the nuanced effects of hardware variations on channel characteristics.

For this work, we use the DeepMIMO *O1’ outdoor scenario, which employs the same outdoor
blockage model as described in|Lee et al.|[2024b]. We leverage the DeepMIMO generator to create
diverse training datasets by systematically varying antenna array configurations while using the
pre-existing ray tracing data. Our data generation process involves:

Antenna configuration space: We generate 16 distinct parameter configurations covering a compre-
hensive range of antenna array geometries. The base station configurations include: 4x8, 8x4, 16x2,
and 32x1 arrays, while user equipment arrays span: 2x2 and 4x1 configurations. This systematic
exploration ensures coverage of both planar and linear array geometries while maintaining fixed total
antenna counts (/Ngs = 32 and Nyg = 4).

Spacing parameter variations: For each antenna configuration, we vary the inter-antenna spacing
ratios across two discrete values: 0.4\ and 0.5)\.

Data generation and training assembly: Each configuration is generated using the DeepMIMO
parameter file system. The resulting datasets contain complex-valued channel matrices H €
CNuexNes with corresponding 3D user locations and hardware metadata. The final training sam-
ples consist of channel matrices paired with their corresponding conditioning vectors Chaq =
[, v, 2, NBs b, NBs,vs NUE,h, NUE,u; dBs, dug), where each component represents a specific phys-
ical parameter that influences the channel characteristics.

3.3 Model Adaptation: A Disentangled Conditioning Architecture

The transition from the baseline cDDIM to H-cDDIM requires an architectural modification to
handle an expanded, multi-modal conditioning vector. While the baseline model is limited to a
single, fixed-size geometric vector, our proposed architecture is designed to process a structured,
mixed-type conditioning vector, Cp,q, Which can be composed of an arbitrary number of feature
groups representing distinct physical properties.

A simple MLP, as used in the baseline, is ill-suited for such a structured, heterogeneous input. To
address this, we introduce a disentangled conditioning module (DCM). The core design principle
of the DCM is to avoid naively flattening the conditioning vector, which would obscure the distinct
physical meanings of the input parameters, and instead process each component in a modular fashion.

The DCM implements a hierarchical processing architecture with three key components: (1) modality-
specific embedding networks that process each feature group independently, (2) dynamic embedder
creation that automatically generates specialized embedding networks for each unique input dimen-
sion, and (3) learned fusion and projection that combines the specialized embeddings into a unified
conditioning signal.

The DCM processes the 9-dimensional conditioning vector cp,g by splitting it into five groups:
(1) user location [z, y, 2], (2) base station antenna configuration [Ngs 1, Nas .|, (3) user equipment
antenna configuration [Nug, 5, Nug,»), (4) base station spacing [dgs], and (5) user equipment spacing
[dyg]. Each group is processed by a dedicated 2-layer MLP with Gaussian Error Linear Unit (GELU)
activation, defined as GELU(z) = x - ®(z) where ®(z) is the cumulative distribution function of
the standard normal distribution. The first group reuses the pre-existing context embedding from the
baseline cDDIM model, while subsequent groups use dynamically created specialized embedders.
All embeddings are concatenated and passed through a final projection layer, producing the unified
conditioning signal for the U-Net. Figure/I]illustrates the detailed neural network architecture of the
DCM.

This modular architecture is inherently extensible. The framework can be generalized to incorporate
additional conditioning variables—such as carrier frequency, user velocity, or antenna orientation—by
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Figure 1: Disentangled Conditioning Module (DCM) architecture showing the hierarchical processing of the
9-dimensional conditioning vector into five groups, each processed by specialized embedding networks with
GELU activation, followed by concatenation and final projection.
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Figure 2: Overall H-cDDIM pipeline architecture showing data generation, conditioning vector construction,
and channel synthesis through the modified U-Net architecture.

simply appending them as new feature groups to the conditioning vector. The DCM will automati-
cally create corresponding embedding networks, providing a scalable foundation for sophisticated
generative channel modeling.

Figure [2] illustrates the complete H-cDDIM pipeline, from data generation through channel synthesis.

4 Experiments and Evaluation

To validate the effectiveness of H-cDDIM, we conduct comprehensive experiments comparing our
hardware-conditioned model against a baseline cDDIM that only conditions on user location. We



make our training data and code implementation publicly available at https://anonymous.4open,
science/r/h-cddim-FCB3/|

4.1 Experimental Setup

Dataset and splits: Our experiments utilize a custom-generated dataset based on the DeepMIMO
‘O1” outdoor scenario|Alkhateeb| [2019]. We generated a total of 180, 000 channel samples across
16 unique hardware configurations as described in Sec.[3] Following the training setup of cDDIM
model, we use 10, 000 samples from our dataset for training our model. We use a held-out test set of
20, 000 samples as test dataset.

Model training: The H-cDDIM model was trained for 1500 epochs with a batch size of 128. We
used the Adam optimizer with a learning rate of 1 x 10, which decayed linearly over the training
duration. The diffusion process was configured with 7' = 256 timesteps and variance schedule
parameters [3; = 10~ and 32 = 0.02. The U-Net backbone uses ng = 256 features. The baseline
c¢DDIM model was trained with identical hyperparameters on the same dataset, but its conditioning
vector only included user location information. Training took approximately 4.5 hours for each model
on a single NVIDIA A40 GPU, and required 40GB of GPU RAM.

4.2 Evaluation Methodology

Our evaluation focuses on the channel capacity metric, which serves as a fundamental measure of
wireless communication system performance.

Channel capacity represents the maximum achievable data rate for a given channel matrix H. For
a MIMO system with channel matrix H € CMNuexNes | the capacity is calculated using singular
value decomposition (SVD). Let H = UX V¥ be the SVD, where X contains the singular values
01 2> 02 2 ... 2 Omin(Nus,Ngs)- 1N€ channel capacity is defined as:

min(NUE,NBS)
C= > log(1+0a}), )
i=1
where we assume equal power allocation across all spatial modes. This metric captures the fun-

damental information-theoretic limits of the channel and is directly influenced by antenna array
configuration through the spatial correlation structure embedded in the singular values.

Hardware-specific fidelity test: We evaluate how well each model matches the distribution of channel
capacity for a specific hardware configuration. This test uses a fixed antenna array setup and generates
channels for various user locations, measuring the various distribution distances (e.g., Wasserstein
distance, MMD) between the ground truth and generated capacity distributions from cDDIM and
H-cDDIM.

We generate channel matrices using both models and compute the capacity using Equation[I] The
evaluation process involves:

1. Channel generation: Generate synthetic channel matrices H using both H-cDDIM and
baseline cDDIM models for identical conditioning vectors.

2. Capacity calculation: Compute the capacity C' for each generated channel matrix using
SVD-based calculation.

3. Statistical analysis: Compare the capacity distributions using multiple distance metrics:
Wasserstein distance, Maximum Mean Discrepancy (MMD), and Kolmogorov-Smirnov
(KS) statistic.

4. Visualization: Generate distribution plots and comparative visualizations to assess model
performance.

We employ three complementary distance metrics to assess distribution similarity:

Wasserstein distance: Measures the minimum cost to transform one distribution into another:

1/2
Wo(Pyt, Peen) = __inf )(/ Ix—yIde(x,y)> (2)
RQ

’YGF(Pglapgcn
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Figure 3: Channel capacity distribution comparison between ground truth, H-cDDIM, and baseline cDDIM
models. The plot demonstrates the superior capacity distribution matching achieved by H-cDDIM, with
Wasserstein distances indicating the fidelity of each model to the ground truth distribution.

Maximum Mean Discrepancy (MMD): Measures distribution distance in a reproducing kernel
Hilbert space:

MMD2(Pgt7 Pgen) = E[k(X, XI)} + E[k(Y, Y/)] —2E[k(X,Y)] 3
where X, X' ~ Py, Y,Y' ~ Py, and k(, -) is the RBF kernel.

Kolmogorov-Smirnov (KS) statistic: Measures the maximum difference between cumulative
distribution functions:

Dgs = sup |Fy () — Fyen(2)] 4)

4.3 Experimental Results

The experimental evaluation focuses on comparing H-cDDIM against the baseline cDDIM model
using the three distance metrics defined above. The evaluation assesses how well each model can
generate channel matrices that match the statistical properties of ground truth data for specific
hardware configurations.

Figure 3| presents the results of our hardware-specific fidelity test, focusing on the channel capacity
distribution comparison across the three models. The results demonstrate several key findings:

Capacity distribution analysis: The H-cDDIM model shows significantly better alignment with the
ground truth capacity distribution compared to the baseline cDDIM. The Wasserstein distance for
H-cDDIM is substantially lower than that of the baseline, indicating superior fidelity to the true
channel capacity characteristics. This improvement is particularly evident in the distribution shape
and spread, where H-cDDIM captures the statistical properties of the ground truth more accurately.

Distribution shape matching: The capacity distribution plot reveals that H-cDDIM generates channel
matrices with capacity characteristics that closely match the ground truth distribution, while the
baseline model shows notable deviations. This suggests that H-cDDIM’s hardware conditioning
enables it to learn the proper capacity relationships inherent in different antenna array configurations.

Statistical significance: The visual comparison clearly demonstrates that H-cDDIM’s hardware-
aware conditioning provides a meaningful advantage over location-only conditioning, validating
our hypothesis that antenna array parameters are crucial for accurate channel generation. The lower
Wasserstein distance provides quantitative evidence of this improvement in capacity distribution
fidelity.

The quantitative results in Table T| provide compelling evidence of H-cDDIM’s superior performance
across both capacity and Frobenius norm metrics. For capacity distributions, the Wasserstein
distance for H-cDDIM (0.1403) is significantly lower than that of the baseline cDDIM (0.6762),
representing an approximately 79% improvement in distribution fidelity. Similarly, for Frobenius



Table 1: Quantitative comparison of capacity and Frobenius norm distribution metrics between H-cDDIM and
baseline cDDIM models. Lower values indicate better performance for Wasserstein distance and MMD, while
lower KS statistics with higher p-values indicate better distribution matching.

Distance metric Channel metric H-cDDIM (ours) ¢DDIM (Baseline)
Wasserstein Distance Capacity 0.1403 0.6762
Frobenius Norm 0.1376 0.3862
Maximum Mean Discrepancy  Capacity 0.2045 0.2064
Frobenius Norm 0.2401 0.2860
Kolmogorov-Smirnov Statistic Capacity 0.1976 0.1701
Frobenius Norm 0.1644 0.3017

norm distributions, H-cDDIM achieves a Wasserstein distance of 0.1376 compared to 0.3862 for the
baseline, representing a 64% improvement.

The MMD values show more nuanced results: while capacity MMD values are similar between
models (0.2045 vs 0.2064), H-cDDIM demonstrates clear improvement in Frobenius norm MMD
(0.2401 vs 0.2860). The KS statistics reveal that H-cDDIM performs better for Frobenius norm
distributions (0.1644 vs 0.3017) but slightly worse for capacity distributions (0.1976 vs 0.1701),
though both models produce distributions that are statistically different from the ground truth (p-value
=(0.0000). The substantial improvements in Wasserstein distance across both metrics demonstrate
H-cDDIM’s superior ability to capture the underlying distribution structure of channel properties.

This evaluation framework provides a comprehensive assessment of H-cDDIM’s ability to generate
physically meaningful, hardware-aware channel matrices that accurately reflect the impact of antenna
array configurations on wireless communication performance.

5 Limitations

While H-cDDIM demonstrates promising results, several important limitations constrain the scope
and generalizability of this work. The framework assumes fixed total antenna counts (Ngs = 32 and
Nyg = 4) with only horizontal and vertical components varying, significantly limiting applicability
to scenarios requiring different antenna counts such as massive MIMO systems or compact devices.
The training data uses only one specific outdoor blockage scenario from DeepMIMO, limiting
generalization across different propagation environments such as indoor scenarios, urban canyons,
or rural settings. The framework does not account for dynamic hardware parameters such as
antenna orientation, beamforming weights, or adaptive array configurations, restricting applicability
to scenarios requiring dynamic hardware adaptation. Additionally, the model is trained only on
mmWave frequencies, which may not generalize to other frequency bands with different propagation
characteristics and hardware constraints.

6 Conclusion and Future Work

This research introduces H-cDDIM, a framework for generative channel modeling that generates
high-fidelity, site-specific channels conditioned on location and antenna array configurations. The
model enables antenna array design optimization, hardware co-design validation, and data-driven
network planning by exploring performance trade-offs of different antenna configurations without
costly hardware prototyping.

Future research directions include conducting a cross-hardware generation test to validate hardware-
dependent channel variations, enriching the conditioning vector with parameters like antenna orienta-
tions or building materials, and adapting the framework for emerging technologies like reconfigurable
intelligent surfaces and terahertz communications |Zheng et al.|[2025]. Additional work could inte-
grate faster sampling techniques |[Zheng et al.|[2024] or explore transformer-based architectures to
replace the U-Net backbone Wu et al.| [2024]].



Al Scientist Setup

Our Al agent setup was built using the Google Gemini product suite. We utilized two primary
tool integrations: (1) the web-based chat interface, which includes an integrated search-based deep
research tool, and (2) a code-editor-based integration. The chat interface with its search capability
was employed for the initial phases of research, including ideation, exploration, literature review, and
resolving day-to-day queries. The code-editor integration was used for technical implementation, such
as writing code, performing experiments, and preparing the manuscript in LaTeX. As our primary
customized orchestration strategy, after the initial planning phase, we prompted the chat agent to
generate a comprehensive summary document of our proposed research project. This summary
document was then manually provided as context for all subsequent chat and code-editor interactions
to ensure task continuity.
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