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Abstract
Dense linear layers are the dominant computa-
tional bottleneck in foundation models. Iden-
tifying more efficient alternatives to dense ma-
trices has enormous potential for building more
compute-efficient models, as exemplified by the
success of convolutional networks in the image
domain. In this work, we systematically explore
structured matrices as replacements for dense ma-
trices. We show that different structures often
require drastically different initialization scales
and learning rates, which are crucial to perfor-
mance, especially as models scale. Using insights
from the Maximal Update Parameterization, we
determine the optimal scaling for initialization
and learning rates of these unconventional lay-
ers. Finally, we measure the scaling laws of dif-
ferent structures to compare how quickly their
performance improves with compute. We pro-
pose a novel matrix family containing Monarch
matrices, the Block Tensor-Train (BTT), which
we show performs better than dense matrices for
the same compute on multiple tasks. On CIFAR-
10/100 with augmentation, BTT achieves expo-
nentially lower training loss than dense when
training MLPs and ViTs. BTT matches dense ViT-
S/32 performance on ImageNet-1k with 3.8 times
less compute and is more efficient than dense for
training small GPT-2 language models.

1. Introduction
Regardless of their architectures, most neural networks con-
sist of interleaved linear layers and simple non-linearities.
In large foundation models such as GPT-3 (Brown et al.,
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2020), these linear layers consume the vast majority of the
parameters and computation (Kaplan et al., 2020), and are
primarily represented by dense matrices. Substituting these
dense matrices with structured matrices with fast matrix-
vector multiplies (MVMs) has the potential to significantly
improve the computational efficiency of these models. Un-
fortunately, there often isn’t an obvious algebraic structure
to exploit in the linear layers of such models, which process
end-to-end learned token embeddings rather than objects
with clear structures like images (Vaswani et al., 2017).

Structured matrices, however, are not limited to encoding
domain-specific inductive biases. They can also offer advan-
tages over dense matrices by enabling different allocations
of the same computational budget. For example, a struc-
tured layer can be much wider than a dense layer given the
same number of parameters and compute. The compute
cost C of an MVM is O

(
d2
)

for a d× d dense matrix, but
only O

(
d3/2

)
for a block diagonal matrix with

√
d blocks.

Consequently, given the same compute C, the width can be
at most O

(
C1/2

)
for a dense layer, but O

(
C2/3

)
for such a

block diagonal layer. We can replace a dense layer of width
1024 with a 10× wider block diagonal layer, as illustrated in
Figure 1a. Both layers have the same number of parameters
and compute costs, but a larger width enables the model to
potentially store more information in its activations and use
more non-linearities to model complex functions. In this
light, structured matrices do not merely approximate dense
matrices but enable different ways of scaling up the models
with compute that make them potentially more expressive.

To study how structured layers compare against dense layers
as a function of compute, we will compare their scaling laws:
how compute translates to performance as the models scale
up. Across domains such as language, image, and video
modeling, the loss or error rate E of a well-trained neural
network has shown to be highly predictable as a function of
the compute C required by the model, often well-described
by a power law E ∝ C−α when data is not a bottleneck
(Kaplan et al., 2020; Sharma & Kaplan, 2022; Hoffmann
et al., 2022). If structured layers can achieve better scaling
laws, they will outperform dense layers at scale, delivering
exponentially better performance per unit compute if they
can improve the scaling exponent α.

In this work, we systematically study whether structured
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Figure 1. Controlling for compute, replacing dense layers with structured matrices enables wider models and can lead to better
performance. (a) A neural network with structured matrices can be made much wider, but its learning rate needs to be scaled differently
as a function of width since not all connections are present (Section 3). The width d of a dense layer scales as C1/2 where C is the
compute per forward pass, while the width d̃ of a block diagonal layer is exponentially larger, scaling as C2/3. The optimal learning
rate η of the dense layer and η̃ of the block diagonal layer scales differently as d−1 and d̃−1/2 respectively. (b) Structured matrices can
improve the training error scaling laws of MLPs on CIFAR-10 with data augmentation (Section 4). (c) Scaling the learning rate in a
structure-aware fashion (•) is crucial for performance (Section 3), without which the benefit of structured layers does not emerge (▼).

matrices can have better scaling laws than dense matrices,
without relying on domain-specific algebraic structures so
that our findings can apply to training foundation models
broadly.

• We show that structured layers often require drastically
different learning rates and initialization scales compared to
their dense counterparts, because their underlying trainable
parameter matrices tend to be much smaller in size than
the width of the layer (Figure 1a). Naively using dense
layer learning rates, structured layers often significantly
underperform dense layers, as shown in Figure 1c.

• Leveraging insights from µP (Yang et al., 2023a) on how
to optimally scale the initialization and learning rates for
dense layers as a function of width, we show how to automat-
ically determine the appropriate initialization and learning
rate scales for structured linear layers. This structure-aware
technique enables us to effectively train and scale a wide
range of structured layers without additional tuning.

• We measure scaling laws for neural networks employing
structured matrices as they scale, showing that structured
layers can have better scaling exponents than dense matrices
on some tasks. These results suggest that the scaling expo-
nents are not necessarily determined solely by the task as
previously hypothesized (Bahri et al., 2021; Michaud et al.,
2023).

• We identify matching parameter count to FLOPs1 as a
principle shared by the best-performing structures. Con-

1Here and elsewhere in the paper we use the more familiar term
FLOPs as a stand-in for MACs (Multiply-Accumulate) operations
to highlight when they match the number of parameters, even
though 1 MAC is technically 2 FLOPs.

versely, commonly used structures such as the Kronecker
product and Tensor-Train decomposition violate this prin-
ciple and underperform dense matrices in our experiments.
Adhering to this principle can serve as important guidance
for future work on designing more efficient linear layers.

• We introduce Block Tensor-Train (BTT) as a new family
of expressive structured matrices, containing the Monarch
matrices (Dao et al., 2022) as a special case. The BTT family
has better scaling laws than dense matrices on multiple
tasks. On CIFAR-10/100 with augmentation, BTT achieves
exponentially lower training loss than dense when training
MLPs and ViTs. On ImageNet-1k, BTT matches dense
ViT-S/32 performance with 3.8 times less compute.

• We study divergences in training transformers with BTT
layers, showing that weight normalization is required to
avoid divergence due to unbounded growth of the activation.

We make our code available available here. We use the
Linear Operator abstractions in CoLA (Potapczynski
et al., 2024) to prototype and compute efficient MVMs for
structured matrices.

2. Structured Alternatives to Dense Layers
We now introduce the types of structured matrices we con-
sider in this work. We review their computational properties
and modeling assumptions, summarized in Table 1. Without
loss of generality, we consider d × d square matrices for
notational simplicity.

Low-rank. A low-rank matrix can be parameterized as
W = UV where U ∈ Rd×r, V ∈ Rr×d and r ≤ d is
its rank. It has 2rd parameters and its MVM costs 2rd

2
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Structure MVM FLOPs # Params Modeling assumptions Example applications

Dense d2 d2 General linear maps MLPs, Transformers
Low-Rank 2rd 2rd Compression Bottleneck layers, Linear attention
Convolution pd p Translation equivariance Images, Time-series
Kronecker 2d3/2 2d Sets, Graphs, Grids GPs, Deep Sets, Attention, GNNs
Monarch 2d2/b 2d2/b Flexible Compute-efficient linear layers
TT 2rd3/2 2rd Subsystems, Local interactions Hidden Markov Models, Spin systems
BTT 2rd3/2 2rd3/2 Flexible Compute-efficient linear layers

Table 1. Overview of the computational properties, modeling assumptions, and applications of structured matrices we consider.
Some structures require the same FLOPs as parameters for a matrix multiply, while others require more FLOPs. d is the size of the matrix,
r is the rank in low-rank, TT, and BTT, p is the kernel size in a convolution, and b is the number of blocks in Monarch. We assume 2 cores
each of size

√
d for Kronecekr, TT and BTT.

FLOPs. By first performing a dimension reduction on the
input via V, a low-rank matrix assumes that only a subspace
of the input space is relevant to the task and is natural for
compression (Zhao et al., 2024; Wang et al., 2020).

Convolution. Convolutions, or Toeplitz matrices, nat-
urally model systems with translational symmetries such
as images (LeCun et al., 1998a; Krizhevsky et al., 2012;
He et al., 2015b) and time-series (Wilson & Adams, 2013).
A convolution with kernel size p has p parameters and re-
quires O(pd) FLOPs. Each parameter is used O(d) times
in a convolution to impose translational symmetry. Alterna-
tively, the Fast Fourier transform allows the convolution to
be computed in O(d log d) FLOPs.

Kronecker. Kronecker product structure naturally arises
in applications with structured data (Perez et al., 2017;
Titsias, 2009; Maron et al., 2020; Saatçi, 2012; Wilson
& Nickisch, 2015). A Kroncker product W = L ⊗ R
with L ∈ Rd1×d1 , R ∈ Rd2×d2 , d = d1 · d2, speci-
fies a matrix whose MVM y = Wx can be efficiently
computed as yαβ =

∑
γ Lαγ

∑
δ Rβδxγδ, after reshap-

ing the input x in row-major order into a d1 × d2 matrix
and followed by flattening y back to a vector. Assuming
d1 = d2 =

√
d, W has 2d parameters and requires 2d3/2

FLOPs for an MVM. The Kronecker product uses each
parameter

√
d times, which can be made explicit by inter-

preting
∑

δ Rβδxγδ (the same argument applies to the sum
involving L) as multiplying the vector x by a block-diagonal

matrix
⊕√

d
γ=1 Rγ , where all the blocks Rγ ∈ R

√
d×

√
d are

shared: Rγ = R, γ = 1, . . . ,
√
d. This parameter-sharing

naturally corresponds to the assumption that the input x
represents a set of objects of the same kind, such as nodes
in a graph (Kipf & Welling, 2016), patches of an image
(Tolstikhin et al., 2021), points on a grid (Saatçi, 2012), or
words in a sentence (Vaswani et al., 2017; Elhage et al.,
2021).

Monarch. Introduced in Dao et al. (2022), a Monarch
matrix is defined as the product PLP⊤R where P is a

row-major to column-major permutation and L,R are two
block-diagonal matrices:

⊕√
d

β=1 Lβ ,
⊕√

d
γ=1 Rγ . Monarch

requires 2d3/2 FLOPs for an MVM and has 2d3/2 param-
eters. The efficient multiply for Monarch can be written
as yαβ =

∑
γ Lαβγ

∑
δ Rβγδxγδ, where Rβγδ = (Rγ)βδ

and Lαβγ = (Lβ)αγ and we have colored the block di-
mensions β, γ. Monarch can be viewed as a relaxation of
the Kronecker product where parameters that were shared
across the block dimensions are now made independent.
Monarch matrices do not make strong assumptions about
the structure of the input. In practice, the number of blocks
b in L and R are often chosen to be much less than

√
d to

reduce sparsity (Dao et al., 2022; Fu et al., 2023). In this
case, Monarch has 2d2/b parameters and requires 2d2/b
FLOPs for an MVM.

Tensor-Train. The Tensor-Train (TT) decomposition
(Oseledets, 2011) specifies a set of c cores G(i) ∈
Rri×mi×ni×ri−1 for i = 1, . . . , c where d =

∏
i mi =∏

i ni, ri ∈ N and r0 = rc = 1. For ease of notation, we
will focus on c = 2 with m1 = m2 = n1 = n2 =

√
d, r1 =

r, G(1) = R ∈ Rr×
√
d×

√
d,G(2) = L ∈ R

√
d×

√
d×r,

though we present the general case in Appendix C. With
the input and output as reshaped as

√
d ×

√
d matrices, a

TT matrix is equivalent to a sum over r Kronecker products
indexed by σ = 1, . . . , r:

yαβ =
∑
γσ

Lαγσ

∑
δ

Rσβδxγδ. (1)

By increasing r, referred to as the TT-rank, TT becomes
more expressive relative to the Kronecker product. When
r = d, it can represent any d × d dense matrix. TT has
2rd parameters and costs 2rd3/2 FLOPs for an MVM. Like
Kronecker, TT shares parameters along the block dimen-
sions β, γ and therefore uses each parameter

√
d times in

an MVM. The TT structure is natural for modeling systems
that decompose into subsystems with local pairwise inter-
actions, such as quantum spin chains and hidden Markov
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models (Fannes et al., 1992; Critch et al., 2014).

Block Tensor-Train. We propose a novel family of struc-
tured matrices called Block Tensor-Train (BTT) matrices,
by removing the parameter-sharing along the block dimen-
sions β, γ in the TT structure. In the two core (c = 2) case,
a BTT matrix of BTT-rank r is defined by two parameter
tensors R ∈ Rr×

√
d×

√
d×

√
d and L ∈ R

√
d×

√
d×

√
d×r. Its

MVM is given by

yαβ =
∑
γσ

Lαβγσ

∑
δ

Rσβγδxγδ. (2)

In Appendix C, we study the expressiveness of BTT, present
a simple algorithm for projection onto the BTT family, and
show BTT with rank r =

√
d can represent any dense matrix

(in constrast to r = d for TT) when c = 2 and analogous
results for c > 2. Therefore, by varying the BTT rank, we
effectively interpolate between Monarch matrices and dense
matrices.

We use the Linear Operator abstractions available in
CoLA (Potapczynski et al., 2024) to compute MVMs for
these structures efficiently. In Appendix B, we show the
structures we consider have asymptotically the same MVM
runtimes as dense matrices as a function of FLOPs because
they can be implemented through the same dense matrix
multiply primitives, though they introduce non-trivial over-
head for small matrix sizes with our current implementation.

3. Optimizing Structured Matrices
To study the performance and scaling laws of unconven-
tional layers, we must determine how to optimize them
effectively by choosing appropriate initialization and learn-
ing rates as the models scale. As Figure 1c illustrates, the
optimal settings for structured matrices can differ signifi-
cantly from dense matrices. We develop a technique based
on the Maximal Update Parameterization (µP) (Yang & Hu,
2021; Yang & Littwin, 2023; Yang et al., 2021) to auto-
matically determine the optimal initialization and learning
rate scaling for a generic structured layer given its structure
and size, enabling us to train and scale various structured
layers with good hyperparameters and minimal tuning. We
focus on the Adam optimizer (Diederik P. Kingma, 2015)
but discuss extensions to other optimizers in Appendix H.

3.1. Maximal Update Parameterization

The Maximal Update Parameterization (µP) (Yang & Hu,
2021; Yang & Littwin, 2023; Yang et al., 2021) specifies
how to scale the initialization and learning rate of neural
networks as their widths increase while maximizing feature
learning in every layer (Yang & Hu, 2021). Yang et al.
(2023a) provides an elementary derivation based on the
spectral norm, which we now review.

In µP, initialization and learning rates are chosen so that
entries of each layer’s output have size Θ(1) and are up-
dated at a rate of Θ(1) per step throughout training. Here,
big-Θ notation denotes scaling in the layer’s width, omitting
dependence on other quantities. If these conditions do not
hold, the layer’s output or update will either diverge or van-
ish for sufficiently large widths. For a dense matrix W ∈
Rdout×din , input x ∈ Rdin , output h = Wx ∈ Rdout , and
output update ∆h = ∆Wx due to a weight update ∆W,
µP requires ∥h∥2 = Θ(

√
dout) and ∥∆h∥2 = Θ(

√
dout).

During training, gradient descent aligns x with the top
singular subspace of W and ∆W (Yang et al., 2023a;
Yang & Littwin, 2023), so ∥h∥2 = Θ(∥W∥2∥x∥2) and
∥∆h∥2 = Θ(∥∆W∥2∥x∥2). Assuming x is entry-wise
Θ(1), we want ∥W∥2 = Θ(

√
dout/din) and ∥∆W∥2 =

Θ(
√

dout/din). To ensure the desired spectral norm at ini-
tialization, entries of W are drawn from N (0, σ2) with
σ = Θ(

√
min(din, dout)/d2in). For the updates, the gra-

dient ∇WL = 1
B

∑B
i=1 ∇hiL · x⊤

i has Θ(1) stable rank,
assuming the batch size B is constant, so its spectral norm
scales the same way as its Frobenius norm. Since Adam nor-
malizes the gradient to be entry-wise Θ(1), the normalized
gradient has Frobenius norm Θ(

√
dindout). Therefore, an

Adam learning rate of Θ(1/din) ensures the desired spectral
norm.

Once the optimal learning rate η∗ is found for a particu-
lar width din, it can be transferred to any other width d′in
by setting the new learning rate as η∗ · din

d′
in
, assuming din

and d′in are sufficiently large (Yang et al., 2021). For ar-
chitectures, µP deviates from conventional initializations
mainly in the last layer, where σ = Θ(1/din) according to
µP but σ = Θ(

√
1/din) according to more conventional

strategies (LeCun et al., 2002; Glorot & Bengio, 2010; He
et al., 2015a).

3.2. Identifying µP for Structured Matrices

The above scaling of learning rate and initialization assume
dense matrices and don’t immediately carry over to arbitrar-
ily structured matrices. For example, for a Kronecker prod-
uct W = L⊗R where W ∈ Rd×d and L,R ∈ R

√
d×

√
d,

one intuitively expects that the optimal learning rates for
parameters L and R in this layer to scale as Θ(1/

√
d), the

size of the actual learnable parameter matrices, rather than
naively as Θ(1/d) based only on the width of the layer.

Since many structured matrices are ultimately compositions
of smaller dense matrices and fixed, norm-preserving lin-
ear transformations (e.g. reshapes), as exemplified in Sec-
tion 2, we can decompose the problem by applying the
same spectral considerations to each dense component sep-
arately, effectively treating each structured layer as a deep
linear network. Suppose the MVM Wx can be computed as
Wx = GkPk . . .G1P1x where each Pi is a fixed, norm-
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Figure 2. Structure-aware learning rate scaling results in stable feature learning and stable optimal learning rate as we vary the
structure and model size. (a) The RMS of the changes ∆h of the last layer features is stable as the models are scaled up in width, but is
smaller or vanishes if we naively use the learning rate for the dense model. (b) The optimal learning rate is stable as we vary the structure
and width, provided we use structure-aware learning rates. Here we use Monarch with 16 blocks.

preserving linear transformation, such as the product of a
permutation and a reshape, and multiplication by Gi de-
notes a batched MVM, i.e., (Gix)bµ =

∑
ν(Gi)bµνxbν

for some dense tensor Gi ∈ RBi×di
out×di

in , where b is an
abstract batch-like dimension. Then to ensure that the ac-
tivations have size Θ(1) and all parameters are updated as
much as possible to maximize feature learning (Yang et al.,
2023a), we require the initialization and updates to each
slice (Gi)b ∈ Rdi

out×di
in of Gi to have Θ

(√
diout/d

i
in

)
spectral norm. Thus we initialize each Gi with standard
deviation Θ

(√
min(diin, d

i
out)/(d

i
in)

2
)

and set its Adam

learning rate as Θ
(
1/diin

)
. When used in the last linear

layer in a residual block, we zero-initialize the last compo-
nent Gk, which is compatible with µP by setting the hidden
constant in Θ(·) to 0 (Yang et al., 2021).

Transferring learning rate between structures. Once
the optimal learning rate η∗ is known for a dout × din dense
layer, we can infer the optimal learning rate η∗i of each
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Structure Aware
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Figure 3. Structure-aware learning rates improve performance
even after tuning the learning with grid search. Test error of
ViT (d = 1024) on CIFAR-10 where the feed-forward layers are
replaced using BTT.

component Gi of the corresponding structured layer as η∗i =
κi · η∗, where κi =

din

di
in
· δi for some constant δi. Here din

di
in

accounts for the Θ(width−1) scaling of optimal learning
rate prescribed by µP, with width identified with din and diin
respectively for the dense matrix and Gi, and δi accounts
for potential differences in the constants omitted by Θ(·) for
the dense matrix and Gi. While the precise value of δi is not
theoretically determined by µP, we adopt the heuristic δi =
1/k where k is the number of learnable dense components
so that the overall updates to the output of this layer is
roughly preserved, since ∆h has k leading order terms:

∆h =

k∑
i=1

GkPk . . .∆GiPi . . .G1P1x

+O
(
∆G2

)
.

(3)

δi can be further tuned empirically around 1/k to maxi-
mize performance, though we will show the 1/k heuristic is
sufficently good in practice.

As Gi’s are often much smaller in size than the matrix W
it parameterizes, the required learning rate multiplier κi is
often a large number. For example, suppose we initially
represent W ∈ Rd×d as a dense matrix and find η is an
effective learning rate during training. If we now instead
represent W = L⊗R where L,R ∈ R

√
d×

√
d, we would

then need to scale up the learning rate for both L,R by
a factor of Θ(

√
d), which grows arbitrarily large for large

d. We show the Adam learning rate multipliers required
for various structures in Table 2, adopting our heuristic of
δi = 1/k.

3.3. Empirical Validation

We now empirically validate the effectiveness of our
structure-aware learning rate scaling. We compare it to the
naive, structure-agnostic approach that parameterizes the
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learning rate ηi for each parameter tensor Gi in a dout×din
structured layer as ηi = η0

d0

din
∝ 1/din, where the base

learning rate η0 and the base width d0 are constants, corre-
sponding to scaling the learning rate optimally according to
µP if the layer were dense. The structure-aware approach
additionally applies the structure-dependent learning rate
multipliers κi in Table 2 so that ηi = η0

d0

din
κi. We use

d0 = 64 throughout this section.

Stable feature learning. We train an MLP with 2 hid-
den layers without bias on CIFAR-10 with width d ∈
{16, 64, 256, 1024, 4096} and a base learning rate η0 =
3 · 10−3. For a given width, we track the root mean square
(RMS) of ∆ht = ht+1 −ht at every step t, where ht ∈ Rd

is the activation of the last layer before the classification
head. We then plot the the average RMS over 500 steps
for different widths and structures. As seen in Figure 2,
structure-aware learning rate scaling produces consistent
feature learning for all structures used with no tuning. In
contrast, the naive approach causes much smaller or vanish-
ing updates to the features. The effect is most pronounced
for BTT and Kronecker, for which κi grows without bound
for both L and R as the width increases.

Stable optimal learning rate. We test if the structure-aware
learning scaling preserves the learning rate landscape for all
structures so that once an optimal learning rate is found for
the dense model with some width, it can be directly trans-
ferred to all other structures and widths. We train a 2-layer
MLP on CIFAR-10 with augmentation (see Section 4 for de-
tails) for 100 epochs, using a base learning rate of 3 · 10−3,
the optimal value for a dense model at with d0 = 64. In the
first row of Figure 2b, we show the train error as a function
of the base learning rate η0 when scaled to other widths and
structures using the naive approach, which is optimal for
the dense model but clearly not for the other structures. By
contrast, in the second row, the structure-aware approach
approximately stabilizes the learning rate landscape across
structures and widths, significantly reducing the cost for ex-
ploring different structures. Slight deviation at small widths
is expected because the optimality of µP relies on conver-
gence to the infinite-width limit (Yang & Hu, 2021).

Improved performance even after tuning. Finally, we
show in Figure 1c the performance of structured models
quickly saturate as they are scaled up without structure-
aware learning rates. Monarch is an exception, for which
the multipliers in Table 2 are closer to 1 because we use
b = 4. In this case, the learning rate multiplier required for
Monarch is only 2 and independent of scale, which may ex-
plain why Dao et al. (2022) still achieves good performance
with Monarch by reusing the dense learning rates.

Furthermore, the structure-aware approach not only reduces
the tuning cost for structured layers, but is necessary for
optimal performance if the structures differ across layers,

even when we perform a grid search over the base learning
rate η0. Consider a transformer of hidden dimension d
where only the feed-forward layers (FFN) are replaced with
BTT and the attention projection matrices are dense. Since
the optimal learning rate is Θ(1/

√
d) for the FFN layer

but Θ(1/d) for the attention projection, the naive approach
would have to choose between using a learning rate too
large for the attention projection or a learning rate too small
for the FFN, whereas the structure-aware approach does not
have this problem. In Figure 3, we show that for a ViT with
BTT-structured FFNs, the structure-aware approach indeed
achieves much better performance even if we tune the base
learning rate.

4. Scaling Laws of Structured Matrices
Having developed an effective procedure to automatically
scale the initialization and learning rates for structured lay-
ers, we now aim to understand how various structures com-
pare in performance.

When data is not a bottleneck, a neural network’s test error
or loss on a task follows a power law E ∝ P−αP if trained
to (near) convergence, where P is the number of parameters
and αP is a constant (Kaplan et al., 2020; Hoffmann et al.,
2022; Henighan et al., 2020). For dense models, compute
per forward pass C ∝ P , so E ∝ C−αC for some constant
αC . We explore how different structures change how E
scales with C, as P does not consistently relate to training
or inference cost when varying the structure (Table 1).

We train all models for a fixed number of iterations T , so
the total training compute Ctot ∝ C. Thus, the scaling laws
in C can differ from compute-optimal scaling laws, which
require carefully optimizing the allocation of Ctot ∝ CT
between C and T (Kaplan et al., 2020; Hoffmann et al.,
2022), which we leave to future work.

To compare multiple structures across compute scales, we
conduct experiments primarily using MLPs and ViTs on
CIFAR-10 and CIFAR-100. In Section 5, we present larger-
scale experiments on ImageNet and language modeling.
With limited training data in CIFAR-10 and CIFAR-100,
we apply heavy augmentation to alleviate over-fitting. The
augmented training set is sufficiently large, resulting in
relatively clean power-law scaling of training error with
C. We extract these power law parameters, reflecting the
expressivity afforded by each structure as a function of C,
and visualize the scaling of test error with C, which is not
well-described by a power law due to train-test discrepancy.

Experimental setup. We use CIFAR-10 and CIFAR-
100 datasets, applying random crop, random flip, MixUp
(αmixup = 0.8) augmentations, and label smoothing of 0.3,
following Bachmann et al. (2023). We use the same MLP
architecture as in Bachmann et al. (2023), but apply a fixed
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Figure 4. Using structured matrices changes the scaling laws of MLPs and ViTs trained on CIFAR-100. We find 1) BTT achieves
the best scaling, and 2) structures with FLOPs equal to parameters scale better than those with parameter sharing (Kronecker and TT)

random permutation to the pixels before feeding them to
the MLP so our results will more likely generalize to non-
image data. We also use ViTs (Dosovitskiy et al., 2020)
with 8 × 8 patches. We train MLPs for 500 epochs with
batch size of 1024, and ViTs for 200 epochs with batch
size of 256. To scale up the model, we increase its width
while holding the depth constant. For structured models,
we replace all except the classification layer with structured
layers, though we keep the input layer dense for low rank
to avoid an information bottleneck at the first layer. For
Monarch, we set the number of blocks b = 4 following Dao
et al. (2022) unless stated otherwise. We use BTT with two
cores and various BTT-ranks. Further experiment details
are in Appendix E.

Scaling exponents are structure-dependent. In Fig-
ure 1b and Figure 4, we find the training error E has
an approximate power law relation to the compute C :
E ∝ C−αC , for both MLPs and ViTs, where the expo-
nent αC varies significantly among structures. We show
the best-fit exponent αC and its standard error for each
structure and plot the fitted power law trends. Monarch
(b = 4) achieves equal or lower train and test error than
dense for the same amount of compute, though it does not
improve the scaling exponent of training error. BTT has
the largest scaling exponent and consistently outperforms
all other structures. We use BTT with two cores and rank
1, equivalent to a Monarch with

√
d blocks, but BTTs with

higher ranks also improve scaling as we will soon show.

Parameters equal FLOPs leads to better scaling laws.
Figure 1b and Figure 4 reveal a qualitative difference
between the scaling behavior of structures that perform
parameter-sharing, i.e. Kronecker and TT, and those that do
not, having parameters equal to FLOPs. Structures that do
not share parameters are more flexible per unit of compute,
and consistently achieve better scaling laws.

Recent works proposing to explain scaling laws from the
data manifold dimension (Bahri et al., 2021; Sharma &
Kaplan, 2022) can naturally explain worse scaling exponents
due to parameter-sharing. This theory predicts the scaling
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Figure 5. Less compute per dimension is more compute-
efficient on CIFAR-10. (a) BTT with a lower rank achieves lower
train error per FLOP. (b) Monarch with more blocks achieves lower
train error per FLOP. A lighter color indicates less compute per
dimension.

exponent αP with respect to parameters is determined only
by the intrinsic dimension of the data manifold, explaining
why architectural details often only have minor impacts on
the scaling laws (Kaplan et al., 2020). If changing the matrix
structure leaves αP invariant, then the scaling exponent αC

will depend on the structure in a simple way: if C ∝ P β ,
then αC = αP /β, that is, the more parameters sharing,
the smaller the exponent αC . For example, β = 1 for
dense, low-rank, and BTT, but β = 3/2 for Kronecker and
TT. However, this exact factor underestimates the observed
differences in the exponents between Kronecker, TT, and
dense, and does not explain why BTT has a larger exponent.
A more accurate model is needed to explain the observed
structure-dependence of the scaling exponents.

Optimizing compute spent per dimension. Both BTT
and Monarch have hyperparameters (BTT-rank r and num-
ber of blocks b) that control how well they can approximate
a dense matrix of the same dimension. We can scale up
the compute C in a structured layer by increasing either its
dimension d or its compute per dimension ξ := C/d (com-
pute cost for an MVM normalized by d), which is controlled
by these hyperparameters. From Table 1, the compute per
dimension is d for dense, 2r

√
d for BTT (with 2 cores), and

2d/b for Monarch. To maximize performance as a function
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Figure 6. More compute per dimension is more memory-
efficient on CIFAR-10. (a) BTT with a higher rank achieves
lower train error per unit width. (b) Monarch with fewer blocks
achieves lower train error per unit width. A smaller width means
less memory is required to store the activations. A lighter color
indicates less compute per dimension.

of C, we need to optimally allocate it between the dimension
d of the layer and the compute spent per dimension ξ. In
Figure 5a, we show that while higher rank BTTs scale better
than dense matrices on CIFAR-10, lower rank BTTs are
more compute-efficient. Similarly, in Figure 5b, Monarch
matrices with more blocks and higher sparsity are more
compute-efficient. These results illustrate that the optimal
compute per dimension on this task is much smaller than
d, and structured matrices beat dense matrices by making
a favorable trade-off between dimension and compute per
dimension. In Appendix F, we show that for BTT with
c ≥ 3 cores and different BTT-ranks, smaller ranks lead to
better compute-efficiency, and using c greater than 2 does
not significantly improve compute efficiency on CIFAR-10,
despite compute per dimension scaling as O

(
d1/c

)
.

The optimal way to scale ξ with d is likely non-trivial and
task-dependent. The extremes are ξ = d for a dense matrix
and ξ = 0 for the identity. The latter is clearly suboptimal,
and neither is the former in light of our findings.

Compute-memory trade-off. While lowering the com-
pute per dimension can increase compute efficiency, it sacri-
fices memory efficiency if the memory cost is dominated by
storing activations, such as when training with large batch
sizes. In this case, the memory for storing activations scales
at least as the layer width d. Since we can increase the
expressivity of BTT and Monarch by increasing the rank or
decreasing the number of blocks without increasing d, these
hyperparameters enable us to trade off compute-efficiency
with memory-efficiency, as demonstrated in Figure 6. While
dense matrices are the least compute-efficient, they are the
most efficient in terms of activation memory by packing the
most parameters and compute into each dimension. The
most compute-efficient yet memory-feasible structure will
vary depending on the specific memory budget.
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Figure 7. Weight normalization is necessary to stabilize GPT-2
training with BTT. (a) RMS entry size of the final layer activations
stabilizes around 1 with normalization but grows without bound
otherwise. (b) Normalization improves validation loss.

5. Training Structured Transformers
We now apply structured layers to train larger transformer
models for ImageNet classification and language modeling.
We also introduce a technique required to prevent training
divergence in these experiments.

5.1. Stabilizing Training with Weight Normalization

When training on ImageNet and OpenWebText with BTT
layers, we found the activations grow without bound slowly
over time as illustrated in Figure 7a for GPT-2, which does
not happen in the dense model. We found we can eliminate
this behavior without sacrificing expressivity through the
following reparameterization:

M̃ = γM min

(
1,

σM

RMS(M)

)
M,

where M ∈ {L,R}. It normalizes the BTT cores L and R
to have RMS entry sizes no larger than their initialization
scales σL and σR, and scaling them by learnable scalars
γL and γR to allow the singular values to grow in size if
needed, similar to what is proposed in Salimans & Kingma
(2016). In Figure 7, we show a 12-layer GPT-2 model with
d = 128 using BTT layers trained on OpenWebText with or
without normalization. Weight normalization eliminates the
unbounded growth of the activations before the last layer
normalization, which will eventually lead to NaN. Weight
normalization also improves validation loss, which is in
contrast to alternatives such as lowering the learning rate
and increasing weight decay which we found to only reduce
the rate of growth at the cost of worse performance.

5.2. ViT on ImageNet

We train ViTs with patch size 32 on ImageNet for 300
epochs. We provide full experimental details in Appendix G.
In Figure 8, we find both BTT with rank r ∈ {1, 2} and
Monarch with b ∈ {4, 16} blocks outperform dense for the
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more compute-efficient. We use ViTs with patch size 32 trained
for 300 epochs. BTT reaches the same performance of a dense
ViT-S/32 with up to 3.8× fewer FLOPs.
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Figure 9. GPT-2 with all BTT layers is more compute-efficient.
(a) When including language modeling head compute, BTT is
more efficient than dense. (b) When excluding language modeling
head compute, BTT and dense perform similarly.

same amount of compute for training ViTs on ImageNet.
BTT reaches the same performance of a dense ViT-S/32 (the
larger dense model shown) with up to 3.8× fewer FLOPs.
We find Monarch with 16 blocks is more compute-efficient
than with 4 blocks, the original version used in Dao et al.
(2022) and in the Monarch Mixer architecture (Fu et al.,
2023), consistent with our finding on CIFAR-10 that less
compute per dimension is more compute-efficient.

5.3. GPT-2 on OpenWebText

We train GPT-2 models on OpenWebText for 600, 000 steps
with a batch size of 245, 760 tokens at a sequence length of
512. We provide full experimental details in Appendix G.
We replace all linear layers, including the language mod-
eling head, which accounts for a significant fraction of the
compute, with BTT layers. In Figure 9a, we show the result-
ing GPT-2 model with BTT layers outperforms the original
dense GPT-2 as a function of compute. However, in Fig-
ure 9b, we find they perform similarly when controlling for
non-embedding compute, which excludes the compute spent
in the language modeling head (Kaplan et al., 2020). While

the improvement is significant, Figure 9b suggests that the
improvement primarily comes from reducing the compute
spent in the language modeling head and may therefore di-
minish at larger scales where the fraction of compute spent
in the language modeling head becomes negligible.

6. Discussion
The exponential growth in the computational cost of training
foundation models in recent years has made the develop-
ment of more compute-efficient architectures and training
procedures a critical area of research. While structured ma-
trices have traditionally been used in machine learning to
approximate dense matrices or encode constraints such as
equivariance, our work shows their promise in serving as
general-purpose linear layers, a universal compute bottle-
neck in current foundation models, while offering improved
compute efficiency relative to dense matrices.

Our work uncovers several key insights in designing more
compute-efficient linear layers with structured matrices:

• Careful optimization is crucial: structure-aware learn-
ing rates based on µP are essential to realize the per-
formance benefits of structured matrices.

• Better scaling laws than dense are possible: struc-
tured matrices can sometimes exponentially outper-
form dense matrices as we increase compute.

• Relaxing parameter sharing produces compute-
efficient and general-purpose structures: By learning
more parameters with the same compute, Monarch and
BTT can provide better performance as general linear
layers than the parameter-sharing Kronecker product
and Tensor-Train structures.

• Compute per dimension is an impactful yet neglected
hyperparameter: dense matrices consume the most
compute per dimension, but they can underperform
structured matrices that trade less compute per dimen-
sion for more dimensions, resulting in wider models.

Extending our evaluation to larger-scale models and datasets,
studying the compute-optimal scaling laws, and developing
a theoretical understanding of when and why structured
matrices can improve scaling laws based on data and model
characteristics are exciting directions for future work.

Acknowledgements
We thank Sanae Lotfi, Alan Amin, and Bayan Bruss for help-
ful discussions, and Christopher Ferri for HPC assistance.
This work is supported by NSF CAREER IIS-2145492,
NSF CDS&E-MSS 2134216, NSF HDR-2118310, BigHat
Biosciences, Capital One, and an Amazon Research Award.

9



Compute Better Spent: Replacing Dense Layers with Structured Matrices

Impact Statement
This work aims to improve the performance of MLPs and
transformers per unit of compute. Making neural networks
more efficient has the potential to reduce energy consump-
tion of training and inference, and more efficient neural
networks can also make deep learning accessible where
compute resources are scarce. However, we caution that the
matrix structures we use should be tested in new domains, at
new architectural scales, and within new architectures, to en-
sure that our results extrapolate for a practitioner’s specific
individual needs.
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A. Related Work
Compute-Efficient Alternatives to Dense Layers. Finding more compute-efficient alternatives to dense layers during
training is an under-explored research topic. Convolutional networks and other equivariant models using structured matrices
only offer an advantage in specific domains where the assumed symmetries exist (LeCun et al., 1998b; Finzi et al., 2020).
Approaches such as pruning and quantization (Han et al., 2016; Molchanov et al., 2016; Liu et al., 2017; Frankle & Carbin,
2018; Mishra et al., 2021) mainly target reducing the inference cost after a model has been trained. Similarly, Lee & Kim
(2023) introduce a differentiable approach to learn a sparse structure that contain sums of low-rank blocks, but the learned
structure can only be made sparse after training. Efficient fine-tuning methods leveraging structured matrices, such as LoRA
(Hu et al., 2021), only apply in the fine-tuning stage. Recent works have used low-rank structures to reduce the memory
usage of training and accelerate the backward pass, but they still use dense matrices in the forward pass (Zhao et al., 2024;
Lialin et al., 2023). While Tensor-Train decomposition can improve parameter efficiency of neural networks (Chekalina
et al., 2023; Novikov et al., 2015), they have not been shown to improve their compute efficiency.

The recently proposed Monarch matrices (Dao et al., 2022) are a notable exception, which enable faster training of certain
vision and language transformers by training with Monarch matrices for all or most of the training steps followed by only a
small amount of dense training.

Initialization and Learning Rate for Structured Layers. The most popular initialization strategies such as Xavier
(Glorot & Bengio, 2010), Kaiming (He et al., 2015a), and Lecun (LeCun et al., 2002) initializations set the initialization
scales of the dense matrices so that the forward or backward pass is variance preserving at initialization. Pan et al. (2022)
extended this analysis to tonsorial convolutional networks where the kernels are structured. In addition to considering only a
subset of possible structures (dense and tensorial convolution), these strategies are not optimal because they only consider
the initialization and not the training dynamics, as shown by µP (Yang et al., 2021). Specifically, µP uses an asymptotically
smaller initialization variance compared to these methods when a layer’s input dimension is asymptotically larger than its
output dimension, such as the last layer.

To the best of our knowledge, there is no prior work that investigates how to scale the learning rate for general structured
linear layers. Prior works using Tensor-Train Decomposition (Chekalina et al., 2023), low-rank matrices (Lialin et al., 2023),
and Monarch matrices (Dao et al., 2022) to replace dense layers simply used global learning rates for all parameters and do
not specify how they should be scaled as a function of width. The concurrent work LoRA+ (Hayou et al., 2024) studies the
special case for low-rank matrices of the form W = UV,U ∈ Rd×r,V ∈ Rr×d, r ≪ d, and proposes that U should have
a higher learning rate compared to V, consistent with the more general analysis we present in this work that also applies to
other structured matrices.

B. Runtime Comparisons
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Figure 10. At large scales, runtime and FLOPs are equivalent for the structures we consider. We omit Kronecker and TT in (a)
because they are special cases of Monarch and BTT.
All structures in this work use the same dense matrix multiplication primitive on the GPU, so FLOPs are proportional
to their runtimes for large matrix sizes. Only below a certain scale do runtimes vary noticeably between structures as a
function of FLOPs. We verify this on an Nvidia A100 GPU in Figure 10a, showing the time for matrix-vector multiplication
for different structures vs. FLOPs. For small matrices, runtimes vary between structures and don’t reflect FLOPs due
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Structure Learning rate multiplier κ
Low-Rank UV κU = d/2r, κV = 1/2

Kronecker L⊗R κL =
√
d/2, κR =

√
d/2

Monarch PLP⊤R κL = b/2, κR = b/2

TT(L,R) κL =
√
d/2r, κR =

√
d/2

BTT(L,R) κL =
√
d/2r, κR =

√
d/2

Table 2. Learning rate multipliers for structured matrices. We show the Adam learning rate multiplier κ we use for each parameter
tensor of the structure when transferring the learning rate from a dense layer of the same width d. r refers to the rank in low rank, TT, and
BTT, while b refers to the number of blocks in Monarch.

to inefficient tensor core utilization. For large matrices, runtimes converge to the same function in FLOPs. Optimizing
structured matrix implementations can reduce their runtime overhead and will be essential to realizing the practical benefits
of these structures.

Measuring FLOPs allows incorporating results from smaller experiments without letting the runtime inefficiencies at small
scale obscure the scaling laws. Figure 10b and Figure 10 compare BTT with dense MLPs on CIFAR-100 in FLOPs and
runtimes on an Nvidia A100. Below ∼ 107 FLOPs, increasing FLOPs barely changes runtimes for dense and BTT, obscuring
the scaling laws. BTT underperforms dense when controlling for runtime by incurring longer runtime per FLOP at this scale.
However, as compute increases, scaling laws in FLOPs translate to scaling laws in runtimes, with BTT outperforming dense
significantly.

C. General Expression for Tensor-Train and Block Tensor-Train
Here we describe the general expression for Tensor-Train and Block Tensor-Train, with an arbitrary number of cores and
ranks. To make the expression more intuitive, we will use superscripts for output indices and subscripts subscripts for input
indices. Rank indices appear once as a superscript when first introduced and once as a subscript when summed away.

Tensor-Train. Tensor-Train (TT) decomposition of a dout × din matrix W is defined by a set of c cores Gt ∈
Rrt−1×mt×nt×rt for t = 1, . . . , c, where c ≥ 2, dout =

∏
t mt, din =

∏
t nt, r0 = rc = 1 and {rt}ct=1 being free integer

hyperparameters. These cores specify the elements of an n1 × . . .× nt ×m1 × . . .×mt tensor T via

T i1,...,ic
j1,...,jc

=
∑

α1,...,αt+1

c∏
t=1

(Gt)
αt−1,it
jt,αt

. (4)

Identifying elements of T with elments of a dout × din matrix W, the efficient matrix-vector multiply against W does not
involve materializing W but is simply given by a sequence of contractions against each core Gt from t = c to t = 1 :

(zt−1)
αt−1,j1,...,jt−1,it,...,ic =

rt∑
αt=1

nt∑
jt=1

(Gt)
αt−1,it
jt,αt

(zt)
αt,j1,...,jt,it+1,...,ic , (5)

where the initial zc is obtained by reshaping the input x into an nc × nc−1 . . .× n1 × 1 tensor and the final z0 is flattened
into an output vector. Suppose, for convenience, din = dout = d, nt = mt = d1/c for all t, and rt = r for all t /∈ {0, c},
then TT has P = (2r+ (c− 2)r2)d2/c parameters, and an MVM costs C = (2r+ (c− 2)r2)d1+c−1

FLOPs. Note we have
C = Pd1−c−1

, showing each parameter is used for d1−c−1 ≥
√
d times.

Block Tensor-Train. Block Tensor-Train (BTT) is defined simply by appending additional axes to each core in TT via
the substitution

(Gt)
αt−1,it
jt,αt

→ (Gt)
αt−1,it,it+1,...,ic
j1,...,jt−1,jt,αt

. (6)
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As before, multiplying the cores and summing out the rank axes, we have

T i1,...,ic
j1,...,jc

=
∑

α1,...,αt+1

c∏
t=1

(Gt)
αt−1,it,it+1,...,ic
j1,...,jt−1,jt,αt

. (7)

Efficient multiplication with the corresponding matrix is now given by

(zt−1)
αt−1,j1,...,jt−1,it,...,ic =

rt∑
αt=1

nt∑
jt=1

(Gt)
αt−1,it,it+1,...,ic
j1,...,jt−1,jt,αt

(zt)
αt,j1,...,jt,it+1,...,ic , (8)

which costs the same FLOPs as for TT, while admitting more learnable parameters. Again we do not need to materialize
T. Suppose, for convenience, din = dout = d, nt = mt = d1/c for all t, and rt = r for all t /∈ {0, c}, then BTT has
P = (2r + (c− 2)r2)d1+c−1

parameters, equal in number to the FLOPs for an MVM C = (2r + (c− 2)r2)d1+c−1

. Thus,
for the same amount of compute, BTT can learn a factor of d1−c−1 ≥

√
d more parameters than TT.

D. Expressivity of Block Tensor-Train
We start by providing an algorithm to approximate any existing dense matrix A with a BTT. The algorithm will then illustrate
the expressivity of the BTT structure as a function of c and {rt}ct=1. For simplicity, we will assume A ∈ Rd×d, and the
cores will be square, having size d1/c in each dimension, except for the rank dimension. Generalization to non-square A
and non-square cores is straigtforward.

Projection onto Block Tensor-Train with c = 2. In the case where c = 2, we prove a closed-form expression for
projecting an arbitrary dense matrix A to the closest rank-r (there is only one rank parameter so we omit the subscript)
BTT B that minimizes the squared Frobenius norm ∥A−B∥2F . Writing A and B as

√
d×

√
d×

√
d×

√
d tensors with

Bii′

jj′ =
∑r

α=1 L
ii′

jαR
αi′

jj′ , we have

∥A−B∥2F (9)

=
∑
ii′jj′

(
Aii′

jj′ −
r∑

α=1

Lii′

jαR
αi′

jj′

)2

(10)

=
∑
i′j

∑
ij′

(
Aii′

jj′ −
r∑

α=1

Lii′

jαR
αi′

jj′

)2

(11)

=
∑
i′j

∥∥∥∥∥A(i′j) −
r∑

α=1

ℓ(i
′j)

α r(i
′j)⊤

α

∥∥∥∥∥
2

F

, (12)

(13)

where we have decomposed the minimization problem into multiple independent minimization problems: for each i′, j, we
wish to find the best rank-r approximation

∑r
α=1 ℓ

(i′j)
α r

(i′j)⊤
α to the matrix A(i′j) ∈ R

√
d×

√
d. Thus, we obtain an optimal

solution by finding these best rank-r approximation (e.g. via SVD) for each A(i′j), and reassembling the vectors ℓ(i
′j)

α and
r
(i′j)
α into the tensors L and R. This result is a straightforward generalization of the algorithm for projection onto Monarch

matrices (Dao et al., 2022), which deals with the case where r = 1.

Generalization to c > 2. For convenience, let’s relabel L found in the previous algorithm as L̃, and the rank r as
r2. Having found L̃ and R, we can recursively apply the above algorithm on L̃ to find its optimal 2-core rank-r1 BTT
approximation, with cores L and M. Together, L,M, and R parameterize a 3-core BTT approximation with ranks r1 and
r2. Similar to the recursive TT-SVD algorithm (Oseledets, 2011), the found solution will not necessarily be optimal for
c > 2 due to its greediness.

It is sufficient to illustrate this algorithm in detail for c = 3. Reshaping A into a tensor Ai1i2i3
j1j2j3

∈ Rd1/3×...×d1/3

, we wish to
find Bi1i2i3

j1j2j3
=
∑r

α=1

∑r
β=1 L

i1i2i3
j1β

Mβi2i3
j1j2α

Rαi3
j1j2j3

that approximates A. We first group i1, i2 as a single index (i1i2) and
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j1, j2 as a single index (j1j2), and then apply the previous algorithm for the 2-core case to find L̃,R that minimizes

∑
(i1i2)i3(j1j2)j3

(
A

(i1i2)i3
(j1j2)j3

−
r2∑

α=1

L̃
(i1i2)i3
(j1j2)α

Rαi3
(j1j2)j3

)2

, (14)

forming the best following best rank-r2 2-core approximation:

A
(i1i2)i3
(j1j2)j3

≈
r2∑

α=1

L̃
(i1i2)i3
(j1j2)α

Rαi3
(j1j2)j3

. (15)

Setting r2 = min(#(i1i2),#j3) =
√
d will lead to an exact decomposition, where #χ denotes the length of the range of

the index χ. Then we un-group the indicies to the obtain L̃i1i2i3
j1j2α

, Rαi3
j1j2j3

. Now grouping i2i3 and j2α as single indices, we
apply the previous algorithm again to find the best rank-r1 2-core BTT approximation to L̃ yielding the tensors L,M that
minimize ∑

i1(i2i3)j1(j2α)

L̃
i1(i2i3)
j1(j2α)

−
r1∑

β=1

L
i1(i2i3)
j1β

M
β(i2i3)
j1(j2α)

2

. (16)

Setting r1 = min(#i1,#(j2α)) =
√
d will again lead to an exact decomposition, Now replacing L̃i12i3

j12α
in Equation (15) by

its approximation
∑r1

β=1 L
i1i2i3
j1β

Mβi2i3
j1j2α

, we have found the 3-core BTT approximation to A with ranks (r1, r2) :

Ai1i2i3
j1j2j3

≈ Bi1i2i3
j1j2j3

=

r1∑
β=1

r2∑
α=1

Li1i2i3
j1β

Mβi2i3
j1j2α

Rαi3
j1j2j3

. (17)

Quantifying the expressivity of BTT. By applying the above recursive algorithm and always choosing a high enough
rank so that the decomposition is exact at each step, we prove that a c-core BTT with sufficiently large ranks {rt}ct=1

can represent any d× d dense matrix exactly. Moreover, the general expression for an upper-bound on rt to ensure exact
decomposition can be deduced as rt ≤ min(#i1 × . . . × #it,#jt+1 × rt+1) ≤ dmin(t,c−t)/c : i.e. r1 ≤ d1/c, r2 ≤
d2/c, . . . , rc/2 ≤

√
d, . . . , rc−1 ≤ d2/c, rc ≤ d1/c. By contrast, TT has a worse bound of r1 ≤ d2/c, r2 ≤ d4/c, . . . , rc/2 ≤

d, . . . , rc−1 ≤ d4/c, rc ≤ d2/c (Oseledets, 2011).

A practical takeaway is that we can monotonically improve the expressivity of BTT by increasing rt until the bound is
reached, and we should never use ranks larger than the bound since it creates unnecessary redundancy in the parameterization.

E. Scaling Laws Experiment Details
We provide code for reproducing our experiments here.

E.1. Model architectures

MLP. Following Bachmann et al. (2023), we use MLPs consisting of residual blocks of the form

hℓ+1 = hℓ +W
(2)
ℓ g

(
W

(1)
ℓ LN (hℓ)

)
, W

(1)
ℓ ∈ R4d×d, W

(2)
ℓ ∈ Rd×4d, (18)

where g (·) denotes the GELU activation (Hendrycks & Gimpel, 2016) and LN (·) stands for layer normalization (Ba et al.,
2016). In addition, there is an input embedding layer and a classification layer. We refer to d as the width of the model. We
use models with 3 residual blocks and scale them up by increasing d.

ViT. We use standard ViTs (Dosovitskiy et al., 2020), but with 1/d−scaled rather 1/
√
d−scaled attention as prescribed

by µP (Yang et al., 2021) and Query-Key Normalization (Henry et al., 2020; Wortsman et al., 2023) for improved stability.
We refer to the embedding dimension, commonly denoted dmodel, as the width d of the model. We use models with 3
transformer blocks and scale them up by increasing d.
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E.2. Hyperparameters

Training hyperparameters. We use random crop, random flip, and MixUp (α = 0.8) data augmentations, and label
smoothing of 0.3. We train all MLP models for 500 epochs with batch size 1024, and all ViT models for 200 epochs with
batch size 256. At the end of training, the models are close to but not exactly at convergence because fitting the training set
is challenging due to strong augmentations and label smoothing. We do not use early stopping as it is not necessary.

We use structure-aware learning rates and initialization described in Section 3.2, with a cosine learning rate decay to 0. We
set the constant in Θ(·) as 1 for the initialization standard deviations, with the exception that the last linear layer inside every
residual block of the MLP and ViT is zero-initialized, as mentioned in Section 3.2. For a structured layer, zero-initialization
is only applied to its last dense component so its output is zero at initialization but all the parameters receive non-zero
gradients after the first step. Following (Yang et al., 2021), we also zero-initialize the classification layer and the query
projection WQ in transformers. We found zero-initialization generally improves performance.

We use a base learning rate of η0 = 3e− 3 for a dense MLP at d0 = 64, and η0 = 1e− 3 for a dense ViT at d0 = 64. For
MLPs, we scale the learning rate of the input layer by a factor of 0.1 since the input image dimension is much larger than d0.
This small multiplier prevents the first layer feature updates from having much larger scales than the other layers (Yang
et al., 2023a), which we found improves performance.

Structure-specific hyperparameters. We provide hyperparameters such as ranks we use for each structure and any other
design choices we make.

• Low-rank: we set the ranks of low-rank matrices to
√

min(din, dout) for MLP and 0.1×min(din, dout) for ViT. The
first choice leads to O

(
d3/2

)
scaling of compute and parameters, same as Kronecker, 2-core BTT, and 2-core TT, but

the second choice works significantly better for ViTs. We round the rank to its nearest integer when necessary. We
initialize V ∈ Rr×d of the low-rank layer as Vij ∼ N (0,

√
1/din), rather than Vij ∼ N (0,

√
1/(rdin)). While the

latter is required for having the desired spectral norm at initialization according to Section 3.2, when we choose a rank
of
√
min(din, dout), it is not compatible with our zero-initialization scheme as it led to vanishing gradients for both U

and V as the width gets large.

• Kronecker: for any dimension d that is not a perfect square, we factorize it so that the factors are as close as possible.
For example, for a 20× 30 matrix, we use the factorization L⊗R where L ∈ R4×5 and R ∈ R5×6.

• TT: we use two cores with TT-rank of 16 for MLPs and 8 for ViTs. We deal with non-perfect-square dimensions same
as in Kronecker.

• Monarch: unless otherwise specified, we use L and R with 4 blocks, following the ViT and GPT-2 experiments in Dao
et al. (2022).

• BTT: we use BTT with various ranks and deal with non-perfect-square dimensions same as in Kronecker.

F. Results for BTT with c > 2

In Figure 5, we showed scaling compute per dimension ξ as ξ = 2d1/2 using BTT with c = 2 and r = 1 leads to better
scaling laws than other choices of r that increases ξ to 2r1/2. The gap between different choices of r closes as the models
are scaled up in width, e.g. d ≫ r. In Figure 11, we show a similar trend for c = 3, where higher values of r perform
worse when controlling for FLOPs, though the gap tends to vanish as the width is scaled up. Each connected line shows the
performance of BTT with a fixed r while d is increased.

In Figure 12, we show the performance of BTT with r = 1 and c ∈ {2, 3, 4}. Further reducing the scaling of ξ to 3d1/3 or
4d1/4 brings no or negligible improvement to performance when controlling for FLOPs.

In summary, choosing c = 2 and r = 1 leads to near-optimal performance for BTT on these tasks. In this case, BTT is
equivalent to Monarch with

√
d blocks.

G. Transformer experiments
We provide code for reproducing our experiments here.
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Figure 11. Lower BTT-ranks have better compute-efficiency for BTT with c = 3 cores. Controlling for FLOPs, increasing the rank
often degrades performance, though it reduces memory cost as the width is smaller.
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Figure 12. BTT with c = 2 cores achieves near-optimal compute-efficiency. Controlling for FLOPs, increasing c beyond 2 leads to no
or negligible improvement in performance, while incurring higher memory costs as the models are wider.

G.1. ViT on ImageNet

We train with a global batch size of 3072 for 300 epochs with random crops, horizontal flip, random augmentations
(rand-m9-mstd0.5-inc1 from the timm library (Wightman, 2019)), and Mixup of 0.2. The model has 12 transformer
blocks, with width dmodel ranging from 80 to 384 for dense. We use BTT with rank 1 or 2 and Monarch with 4 or 16 blocks.
All but the classification head is replaced with structured matrices. We use the AdamW optimizer and set the base learning
rate to 2e− 3 for the smallest dense model, which is transferred to other models via µP and our structured-aware learning
rate scaling. We apply a cosine learning rate decay to 0. The AdamW weight decay is set to 0.05 for all models and is scaled
automatically with width by being multiplied by the learning rate (Yang et al., 2021). The architecture is identical to the one
in Appendix E.1.

G.2. GPT-2 on OpenWebText

We train with a global batch size of 480 and a context length of 512 for 600,000 steps. We report the performance of the
following models, all having 12 transformer blocks:

• Structure = Dense, dmodel = 384, nhead = 6, dhead = 64

• Structure = Dense, dmodel = 512, nhead = 12, dhead = 64

• Structure = Dense, dmodel = 768, nhead = 12, dhead = 64 (GPT-2 Small (Radford et al., 2019))

• Structure = BTT (r = 4), dmodel = 1024, nhead = 6, dhead = 64

• Structure = BTT (r = 4), dmodel = 1536, nhead = 6, dhead = 64

• Structure = BTT (r = 4), dmodel = 2048, nhead = 6, dhead = 64

• Structure = BTT (r = 4), dmodel = 2560, nhead = 12, dhead = 64
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We use BTT with rank 4 in every linear layer, including the language modeling head. We set nhead to be smaller than the
usual dmodel/dhead for the BTT models since otherwise we would spend too much compute in the attention layers relative
to the FFN layers. We use the Adam optimizer and set the base learning rate to 6e− 4 for the dense model at dmodel = 768,
which is transferred to other models via µP and our structured-aware learning rate scaling.

H. Structure-Aware Learning Rate for Other Optimizers
The structure-aware learning rate scaling described in Section 3 applies to Adam or AdamW. However, we can derive
appropriate scaling rules for other optimizers such as SGD. In Section 3.3, we obtain our structure-aware learning rate
scaling rule in three steps: 1) decompose the matrix-vector multiplication (MVM) of a structured matrix W ∈ Rdout×din

as a sequence of batched MVMs involving only dense matrices {Gi}ki=1, 2) identify the input and output dimensions diin
and diout of these dense matrices, 3) apply µP to each of these dense matrices to scale their learning rates based on diin and
diout. Steps 1 and 2 are optimizer-agnostic. While step 3 is optimizer-dependent, it only requires knowing how to set µP
learning rates for regular dense matrices, which has been analyzed in prior works for various optimizers, including SGD,
Adam, and SignSGD (Yang & Littwin, 2023; Yang et al., 2023a). For example, instead of having the learning rate ηi of
Gi be Θ(1/diin), which is correct for Adam, SGD would require ηi = Θ(diout/d

i
in) (Yang et al., 2023a). Therefore, the

structure-aware learning rate multiplier relative to a dense W should now be κi = Θ
(

di
out/d

i
in

dout/din

)
instead of Θ(din/d

i
in),

which is correct for Adam.

I. Limitations and Future Work
We provide a summary of the limitations of this work, and exciting directions for future work:

• Due to affordability constraints, we conducted our evaluation primarily with relatively small-scale models and datasets.
Extending our evaluation to much larger-scale models and datasets is an important future direction.

• The scaling laws we study differ from the compute-optimal scaling laws more relevant for large-scale training, which
require optimally trading off between training larger models and training for more iterations. We only varied model
size while keeping training iterations constant. Similarly, we did not optimize between scaling width v.s. depth, which
allowed us to conveniently transfer learning rate through µP2.

• Our comparisons are based on FLOPs rather than runtimes. While the structures we consider have asymptotically the
same MVM runtimes as dense matrices per FLOP (Appendix B), they introduce non-trivial runtime overhead for small
matrix sizes, e.g. O

(
103
)
. Developing highly optimized implementations will be important to realize the benefits of

structured matrices in practice.

• Despite our efforts to avoid over-fitting to image data (shuffling pixels for the MLP experiment), our findings that
structured matrices can significantly outperform dense matrices may still be highly dataset-dependent, as BTT offers a
less significant improvement in language modeling compared to in image classification.

• Our findings are empirical. Theoretically understanding when and why structured matrices can have better scaling
laws than dense matrices, depending on model and data characteristics, will enable a prescriptive selection of structure
rather than via trial and error alone.

2See Yang et al. (2023b) for a depth extension of µP and why it doesn’t work for transformers in principle.
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