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ABSTRACT

Temporal Knowledge Graph(TKG) serves as an efficacious way to store dynamic
facts in real-world. Extrapolation reasoning on TKGs, which aims at predicting
possible future events, has attracted consistent research interest. Recently, some
rule-based methods have been proposed, which are considered more interpretable
compared with embedding-based methods. Existing rule-based methods apply
rules through path matching or subgraph extraction, which falls short in inference
ability and suffers from missing facts in TKGs. Besides, during rule application
period, these methods consider the standing of facts as a binary 0 or 1 problem and
ignores the validity as well as frequency of historical facts under temporal settings.
In this paper, by designing a novel paradigm for rule application, we propose IN-
FER, a neural-symbolic model for TKG extrapolation. With the introduction of
Temporal Validity Function, INFER firstly considers the frequency and validity of
historical facts and extends the truth value of facts into continuous real number to
better adapt for temporal settings. INFER builds Temporal Weight Matrices with
a pre-trained static KG embedding model to enhance its inference ability. More-
over, to facilitates potential integration with existing embedding-based methods,
INFER adopts a rule projection module which enables it apply rules through con-
ducting matrices operation on GPU. This feature also improves the efficiency of
rule application. Experimental results show that INFER achieves state-of-the-art
performance on various TKG datasets and significantly outperforms existing rule-
based models on our modified, more sparse TKG datasets, which demonstrates
the superiority of our model in inference ability.

1 INTRODUCTION

Knowledge Graphs(KGs) play key roles in multiple downstream applications (Hildebrandt et al.,
2019; Lan & Jiang, 2020), which store knowledge in the form of triples (s, r, o) representing subject
entity s and object entity o are linked by the relation r. Traditional KGs appear to be static snapshots
of real-world facts. However, in practice, facts evolve over time and may not be true in a perpetual
way. Thus, TKGs are proposed to model the dynamic properties of facts in which each fact is
represented as a quadruple (s, r, o, t) where t denotes the timestamp of the fact.

Extrapolation reasoning on TKGs focuses on predicting potential facts at future timestamps based
on the observed historical facts. Some effective embedding-based models including RE-Net (Jin
et al., 2019), CyGNet (Zhu et al., 2021a), RE-GCN (Li et al., 2021), CENET (Xu et al., 2022)
etc. have been proposed for TKG extrapolation, which embed entities and relations into vectors
and utilize neural networks to capture structural information, temporal dependency and historical
information. Embedding-based models exhibit strong learning and reasoning abilities and yield
substantial performance. However, due to the ”black box problem” of neural networks, embedding-
based methods are deemed to be lacking interpretablity and reliability. Recently, several rule-based
methods like TLogic (Liu et al., 2022) and TR-Rules (Li et al., 2023) have been proposed for better
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Figure 1: Illustration of how missing facts in TKGs affect the rule application procedure.
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Figure 2: (a) Illustration of TKGs and previous rule-based inference. (b) Our transformed weighted
graphs and the performed temporal validity aware inference.

interpretability. These models can generate human-readable rules and provide visible reasoning
chains, which also achieve competitive performance.

Nevertheless, when applying rules, previous rule-based methods consider the standing of facts as a
binary 0 or 1 problem (have been true or not) for path matching, which ignores the validity as well
as frequency of historical facts under temporal settings. Although previous models try to add bias
in the score function to increase the score of candidates derived by recent edges or paths, it does not
completely solve this issue especially when rule length is greater than one.

In Figure 2 (a), we can see a typical TKG and the process of rule application of previous work. The
red edges denote matched rule body instances. As we can see, Germany consulted the U.S. at T0 and
the U.S. praised Japan and Korea at T1 and Tn−1 respectively. Given the query and the rule, previous
models will consider both entities correct and give them the same score. However, intuitively, these
two ”Praise” edges should not be treated equally because of the time difference and in fact, the U.S.
even criticized Japan at Tn−1.

Additionally, existing rule-based models apply rules through purely symbolic ways such as: path
matching or subgraph extractions which do not have the ability to infer missing facts in TKGs and
make the application of rules conditioned on the quality of datasets. Because of the incompleteness
of TKGs, we believe this drawback brings a bottleneck to previous rule-based methods. In Figure 1,
we can see that although the model mines a plausible rule and it could have derived the correct an-
swer, the missing facts at T2 makes the reasoning failed. However, existing rule-based methods need
to traverse and match rule body instances in TKGs on CPUs, which brings efficiency bottlenecks
and hinders integration with embedding-based neural methods.

To address these issues, we propose INFER, a neural-symbolic model for TKG extrapolation, which
introduces a novel rule application paradigm. INFER first learns rules in TKGs with an existing
random walk based algorithm. Then, in our paradigm, INFER builds Temporal Weight Matrices
with the help of static KG embedding models, which store the probability of each possible fact.
Notably, this procedure enables the assignment of initial approximate probabilities to even missing
facts, thereby enhancing the inference capabilities of our model.
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We argue that the binary truth value utilized by previous works for modeling the standing of facts
is not suitable enough for temporal settings. To capture the effects of the frequency and validity
of historical facts, we design a Temporal Validity Function that maps the frequency and the time
span since the last appearance of a fact into a continuous real number. When it comes to a new
timestamp, the temporal validity function is used to update the temporal weight matrices which
store the temporal validity of each historical fact and probability of potential unseen facts. If we
consider the temporal weight matrices as adjacent matrices, this process continuously transforms
the graphs of historical facts into a weighted graph. Figure 2 (b) shows an example of the weighted
graph computed by INFER.

As for rule application, INFER introduces a rule projection module. The rule projection module
computes scores of all candidates through conducting efficient matrices calculation on GPU ac-
cording to the mined rules rather than costly path matching on graph. Hence, INFER is able to
apply rules more efficiently than previous models can and makes the application of longer rules
affordable. This design facilitates potential integration with existing embedding-based reasoning
methods. Moreover, INFER is able to display the scores of all entities at each intermediate step of
rule application, which maintains the interpretability of rule-based methods. Code is available at
https://github.com/JasonLee-22/INFER.

Our contributions can be summarized as follows:

• We argue that continuous value rather than binary value reflects the truth value of historical facts
more precisely under temporal settings. We introduce a Temporal Validity Function which consid-
ers the time span and frequency of facts together to calculate continuous truth values of temporal
facts.

• We propose INFER, a neural-symbolic model for TKG extrapolation, which adopts a novel
paradigm for rule application. INFER constructs and dynamically updates temporal weight ma-
trices to augment the ability to infer missing facts and capture historical clues. By performing
calculations on these matrices on GPU, INFER enables more efficient rule application, making it
possible to combine with embedding-based methods and maintain the interpretablity meanwhile.

• Experimental results on multiple datasets show that INFER achieves state-of-the-art performance.
And INFER also gives more robust performance compared with existing rule-based models on
our modified datasets where a certain proportion of facts at each timestamp are removed.

2 RELATED WORK

Embedding-based reasoning is a mainstream methodology for TKG extrapolation, which embeds
entities, relations and timestamps into low-dimensional vector space and then utilizes neural net-
works to learn the structural information, temporal dependency and historical patterns in TKGs.
RE-NET (Jin et al., 2019) uses RNN and RGCN to learn representations of subgraphs which en-
code structural and sequential information. CyGNet (Zhu et al., 2021a) introduces copy-generation
mechanism to make the model focus more on the repetitive historical facts. TITer (Sun et al., 2021)
uses reinforcement learning to search candidates in historical TKGs, which is guided by a reward
based on Dirichlet distribution. CENET (Xu et al., 2022) argues that unseen facts are also critical in
prediction and introduces contrastive learning to identify whether the current timestamp relies more
on historical facts or non-historical facts. DaeMon (Dong et al., 2023) models the temporal path
information between a pair of nodes based on the NBFNet (Zhu et al., 2021b) graph neural network
and introduces a memory passing strategy to update the path information.

For better interpretability, xERTE (Han et al., 2021) performs reasoning on query-based subgraphs
and captures structural as well as temporal information. TLogic (Liu et al., 2022) is the first rule-
based TKG extrapolation model which mines rules in TKGs through temporal random walk and
applies rules to predict future events via matching rule body instances. TR-Rules (Li et al., 2023)
proposes a new and appropriate algorithm to calculate the confidence of rules under temporal set-
tings. It also manages to mine and apply acyclic rules in TKGs which are proven to be effective.
ALRE-IR (Mei et al., 2022) combines embeddings with rules by learning rule representations, which
is further utilized for confidence assessment. Although embeddings are introduced, it is just used
for estimating confidence of rules and ALRE-IR still can not model the frequency and time validity
of historical facts.

3

https://github.com/JasonLee-22/INFER


Published as a conference paper at ICLR 2025

3 PRELIMINARIES

3.1 TKG EXTRAPOLATION

In this paper, E , R and T denote the set of all the entities, relations and timestamps respectively.
We use |E| and |R| to represent the number of entities and relations. TKG can be viewed as a
sequence of graphs i.e. G = {G1...Gn}. Each graph Gi consists of all the facts that occur at
timestamp ti, i.e. Gi = {(s, r, o, t)|t = ti} where s, o ∈ E , r ∈ R and t0 ≤ ti ≤ tn. Interpolation
Reasoning on TKGs attempts to answer queries whose timestamps range from t0 to tn. However,
TKG extrapolation aims at predicting the answer for a future query (s, r, ?, t′) or (?, r, o, t′) where
tn<t′, based on the historical facts {G1...Gn}.

3.2 TEMPORAL RULES

Cyclic rules under temporal settings can be defined as:

(E1, rh, En+1, Tn+1)←
n∧
i

(Ei, rbi, Ei+1, Ti)

where Ei and Ti denote variables of entity and timestamps and ri ∈ R represents a specific relation.
The left part of the rule is called the rule head, while the right part is called the rule body. In
some cases, it is restricted that the same entity need to appear repetitively so that the rule body is
satisfied. We call this phenomenon variable constraint. Corresponding examples and illustration can
be found in Appendix A. During the symbolic rule learning procedure, each rule will be associated
with corresponding confidence which is calculated by sampling on the graphs. Normally, rules do
not always hold and sometimes are violated, thus the confidence of a rule represents the probability
of this rule being correct.

4 METHOD

Figure 3: Overview of INFER. INFER first mines rules in TKGs with existing rule learning algo-
rithm and builds temporal weight matrices with a pre-trained static KG embedding model. When
it comes a new timestamp, INFER update the temporal weight matrices according to the historical
facts. Then the rule projection module selects corresponding rules and applies rules by performing
matrices operation for rule projection.
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4.1 OVERVIEW

Figure 3 illustrates the overall framework of INFER. Inspired by QTO (Bai et al., 2023), INFER
builds temporal weight matrices with a static KG embedding model which assigns probabilities to
all possible facts to enable the model to infer missing facts during rule application. INFER first
uses the rule learning algorithm of previous symbolic methods to build a rule library. Then INFER
introduces a Temporal Validity Function which maps the frequency and time span of a historical
fact into a continuous value between 0 and 1. The Temporal Validity Function is used to update the
temporal weight matrices at each new timestamp. Given a query, the rule projection module selects
corresponding matrices or vectors for projection according to the relevant rules stored in rule library
and finally gives the scores of all candidates. In most cases, more than one rule can be applied for a
query, INFER leverages Noisy-OR to aggregate scores given by multiple rules for final prediction.

4.2 RULE LEARNING

We first mine temporal rules in TKGs and calculates their confidence to build a rule library for
rule application afterwards. We do not extensively search for the optimal rule learning algorithm
(including rule confidence calculation) for INFER but adopt the rule learning algorithm from TR-
Rules (Li et al., 2023) across all experiments. We believe better rule learning algorithm with high-
quality rules and more accurate confidence will further improve the performance of INFER. We
leave the exploration of other rule learning methods such as the newly released (Huang et al., 2024)
for future work. We only utilize cyclic rules for extrapolation reasoning and filter out those acyclic
rules and store all the mined cyclic rules with their corresponding confidence.

4.3 RULE PROJECTION MODULE

4.3.1 TEMPORAL WEIGHT MATRICES

We pre-train a static KG embedding model by ignoring the timestamp in each quadruple. In INFER,
we select ComplEx (Trouillon et al., 2016) as the static KG embedding model. While other KG
embedding models can be used as alternatives, we believe that a suitable KG embedding model can
improve the overall performance of INFER, although it is not a definitive factor.

Then, for each relation r ∈ R, we define a temporal weight matrix Mr ∈ R|E|∗|E|. The i-th row in
Mr records the weights of the edges of type r that link entity ei to all other entities, while the j-th
column denotes the weights of edges linking each entity to entity ej with r. This intuition guides
the rule projection in the following section. The pre-trained KG embedding model can score each
possible non-temporal facts. However, the scores are real numbers, we need to re-scale the scores
to [0,1] resulting in a valid probability. Given head entity ei ∈ E and relation r, we apply the
softmax function to the scores of all possible candidates and the corresponding values are stored in
the temporal weight matrix of relation r:

Mr(i, j) =
exp(f(ei, r, ej))∑

1≤k≤|E| exp(f(ei, r, ek))
(1)

where f is the score function of the KG embedding model, i and j are the indices of entities.

There are two reasons why we utilize static embedding models instead of temporal models. The
first one is that if we use temporal embedding models then the size of the matrix for relation r is
Mr ∈ R|E|∗|E|∗|T | which costs too much space. The other reason is that since temporal models score
the same fact at various timestamps differently and we do not consider specific timestamps during
application, static embedding models which capture the overall structural information is enough for
INFER. For resource savings, following QTO (Bai et al., 2023), we set a threshold value to filter out
those values smaller than the threshold.

4.3.2 TEMPORAL VALIDITY FUNCTION

The rule application algorithm of previous symbolic methods is to match instanced rule bodies in
observed graphs. This process can be viewed as first assigning binary truth values to historical facts
or assigning binary weights to edges in graphs: 1 for facts have appeared, 0 for unseen facts, i.e. no
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edges. Then the model traverses the graph to search whether there are instanced paths matching the
rule body and finally gives binary results of whether the instanced rule heads hold true. However,
the temporal validity and frequency of facts cannot be modeled in this way. To be specific, the facts
that occurred recently should not be treated as equally as the facts that held true long ago (Liu et al.,
2022). And facts that frequently appeared should be more significant and trustworthy.

Hence, we attempt to extend the truth value to continuous real number via considering time validity
and frequency of historical facts and propose the following Temporal Validity Function:

V (s, r, o, tc) =
1√

tc − tlast
+ λ ·

√
F ·Mr(s, o) (2)

λ = σ(

√
F
τ

)− 1

2
(3)

where tc denotes the current timestamp, tlast represents the latest timestamp when fact (s, r, o)
stands, F is the frequency of (s, r, o) counted from 0 to tc−1, σ(·) is the sigmoid function, τ is a
hyper-parameter for smoothing and Mr is the temporal weight matrix introduced above. It should
be noticed that tlast should satisfy tlast ≤ tc−1, since we can not observe facts concurring with the
query.

As we can see that the Temporal Validity Function consists of two parts: the time span and the
frequency. The time span part which is the first item in the formula means that the credibility of a
fact weakens as time goes on as long as it does not recur. The square root ensures the attenuation is
neither too fast nor insensitive for measuring the validity. The motivation of designing the second
item which is the frequency part is that for those frequently appearing facts, we believe they are
more consistent and robust. The frequency serves to amplify the temporal weight of a fact when it
is recurrent. While λ is the weight of the frequency part ranging from 0 to 0.5. It gets bigger as the
fact repeats more times in history, which helps to alleviate the attenuation of time span part when a
frequent fact does not occur temporarily.

When it comes to a new timestamp t ∈ T , given (s, r, o) ∈ Ht which is a historical fact, we use the
above function to update the temporal weight matrices:

Mr(s, o) = min{V (s, r, o, t), 1} (4)

To a certain extent, this design of Temporal Validity Function is an empirical result. We provide
more details and analysis about this part in Appendix D.

4.3.3 RULE PROJECTION

When answering a query (s, rq, ?, t
′), INFER finds relevant rules Srq with respect to rq from the rule

library. For each rule in Srq , we traverse its rule body
∧n

i (Ei, Ri, Ei+1, Ti) to get all the relations
in order so that the temporal causality is maintained {R1 ⊗ R2... ⊗ Rn}. Then, inspired by the
multi-hop reasoning operation proposed in QTO (Bai et al., 2023), the rule is projected iteratively:

Ansi =

{
MRi

[s, :] i = 1

max
col

(AnsTi−1···×|E| ⊙MRi) 2 ≤ i ≤ n
(5)

Firstly, we select the s-th row of MR1
which denotes the scores of each entity serving as object entity

in facts with subject entity s and relation rl1. If the rule length is more than 1, we transpose the row
vector and repeat it along the row direction for |E| times which results in a matrix of |E| × |E|. Then
we calculate the Hadamard product of the obtained matrix and the corresponding temporal weight
matrix. Finally, we take the maximal value of each column to obtain a new row vector.

This procedure will be repeated n − 1 times and the final row vector is the scores of all candidates
given by the rule. The row vector can be viewed as a fuzzy set representing the scores of all entities
at the intermediate step of reasoning. Then, the Hadamard product computes the scores of all entities
with a fuzzy set rather than a specific entity, thus giving a matrix. The column-wise max operator
selects the highest value among all possible paths for each candidate. This process can be considered
as another way to traverse and search in graphs which is based on operating on the generalized
adjacent matrices of weighted graphs.
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Algorithm 1 Pseudocode of Rule Projection Without Variable Constraints

Require: (s, rq, ?, Tq): Query; {R1, R2...Rn}: Corresponding rule bodies; MR: Temporal Weight
Matrices;

1: set Ans = MR1 [s, :] # Select the s-th row of MR1

2: for i in (2, n+ 1) do
3: Ans = AnsT.repeat(1, |E|) #Repeat the transposed vector along row direction
4: Ans = Ans⊙MRi

#Hadamard Product
5: Ans = max(Ans, dim = −1) #Column-wise max operation giving a row vector

return Ans

However, in some cases, there are variable constraints in rules longer than 1. As we can see in (6),
the instantiated rule bodies must comply with the constraint that the entity serving as E2 must be
the same.
(E1, demands for change,E2, T4)← (E1, intent to change,E2, T1)

∧ (E2, Host a visit, E3, T2) ∧ (E3,Make a V isit, E2, T3)
(6)

In INFER, we also design the projection algorithms for these rules. The detailed pseudocode and
illustration are provided in Appendix A. Notably, when processing rules with variable constraints,
additional indexing operations and calculations are required, leading to a delay in inference speed.

4.4 INFERENCE

Normally, more than one rule can be used to answer a query. In INFER, we aggregate the scores of
multiple rules with the Noisy-OR function (Meilicke et al., 2019a):

score(q) = 1−
∏

Ansr∈Rq

(1− cr ·Ansr) (7)

where q denotes the query, Rq represents the set of all scores given by rules, cr is the confidence
of the rule and 1 is an all-one vector. Apart from the rule confidence, the Noisy-OR aggregation is
equivalent to the union of the fuzzy sets generated by the rules.

In some cases, there might be no proper rules for answering the query q. In INFER, for a query
(sn, rn, ?, tn) which does not have corresponding rules, we directly predict it based on the tempo-
ral weight matrix by considering the query itself as a rule of length 1. For those queries that have
corresponding rules, we also make each of the queries itself as a rule of length 1 and use it for predic-
tion. Because we consider the prediction based on this ”generated rule” represents the distribution
implied by pure temporal information and frequent interactions in historical facts. We assign the
average confidence of all rules to this ”generated rule”.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets We evaluate INFER on five TKG datasets: ICEWS14, ICEWS18, ICEWS0515, YAGO
and WIKI. The first three datasets are subsets of Integrated Crisis Early Warning System (Boschee
et al., 2015). These datasets record international facts that occurred in 2014, 2018 and from 2005 to
2015 respectively. Table 3 in Appendix B shows the statistics of these five datasets. To satisfy the
extrapolation reasoning settings, facts are sorted in ascending order based on timestamps and then
split into train, valid and test.

Metrics and Implementation Details We utilize mean reciprocal rank (MRR) and Hits@k as
metrics to evaluate INFER. MRR = avg( 1

ranki
) and Hits@k = 1

N

∑
i I(ranki < k), where I

is the indicator function. Higher values of both metrics indicate better performance of models. We
adopt the time-aware filtering protocol proposed in xERTE (Han et al., 2021), which turns out to be
more reasonable in temporal settings. We implement INFER with PyTorch and all experiments are
conducted on a single 48GB NVIDIA A40 GPU. More details about implementation are reported in
Appedndix E.
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ICEWS14 ICEWS05-15 ICEWS18
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Dismult 27.67 18.16 31.15 46.96 28.73 19.33 32.19 47.54 10.17 4.52 10.33 21.25
ComplEx 30.84 21.51 34.48 49.58 31.69 21.44 35.74 52.04 21.01 11.87 23.47 39.87
TTransE 13.43 3.11 17.32 34.55 15.71 5.00 19.72 38.02 8.31 1.92 8.56 21.89

TA-Dismult 26.47 17.09 30.22 45.41 24.31 14.58 27.92 44.21 16.75 8.61 18.41 33.59
DE-SimplE 32.67 24.43 35.69 49.11 35.02 25.91 38.99 52.75 19.30 11.53 21.86 34.80

TNTComplEx 32.12 23.35 36.03 49.13 27.54 19.52 30.80 42.86 21.23 13.28 24.02 36.91
RE-Net 38.28 28.68 41.34 54.52 42.97 31.26 46.85 63.47 28.81 19.05 32.44 47.51
CyGNet 32.73 23.69 36.31 50.67 34.97 25.67 39.09 52.94 24.93 15.90 28.28 42.61
xERTE 40.79 32.70 45.67 57.30 46.62 37.84 52.31 63.92 29.31 21.03 33.51 46.48
CENET - - - - 37.16 27.78 41.16 55.49 27.14 18.58 29.99 44.15
TITer 41.73 32.74 46.46 58.44 - - - - 29.98 22.05 33.46 44.83

RE-GCN 40.36 30.73 44.98 58.81 46.91 36.33 52.65 67.24 30.82 21.11 34.71 49.83
DaeMon - - - - - - - - 31.85 22.67 35.92 49.80
TECHS 43.88 34.59 49.36 61.95 48.38 38.34 54.69 68.92 30.85 21.81 35.39 49.82

AnyBURL 29.67 21.26 33.33 46.73 32.05 23.72 35.45 50.46 22.77 15.10 25.44 38.91
TLogic 43.04 33.56 48.27 61.23 46.97 36.21 53.13 67.43 29.82 20.54 33.95 48.53

TR-Rules 43.32 33.96 48.55 61.17 47.64 37.06 53.80 67.57 30.41 21.10 34.58 48.92
INFER 44.09 34.52 48.92 62.14 48.27 37.61 54.30 68.52 31.68 21.94 35.64 50.88

INFER(with vc) 44.08 34.82 48.84 61.74 48.34 38.07 54.16 67.82 32.11 22.34 36.26 51.19
INFER-60(with vc) 44.46 35.03 49.37 62.31 48.73 38.32 54.61 68.48 32.22 22.39 36.41 51.52

Table 1: Performance of INFER on ICEWS14, ICEWS05-15 and ICEWS18. Best results are in bold
and second best results are underlined.

Baseline Methods We compare INFER with static embedding, temporal embedding and rule-
based state-of-the-art models. As for static embedding models we select Dismult (Yang et al., 2014)
and ComplEx (Trouillon et al., 2016). Temporal embedding models include TA-DistMult (Garcı́a-
Durán et al., 2018), DE-SimplE (Goel et al., 2020), TNTComplEx (Lacroix et al., 2020), RE-Net (Jin
et al., 2019), CyGNet (Zhu et al., 2021a), xERTE (Han et al., 2021), TITer (Sun et al., 2021), RE-
GCN (Li et al., 2021), CENET (Xu et al., 2022), DaeMon (Dong et al., 2023) and TECHS (Lin et al.,
2023) . The rule-based methods we select are AnyBURL (Meilicke et al., 2019b), TLogic (Liu et al.,
2022) and TR-Rules (Li et al., 2023). We reproduce RE-GCN and remove their utilization of static
information for fairness and all of the rest results are taken from (Li et al., 2023), (Dong et al., 2023)
and (Lin et al., 2023).

5.2 MAIN RESULTS

Table 1 displays the results of INFER compared with selected baselines, where INFER(with vc)
denotes we utilize rules with and without variable constraints to infer instead of only rules without
variable constraints and INFER-60(with vc) represents we use at most 60 rules for a single query. As
we can see, INFER-60(with vc) achieves state-of-the-art performance on all datasets with respect
to MRR, Hits@1,3,10. Specifically, compared with the best rule-based model TR-Rules, INFER
obtains average improvements of 1.35% and 1.55% in MRR and Hits@10 on three datasets, which
proves the effectiveness of introducing embedding models and considering the frequency and time
validity of historical facts for rule application. Meanwhile INFER maintains the interpretability of
rule-based methods. We also provide an exemplary CASE in Appendix C to better illustrate the
process of INFER and show the interpretability of INFER. Results of INFER on YAGO and WIKI
are presented in Appendix F, Table 5.

ICEWS14 ICEWS18
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
INFER 44.09 34.52 48.92 62.14 31.68 21.94 35.40 50.88

INFER(P+B) 37.67 27.34 42.76 57.77 25.87 16.16 29.31 45.57
INFER(P) 16.29 7.58 17.78 34.69 11.70 3.90 12.41 28.10

INFER(Temp Val) 41.99 33.75 47.00 57.31 30.90 21.59 35.02 49.37
INFER(B) 37.41 27.58 42.52 56.43 25.73 16.31 29.26 44.90

Table 2: Ablation study of INFER on ICEWS14, and ICEWS18. Best results are in bold.

5.3 ABLATION STUDY

We conduct ablation study on ICEWS14 and ICEWS18 and the results are reported in Table 2 where
P denotes the utilization of pre-trained static KG embedding models, B denotes we use the traditional
binary truth values for historical facts and Temp Val represents we use the truth values calculated by
Temporal Validity Functions.
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Figure 4: Performance of INFER and other rule-based models on our modified incomplete
ICEWS14 and ICEWS18 where a certain proportion of facts at each timestamp are randomly re-
moved.

As we can see from the results of INFER(P+B), when using the binary truth value, the performance
of INFER drops dramatically on both datasets with up to 6.42% in MRR and 4.37% in Hits@10.
This phenomenon strongly verifies our motivation and proves the necessity of extending truth values
to continuous number via modeling temporal validity and frequency. As we do not use the historical
information and only project rules based on the matrices given by the static embedding model,
the results (INFER(P)) get even worse, which demonstrates the importance of historical facts for
rule-based models. INFER(Temp Val) and INFER(B) report the performance when the pre-trained
model is removed. Again, compared with the binary settings, the introduction of our Temporal
Validity Function significantly improves the performance. The results of INFER(Temp Val) also
prove that the introduction of embedding model does contribute to the overall performance, but
the the capability of embedding models is not decisive. Besides, by comparing (B) with (P+B)
and (Temp Val) with (INFER) itself, we discover that the utilization of Temporal Validity Function
amplifies the influence of the pre-trained KG embedding model. We speculate the probable reason is
that some of the re-scaled values given by the static embedding model are relatively small compared
with 1 when the truth values are binary. Hence, candidates inferred through potential missing facts
surely rank after those candidates inferred by existing historical facts. As a result, the effects of the
pre-trained model are impaired when binary truth values are utilized.

5.4 ANALYSIS

Performance on Incomplete datatsets To demonstrate the capability in inference missing facts
and robustness of reasoning on incomplete datasets of INFER, we conduct experiments on modified
ICEWS14 and ICEWS18 and compare INFER with previous rule-based methods. We randomly
remove 30% and 50% facts at each timestamp and then pre-train the static embedding model and
mine temporal rules with these incomplete datasets. Meanwhile, the historical facts used for tem-
poral validity calculation are also cut to 50% and 70%. The results are shown in figure 4. As we
can see, the differences between INFER and the other two models generally increase as the datasets
become more incomplete. Moreover, the slope of the blue line representing INFER is smaller than
that of the other two lines, which indicates that the performance of INFER is less affected as the
datasets become sparse. This suggests that INFER exhibits robustness on sparse datasets, which
can be attributed to the introduction of the static embedding model that enhances the ability to infer
missing facts during rule application, thereby improving the overall performance of INFER.

Inference Efficiency We also test TLogic (Liu et al., 2022) and our method on ICEWS14 to
calculate the time consumption, the quantity of processed rules and the number of candidates derived
from each rules which serve to evaluate the efficiency and capability of models. In our reproduced
experiments, the rule application time of TLogic on ICEWS14 is 2000 seconds with 8 CPUs. The
average number of rules TLogic applies for a single query is 32.96 and the number of candidates
it covers per rule at each intermediate step is 13.30. In comparison, it takes INFER 2500 seconds
to apply rules on ICEWS14 with a single GPU. However, the average number of rules INFER uses
for a single query is 38.73 and the average number of candidates per rule that INFER considers and
assign positive scores to at each step is 1385.49.
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Figure 5: Comparison on inference efficiency: (a) Comparison on rules/sec, INFER gives similar
performance to TLogic. (b) Comparison on candidates/sec, INFER shows significantly superiority
which means that INFER achieve efficient traversal on graphs.

In contrast, INFER can apply rules more efficiently under our proposed paradigm and significantly
enlarge the range of candidate entities which surely contributes to the final performance of INFER
since more considered intermediate candidates denote that our model traverse more possible paths
during application.

Variance Generally, INFER can be viewed as a statistical learning method. Thus, as long as the
mined rules and corresponding confidence are the same, when running the model with the same
hyper-parameter configuration, it will yield identical results. The only possible variance comes
from the pre-trained static KG embedding model. To eliminate this concern, we pretrain the Com-
plEx 3 times on ICEWS14 and subsequently run INFER. The results of the three experiments are
completely identical. The possible reason is that the scores given by the KG embedding model are
normalized by a softmax function and filtered with a threshold, which effectively avoid any obvi-
ous fluctuation. Thus, we can conclude that the performance of INFER is stable and the gained
improvements are not occasional issues.

Variable Constraints As we can see in table 1, when the limit of the quantity of rules is set
to 40, the utilization of rules with variable constraints does not bring significant improvements.
We speculate that rules with variable constraints require more strict temporal restriction which can
not be satisfied by current design. Meanwhile, the inference speed of applying rules with variable
constraints decreases due to extra indexing and calculations. Detailed process of applying rules with
variable constraints is shown in Appendix A.

6 CONCLUSION

In this paper, we propose INFER, an interpretable neural-symbolic model for TKG extrapolation.
INFER proposes a novel paradigm for integrating temporal rules with embedding-based methods
which enhances the robustness of rule-based methods to missing facts. INFER is the first model
to extend the truth value of facts into continuous number and designs Temporal Validity Function
to model the time validity and frequency of historical facts. We introduce a rule projection module
which manages to apply rules by conducting faster matrices operations on GPUs instead of previous
costly path matching in graphs. Experimental results show that INFER achieves state-of-the-art
performance on three TKG datasets. Meanwhile, INFER also remarkably improves the efficiency
of rule application.

Reproducibility Statement. We provide our code at https://github.com/JasonLee-22/
INFER to enhance reproducibility. And the implementation details are provided in section 5.1 and
Appendix E.
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A RULE PROJECTION

A.1 VARIABLE CONSTRAINTS

As we mentioned in section 3.2, in some rules, entity variables in the rule bodies do not have to be
unique since the same entity might be involved in multiple facts at different timestamps. This phe-
nomenon which is called Variable Constraints brings constraints to the rule application procedure.
Here are some examples:

(A, support, C, T )¸(A, riot, B, T1)
∧

(B,make statement,A, T2)
∧

(A, resort, C, T3)

The above example is a rule with variable constraints. As we can see in the body of the rule, in the
second hop, the entity which B make statement to has to be the same with the entity that riot with
B at T1.

However, the below case is a rule without variable constraints which is different with the rule given
above. Because the entity which B make statement to can be or can not be the same with the entity
riot with B at T1.

(A, support, C, T )¸(A, riot, B, T1)
∧

(B,make statement,D, T2)
∧

(D, resort, C, T3)
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A.2 RULE PROJECTION WITH VARIABLE CONSTRAINTS

Algorithms 2 and 3 present the pseudocode for rule projection with two types of variable constraints:
[1,3] and [0,2], assuming a rule length of 3, where the numbers in the list indicate that the corre-
sponding entity variables in the rule body must refer to the same entity. In our experiments, we
also mine rules with variable constraints [[1,3],[0,2]] and rules of length 2 from ICEWS0515 with
variable constraints [0,1] and [1,2]. Here, we provide the projection algorithms for the two most
common types of variable constraints. Algorithms for these 3 variable constraints can be easily
derived following Algorithms 2 and 3 and our provided code can serve as a reference.

Algorithm 2 Pseudocode of Rule Projection With Variable Constraints [1,3]

Require: (s, rq, ?, Tq): Query; {R1, R2...Rn}: Corresponding rule bodies; MR: Temporal Weight
Matrices;

1: set Ans = MR1 [s, :] # Select the s-th row of MR1

2: Ans = AnsT.repeat(1, |E|) #Repeat the transposed vector along row direction
3: Ans = Ans ⊙MRi

#Hadamard Product gives a matrix of RE∗E , where Ans[i][j] denotes
the score of entity ej when entity ei serves as the constrained variable.

4: res = zeros(1, |E|)
5: for i in (0, |E|) do
6: row = Ans[i,:]
7: row = rowT.repeat(1, |E|)
8: temp = row ⊙MR3

9: temp = temp[:, i]
10: res[i] = max(temp, dim = −1)

return res

Algorithm 3 Pseudocode of Rule Projection With Variable Constraints [0,2]

Require: (s, rq, ?, Tq): Query; {R1, R2, R3}: Corresponding rule bodies; MR: Temporal Weight
Matrices;

1: set Ans = MR1 [s, :] # Select the s-th row of MR1

2: Ans = AnsT.repeat(1, |E|) #Repeat the transposed vector along row direction
3: Ans = Ans⊙MR2 #Hadamard Product
4: Ans = Ans[:, s] #Only select the s-th column to satisfy the variable constraints.
5: Ans = Ans.repeat(1, |E|)
6: Ans = Ans⊙MR3 #Hadamard Product
7: Ans = max(Ans, dim = −1) #Column-wise max operation giving a row vector

return Ans

In our preliminary conception, variable constraints of longer rule are solvable without having to tra-
verse every possible scenario for algorithm design. In this conception, we can treat the algorithms
for variable constraints that have been designed for lengths of 2 or 3 as algorithm units. The calcu-
lations for variable constraints in longer rules can be broken down into combinations of these units.
For example, for a rule of length 5 with variable constraints [[0,2,4]]:

(A,R1, B) ∧ (B,R2, A) ∧ (A,R3, C) ∧ (C,R4, A) ∧ (A,R5, D)

We can first use existing algorithms to compute the results under the [0,2] constraint when reaching
variable#2 (A). This intermediate result can then serve as the initial condition for the third relation
(R3) calculation in the rule. At this point, the subsequent calculation can be seen as a computation
for a rule of length 3 with variable constraints [0,2] ([2,4] → [0,2]) : (A,R3, C) ∧ (C,R4, A) ∧
(A,R5, D). This is again a problem that can be solved by our algorithm units.

This approach allows us to tackle longer rule variable constraints by leveraging the solutions for
shorter ones, effectively avoiding exhaustive searches through all possible scenarios. By decompos-
ing complex problems into simpler, already-solved components, we can design more efficient and
scalable algorithms for handling variable constraints in various rule lengths. We leave the detailed
design of a more flexible and automatic algorithm for handling variable constraints in long rules to
the future work.
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B STATISTICS OF DATASETS

Table 3 shows the statistics of these five datasets. To satisfy the extrapolation reasoning settings,
facts are sorted in ascending order based on timestamps and then split into train, valid and test.

Train V alid Test |E| |R| |T |
ICEWS14 63685 13823 13222 7128 230 365

ICEWS0515 322958 69224 69147 10488 251 4017
ICEWS18 373018 45995 49545 23033 256 304

WIKI 539286 67538 63110 12554 24 232
YAGO 161540 19523 20026 10623 10 189

Table 3: Statistics of ICEWS14, ICEWS05-15, ICEWS18, WIKI and YAGO.

C EXEMPLARY INFERENCE CASE

Figure 6 displays an inference case of INFER. Given the query (AshrafGh ani Ahmadzai, Make
a Visit, ?, 2014/11/11) whose answer is China and corresponding rule of length 3, we list top 5
candidates at each step of rule application provided by INFER. As for the result, INFER successfully
ranks China at the second place. Moreover, we discover that the other 3 entities: Afghanistan,
Jens Stoltenberg and North Atlantic Treaty Organization also serve as the object entity for this
query although at other timestamps, which demonstrates that INFER is indeed capable of obtaining
relevant candidates.

Figure 6: Exemplary interpretable inference procedure of INFER.

D TEMPORAL VALIDITY FUNCTION

Table 4 reports the performance of various forms of Temporal Validity Function on ICEWS14. We
mainly focus on the main time span part, where Square root, Cube root, Reci and Exp represent
the functions 1√

x
, 1

3
√
x

, 1
x and 1

exp(x) used for the time span part respectively and Binary denotes
the previous binary truth value settings for historical facts. As we can see, following our intuition,
by proposing a function which is negative to the time span values and ranging in [0,1], INFER can
properly model the temporal validity of historical facts. However, Exp gives worse performance
compared with Binary, it is natural to speculate that it is that 1

exp(x) drops too fast as the time span
getting bigger leading to the ”forget” of historical facts. From this point of view, when using the
Binary settings, the temporal validity of facts do not decay, i.e. the model strongly memorize every
fact. Thus, Binary and Exp are two extreme cases, we try to explore a more suitable form to model
the temporal validity and select the Square root in INFER, which is still a primary attempt and
we believe more sophisticated Temporal Validity Function can surely improve the performance of
INFER.

14



Published as a conference paper at ICLR 2025

ICEWS14
Model MRR Hits@1 Hits@3 Hits@10
INFER 44.09 34.52 48.92 62.14

Square root 44.09 34.52 48.92 62.14
Cube root 43.76 34.18 48.54 62.01

Reci 41.36 31.52 45.94 60.61
Exp 33.08 23.58 36.87 52.18

Binary 37.67 27.34 42.76 57.77

Table 4: Results of various forms of Temporal Valid Function in INFER on ICEWS14. Best results
are in bold.

E IMPLEMENTATION DETAILS

When mining rules, we use the configuration given by TR-RulesLi et al. (2023). We select Com-
plEXTrouillon et al. (2016) as the static KG embedding model, which is trained with N3 regularizor
and relation prediction task. τ in equation (2) is set 15 for ICEWS14 and ICEWS18. While for
ICEWS0515 which covers a time span of ten years, we set it to 150. For some queries, there might
be too many rules can be utilized for inference. However, for simplicity and resource saving, we set
a limitation on the most rules can be used for a single query which is 40 unless specified and the
threshold for building temporal weight matrices is set to 0.0005.

F RESULTS ON YAGO AND WIKI

Table 5 reports the results of INFER on WIKI and YAGO, as we can see INFER still outperforms
existing methods and significantly improves the rule-based baselines on WIKI. As for YAGO, our
model and other rule-based methods fall short compared with embedding-based methods. As men-
tioned in (Huang et al., 2024), some relations in YAGO can not be modeled by cyclic rules which
take up to 10% of the test set. Since our model only uses cyclic rules, it is affected to a certain
extent. However, INFER still gain improvements compared with TLogic. It should be noted that
during experiments, we notice that the introduction of ”generated rule” mentioned in section 4.4
causes bias on the YAGO dataset, which drastically boosts the performance. Thus, we do not lever-
age the ”generated rules” for evaluation on YAGO for fair comparison. We speculate the possible
reason is that there are more repetitive facts in YAGO which amplifies the impact of the ”generated
rules” too much especially when given the fact that less patterns can be modeled with cyclic rules.
We also conduct experiments on the other four datasets to investigate the bias issue and the results
show that it only yields slight fluctuation to the overall performance on the other four datasets.

WIKI YAGO
Model MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
INFER 86.48 85.09 87.38 88.67 83.74 83.54 83.72 84.31
TLogic 78.93 73.05 84.97 86.91 78.76 74.31 83.38 83.72
TECHS 75.98 - - 82.39 89.24 - - 92.39
TITER 73.91 71.70 75.41 76.96 87.47 80.09 89.96 90.27

REGCN 78.53 74.50 81.59 84.70 82.30 78.83 84.27 88.58

Table 5: Results of INFER on WIKI, and YAGO. Best results are in bold.

ICEWS14
Model MRR Hits@1 Hits@3 Hits@10

INFER-1 43.83 34.15 49.01 61.99
TR-Rules-1 40.59 30.90 46.31 59.14

INFER-2 20.49 10.61 22.97 42.38
TR-Rules-2 15.28 6.40 16.82 35.29

INFER-3 40.69 32.48 45.40 55.99
TR-Rules-3 40.45 31.46 45.52 57.35

Table 6: Results of INFER with rules of different lengths on ICEWS14. Best results are in bold.
(Model-X, X denotes only use rules of length X.)
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G LIMITATIONS

Although INFER obtains significant improvements on three datasets, there are still limitations. As
we mentioned in section 6, the main limitation of INFER is that it can not explicitly model the exact
order of historical facts which might be crucial for improving the performance of longer rules with
variable constraints. We provide the performance of INFER using rules of different lengths with
comparison to TR-Rules in Table 6. It can be observed that, INFER greatly improves the effect
of applying rules of length of 1 and 2 compared to TR-Rules. As for length of 3, INFER still
performs better on MRR and Hits@1 but the overall improvements are not that significant compared
with shorter rules. Besides, INFER can not leverage acyclic rules for inference, which have been
demonstrated crucial in KG completion.
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