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ABSTRACT

Modern machine learning pipelines leverage large amounts of public data, making
it infeasible to guarantee data quality and leaving models open to poisoning and
backdoor attacks. Provably bounding model behavior under such attacks remains
an open problem. In this work, we address this challenge by developing the first
framework providing provable guarantees on the behavior of models trained with
potentially manipulated data without modifying the model or learning algorithm.
In particular, our framework certifies robustness against untargeted and targeted
poisoning, as well as backdoor attacks, for bounded and unbounded manipulations
of the training inputs and labels. Our method leverages convex relaxations to
over-approximate the set of all possible parameter updates for a given poisoning
threat model, allowing us to bound the set of all reachable parameters for any
gradient-based learning algorithm. Given this set of parameters, we provide bounds
on worst-case behavior, including model performance and backdoor success rate.
We demonstrate our approach on multiple real-world datasets from applications
including energy consumption, medical imaging, and autonomous driving.

1 INTRODUCTION

To achieve state-of-the-art performance, modern machine learning pipelines involve pre-training on
massive, uncurated datasets; subsequently, models are fine-tuned with task-specific data to maximize
downstream performance (Han et al., 2021). Unfortunately, the datasets used in both steps are
potentially untrustworthy and of such scale that rigorous quality checks become impractical.

Data Poisoning. Yet, adversarial manipulation, i.e., poisoning attacks, affecting even a small
proportion of data used for either pre-training or fine-tuning can lead to catastrophic model failures
(Carlini et al., 2023). For instance, Yang et al. (2017) show how popular recommender systems
on sites such as YouTube, Ebay, and Yelp can be easily manipulated by poisoning. Likewise, Zhu
et al. (2019) show that poisoning even 1% of training data can lead models to misclassify targeted
examples, and Han et al. (2022) use poisoning to selectively trigger backdoor vulnerabilities in lane
detection systems to force critical errors.

Poisoning Defenses. Despite the gravity of the failure modes induced by poisoning attacks, counter-
measures are generally attack-specific and only defend against known attack methods (Tian et al.,
2022). The result of attack-specific defenses is an effective “arms race” between attackers trying
to circumvent the latest defenses and counter-measures being developed for the new attacks. In
effect, even best practices, i.e., using the latest defenses, provide no guarantees of protection against
poisoning attacks. To date, relatively few approaches have sought provable guarantees against
poisoning attacks. These methods are often limited in scope, e.g., applying only to linear models
(Rosenfeld et al., 2020; Steinhardt et al., 2017) or only providing approximate guarantees for a limited
set of poisoning settings (Rosenfeld et al., 2020; Xie et al., 2022). Other approaches partition datasets
into hundreds or thousands of disjoint shards and then aggregate predictions such that the effects
of poisoning is provably limited (Levine & Feizi, 2020; Wang et al., 2022). In contrast, our goal in
this work is not to produce a robust learning algorithm, but to efficiently analyze the sensitivity of
(un-modified) algorithms. Further discussion of related works is provided in Appendix A.

This Work: General Certificates of Poisoning Robustness. We present an approach for computing
sound and general certificates of robustness to poisoning attacks for any model trained with first-order
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optimization methods, e.g., stochastic gradient descent or Adam (Kingma & Ba, 2014). The proposed
strategy begins by treating various poisoning attacks as constraints over an adversary’s perturbation
‘budget’ in input and label spaces. Following the comprehensive taxonomy by Tian et al. (2022),
we view the objective of each poisoning attack as an optimization problem. We consider three
objectives: (i) untargeted attacks: reducing model test performance to cause denial-of-service, (ii)
targeted attacks: compromising model performance on certain types of inputs, and (iii) backdoor
attacks: leaving the model performance stable, but introducing a trigger pattern that causes errors
at deployment time. Our approach then leverages convex relaxations of both the training problem
and the constraint sets defining the threat model to compute a sound (but incomplete) certificate that
bounds the impact of the poisoning attack.

Paper Outline. The paper is organized as follows. We first provide a general framework for poisoning
attacks, describing how our formulation captures the settings studied in prior works (related works
are reviewed in Appendix A). We then present abstract gradient training (AGT), our technique
for over-approximating the effect of a given poisoning attack and discuss implementation details,
including a novel, explicit formulation of CROWN-like bounds (Zhang et al., 2018) on the weight
gradients. We conclude with extensive ablation experiments on datasets from household energy
consumption, medical image classification, and autonomous vehicle driving. In summary, this paper
makes the following key contributions:

• A framework, including a novel bound propagation strategy, for computing sound bounds on the
influence of a poisoning adversary on any model trained with gradient-based methods.

• Based on the above, a series of formal proofs that allow us to bound the effect of poisoning attacks
that seek to corrupt the system with targeted, untargeted, or backdoor attacks.

• An extensive empirical evaluation demonstrating the effectiveness of our approach.

2 PRELIMINARIES: POISONING ATTACKS

We denote a machine learning model as a parametric function f with parameters θ, feature space
x ∈ Rnin , and label space y ∈ Y . The label space Y may be discrete (e.g. classification) or continuous
(e.g. regression). We operate in the supervised learning setting with a dataset D = {(x(i), y(i))}Ni=1

where we index the dataset such that D(i)
x is the ith feature vector and D(i)

y is the ith label. We denote
the parameter initialization θ′ and a training algorithm M as θ = M(f, θ′,D), i.e., given a model,
initialization, and data, the training function M returns a “trained” parameterization θ. Finally, we
assume the loss function is computed element-wise from the dataset, denoted as L(f(x(i)), y(i)).

Given this abstraction of model training, we now turn to developing an abstraction of the data
poisoning attacks, defining their capabilities to adversarially manipulate the training input. To
complete the threat model, we formulate adversary goals, i.e., what the adversaries seek to accomplish
with their manipulation as optimization problems. Typical threat models additionally specify the
adversary’s system knowledge; however, as we aim to upper bound a worst-case adversary, we assume
unrestricted access to all training information including model architecture and initialization, data,
data ordering, hyper-parameters, etc.

2.1 POISONING ATTACK CAPABILITIES

This section defines the capabilities of the poisoning attack adversaries that we seek to certify against.
We consider two distinct threat models: (1) ℓp-norm bounded adversaries, which are commonly
assumed in backdoor attack models (Saha et al., 2020; Weber et al., 2023); (2) unbounded adversaries,
which are more general and have the capability to inject arbitrary data into the training set. In both
cases, we consider adversaries able to modify both features and labels simultaneously.

Bounded Attacks. Under a bounded attack setting, we allow an adversary to perturb a subset of the
training data in both the feature and label space, where the magnitude of the perturbation is bounded
in a given norm. In feature space, we allow for an adversary to modify at most n datapoints by
a distance of up to ϵ in the ℓp-norm. Similarly, we define the label-space poisoning capability as
modifying at most m labels by magnitude at most ν in an ℓq-norm. Note that label-space poisoning
encompasses both classification and (multivariate) regression settings. Common label-flipping attacks
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can be considered under this attack model by setting q = 0. Formally, given a dataset D and an
adversary ⟨n, ϵ, p,m, ν, q⟩, the set of potentially poisoned datasets is defined as

T n,ϵ,p
m,ν,q(D) :=

{
D̃

∣∣∣∣∣ ∥D(i)
x − D̃(i)

x ∥p ≤ ϵ ∀i ∈ I, D(i′)
x = D̃(i′)

x ∀i′ /∈ I, ∀I ∈ Sn
∥D(j)

y − D̃(j)
y ∥q ≤ ν ∀j ∈ J, D(j′)

y = D̃(j′)
y ∀j′ /∈ J, ∀J ∈ Sm

}
(1)

where Sn is the set of all subsets of integers less than N with cardinality at most n. The index sets I
and J refer to the data-points that have been poisoned in the feature and label spaces, respectively.
Note that in a paired modification setting, adversaries must choose a set of inputs and modify both
their features and labels, which corresponds to setting I = J in the above. Our more general setting
allows for adversaries to modify features and labels of different inputs.

Unbounded Attacks. It may not always be realistic to assume that the effect of a poisoning adversary
is bounded. A more powerful adversary may be able to inject arbitrary data points into the training
data set, for example by exploiting the collection of user data. In this unbounded attack setting, we
consider only a ‘paired’ modification setting, where an adversary can substitute both the features and
labels of any n data-points. Specifically, for a dataset D, the set of potentially poisoned datasets is

T n(D) :=
{
D̃ = (D \ Dr) ∪ Da | |Da| ≤ n, |Dr| ≤ n,Da ⊂ D

}
(2)

where | · | is the cardinality operator, Da is a set of arbitrary added data-points, and Dr is the set of
corresponding data-points removed from the original dataset. To simplify the exposition below, we
interchangeably refer to T n as either the poisoning adversary or the set of poisoned datasets. We use
T to refer to cases where either the bounded or unbounded adversaries may be applied.

2.2 POISONING ATTACK GOALS

Here, we cover the different goals poisoning adversaries may pursue and briefly outline what it means
to certify that a training algorithm is robust against such an adversary.

Untargeted Poisoning. Untargeted attacks aim to prevent training convergence, leading to an
unusable model and denial of service (Tian et al., 2022). Given the training dataset {(x(i), y(i))}ki=1,
the adversary’s objective is thus:

max
D′∈T

1

k

k∑
i=1

L
(
fM(f,θ′,D′)(x(i)), y(i)

)
(3)

We can certify robustness to this kind of attack using a sound upper bound on the solution of (3).

Targeted Poisoning. Targeted poisoning is more task-specific and is typically evaluated over the
test dataset. Rather than simply attempting to increase the loss, the adversary seeks to make model
predictions fall outside a ‘safe’ set of outputs S(x(i), y(i)) (e.g., the set of predictions matching the
ground truth). The safe set can be more specific however, i.e., mistaking a lane marking for a person
is safe, but not vice versa. The adversary’s objective is given by:

max
D′∈T

1

k

k∑
i=1

1
(
fM(f,θ′,D′)(x(i)) /∈ S(x(i), y(i))

)
(4)

As before, a sound upper bound on (4) bounds the success rate of any targeted poisoning attacker.
Note that with k = 1 we recover the pointwise certificate setting studied by Rosenfeld et al. (2020).
This setting also covers ‘unlearnable examples’, such as the attacks considered by Huang et al. (2021).

Backdoor Poisoning. Backdoor attacks deviate from the above attacks by assuming that test-time
data can be altered, via a so-called trigger manipulation. However, backdoor attacks typically aim to
leave the model performance on ‘clean’ data unchanged. By assuming that the trigger manipulation(s)
are bounded to a set V (x) (e.g., an ℓ∞ ball around the input), one can formulate the backdoor attack’s
goal as producing predictions outside a safe set S(x(i), y(i)) (defined as before) for manipulated
inputs:

max
D′∈T

1

k

k∑
i=1

1
(
∃x⋆ ∈ V (x(i)) s.t. fM(f,θ′,D′)(x⋆) /∈ S(x(i), y(i))

)
(5)

Any sound upper bound to the above is a sound bound on the success rate of any backdoor attacker.
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3 METHODOLOGY

This section develops a novel approach for certifying robustness to poisoning attacks starting by
assuming we have access to the set of all reachable trained models in the form of intervals over model
parameters. We first show how these intervals can be used to certify robustness to the above attacks.
We then formulate a general algorithm for bounding the effect of adversaries on model parameters,
producing an interval containing all reachable training parameters. We then instantiate it using a novel
formulation of CROWN-style bounds which can soundly compute the quantities required within.

3.1 PARAMETER-SPACE CERTIFICATES OF POISONING ROBUSTNESS

The key concept behind our framework is to bound the parameters obtained via the training function
M(f, θ′,D) given T (D). Before detailing the method, we first formalize our definition of parameter-
space bounds and how they can be translated into formal, provable guarantees on poisoning robustness.

Definition 1. (Valid parameter-space bounds) An interval over parameters [θL, θU ] such that
∀i, θLi ≤ θUi is a valid parameter-space bound on a poisoning adversary, T (D), if ∀i:

θLi ≤ min
D′∈T (D)

M(f, θ′,D′)i ≤M(f, θ′,D)i ≤ max
D′∈T (D)

M(f, θ′,D′)i ≤ θUi (6)

Intuitively, Definition 1 allows us to measure the poisoning adversary’s influence in parameter space.
From such bounds, we can then derive guarantees on the poisoning robustness against any of the
aforementioned attack vectors.
Theorem 3.1. Given valid parameter bounds [θL, θU ] for an adversary T (D), one can compute a
sound upper bound (i.e., certificate) on any poisoning objective by optimization over the parameter
space, rather than dataset space:

max
D′∈T

J
(
fM(f,θ′,D′)(x)

)
≤ max

θ⋆∈[θL,θU ]
J
(
fθ⋆

(x)
)

where J is one of the objective functions from (3)–(5). Full expressions are provided in Appendix I.1.

The advantage of Theorem 3.1 is that each of these upper-bounds can be computed directly using
bounds from works studying certification of adversarial robustness of probabilistic models (Adams
et al., 2023; Wicker et al., 2020; 2023).

3.2 ABSTRACT GRADIENT TRAINING FOR VALID PARAMETER SPACE BOUNDS

In this section, we provide an intuition and high-level framework for computing parameter bounds
that respect Definition 1. We call this framework abstract gradient training (AGT). Our framework
is applicable to any training function M based on first-order optimization, e.g., stochastic gradient
descent or Adam. To keep our exposition intuitive, we choose to focus on SGD, written as:

θ ← θ − α
1

|B|
∑

(x,y)∈B

∇θL
(
fθ(x), y

)
(7)

where B ⊆ D is the sampled batch at the current iteration. The function M(f, θ′,D), in the simplest
case, iteratively applies the update (7) for a fixed, finite number of iterations starting from θ(0) = θ′.
Therefore, to bound the effect of a poisoning attack, we can iteratively apply bounds on update
(7). In Algorithm 1, we present a general framework for computing parameter-space bounds on the
output of SGD given a poisoning adversary T . In particular, we highlight that Algorithm 1 first
computes the standard stochastic gradient descent update (lines 4-5), and then computes a bound on
the set of all possible descent directions that could be taken at this iteration. Note that the gradient
clipping operation, highlighted in purple, is optional for a bounded adversary, and is only required
for the unbounded adversary to limit the maximum contribution of any added data-points. This
bound on the descent direction is then soundly combined with the existing parameter space bound to
obtain an updated reachable parameter interval [θL, θU ]. Since the reachable parameter interval is
maintained over every iteration of the algorithm, we have the following theorem (which we prove in
Appendix I.2):

4
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Algorithm 1: ABSTRACT GRADIENT TRAINING FOR POISONING CERTIFICATION

input :f - ML model, θ′ - param. initialisation, D - nominal dataset, E - epochs, α - learning rate, T -
allowable dataset perturbations (poisoning adversary), κ - optional clipping parameter.

output: θ - nominal SGD parameter, [θL, θU ] - reachable parameter interval.

1 θ ← θ′; [θL, θU ]← [θ′, θ′]
2 for E-many epochs do
3 for each batch B ⊂ D do

/* Compute the (optionally clipped) SGD update. */

4 ∆θ ← 1

|B|
∑

(x,y)∈B

Clipκ

[
∇θL

(
fθ(x), y

)]
5 θ ← θ − α∆θ

/* Define the set of descent directions possible under T . */

6 ∆Θ←

 1

|B̃|

∑
(x̃,ỹ)∈B̃

Clipκ

[
∇θ′L

(
fθ′(x̃), ỹ

)]
| B̃ ∈ T (B) , θ′ ∈

[
θL, θU

]
/* Bound the set of descent directions possible under T . */

7 Compute ∆θL, ∆θU s.t. ∆θL ⪯ ∆θ ⪯ ∆θU for all ∆θ ∈ ∆Θ
/* Update the reachable parameter interval under T . */

8
[
θL, θU

]
←
[
θL − α∆θU , θU − α∆θL

]
9 return θ, [θL, θU ]

Theorem 3.2. Algorithm 1 returns valid parameter-space bounds on a Tm,ν,q
n,ϵ,p (D) poisoning adver-

sary for a stochastic gradient descent training procedure M(f, θ′,D).

Bounding the Descent Direction. The main complexity in Algorithm 1 is in bounding the set ∆Θ,
which is the set of all possible descent directions at the given iteration under T . In particular, B̃ ∈
T (B) represents the effect of the adversary’s perturbations on the current batch, while the reachable
parameter interval θ′ ∈

[
θL, θU

]
represents the worst-case effect of adversarial manipulations to

all previously seen batches. Exactly computing the set ∆Θ is not computationally tractable, so we
instead seek over-approximate element-wise bounds that can be computed efficiently within the
training loop. We present a procedure for computing bounds for the bounded poisoning adversary
in the following theorem. The analogous theorem for the unbounded adversary can be found in
Appendix B.
Theorem 3.3 (Bounding the descent direction for a bounded adversary). Given a nominal batch
B =

{(
x(i), y(i)

)}b
i=1

of size b, a parameter set
[
θL, θU

]
, and a bounded adversary ⟨n, ϵ, p,m, ν, q⟩,

the SGD parameter update ∆θ = 1
b

∑̃
B
∇θL

(
fθ
(
x̃(i)
)
, ỹ(i)

)
is bounded element-wise by

∆θL =
1

b

(
SEMin
m+n

{
δ̃
(i)
L − δ

(i)
L

}b

i=1
+

b∑
i=1

δ
(i)
L

)
, ∆θU =

1

b

(
SEMax

m+n

{
δ̃
(i)
U − δ

(i)
U

}b

i=1
+

b∑
i=1

δ
(i)
U

)

for any B̃ ∈ Tn,ϵ,p
m,ν,q(B) and θ ∈ [θL, θU ]. The terms δ(i)L , δ

(i)
U are sound bounds that account for the effect of

previous adversarial manipulations. Likewise, the terms δ̃(i)L , δ̃
(i)
U are bounds on the worst-case adversarial

manipulations of the i-th data-point in the current batch, i.e.

δ
(i)
L ⪯ δ ⪯ δ

(i)
U ∀δ ∈

{
∇θ′L

(
fθ′(x(i)), y(i)

)
| θ′ ∈ [θL, θU ]

}
, (8)

δ̃
(i)
L ⪯ δ̃ ⪯ δ̃

(i)
U ∀δ̃ ∈

{
∇θ′L

(
fθ′ (x̃) , ỹ

)
| θ′ ∈ [θL, θU ], ∥x(i) − x̃∥p ≤ ϵ, ∥y(i) − ỹ∥q ≤ ν

}
. (9)

The operations SEMaxa and SEMina correspond to taking the sum of the element-wise top/bottom-a
elements over each index of the input vectors. The update rule in Theorem 3.3 accounts for the effect
of poisoning in previous batches by taking the lower and upper bounds on the gradient (δ(i)L , δ

(i)
U )

for all θ reachable at the current iteration. Then, we bound the effect of adversarial manipulation
in the current batch by taking the n+m points that have the worst-case gradient bounds δ̃(i)L , δ̃

(i)
U

under poisoning. We assume that m+ n ≤ b. If m+ n > b, we take SEMin/Max with respect to

5
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min(b,m+ n) instead. Since we wish to soundly over-approximate this operation for all parameters,
we perform this bounding operation independently over each index of the parameter vector. This
is certainly a loose approximation, as the n+m points that maximize the gradient at a particular
index will likely not maximize the gradient of other indices. However, this relaxation allows us
to efficiently compute and propagate interval enclosures between successive iterations of AGT. A
further relaxation is taken when computing gradient bounds δ

(i)
L , δ

(i)
U , since they are computed

independently for each sample i and the min/max for different samples may be attained for different
θ′ ∈

[
θL, θU

]
. Performing this computation independently for each i, however, allows for efficient

bound-propagation that we describe in more detail in subsequent sections.

For the bounded adversary, gradient clipping is not a requirement and we can directly bound the
un-modified SGD training procedure. However, it can still be desirable to add gradient clipping even
in the bounded adversary case, as it can improve the tightness of our descent direction bounds and
subsequently improve the guarantees afforded by AGT with little cost to training performance.

3.3 COMPUTATION OF SOUND GRADIENT BOUNDS

This section presents a novel algorithm for computing bounds on the following optimization problem

min
x⋆,y⋆,θ⋆

{
∇θ′L

(
fθ′

(x̃) , ỹ
)
| θ′ ∈ [θL, θU ], ∥x(i) − x̃∥p ≤ ϵ, ∥y(i) − ỹ∥q ≤ ν

}
. (10)

Computing the exact solution to this problem is, in general, a non-convex and NP-hard optimization
problem. However, we require only over-approximate solutions; while these can introduce (sig-
nificant) over-approximation of the reachable parameter set, they will always maintain soundness.
Future work could investigate exact solutions, e.g., via mixed-integer programming (Huchette et al.,
2023; Tsay et al., 2021). Owing to their tractability, our discussion focuses on the novel linear bound
propagation techniques we develop for abstract gradient training. Noting that problems of the form
(8) can be recovered by setting ν = ϵ = 0, we focus solely on this more general case in this section.

Neural networks. While the algorithm presented in Section 3.2 is general to any machine learning
model trained via stochastic gradient descent, we focus our discussion on neural network models for
the remained of the paper. We first define a neural network model fθ : Rnin → Rnout with K layers
and parameters θ =

{
(W (i), b(i))

}K
i=1

as:

ẑ(k) = W (k)z(k−1) + b(k), z(k) = σ
(
ẑ(k)

)
where z(0) = x, fθ(x) = ẑ(K), and σ is the activation function, which we take to be ReLU.

Solving problems of the form min {· | ∥x− x⋆∥p ≤ ϵ} for neural networks has been well-studied
in the context of adversarial robustness certification. However, optimizing over inputs, labels and
parameters, e.g., min

{
· | θ⋆ ∈ [θL, θU ], ∥x− x⋆∥p ≤ ϵ, ∥y − y⋆∥q ≤ ν

}
is much less well-studied,

and to-date similar problems have appeared primarily in the certification of probabilistic neural
networks (Wicker et al., 2020).

Interval Arithmetic. For ease of exposition, we will represent interval matrices with bold symbols
i.e., A := [AL, AU ] ⊂ Rn1×n2 and interval matrix multiplication as ⊗, meaning AB ∈ A ⊗B
for all A ∈ A and B ∈ B. Additionally, we define ⊙ and ⊕ as element-wise interval matrix
multiplication and addition, respectively. This implies A ◦B ∈ A⊙B (where ◦ is the element-wise
product) and A+ B ∈ A⊕B for all A ∈ A and B ∈ B, which can be computed using standard
interval arithmetic techniques. We denote interval vectors as a := [aL, aU ] with analogous operations.
More details of interval arithmetic operations over matrices and vectors can be found in Appendix C.

Forward Pass Bounds Mirroring developments in robustness certification of neural networks, we
provide a novel, explicit extension of the CROWN algorithm (Zhang et al., 2018) to account for
interval-bounded weights. The standard CROWN algorithm bounds the outputs of the m-th layer of a
neural network by back-propagating linear bounds over each intermediate activation function to the
input layer. We extend this framework to interval parameters, where the weights and biases involved
in these linear relaxations are themselves intervals. We note that linear bound propagation with
interval parameters has been studied previously in the context of floating-point sound certification
(Singh et al., 2019). In the interest of space, we present only the upper bound of our extended
CROWN algorithm here, with the full version presented in Appendix D.
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(a) Feature poisoning
( = 0.01, m = 0)

n = 300
n = 200
n = 100
n = 50

(b) Feature poisoning
(n = 10, m = 0)

= 0.2
= 0.15
= 0.1
= 0.05

(c) Label poisoning
(n = 0, = 0)

m = 4
m = 3
m = 2
m = 1

(d) Label + feature
poisoning (n = m = 1)

= 1.0
= 0.5
= 0.1
= 0.0

Figure 1: Bounds on a classification threshold trained on the halfmoons dataset for a bounded
adversary that can perturb up to n data-points by up to ϵ in the p = ∞ norm; in label space, the
adversary may flip up to m labels (corresponding to γ = 1, q = 0). The white line shows the decision
boundary of the nominal classification model. The coloured regions show the areas for which we
cannot certify robustness for the given adversary strength.

Proposition 1 (Explicit upper bounds of neural network f with interval parameters). Given an
m-layer neural network function f : Rnin → Rnout whose unknown parameters lie in the intervals
b(k) ∈ b(k) and W (k) ∈W (k) for k = 1, . . . ,m, there exist an explicit function

fU
j

(
x,Λ(0:m),∆(1:m), b(1:m)

)
= Λ

(0)
j,: x+

m∑
k=1

Λ
(k)
j,:

(
b(k) +∆

(k)
:,j

)
(11)

such that ∀x ∈ x

fj(x) ≤ max
{
fU
j

(
x,Λ(0:m),∆(1:m), b(1:m)

)
| Λ(k) ∈ Λ(k), bk ∈ b(k)

}
(12)

where x is a closed input domain and Λ(0:m),∆(1:m) are the equivalent weights and biases of the
linear upper bounds, respectively. The bias term ∆(1:m) is explicitly computed based on the linear
bounds on the activation functions. The weight Λ(0:m) lies in an interval Λ(0:m) which is computed
in an analogous way to standard, non-interval CROWN (see Appendix D for further details).

Given the upper bound function fU
j (·) defined above and intervals over all the relevant variables, we

can compute the following closed-form global upper bound:

γU
j = max

{
Λ

(0)
j,: ⊗ x⊕

m∑
k=1

Λ
(k)
j,: ⊗

[
b(k) ⊕∆

(k)
:,j

]}
where max is performed element-wise and returns the upper bound of the interval enclosure. Then,
we have fj(x) ≤ γU

j for all x ∈ x, b(k) ∈ b(k) and W (k) ∈ W (k). The equivalent procedure for
computing the global lower bound fj(x) ≥ γL

j can be found in Appendix D.

Backward Pass Bounds. Given bounds on the forward pass of the neural network, we can bound the
backward pass (the gradients) of the model. We do this by extending the interval arithmetic based
approach of Wicker et al. (2022) (which bounds derivatives of the form ∂L/∂z(k)) to additionally
bound the derivatives w.r.t. the parameters. Details of this computation can be found in Appendix F.

3.4 ALGORITHM ANALYSIS AND DISCUSSION

Figure 1 visualizes the resulting worst-case decision boundaries for a simple binary classifier con-
sisting of a neural network with a hidden layer of 128 neurons. In this classification setting, label
poisoning results in looser bounds than feature space poisoning, with m = 5 producing bounds of
approximately the same width as n = 50. This is due to the relatively large interval introduced by a
label flipping attack y(i) ∈ {0, 1}, compared to an interval of width ϵ introduced in a feature-space
attack. We also emphasise that Algorithm 1 assumes at most m,n poisoned points per batch, rather
than per dataset. In regression settings, label poisoning is relatively weaker than feature poisoning
for a given strength ϵ = ν, since the feature-space interval propagates through both the forward and
backward training passes, while the label only participates in the backward pass. This effect is partic-
ularly pronounced in deep networks, since interval/CROWN bounds tend to weaken exponentially
with depth (Mao et al., 2023; Sosnin & Tsay, 2024).
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Comparison to Interval Bound Propagation. The CROWN algorithm in § 3.3 is not strictly tighter
than interval bound propagation (IBP). Specifically, the non-associativity of double-interval matrix
multiplication leads to significantly different interval sizes depending on the order in which the
multiplications are performed: IBP performs interval matrix multiplications in a ‘forwards’ ordering,
while CROWN uses a ‘backwards’ ordering. Empirically, we observe that CROWN tends to be tighter
for deeper networks, while IBP may outperform CROWN for smaller networks. In our numerical
experiments, we compute both CROWN and IBP bounds and take the element-wise tightest bound.

Combined Forward and Backward Pass Bounds. The CROWN algorithm can be applied to any
composition of functions that can be upper- and lower-bounded by linear equations. Therefore, it is
possible to consider both the forwards and backwards passes in a single combined CROWN pass for
many loss functions. However, linear bounds on the gradient of the loss function tend to be relatively
loose, e.g., linear bounds on the softmax function may be orders-of-magnitude looser than constant
[0, 1] bounds (Wei et al., 2023). As a result, we found that the tightest bounds were obtained using
IBP/CROWN on the forward pass and IBP on the backward pass.

Computational Complexity. The computational complexity of Algorithm 1 depends on the method
used to bound on the gradients. In the simplest case, IBP can be used to compute bounds on the
gradients in 4× the cost of a standard forward and backward pass (see Appendix C). Likewise, our
CROWN bounds admit a cost of at most 4 times the cost of the original CROWN algorithm. For an
m layer network with n neurons per layer and n outputs, the time complexity of the original CROWN
algorithm is O(m2n3) (Zhang et al., 2018). We further note that the SEMin / SEMax operations
required by Theorems B.1 and 3.3 can be computed in O(b) for each index and in practice can be
efficiently parallelized using GPU-based implementations. In summary, Abstract Gradient Training
using IBP has time complexity equivalent to standard neural network training (O(bmn2) for each
batch of size b), but with our tighter, CROWN-based, bounds the complexity is O(bm2n3) per batch.

Limitations. While Algorithm 1 is able to obtain valid-parameter space bounds for any gradient-based
training algorithm, the tightness of these bounds depends on the exact architecture, hyperparameters
and training procedure used. In particular, bound-propagation between successive iterations of the
algorithm assumes the worst-case poisoning at each parameter index, which may not be achievable
by realistic poisoning attacks. Therefore, obtaining non-vacuous guarantees with our algorithm
often requires training with larger batch-sizes and/or for fewer epochs than is typical. Additionally,
certain loss functions, such as multi-class cross entropy, have particularly loose interval relaxations.
Therefore, AGT obtains relatively weaker guarantees for multi-class problems when compared to
regression or binary classification settings. We hope that tighter bound-propagation approaches, such
as those based on more expressive abstract domains, may overcome this limitation in future works.

Computing Certificates of Poisoning Robustness. Algorithm 1 returns valid parameter-space
bounds [θL, θU ] for a given poisoning adversary. To provide certificates of poisoning robustness for
a specific query at a point x, we first bound the model output fθ(x)∀θ ∈ [θL, θU ] using the bound-
propagation procedure described above. In classification settings, the robustness of the prediction can
then be certified by checking if the lower bound on the output logit for the target class is greater than
the upper bounds of all other classes (i.e. [fθ

j (x)]L ≥ [fθ
i (x)]U∀i ̸= j). If this condition is satisfied,

then the model always predicts class j at the point x for all parameters within our parameter-space
bounds, and thus this prediction is certifiably robust to poisoning. Details on computing bounds on
other poisoning adversary objectives (3), (4), and (5) can be found in Appendix G.

4 EXPERIMENTS

Computational experiments were performed using a Python implementation of Algorithm 1. Bounds
on accuracy/error are computed by bounding the respective optimization problem from Theorem 4.1
using IBP/CROWN. To investigate the tightness of AGT, we also compare our bounds with heuristic
poisoning attacks in Appendix H. The experimental set-up and datasets are described in Appendix J.

UCI Regression (Household Power Consumption). We first consider a relatively simple regression
model for the household electric power consumption (‘houseelectric’) dataset from the UCI reposi-
tory (Hebrail & Berard, 2012) with fully connected neural networks and MSE as loss function. Figure
2 (top) shows the progression of the nominal and worst/best-case MSE (computed for the test set) for
a 1×50 neural network and various parameterizations of poisoning attacks. As expected, we observe

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

that increasing each of n, m, ϵ, and ν results in looser performance bounds. We note that the settings
of m = 10000 and n = 10000 correspond 100% of the data (batchsize b = 10000) being poisoned.
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n = 1000

0 50 100
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Figure 2: Mean squared error bounds on the UCI-houseelectric dataset. Top: Effect of adversary
strength. Bottom: Effect of model/training hyperparameters (with n = 100, ϵ = 0.01, p = ∞).
Where not stated, d = 1, w = 50, b = 10000, and α = 0.02.

Figure 2 (bottom) shows the progression of bounds on the MSE (computed for the test set) over the
training procedure for a fixed poisoning attack (n = 100, ϵ = 0.01) and various hyperparameters
of the regression model. In general, we observe that increasing model size (width or depth) results
in looser performance guarantees. As expected, increasing the batch size improves our bounds, as
the number of potentially poisoned samples n remains fixed and their worst-case effect is ‘diluted’.
Increasing the learning rate accelerates both the model training and the deterioration of the bounds.
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=
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Figure 3: Certified accuracy
on the MNIST dataset under a
label-flipping attack.

MNIST Digit Recognition. We consider a label-flipping attack
(q = 0, ν = 1) on the MNIST dataset. In label-only poisoning
settings, it is common to use unsupervised learning approaches on
the (assumed clean) features prior to training a classification model
(e.g. SS-DPA (Levine & Feizi, 2020)). Therefore, we first project
the data into a 32-dimensional feature space using PCA and then
train a linear classifier using AGT to obtain a certified classification
model. Figure 3 illustrates the certifiable accuracy using this method-
ology. Compared to regression or binary classification settings, AGT
provides limited guarantees for multi-class problems; we hope that
tighter bound propagation techniques will overcome this limitation
in the future. Stronger guarantees can be obtained by increasing the
gradient clipping parameter κ, at the cost of decreased model utility.

MedMNIST Image Classification. Next, we consider fine-tuning
a classifier trained on the retinal OCT dataset (OCTMNIST) (Yang
et al., 2021), which contains four classes—one normal and three abnormal. The dataset is unbalanced,
and we consider the simpler normal vs abnormal binary classification setting. We consider the ‘small’
architecture from Gowal et al. (2018), comprising two convolutional layers of width 16 and 32 and
a dense layer of 100 nodes, and the following fine-tuning scenario: the model is first pre-trained
without the rarest class (Drusen) using the robust training procedure from Wicker et al. (2022), so
that the resulting model is robust to feature perturbations during fine-tuning. We then assume Drusen
samples may be poisoned and add them as a new abnormal class to fine-tune the dense layer, with a
mix of 50% Drusen samples (b = 6000 with 3000 Drusen) per batch.

In general, this fine-tuning step improves accuracy on the new class (Drusen) from approximately 0.5
to over 0.8. Nevertheless, Figure 4 shows how increasing the amount of potential poisoning worsens
the bound on prediction accuracy. With feature-only poisoning, a poisoning attack greater than
ϵ = 0.02 over n ≈ 500 samples produces bounds worse than the prediction accuracy of the original
pre-trained model. With an unbounded label and feature poisoning adversary, the bounds are weaker,
as expected. Higher certified accuracy can be obtained by increasing the clipping parameter κ, at the
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Figure 4: Certified accuracy (left) and backdoor accuracy (right) for a binary classifier fine-tuned on
the Drusen class of OCTMNIST for an attack size up to 10% poisoned data per batch (b = 6000, p =
∞, q = 0, ν = 1). Dashed lines show the nominal accuracy of each fine-tuned model.
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Figure 5: Left: Fine-tuning PilotNet on unseen data with a bounded label poisoning attack (q =∞).
Right: Steering angle prediction bounds after fine-tuning (m = 300, q =∞, ν = 0.01).

cost of nominal model accuracy (Figure 4, center right). With label-only poisoning, the certificates
are relatively stronger, as the training procedure requires approximately m ≥ 600 poisoned samples
for the prediction accuracy bound to reach the original pre-trained model’s accuracy. The setting of
m = 600 corresponds to 20% of the Drusen data per batch being mis-labeled as healthy.

Finally, we consider a backdoor attack setting where the ϵ used at training and inference times is the
same. The model is highly susceptible to adversarial perturbations at inference time even without
data poisoning, requiring only ϵ = 0.009 to reduce the certified backdoor accuracy to < 50%. As the
strength of the (bounded) adversary increases, the accuracy that we are able to certify decreases. We
note that tighter verification algorithms can be applied at inference time to obtain stronger guarantees.

Fine-Tuning PilotNet. Finally, we fine-tune a model that predicts steering angles for autonomous
driving given an input image (Bojarski et al., 2016). The model contains convolutional layers of 24,
36, 48, and 64 filters, followed by fully connected layers of 100, 50, and 10 nodes. The fine-tuning
setting is similar to above: first, we pre-train the model on videos 2–6 of the Udacity self-driving car
dataset (github.com/udacity/self-driving-car/tree/master). We then fine-tune
the dense layers on video 1 (challenging lighting conditions) assuming potential label poisoning.

Figure 5 shows the bounds on mean squared error for the video 1 data and visualizes how the bounds
translate to the predicted steering angle. We again see that fine-tuning improves accuracy on the
new data, but also that the MSE bounds deteriorate as the number of potentially poisoned samples
increases (Figure 5, left). The rate of deterioration depends strongly on poisoning strength ν.

5 CONCLUSIONS

We proposed a mathematical framework for computing sound parameter-space bounds on the influ-
ence of a poisoning attack for gradient-based training. Our framework defines generic constraint sets
to represent general poisoning attacks and propagates them through the forward and backward passes
of model training. Based on the resulting parameter-space bounds, we provided rigorous bounds
on the effects of various poisoning attacks. Finally, we demonstrated our proposed approach to be
effective on tasks including autonomous driving and the classification of medical images.
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A RELATED WORKS

Data Poisoning. Poisoning attacks have existed for nearly two decades and are a serious security
concern (Biggio & Roli, 2018; Biggio et al., 2014; Newsome et al., 2006). In Muñoz-González
et al. (2017) the authors formulate a general gradient-based attack that generates poisoned samples
that corrupt model performance when introduced into the dataset (now termed, untargeted attack).
Backdoor attacks manipulate a small proportion of the data such that, when a specific pattern is
seen at test-time, the model returns a specific, erroneous prediction Chen et al. (2017); Gu et al.
(2017); Han et al. (2022); Zhu et al. (2019). Popular defenses are attack specific, e.g., generating
datasets using known attack strategies to classify and reject potentially poisoned inputs (Li et al.,
2020). Alternative strategies apply noise or clipping to mitigate certain attacks (Hong et al., 2020).

Poisoning Defenses. General defenses to poisoning attacks seek to provide upper-bounds on the
effectiveness of any attack strategy. In this area, Steinhardt et al. (2017) provide such upper-bounds
for linear models trained with gradient descent. Rosenfeld et al. (2020) present a statistical upper-
bound on the effectiveness of ℓ2 perturbations on training labels for linear models using randomized
smoothing. Xie et al. (2022) observe that differential privacy, which usually covers addition or
removal of data points, can also provide statistical guarantees in some limited poisoning settings.

Certified Poisoning Robustness Relative to inference-time adversarial robustness (also referred to
as evasion attacks), less attention has been devoted to provable guarantees against data poisoning
adversaries. Existing methods for deterministic certification of robustness to poisoning adversaries
involve design of a learning process with careful partitioning and ensembling such that the resulting
model has poisoning robustness guarantees (Levine & Feizi, 2020; Wang et al., 2022; Rezaei et al.,
2023). We refer to these methods as "aggregation" methods. In contrast, our approach is a method
for analysis and certification of standard, unmodified machine learning algorithms. Aggregation
approaches have been shown to offer strong guarantees against poisoning adversaries albeit at a
substantial computational cost including: storing and training thousands of models on (potentially
disjoint) subsets of the dataset and the requirement to evaluate each of the potentially thousands of
models for each prediction; additionally, these methods require that one have potentially thousands
of times more data than is necessary for training a single classifier. By designing algorithms to be
robust to poisoning adversaries aggregation based approaches are able to scale to larger models than
are considered in this work (Levine & Feizi, 2020; Wang et al., 2022; Rezaei et al., 2023). Yet,
the computational cost of our approach, in the simplest case, is only four times that of standard
training and inference and we do not require that one has access to enough data to train multiple
well-performing models. Furthermore, our approach enables reasoning about backdoor attacks, where
these partitioning approaches cannot. We finally highlight that the method presented in this paper
is orthogonal/complementary to the partitioning approach, and thus future works may be able to
combine the two effectively.

Certified Adversarial Robustness. Sound algorithms (i.e., no false positives) for upper-bounding
the effectiveness of inference-time adversaries are well-studied for trained models (Gehr et al., 2018)
and training models for robustness (Gowal et al., 2018; Müller et al., 2022). These approaches
typically utilize ideas from formal methods (Katz et al., 2017; Wicker et al., 2018) or optimization
(Botoeva et al., 2020; Bunel et al., 2018; Huchette et al., 2023). Most related to this work are strategies
that consider intervals over both model inputs and parameters (Wicker et al., 2020), as well as some
preliminary work on robust explanations that bound the input gradients of a model Wicker et al.
(2022). Despite these methodological relationships, none of these methods directly apply to the
general training setting studied here.

B BOUNDING THE DESCENT DIRECTION FOR AN UNBOUNDED ADVERSARY

Theorem B.1 (Bounding the descent direction for an unbounded adversary). Given a nominal batch
B =

{(
x(i), y(i)

)}b
i=1

with batchsize b, a parameter set
[
θL, θU

]
, and a clipping level κ, the clipped

14
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SGD parameter update ∆θ = 1
b

∑̃
B
Clipκ

[
∇θL

(
fθ
(
x̃(i)
)
, ỹ(i)

)]
is bounded element-wise by

∆θL =
1

b

(
SEMin

b−n

{
δ
(i)
L

}b

i=1
− nκ1d

)
, ∆θU =

1

b

(
SEMax

b−n

{
δ
(i)
U

}b

i=1
+ nκ1d

)
(13)

for any poisoned batch B̃ derived from B by substituting up to n data-points with poisoned data and
any θ ∈ [θL, θU ]. The terms δ

(i)
L , δ

(i)
U are sound bounds that account for the worst-case effect of

additions/removals in any previous iterations. That is, they bound the gradient given any parameter
θ⋆ ∈ [θL, θU ] in the reachable set, i.e. for all i = 1, . . . , b, we have δ

(i)
L ⪯ δ(i) ⪯ δ

(i)
U for any

δ(i) ∈
{
Clipκ

[
∇θ′L

(
fθ′

(x(i)), y(i)
)]
| θ′ ∈

[
θL, θU

]}
. (14)

The operations SEMaxa and SEMina correspond to taking the sum of the element-wise top/bottom-a
elements over each index of the input vectors. Therefore, the update step in (13) corresponds to
substituting the n elements with the largest / smallest gradients (by taking the sum of only the min /
max b− n gradients) with the minimum / maximum possible gradient updates (−κ, κ, respectively,
due to the clipping operation). Since we wish to soundly over-approximate this operation for all
parameters, we perform this bounding operation independently over each index of the parameter
vector. This is certainly a loose approximation, as the n points that maximize the gradient at a
particular index will likely not maximize the gradient of other indices. Note that without clipping, the
min / max effect of adding arbitrary data points into the training data is unbounded and we cannot
compute any guarantees.

C INTERVAL MATRIX ARITHMETIC

In this appendix, we provide a basic introduction to interval matrix arithmetic, which forms the basic
building block of our CROWN-style bounds. We denote intervals over matrices as A := [AL, AU ] ⊆
Rn×m such that for all A ∈ A, AL ≤ A ≤ AU .
Definition 2 (Interval Matrix Arithmetic). Let A = [AL, AU ] and B = [BL, BU ] be intervals over
matrices. Let ⊕, ⊗, ⊙ represent interval matrix addition, matrix multiplication and elementwise
multiplication, such that

A+B ∈ [A⊕B] ∀A ∈ A, B ∈ B,

A×B ∈ [A⊗B] ∀A ∈ A, B ∈ B,

A ◦B ∈ [A⊙B] ∀A ∈ A, B ∈ B.

These operations can be computed using standard interval arithmetic techniques in at most 4× the
cost of a standard matrix operation. For example, interval matrix multiplication can be computed
using the following procedure.
Definition 3 (Interval Matrix Multiplication). Given element-wise intervals over matrices [AL, AU ]
where AL, AU ∈ Rn×m and [BL, BU ] where BL, BU ∈ Rm×k, define the matrices Aµ = (AU +
AL)/2 and Ar = (AU −AL)/2. Allow Bµ and Br to be defined analogously, then computing using
Rump’s algorithm (Rump, 1999),

CL = AµBµ − |Aµ|Br −Ar|Bµ| −ArBr

CU = AµBµ + |Aµ|Br +Ar|Bµ|+ArBr,

we have that CLi,j ≤ [A′B′]i,j ≤ CUi,j ∀A′ ∈ [AL, AU ], B
′ ∈ [BL, BU ]. Nguyen (2012) showed

that the above bounds have a worst-case overestimation factor of 1.5.

Interval arithmetic is commonly applied as a basic verification or adversarial training technique by
propagating intervals through the intermediate layers of a neural network (Gowal et al., 2018).

D CROWN WITH INTERVAL PARAMETERS

In this section, we present our full extension of the CROWN algorithm (Zhang et al., 2018) for
neural networks with interval parameters. The standard CROWN algorithm bounds the outputs of the
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m-th layer of a neural network by back-propagating linear bounds over each intermediate activation
function to the input layer. We extend this framework to interval parameters, where the weights
and biases involved in these linear relaxations are themselves intervals. We note that linear bound
propagation with interval parameters has been studied previously in the context of floating-point
sound certification (Singh et al., 2019). Here, we present an explicit instantiation of the CROWN
algorithm for interval parameters, which we recall from Section 3.3.

Proposition 1 (Explicit output bounds of neural network f with interval parameters). Given an
m-layer neural network function f : Rnin → Rnout whose unknown parameters lie in the intervals
b(k) ∈ b(k) and W (k) ∈W (k) for k = 1, . . . ,m, there exist two explicit functions

fL
j

(
x,Ω(0:m),Θ(1:m), b(1:m)

)
= Ω

(0)
j,: x+

m∑
k=1

Ω
(k)
j,:

(
b(k) +Θ

(k)
:,j

)
(15)

fU
j

(
x,Λ(0:m),∆(1:m), b(1:m)

)
= Λ

(0)
j,: x+

m∑
k=1

Λ
(k)
j,:

(
b(k) +∆

(k)
:,j

)
(16)

such that ∀x ∈ x

fj(x) ≥ min
{
fL
j

(
x,Ω(0:m),Θ(1:m), b(1:m)

)
| Ω(k) ∈ Ω(k), bk ∈ b(k)

}
fj(x) ≤ max

{
fU
j

(
x,Λ(0:m),∆(1:m), b(1:m)

)
| Λ(k) ∈ Λ(k), bk ∈ b(k)

}
where x is a closed input domain and Λ(0:m),∆(1:m),Ω(0:m),Θ(1:m) are the equivalent weights and
biases of the upper and lower linear bounds, respectively. The bias terms ∆(1:m),Θ(1:m) are explicitly
computed based on the linear bounds on the activation functions. The weights Λ(0:m),Ω(0:m) lie
in intervals Λ(0:m),Ω(0:m) which are computed in an analogous way to standard (non-interval)
CROWN.

Computing Equivalent Weights and Biases. Our instantiation of the CROWN algorithm in
Proposition 1 relies on the computation of the equivalent bias terms ∆(1:m),Θ(1:m) and interval
enclosures over the equivalent weights Ω(0:m),Λ(0:m). This proceeds similarly to the standard
CROWN algorithm but now accounting for intervals over the parameters b(1:m),W (1:m) of the
network. All interval operations are as described in Appendix C.

The standard CROWN algorithm bounds the outputs of the m-th layer of a neural network by back-
propagating linear bounds over each intermediate activation function to the input layer. In the case
of interval parameters, the sign of a particular weight may be ambiguous (when the interval spans
zero), making it impossible to determine which linear bound to back-propagate. In such cases, we
propagate a concrete bound for that neuron instead of its linear bounds.

When bounding the m-th layer of a neural network, we assume that we have pre-activation bounds
ẑ(k) ∈

[
l(k), u(k)

]
on all previous layers on the network. Given such bounds, it is possible to form

linear bounds on any non-linear activation function in the network. For the r-th neuron in k-th layer
with activation function σ(z), we define two linear functions

h
(k)
L,r(z) = α

(k)
L,r

(
z + β

(k)
L,r

)
, h

(k)
U,r(z) = α

(k)
U,r

(
z + β

(k)
U,r

)

such that h(k)
L,r(z) ≤ σ(z) ≤ h

(k)
U,r(z) ∀z ∈

[
l
(k)
r , u

(k)
r

]
. The coefficients α(k)

U,r, α
(k)
L,r, β

(k)
U,r, β

(k)
L,r ∈ R

are readily computed for many common activation functions (Zhang et al., 2018).

Given the pre-activation and activation function bounds, the interval enclosures over the weights
Ω(0:m),Λ(0:m) are computed via a back-propagation procedure. The back-propagation is initialised

16
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with Ω(m) = Λ(m) = [Inm , Inm ] and proceeds as follows:

Λ(k−1) =
(
Λ(k) ⊗W(k)

)
⊙ λ(k−1), λ

(k)
j,i =



α
(k)
U,i if k ̸= 0, 0 ≤

[
Λ(k+1) ⊗W(k+1)

]
j,i

α
(k)
L,i if k ̸= 0, 0 ≥

[
Λ(k+1) ⊗W(k+1)

]
j,i

0 if k ̸= 0, 0 ∈
[
Λ(k+1) ⊗W(k+1)

]
j,i

1 if k = 0.

Ω(k−1) =
(
Ω(k) ⊗W(k)

)
⊙ ω(k−1), ω

(k)
j,i =



α
(k)
L,i if k ̸= 0, 0 ≤

[
Ω(k+1) ⊗W(k+1)

]
j,i

α
(k)
U,i if k ̸= 0, 0 ≥

[
Ω(k+1) ⊗W(k+1)

]
j,i

0 if k ̸= 0, 0 ∈
[
Ω(k+1) ⊗W(k+1)

]
j,i

1 if k = 0.

where we use 0 ≤ [·] and 0 ≥ [·] to denote that an interval is strictly positive or negative, respectively.

Finally, the bias terms ∆(k),Θ(k) for all k < m can be computed as

∆
(k)
i,j =


β
(k)
U,i if 0 ≤

[
Λ(k+1) ⊗W(k+1)

]
j,i

β
(k)
L,i if 0 ≥

[
Λ(k+1) ⊗W(k+1)

]
j,i

u(k) if 0 ∈
[
Λ(k+1) ⊗W(k+1)

]
j,i

,Θ
(k)
i,j =


β
(k)
L,i if 0 ≤

[
Ω(k+1) ⊗W(k+1)

]
j,i

β
(k)
U,i if 0 ≥

[
Ω(k+1) ⊗W(k+1)

]
j,i

l(k) if 0 ∈
[
Ω(k+1) ⊗W(k+1)

]
j,i

with the m-th bias terms given by Θ
(m)
i,j = ∆

(m)
i,j = 0.

Closed-Form Global Bounds. Given the two functions fL
j (·), fU

j (·) as defined above and intervals
over all the relevant variables, we can compute the following closed-form global bounds:

γL
j = min

{
Ω

(0)
j,: ⊗ x⊕

m∑
k=1

Ω
(k)
j,: ⊗

[
b(k) ⊕Θ

(k)
:,j

]}

γU
j = max

{
Λ

(0)
j,: ⊗ x⊕

m∑
k=1

Λ
(k)
j,: ⊗

[
b(k) ⊕∆

(k)
:,j

]}
where min /max are performed element-wise and return the lower / upper bounds of each interval
enclosure. Then, we have γL

j ≤ fj(x) ≤ γU
j for all x ∈ x, b(k) ∈ b(k) and W (k) ∈W (k), which

suffices to bound the output of the neural network as required to further bound the gradient of the
network.

E BOUNDS ON LOSS FUNCTION GRADIENTS

In this section we present the computation of bounds on the first partial derivative of the loss function
required for Algorithm 1. In particular, we consider bounding the following optimization problem
via interval arithmetic:

min&max
{
∂L (y⋆, y′) /∂y⋆ | y⋆ ∈

[
yL, yU

]
, ∥y′ − yt∥q ≤ ν

}
for some loss function L where [yL, yU ] are bounds on the logits of the model (obtained via the
bound-propagation procedure), yt is the true label and y′ is the poisoned label.

Mean Squared Error Loss Taking L (y⋆, y′) = ∥y⋆−y′∥22 to be the squared error and considering
the q =∞ norm, the required bounds are given by:

∂lL = 2
(
yL − yt − ν

)
∂lU = 2

(
yU − yt + ν

)
The loss itself can be upper-bounded by lU = max{(yL − yt)2, (yU − yt)2} and lower bounded by

lL =

{
0 if yt ∈ [yL, yU ]

min{(yL − yt)2, (yU − yt)2} otherwise
(17)
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Cross Entropy Loss To bound the gradient of the cross entropy loss, we first bound the output
probabilities pi = [

∑
j exp

(
y⋆j − y⋆i

)
]−1 obtained by passing the logits through the softmax function:

pLi =

∑
j

exp
(
yUj − yLi

)−1

, pUi =

∑
j

exp
(
yLj − yUi

)−1

The categorical cross entropy loss and its first partial derivative are given by

L (y⋆, y′) = −
∑
i

yti log pi,
∂L (y⋆, y′)

∂y⋆
= p− yt

where yt is a one-hot encoding of the true label. Considering label flipping attacks (q = 0, ν = 1),
we can bound the partial derivative by[

∂lL
]
i
= pLi − 1,

[
∂lU
]
i
= pUi − 0

In the case of targeted label flipping attacks (e.g. only applying label flipping attacks to / from
specific classes), stronger bounds can be obtained by considering the 0−1 bounds only on the indices
yti affected by the attack. The cross entropy loss itself is bounded by lL = −

∑
i y

t
i log p

U
i , l

U =
−
∑

i y
t
i log p

L
i .

F BACKWARDS PASS BOUNDS

Given bounds on the forward pass of the neural network, we now turn to bounding the objective of
our original problem (10), replacing the forward pass constraints with their bounds computed using
our CROWN algorithm,

min&max

{
∂

∂θ⋆

(
L
(
ẑ(K), y⋆

))
| θ⋆ ∈

[
θL, θU

]
, ẑ(k) ∈

[
ẑ
(k)
L , ẑ

(k)
U

]
, ∥y − y⋆∥q ≤ ν

}
. (18)

We extend the interval arithmetic based approach of Wicker et al. (2022), which bounds derivatives
of the form ∂L/∂z(k), to additionally compute bounds on the derivatives w.r.t. the parameters. First,
we back-propagate intervals over y⋆ (the label) and ẑ(K) (the logits) to compute an interval over
∂L/∂ẑ(K), the gradient of the loss w.r.t. the logits of the network. The procedure for computing
this interval is described in Appendix E for a selection of loss functions. We then use interval
bound propagation to back-propagate this interval through the network to compute intervals over all
gradients:

∂L
∂z(k−1)

=
(
W (k)

)⊤
⊗

∂L
∂ẑ(k)

,
∂L

∂ẑ(k)
=
[
H
(
ẑ
(k)
L

)
, H
(
ẑ
(k)
U

)]
⊙

∂L
∂z(k)

∂L
∂W (k)

=
∂L

∂ẑ(k)
⊗
[(

z
(k−1)
L

)⊤
,
(
z
(k−1)
U

)⊤]
,

∂L
∂b(k)

=
∂L

∂ẑ(k)

where H(·) is the Heaviside function, and ◦ is the element-wise product. The resulting intervals are
valid bounds the objective of our original problem (10) and its relaxation (18). That is, the gradients
of the network lie within these intervals for all W (k) ∈ W (k), b(k) ∈ b(k), ∥x − x⋆∥p ≤ ϵ, and
∥y − y⋆∥q ≤ ν.

G COMPUTING BOUNDS ON POISONING OBJECTIVES

In this section, we describe a procedure for computing bounds on each of the poisoning adversary’s
objectives. Given any objective J and a test set {(x(i), y(i))}ki=1, the poisoning adversary’s objective
can be relaxed by taking each test sample independently, i.e.

max
θ⋆∈[θL,θU ]

1

k

k∑
i=1

J
(
θ⋆, x(i), y(i)

)
≤ 1

k

k∑
i=1

max
θ⋆∈[θL,θU ]

J
(
θ⋆, x(i), y(i)

)
. (19)

Thus to bound the original poisoning objectives (3), (4), and (5), it suffices to compute bounds on the
required quantity for each test sample independently.
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Denial of Service. Computing bounds on the optimization problem

max
θ⋆∈[θL,θU ]

L
(
fθ⋆

(x(i)), y(i)
)

(20)

for the cross-entropy and mean-squared-error losses is described in Section E.

Certified Prediction and Backdoor Robustness. Computing an bounds on

max
θ⋆∈[θL,θU ]

1
(
fθ⋆

(x(i)) /∈ S
)

(21)

corresponds to checking if fθ⋆

(x(i)) lies within the safe set S for all θ⋆ ∈ [θL, θU ]. As before, we
first compute bounds fL, fU on fθ⋆

(x(i)) using our CROWN-based bounds. Given these bounds
and assuming a multi-class classification setting, the predictions not reachable by any model within
[θL, θU ] are those whose logit upper bounds lie below the logit lower bound of any other class. That
is, the set of possible predictions S′ is given by

S′ =
{
i s.t. ∄j : fU

i ≤ fL
j

}
. (22)

If S′ ⊆ S, then maxθ⋆ 1
(
fθ⋆

(x(i)) /∈ S
)
= 0.

Backdoor attack robustness is computed in an analogous way, with the only difference being the logit
bounds fL, fU being computed over all x ∈ V (x) and θ⋆ ∈ [θL, θU ]. This case is also computed via
our CROWN-based bound propagation.

H COMPARISON WITH EMPIRICAL ATTACKS

In this section, we compare the tightness of our bounds with simple heuristic poisoning attacks for
both the UCI-houseelectric and OCT-MNIST datasets.

H.1 VISUALISING ATTACKS IN PARAMETER SPACE (UCI-HOUSEELECTRIC)

Clean
Poisoned 0

10

20

30

Tr
ain

in
g 

Ite
ra

tio
n

Figure 6: Training trajectory for selected parameters under parameter-targeted feature poisoning with
an adversary of ϵ = 0.02, n = 2000, p =∞. The coloured boxes show the bounds [θL, θU ] obtained
at each training iteration using AGT.

First, we investigate the tightness of our bounds in parameter space via a feature poisoning attack.
The attack’s objective is to maximize a given scalar function of the parameters, which we label
f targ(θ). We then take the following poisoning procedure at each training iteration:

1. Randomly sample a subset of n samples from the current training batch.

2. For each selected sample x(i), compute a poison v(i) such that x(i) + v(i) maximizes the
gradient ∂f targ/∂x subject to ∥v(i)∥p ≤ ϵ.

3. Add the noise to each of the n sampled points to produce the poisoned dataset.

The noise in step 2 is obtained via projected gradient descent (PGD). To visualise the effect of our
attack in parameter space, we plot the trajectory taken by two randomly selected parameters θi, θj
from the network. We then run our poisoning attack on a collection of poisoning objectives f targ,
such as θi + θj , θi,−θj , etc. The effect of our poisoning attack is to perturb the training trajectory in
the direction to maximize the given objective.
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Figure 6 shows the result of this poisoning procedure for a random selection of parameter training
trajectories. We can see that the poisoned trajectories (in black) lie close the clean poisoned trajectory,
while our bounds represent an over-approximation of all the possible training trajectories.

H.2 FEATURE-SPACE COLLISION ATTACK (UCI-HOUSEELECTRIC)
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Figure 7: Mean squared error on the target point (xtarget, ytarget) in the UCI-houseelectric dataset.
Black lines show loss trajectories under the randomized feature-collision poisoning attack.

We now consider an unbounded attack setting where the adversary’s goal is to prevent the model
from learning a particular training example (xtarget, ytarget). We again consider a simple randomized
attack setting, where the adversary first selects a subset of n samples from each training batch. The
adversary then replaces the features of each of the n samples with xtarget, and assigns each one a
randomly generated label. In this way, the adversary aims to obscure the true target label and prevent
the model from learning the pair (xtarget, ytarget).

Figure 7 shows the loss of the model on the target point at each training iteration. To investigate the
tightness of our loss lower bound, we also consider the case where the adversary replaces all of the
n sampled instances from the batch with the true (xtarget, ytarget), thus over-representing the sample
within the batch and causing the model to fit the target point faster. The bounds (in red) are obtained
from AGT with an unbounded adversary (κ = 0.05). We can see that although our bounds are not
tight to any of the attacks considered, they remain sound for all the poisoned training trajectories.

H.3 RANDOMIZED LABEL FLIPPING ATTACK (OCT-MNIST)
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Figure 8: Accuracy on the OCT-
MNIST dataset under a random label
flipping attack on the Drusen class.

Here, we present the results of a label-flipping attack con-
ducted on the OCT-MNIST dataset. Following the approach
described in Section 4, we begin by pre-training a binary
classification model to distinguish between two diseased
classes and a healthy class. Next, we fine-tune the model’s
final dense layers on the ‘Drusen’ class, which we assume
to be potentially compromised, using a training set com-
posed of 50% clean data and 50% Drusen data, with 3000
samples from each category in each batch. Given that the
Drusen class is a minority, we simulate a scenario where a
random subset of the Drusen data is incorrectly labeled as
the ‘healthy’ class. Figure 8 displays the model’s accuracy
when trained on the poisoned dataset. We can see that train-
ing on the mis-labelled data results in a significant decrease
in model accuracy, though the poisoned accuracy remains
within the bounds of certified by AGT.
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I PROOFS

I.1 PROOF OF THEOREM 3.1 (BOUNDING ADVERSARY GOALS VIA PARAMETER SPACE
BOUNDS)

We begin the proof by writing out the form of the function we wish to optimize, J , for each attack
setting considered. Below the right hand side of the inequality is taken to be the function J , and each
inequality is the statement we would like to prove.

For denial of service our bound becomes:

max
D′∈T

1

k

k∑
i=1

L
(
fM(f,θ′,D′)(x(i)), y(i)

)
≤ max

θ⋆∈[θL,θU ]

1

k

k∑
i=1

L
(
fθ⋆

(x(i)), y(i)
)

For certified prediction poisoning robustness our bound becomes:

max
D′∈T

1

k

k∑
i=1

1
(
fM(f,θ′,D′)(x(i)) /∈ S

)
≤ max

θ⋆∈[θL,θU ]

1

k

k∑
i=1

1
(
fθ⋆

(x(i)) /∈ S
)

And for backdoor attacks our bound becomes:

max
D′∈T

1

k

k∑
i=1

1
(
∃x⋆ ∈ V (x(i)) s.t. fM(f,θ′,D′)(x⋆) /∈ S

)
≤ max

θ⋆∈[θL,θU ]

1

k

k∑
i=1

1
(
∃x⋆ ∈ V (x(i)) s.t. fθ⋆

(x⋆) /∈ S
)

Proof: Without loss of generality, take the function we wish to optimize to be denoted simply by
J . By definition, there exists a parameter, θ◦ = M(f, θ′,D′) resulting from a particular dataset
D′ ∈ T (D) such that θ◦ provides a (potentially non-unique) optimal solution to the optimization
problem we wish to bound, i.e., the left hand side of the inequalities above. Given a valid parameter
space bound [θL, θU ] satisfying Equation 6, we have that necessarily, θ◦ ∈ [θL, θU ]. Therefore, the
result of optimizing over [θL, θU ] can provide at a minimum the bound realized by θ◦; however, due
to approximation, this bound might not be tight, so optimizing over [θL, θU ] provides an upper-bound,
thus proving the inequalities above.

I.2 PROOF OF THEOREM 3.2 (ALGORITHM CORRECTNESS)

Here we provide a proof of correctness for our algorithm (i.e., proof of Theorem 3.2) as well as a
detailed discussion of the operations therein.

First, we recall the definition of valid parameter space bounds (Equation 6 in the main text):

θLi ≤ min
D′∈T (D)

M(f, θ′,D′)i ≤M(f, θ′,D)i ≤ max
D′∈T (D)

M(f, θ′,D′)i ≤ θUi

As well as the iterative equations for stochastic gradient descent:

θ ← θ − α∆θ, ∆θ ← 1

|B|
∑

(x,y)∈B

∇θL
(
fθ(x), y

)
For ease of notation, we assume a fixed data ordering (one may always take the element-wise
maximums/minimums over the entire dataset rather than each batch to relax this assumption).

Now, we proceed to prove by induction that Algorithm 1 maintains valid parameter space bounds
on each step of gradient descent. We start with the base case of θL = θU = θ′ according to line
1, which are valid parameter-space bounds. Our inductive hypothesis is that, given valid parameter
space bounds satisfying Definition 1, each iteration of Algorithm 1 (lines 4–8) produces a new θL

and θU that satisfy also Definition 1.

First, we observe that lines 4–5 simply compute the normal forward pass. Second, we note that lines
6–7 compute valid bounds on the descent direction for all possible poisoning attacks within T (D). In
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other words, the inequality ∆θL ≤ ∆θ ≤ ∆θU holds element-wise for any possible batch B̃ ∈ T (D).
Combining this largest and smallest possible update with the smallest and largest previous parameters
yields the following bounds:

θL − α∆θU ≤ θ − α∆θ ≤ θU − α∆θL

which, by definition, constitute valid parameter-space bounds and, given that these bounds are exactly
those in Algorithm 1, we have that Algorithm 1 provides valid parameter space bounds as desired.

I.3 PROOF OF THEOREM B.1 (DESCENT DIRECTION BOUND FOR UNBOUNDED
ADVERSARIES)

The nominal clipped descent direction for a parameter θ is the averaged, clipped gradient over a
training batch B, defined as

∆θ =
1

b

b∑
i=1

Clipκ

[
δ(i)
]

where each gradient term is given by δ(i) = ∇θL
(
fθ
(
x(i)
)
, y(i)

)
. Our goal is to bound this descent

direction for the case when (up to) n points are removed or added to the training data, for any
θ ∈ [θL, θU ]. We begin by bounding the descent direction for a fixed, scalar θ, then generalize to all
θ ∈ [θL, θU ] and to the multi-dimensional case (i.e., multiple parameters). We present only the upper
bounds here; analogous results apply for lower bounds.

Bounding the descent direction for a fixed, scalar θ. Consider the effect of removing up to n data
points from batch B. Without loss of generality, assume the gradient terms are sorted in descending
order, i.e., δ(1) ≥ δ(2) ≥ · · · ≥ δ(b). Then, the average clipped gradient over all points can be
bounded above by the average over the largest b− n terms:

∆θ =
1

b

b∑
i=1

Clipκ

[
δ(i)
]
≤ 1

b− n

b−n∑
i=1

Clipκ

[
δ(i)
]

This bound corresponds to removing the n points with the smallest gradients.

Next, consider adding n arbitrary points to the training batch. Since each added point contributes at
most κ due to clipping, the descent direction with up to n removals and n additions is bounded by

1

b

b∑
i=1

Clipκ

[
δ(i)
]
≤ 1

b− n

b−n∑
i=1

Clipκ

[
δ(i)
]
≤ 1

b

(
nκ+

b∑
i=1

Clipκ

[
δ(i)
])

where the bound now accounts for replacing the n smallest gradient terms with the maximum possible
value of κ from the added samples.

Bounding the effect of a variable parameter interval. We extend this bound to any θ ∈ [θL, θU ].
Assume the existence of upper bounds δ

(i)
U on the clipped gradients for each data point over the

interval, such that

δ
(i)
U ≥ Clipκ

[
∇θ′L

(
fθ′

(x(i)), y(i)
)]

∀ θ′ ∈ [θL, θU ].

Then, using these upper bounds, we further bound ∆θ as

∆θ ≤ 1

b

(
nκ+

b∑
i=1

Clipκ

[
δ
(i)
U

])

where, as before, we assume δ
(i)
U are indexed in descending order.

Extending to the multi-dimensional case. To generalize to the multi-dimensional case, we apply
the above bound component-wise. Since gradients are not necessarily ordered for each parameter
component, we introduce the SEMaxn operator, which selects and sums the largest n terms at each
index. This yields the following bound on the descent direction:

∆θ ≤ 1

b

(
SEMax

b−n

{
δ
(i)
U

}b

i=1
+ nκ1d

)
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which holds for any θ ∈ [θL, θU ] and up to n removed and replaced points.

We have established the upper bound on the descent direction. The corresponding lower bound can
be derived by reversing the inequalities and substituting SEMax with the analagous minimization
operator, SEMin.

I.4 PROOF OF THEOREM 3.3 (DESCENT DIRECTION BOUND FOR BOUNDED ADVERSARIES)

The nominal descent direction for a parameter θ is the averaged gradient over a training batch B,
defined as

∆θ =
1

b

b∑
i=1

δ(i)

where each gradient term is given by δ(i) = ∇θL
(
fθ
(
x(i)
)
, y(i)

)
. Our goal is to upper bound

this descent direction when up to n points are poisoned in the feature space and up to m points are
poisoned in the label space. The bound is additionally computed with respect to any θ ∈ [θL, θU ].
We again begin by bounding the descent direction for a fixed θ, then generalize to all θ ∈ [θL, θU ].
We present only the upper bounds here, though corresponding results for the lower bound can be
shown by reversing the inequalities and replacing SEMax with SEMin.

Bounding the descent direction for a fixed θ. Consider the effect of poisoning either the features or
the labels of a data point. For a given data point, an adversary may choose to poison its features, its
labels, or both. In total, at most n+m points may be influenced by the poisoning adversary, which
corresponds to choosing a disjoint sets for label and feature poisoning. We assume that m+ n ≤ b,
otherwise take at most min(m+ n, b) points to be poisoned.

Assume that we have access to sound gradient upper bounds

δ(i) ≤ δ̃
(i)
U ∀δ(i) ∈

{
∇θ′L

(
fθ′

(x̃) , ỹ
)
| ∥x(i) − x̃∥p ≤ ϵ, ∥y(i) − ỹ∥q ≤ ν

}
.

where the inequalities are interpreted element-wise. Here, δ̃(i)U corresponds to an upper bound on the
maximum possible gradient achievable at the data-point (x(i), y(i)) through poisoning.

The adversary’s maximum possible impact on the descent direction at any point i is given by δ̃
(i)
U −δ(i).

To maximise an upper bound on ∆θ, we consider the n+m points with the largest possible adversarial
contributions. Therefore, we obtain

∆θ =
1

b

b∑
i=1

δ(i) ≤ 1

b

(
SEMax
m+n

{
δ̃
(i)
U − δ(i)

}b

i=1
+

b∑
i=1

δ(i)

)
,

where the SEMax operation corresponds to taking the sum of the largest n + m elements of its
argument at each element. This bound captures the maximum increase in ∆θ that an adversary can
induce by poisoning up to m+ n data points.

Bounding the effect of a variable parameter interval. Now, we wish to compute a bound on ∆θ
for any θ ∈ [θL, θU ]. To achieve this, we extend our previous gradient bounds to account for the
interval over our parameters. Specifically, we define upper bounds on the nominal and adversarially
perturbed gradients that hold across the entire parameter interval:

δ ≤ δ
(i)
U ∀δ ∈

{
∇θ′L

(
fθ′

(x(i)), y(i)
)
| θ′ ∈ [θL, θU ]

}
,

δ̃ ≤ δ̃
(i)
U ∀δ̃ ∈

{
∇θ′L

(
fθ′

(x̃) , ỹ
)
| θ′ ∈ [θL, θU ], ∥x(i) − x̃∥p ≤ ϵ, ∥y(i) − ỹ∥q ≤ ν

}
.

Thus, the descent direction is upper bounded by

∆θ ≤ ∆θU =
1

b

(
SEMax
m+n

{
δ̃
(i)
U − δ

(i)
U

}b

i=1
+

b∑
i=1

δ
(i)
U

)
for all θ ∈ [θL, θU ], where the appropriate bounds with respect to the parameter interval have been
substituted in.
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I.5 PROOF OF PROPOSITION 1 (CROWN BOUNDS)

To prove Proposition 1, we rely on the following result which we reproduce from Zhang et al. (2018):
Theorem I.1 (Explicit output bounds of a neural network f (Zhang et al., 2018)). Given an m-layer
neural network function f : Rn0 → Rnm , there exists two explicit functions fL

j : Rn0 → R and
fU
j : Rn0 → R such that ∀j ∈ [nm] ,∀x ∈ Bp (x0, ϵ), the inequality fL

j (x) ≤ fj(x) ≤ fU
j (x) holds

true, where

fU
j (x) = Λ

(0)
j,: x+

m∑
k=1

Λ
(k)
j,:

(
b(k) +∆

(k)
:,j

)
, Λ

(k−1)
j,: =

{
e⊤j if k = m+ 1;(
Λ
(k)
j,: W

(k)
)
◦ λ(k−1)

j,: if k ∈ [m].

fL
j (x) = Ω

(0)
j,: x+

m∑
k=1

Ω
(k)
j,:

(
b(k) +Θ

(k)
:,j

)
, Ω

(k−1)
j,: =

{
e⊤j if k = m+ 1;(
Ω

(k)
j,: W

(k)
)
◦ ω(k−1)

j,: if k ∈ [m]

and ∀i ∈ [nk], we define four matrices λ(k), ω(k),∆(k),Θ(k) ∈ Rnm×nk :

λ
(k)
j,i =


α
(k)
U,i if k ̸= 0,Λ

(k+1)
j,: W

(k+1)
:,i ≥ 0;

α
(k)
L,i if k ̸= 0,Λ

(k+1)
j,: W

(k+1)
:,i < 0;

1 if k = 0.

ω
(k)
j,i =


α
(k)
L,i if k ̸= 0,Ω

(k+1)
j,: W

(k+1)
:,i ≥ 0;

α
(k)
U,i if k ̸= 0,Ω

(k+1)
j,: W

(k+1)
:,i < 0;

1 if k = 0.

∆
(k)
i,j =


β
(k)
U,i if k ̸= m,Λ

(k+1)
j,: W

(k+1)
:,i ≥ 0;

β
(k)
L,i if k ̸= m,Λ

(k+1)
j,: W

(k+1)
:,i < 0;

0 if k = m.

Θ
(k)
i,j =


β
(k)
L,i if k ̸= m,Ω

(k+1)
j,: W

(k+1)
:,i ≥ 0;

β
(k)
U,i if k ̸= m,Ω

(k+1)
j,: W

(k+1)
:,i < 0;

0 if k = m.

and ◦ is the Hadamard product and ej ∈ Rnm is a standard unit vector at j th coordinate.

The terms α
(k)
L,i, α

(k)
U,i, β

(k)
L,i , and β

(k)
U,i represent the coefficients of linear bounds on the activation

functions, that is for the r-th neuron in k-th layer with activation function σ(x), there exist two linear
functions

h
(k)
L,r(x) = α

(k)
L,r

(
x+ β

(k)
L,r

)
, h

(k)
U,r(x) = α

(k)
U,r

(
x+ β

(k)
U,r

)
such that h(k)

L,r(x) ≤ σ(x) ≤ h
(k)
U,r(x) ∀x ∈

[
l
(k)
r , u

(k)
r

]
. The terms

[
l
(k)
r , u

(k)
r

]
are assumed to be

sound bounds on all previous neurons in the network. We first note that, for any neuron r in the k-th
layer, the linear bounds may be replaced with concrete bounds by substituting α

(k)
L,r = α

(k)
U,r = 0 and

β
(k)
L,r = l

(k)
r , β

(k)
U,r = u

(k)
r . Let SL, SU be index sets of tuples (i, k) indicating whether the lower and

upper bounds (respectively) of the i-th neuron in the k-th layer should be concretized in this way.
Then, the equivalent weights and biases take the following form:

λ
(k)
j,i =


α
(k)
U,i if (i, k) /∈ SU , k ̸= 0,Λ

(k+1)
j,: W

(k+1)
:,i ≥ 0;

α
(k)
L,i if (i, k) /∈ SU , k ̸= 0,Λ

(k+1)
j,: W

(k+1)
:,i < 0;

1 if (i, k) /∈ SU , k = 0;
0 if (i, k) ∈ SU .

ω
(k)
j,i =


α
(k)
L,i if (i, k) /∈ SL, k ̸= 0,Ω

(k+1)
j,: W

(k+1)
:,i ≥ 0;

α
(k)
U,i if (i, k) /∈ SL, k ̸= 0,Ω

(k+1)
j,: W

(k+1)
:,i < 0;

1 if (i, k) /∈ SL, k = 0;

0 if (i, k) ∈ SL.

∆
(k)
i,j =


β
(k)
U,i if (i, k) /∈ SU , k ̸= m,Λ

(k+1)
j,: W

(k+1)
:,i ≥ 0;

β
(k)
L,i if (i, k) /∈ SU , k ̸= m,Λ

(k+1)
j,: W

(k+1)
:,i < 0;

0 if (i, k) /∈ SU , k = m;
u(k) if(i, k) ∈ SU .

Θ
(k)
i,j =


β
(k)
L,i if (i, k) /∈ SL, k ̸= m,Ω

(k+1)
j,: W

(k+1)
:,i ≥ 0;

β
(k)
U,i if (i, k) /∈ SL, k ̸= m,Ω

(k+1)
j,: W

(k+1)
:,i < 0;

0 if (i, k) /∈ SL, k = m;

l(k) if(i, k) ∈ SL.
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This is exactly the form described in Appendix D, where SL and SU are chosen to be the sets of
neurons whose equivalent coefficient interval spans zero. Without this modification, the equivalent
weights and biases of such neurons in the original formulation would be undefined. We now have
bounds on the output of the neural network for which all operations are well-defined in interval
arithmetic.

Replacing all operations in the computation of the equivalent weight terms by their interval arithmetic
counterparts, we can compute sound, though over-approximated, intervals over Λ(0:m) and Ω(0:m)

which satisfy

Λ(k) ∈ Λ(k) ∀W (1:m) ∈W (1:m), b(1:m) ∈ b(1:m),

Ω(k) ∈ Ω(k) ∀W (1:m) ∈W (1:m), b(1:m) ∈ b(1:m).

This is trivially true by the definitions of the interval arithmetic operations as given in Appendix C.

Turning to the upper bound (though analagous arguments hold for the lower bound), we have

fU
j

(
x,Λ(0:m),∆(1:m), b(1:m)

)
= Λ

(0)
j,: x+

m∑
k=1

Λ
(k)
j,:

(
b(k) +∆

(k)
:,j

)
where Λ(0:m) are functions of the weights and biases of the network and ∆(1:m) are constants that
depend on the bounds on the intermediate layers of the network. Thus, given parameter intervals
b(k),W (k), the following result holds

fU
j

(
x,Λ(0:m),∆(1:m), b(1:m)

)
≤ max

{
fU
j

(
x,Λ(0:m),∆(1:m), b(1:m)

)
| W (1:m) ∈W (1:m)

b(1:m) ∈ b(1:m)

}
≤ max

{
fU
j

(
x,Λ(0:m),∆(1:m), b(1:m)

)
| Λ(0:m) ∈ Λ(0:m)

b(1:m) ∈ b(1:m)

}
for any set of intervals Λ(0:m) that satisfy {Λ(k) |W (1:m) ∈W (1:m)} ⊆ Λ(k). Since our intervals
Λ(0:m) computed via interval arithmetic satisfy this property, we have that any valid bound on
this maximization problem constitutes a bound on the output of the neural network fj(x) for any
W (1:m) ∈W (1:m) and b(1:m) ∈ b(1:m).

J EXPERIMENTAL SET-UP AND ADDITIONAL RESULTS

This section details the datasets and hyper-parameters used for the experiments detailed in Section 4.
All experiments were run on a server equipped with 2x AMD EPYC 9334 CPUs and 2x NVIDIA
L40 GPUs using an implementation of Algorithm 1 written in Python using Pytorch.

Table 1 shows a run-time comparison of our implementation of Algorithm 1 with (un-certified)
training in Pytorch. We observe that training using Abstract Gradient Training typically incurs a
modest additional cost per iteration when compared to standard training.

Time per iteration (seconds)
Dataset Abstract gradient training Un-certified training
UCI House-electric 0.25 0.12
MNIST (inc. PCA projection) 1.6 1.1
OCT-MNIST 0.96 0.10
Udacity Self-Driving 53 42

Table 1: Comparison of the run-time of AGT and standard model training in Pytorch.

Table 2 details the datasets along with the number of epochs, learning rate (α), decay rate (η) and
batch size (b) used for each. We note that a standard learning rate decay of the form (αn = α/(1+ηn)
was applied during training. In the case of fine-tuning both OCT-MNIST and PilotNet, each batch
consisted of a mix 70% ‘clean’ data previously seen during pre-training and 30% new, potentially
poisoned, fine-tuning data.
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Dataset #Samples #Features #Epochs α η b
UCI House-electric 2049280 11 1 0.02 0.2 10000
MNIST 60000 784 3 5.0 1.0 60000
OCT-MNIST 97477 784 2 0.05 5.0 6000
Udacity Self-Driving 31573 39600 2 0.25 10.0 10000

Table 2: Datasets and Hyperparameter Settings

J.1 COMPARISON WITH DEEP PARTITION AGGREGATION

As discussed in Appendix A, existing approaches seeking certifiable robustness to data poisoning rely
on partitioning the dataset and training large ensemble models. Figure 9 compares the guarantees
provided by Abstract Gradient Training to those of a popular ensemble method, (Self-Supervised)-
Deep Partition Aggregation (SS-DPA) (Levine & Feizi, 2020).

SS-DPA demonstrates both higher nominal and certified accuracies than AGT on the MNIST dataset.
However, the ensemble approach is specifically designed to be robust to data poisoning attacks. On
the other hand, AGT focuses on certifying an existing training algorithm by analyzing the sensitivity
of standard training pipelines to data poisoning.

Additionally, our experiments show that AGT incurs a run-time cost of approximately 2-4 times
standard training. In contrast, SS-DPA requires training an ensemble of thousands of classifiers,
demanding significant data and computational costs. Finally, we highlight once again that AGT is
complementary to ensemble approaches, and future works may seek to combine the two.
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Figure 9: Comparison of Certified Accuracy on the MNIST dataset under a label flipping attack. Left:
Certified Accuracy using AGT for a variety of clipping levels κ. Right: Certified Accuracy using
SS-DPA for ensembles of size k = 3000 and k = 1200. Figure reproduced from Levine & Feizi
(2020).
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