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Abstract

Flow-based generative models have gained popularity for image generation and
editing. For instruction-based image editing, it is critical to ensure that modifi-
cations are confined to the targeted regions. Yet existing methods often fail to
maintain consistency in non-targeted regions between the original / edited images.
Our primary contribution is to identify the cause of this limitation as the error
accumulation across individual editing steps and to address it by incorporating the
historical editing trajectory. Specifically, we formulate image editing as a control
problem and leverage the Kalman filter to integrate the historical editing trajectory.
Our proposed algorithm, dubbed Kalman-Edit, reuses early-stage details from the
historical trajectory to enhance the structural consistency of the editing results. To
speed up editing, we introduce a shortcut technique based on approximate vector
field velocity estimation. Extensive experiments on several datasets demonstrate
its superior performance compared to previous state-of-the-art methods.

1 Introduction

Diffusion models [44, 47, 17] have revolutionized the field of image and video generation, bringing
unprecedented advancements. The recent development of the Diffusion Transformer [39] has enabled
current diffusion-based models to scale up their parameters, achieving a higher level of generative
capability. Notable works such as Stable Diffusion 3 [10] and Sora [5] demonstrate the remarkable
potential of diffusion models in generating complex and intricate scenarios in both images and
videos. Furthermore, researchers have explored the potential of diffusion models in editing tasks.
For instance, DDIM inversion [45] progressively matches the target image distribution back to the
original latent space, allowing for the generation of edited images by incorporating new prompt
conditions. Additionally, some studies have modified attention maps [6, 18, 14] during the generation
process to directly alter specific characteristics of objects. More recently, efforts have been made
to integrate pretrained modules for more precise editing. For example, existing work [29] utilizes
SAM [25] to extract specific regions requiring modification. Nevertheless, many diffusion-based
editing methods still face challenges related to imprecise editing, primarily due to the non-linear
nature of the generation trajectory.

Rectified flow [30, 31, 2], a special class of diffusion models, transforms random noise into the target
distribution by linear interpolation between the two distributions. These models achieve distribution
matching by constructing a velocity field, resulting in an efficient trajectory. Recent advancements
have extended rectified flow models to image editing tasks. However, existing methods often struggle
to balance structural consistency and editing quality effectively. For instance, Wang et al. [53] employ
a new sampler to achieve more precise inversion and freeze specific attention values to preserve the
overall semantics of edited images. While this approach maintains structural consistency, it sacrifices
editing flexibility, as we will demonstrate later. Similarly, Rout et al. [43] utilize Linear Quadratic
Regulator (LQR) control [21] to guide the editing process, and Kulikov et al. [27] propose using
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Figure 1: Conceptual illustration of a previously-developed controller-based method [43] (left) and our
method (right). xs represents original image, while x̂t and xt represent edited images. The controller-
based method derives an optimal control strategy for different stages of the generation process.
However, as illustrated in the figure for xleft, excessive control leads to failed edits, whereas xright
demonstrates that insufficient control results in significant structural inconsistencies. Additionally,
xmid reveals that moderate control intensity produces ambiguous image semantics. Building on
these key observations, we introduce Kalman control to further suppress irrelevant semantics while
maintaining structural consistency. We also propose a shortcut estimation to eliminate the need for a
second inversion process. The xt figure underscores the effectiveness of our approach.

an estimated velocity transform to directly map original images to the target space. However, both
methods exhibit limitations in editing quality, highlighting the need for further refinement in this area.

The primary technical contribution of this work lies in pinpointing the cause of inconsistency in
image editing (i.e., notable change over non-targeted image areas) as the accumulation of errors
(i.e., small inaccuracies can propagate forward and lead to significant deviations in the output) over
individual editing steps and mitigating it by integrating the historical editing trajectory. We propose
Kalman-Edit (along with its accelerated variant Kalman-Edit∗), a method that addresses the Linear
Quadratic Gaussian (LQG) problem [23] in optimal control theory. Our approach assumes that each
velocity step in the LQG process incorporates a noise term, which can be estimated and reduced
through the integration of a Kalman filter [22]. Specifically, we design an inversion algorithm that
transforms the original image latent into a mixed (i.e., encapsulates features from both the original
and edited images). This mixed latent corresponds to a semantic blend between the source and target
prompts. Subsequently, we invert the mixed latent and apply the Kalman filter to preserve structural
information in the background. Our contributions are summarized as follows: (1) We introduce
the Kalman filter approach to controller-based image editing. (2) Based on observations of direct
LQR control, we propose a two-stage method that better unleashes the potential of Kalman control
and achieves more flexible control. (3) Through experiments, our method shows high structural
consistency and good editing flexibility on various editing tasks.

2 Related work

Image editing with diffusion models. Following advances of diffusion models [44, 47, 17], remark-
able progress has been made in image editing via diffusion model inversion [46]. To address the
time-consuming inversion computations and compounding estimation errors, various sampling and es-
timation strategies are developed [33, 9, 15, 35, 52, 36, 54, 20]. In addition, several work [42, 24, 28]
introduce optimization methods to achieve better editing quality. Alternative editing algorithms
include attention map controls [16, 50] and masking strategies [37, 8]. However, their editing quality
and efficiency remain to be improved.
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Image editing with rectified flow. Rectified flow [30, 31, 2] learns linear interpolation between
source and target distributions to enable more efficient sampling of diffusion models. In addition to
significant advances in rectified flow-based generation models [11, 4], its potential in image editing is
gaining increasing attention [27, 38, 53, 43]. Kulikov et al. [27] and Patel et al. [38] take derivatives
to produce more precise edits. Wang et al. [53] share attention scores in Transformer blocks to
improve editing consistency. Rout et al. [43] use optimal controller to guide the generation trajectory.
However, these efforts have not yet achieved a good balance between editing quality and consistency,
as evidenced in our experiments later.

Image editing with control theory. Inspired by the connections between optimal control and
SDEs [51, 48, 12], various sampling strategies in control theory are introduced to diffusion models
for more controllable generation. Koo et al. [26] apply posterior sampling strategy for linear inverse
problems. Rout et al. [43] utilize conditional sampling strategy for optimal control in the vector field.
Our method advances this line of study with Kalman filter for more precise image editing.

3 Methodology

3.1 Preliminaries

Rectified flow. Flow-based generative models [49, 55, 30] aim to learn a probability path between
the source distribution q0 and the target distribution q1 with a velocity field v. The flow starting from
x0 ∼ q0 to x1 ∼ q1 is formulated as the following ordinary differential equation (ODE):

dxt

dt
= V (xt, t), (1)

where the velocity function V takes the timestep t ∈ [0, 1] and the latent variable xt as input. Rectified
flow [30, 31, 2] is a special class of flow-based models defined by the linear interpolation between
start point x0 and endpoint x1:

xt = (1− t)x0 + tx1. (2)

Note that rectified flow is empirically able to generate high-resolution images with fewer sampling
steps [32, 11], making it prevailing in image generation tasks.

Editing with rectified flow. To edit a given image xs with a source prompt cs and a target prompt
ct, a straightforward approach is to perform ODE inversion using Eq. (1). Let V (xt, t, c) denote the
velocity function conditioned on prompt c, then editing follows a two-stage procedure:

Inversion:
dxs

t

dt
= V (xs

t, t, cs),

Generation:
dxt

t

dt
= V (xt

t, t, ct),

(3)

where we first invert the image xs to structured noise x0, and then perform sampling with target
prompt ct for generation. However, directly applying this could lead to a significant deviation from
the desired result (see x̂t in Fig. 1).

Optimal control. To improve editing controllability, an effective approach is to formulate it as
optimal control [43]. Both inversion and generation processes can be viewed as a continuous-time
linear system defined over t in [0, 1].

dxt

dt
= Axt +But, (4)

where xt represents the state of the system, u serves as the controller of the system, and A,B are
coefficient matrices. In optimal control theory, the objective is to determine an optimal controller
ut that guides the drift path to minimize the energy cost. A choice of the energy cost is a quadratic
function, which corresponds to the Linear Quadratic Regulator (LQR) problem [21] as follows:

J1 = x⊤
1 Fx1 +

1∫
0

(
x⊤
t Qxt + u⊤

t Rut

)
dt, (5)
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where F , Q and R are coefficient matrices of the system. As shown in previous work [43], solving
the problem for rectified flow in Eq. (2) produces the optimal controller:

ut =
xs − xt

1− t
, (6)

where xs represents the original image for reference. Although this controller reduces the overall error
during editing, it fails to preserve detail consistency for background regions, as illustrated in Fig. 1.

3.2 Harnessing history with Kalman filter

To improve the consistency between the edited and original images, we make a key observation
that the history sequence in inversion can effectively rectify the generation trajectory. As illustrated
in Fig. 1, applying control signals to latents at different steps results in distinct semantic and detail-
level changes. A comparison between xmid and xright reveals that latents from later generation steps
are particularly effective in recovering fine details of the original image. Additionally, we observe
that early inversion latents also contribute significantly to restoring structural information. To fully
leverage these latents for improved consistency, it is essential to maintain a sequence of observed
latents to guide and refine the editing process. This approach naturally aligns with Kalman control,
where observations are used to refine estimations and achieve more accurate outcomes.

Inspired by optimal control theory, we reformulate the editing process as a Linear Quadratic Gaussian
(LQG) problem [23] and introduce the Kalman control method [22]. To be specific, in LQG control
theory, the system’s evolution at each timestep includes noise terms, which can be mitigated by
refining the trajectory using Kalman filter, i.e.,

dxt

dt
= Axt +But + wt, yt = Hxt + σt, (7)

where yt represents the measurement sequence, A, B and H are the coefficient matrices of the
system, while wt and σt denote the noise terms of system state estimations. With the application of
the Kalman filter, the total cost function to be minimized is given by:

J2 = E

x⊤
1 Fx1 +

1∫
0

(
x⊤
t Qxt + u⊤

t Rut

)
dt

 , (8)

where E refers to the expectation of the following terms. Importantly, expectation is necessary in this
context, as our goal is to mitigate the impact of noise terms when minimizing the cost function J2.
To accurately estimate the expectation in J2, we utilize the following Kalman filter equations:

Kk = Pk−1H
T (HPk−1H

T + T )−1,

xk = Axk−1 +Buk +Kk(yk −Hxk−1),

Pk = (I −KkH)Pk−1.

(9)

In specific, given the covariance matrix Pk−1, state xk−1, noise T , controller uk and measurement
yk, it first computes the Kalman gain Kk. These values are then used recursively to obtain the
updated terms xk and Pk. Consequently, all the filtered latents xk can be computed using these
equations. Here, the noise term is estimated and corrected by multiplying the Kalman gain Kk

with the innovation term (yk −Hxk−1). Through proper derivation and analysis, we arrive at the
following proposition (see Appendix A for details):
Proposition 1. With proper initialization of system coefficients (P0, H , T ), the Kalman control
process shown in Eq. (9) converges.

As shown in Fig. 1, achieving both high generation quality and structural consistency presents a
significant challenge in current controller-based editing methods. Addressing this issue requires
establishing an effective measurement sequence. To sufficiently incorporate historical information,
we carefully construct the measurement sequence {yk}lk=1 of length l, integrating latents from the
inversion process:

yk = Inv(xs, k), 1 <= k <= l, (10)
where Inv(x, k) denotes the kth latent obtained during the inversion process described in Eq. (3), and
the resulting measurement sequence {yk}lk=1 are incorporated in the computation of the Kalman
filter to control the generation process.
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Algorithm 1 Kalman-Edit and Kalman-Edit∗

Input: original image xs, total step N , source prompt cs, target prompt ct, Inversion function Inv(·, ·)
# Stage 1: editing with optimal controller
xorig1 ← Inv(xs, N)
Generate xmid from xorig1 with controller in Eq. (6)
# Stage 2: editing with Kalman filter
if Kalman-Edit then

xorig2 ← Inv(xmid, N)
else if Kalman-Edit∗ then

xorig2 ← xorig1 + xmid − xs ▷ shortcut in Section 3.4
Compute measurement {yk}lk=1 according to Eq. (11)
Generate xt from xorig2 with Kalman filter in Eq. (12)

Output: xt

Following this formulation, the entire Kalman control process proceeds as follows: First, we construct
the measurement sequence using Eq. (10). Next, we iteratively update the Kalman gain Kk and
compute the corresponding innovation term yk − Hxk−1 to regulate the generation sequence xk

using Eq. (9). This way, the generation process is conditioned on measurement from the original
image before editing, thus preserving more details.

3.3 Proposed algorithm: Kalman-Edit

Applying Kalman control to flow-based editing presents two primary challenges: (1) As shown
in Fig. 1, determining the appropriate timesteps for applying the Kalman filter is challenging. If too
many timesteps undergo the filtering process, editability may be compromised, leading to edited
results that fail to faithfully reflect the target prompt. (2) Artifacts and blurring often arise when
directly applying Kalman control through a single inversion and forward process. This occurs because
the filtering equations can inadvertently guide the trajectory toward an intermediate state between the
original image distribution and the target distribution. Such a middle state often corresponds to poor
image quality, resulting in undesirable visual artifacts.

Two-stage image editing. To address both challenges, we propose a two-stage algorithm for
generating high-quality edited images using Kalman control, as outlined in Algorithm 1. In the
first stage, our goal is to generate an intermediate latent that encapsulates the semantics of both the
original and target prompts. Next, we generate the intermediate latent xmid by applying the controller
at appropriate timesteps. In the second stage, we first invert xmid to obtain the second original latent
xorig2. We then apply the Kalman filter, as described in Eq. (9) to the generation process in order
to filter out undesired semantic information irrelevant to the target prompt, and reintroduce history
information from the original image xs. This approach results in a target image xt that retains the
structural information of xs while adhering to the target prompt ct, as desired.

We further adapt the measurement sequence construction to the two-stage editing scheme. Since
the original image xs and edited intermediate image xmid both contain desired information (i.e., the
original detail and target semantics), we curate the measurement sequence by collecting inversion
trajectories from both images xs and xmid. Specifically, we introduce a hyperparameter δ and define
the measurement sequences {yk}δ−1

k=1 and {yk}lk=δ to capture structural information from the first and
second inversion processes, respectively. They are computed by the following inversion processes:

yk = Inv(xs, k), 1 <= k <= δ − 1,

yk = Inv(xmid, k), δ <= k <= l.
(11)

By incorporating the two inversion sequences and integrating them into our measurement sequence,
it enables the recovery of diverse structural and semantic information through Kalman control. Note
that this construction scheme is also compatible with our accelerated version without two inversion
passes (Section 3.4), in which case we simply set the δ value to l + 1.

Kalman filter phases. Another crucial consideration in our approach is selecting the appropriate
timesteps for applying both the controller and the Kalman filter effectively. A key observation is
that rectified flow models exhibit behavior similar to traditional diffusion models. As noted in prior
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Table 1: Quantitative comparison on SFHQ datasets among flow-based editing models. See the main
text for the definitions of the performance metrics. The highest value in each column is highlighted
in bold.

Face Rec. ↓ CLIP-I ↑ LPIPS ↓ CLIP-T ↑ DreamSim ↓

RF-Edit 0.4051 0.8984 0.1562 0.2910 0.1591
RF-Inversion 0.4325 0.8927 0.1720 0.3012 0.1889
FlowEdit 0.4856 0.8579 0.1687 0.2905 0.2375
FlowChef 0.4013 0.8769 0.1401 0.2832 0.1487

Kalman-Edit 0.3958 0.9167 0.1332 0.2921 0.1408
Kalman-Edit* 0.4696 0.8871 0.1892 0.2936 0.2227

Table 2: Quantitative comparison on HQ datasets among flow-based editing models.
CLIP-T ↑ CLIP-I ↑ LPIPS ↓ DINO ↑ DreamSim ↓

RF-Edit 0.1842 0.9141 0.2383 0.8197 0.1492
RF-Inversion 0.1825 0.9033 0.3074 0.7963 0.1662
FlowEdit 0.1877 0.8813 0.2846 0.7467 0.2238
FlowChef 0.1928 0.9023 0.2925 0.8053 0.1537

Kalman-Edit 0.1943 0.9062 0.2345 0.7929 0.1353
Kalman-Edit* 0.1870 0.8696 0.3615 0.7123 0.2276

work [56], image generation in diffusion models progresses through distinct phases: the early stages
primarily establish semantic content, while finer details are refined in the later stages. This pattern is
also evident in rectified flow models. Applying the controller across too many timesteps during the
refinement phase would overly constrain the output distribution, making it too similar to the original
image and thereby limiting effective editing. To ensure high-quality editing, we apply the controller
primarily during the early phase of generation when semantic information is being formed. Likewise,
to maximize the effectiveness of Kalman filtering, we apply it during the refinement stage, where it
can best aid in recovering structural details.

Implementation for flow models. In the above derivation we consider the evolution of xk. However,
flow-based generative models are often parameterized by velocity instead of x-prediction. Therefore,
in practice, we apply the Kalman control updates in the following manner:

xtk+1
= xtk + (tk+1 − tk)v

′
tk
,

v′tk = µvtk + λutk + (1− µ− λ)Kk(yk −Hxtk).
(12)

where vtk = V (xtk , tk) is the predicted velocity, utk is the optimal controller given by Eq. (6), and µ
and λ are coefficients balancing their contributions. See Algorithm 2 for complete update details.

3.4 Kalman-Edit∗: acceleration with shortcut

To avoid the computational cost of performing the inversion process twice, we accelerate the esti-
mation of xorig2 by leveraging the parallelogram law of vectors. This approach is justified in many
editing scenarios, such as local area modifications, where the difference between xmid and xs is
minimal. Under the assumption that both source and target latents are normalized and exhibit similar
variance, a first-order approximation in the vector field yields a sufficiently accurate estimate of xorig2:

xorig2 = xorig1 + (xmid − xs). (13)

This avoids the second inversion process and turns out to be efficient through experiments.

4 Experiments

4.1 Evaluation protocols

Datasets. The experimental evaluation is conducted across four widely used datasets: SFHQ [3],
HQ [19], ZONE [29] and DIV2K [1]. The SFHQ dataset consists of 425,000 high-quality human
facial images. The HQ dataset2 is a synthetic editing benchmark containing approximately 200,000

2https://thefllood.github.io/HQEdit_web/
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Table 3: Quantitative evaluations on ZONE and DIV2K datasets. See main text for more details about
the performance metrics.

CLIP-T ↑ CLIP-I ↑ LPIPS ↓ DINO ↑ DreamSim ↓

SDEdit 0.2754 0.9264 0.1908 0.8547 0.1148
P2P 0.2773 0.9209 0.1568 0.8186 0.1519
MasaCtrl 0.3103 0.9179 0.1580 0.8397 0.1635
DDPM-Inv 0.2847 0.9063 0.1734 0.8215 0.1742

RF-Edit 0.2964 0.8926 0.2039 0.7986 0.1776
RF-Inversion 0.2844 0.8919 0.2491 0.7974 0.1536
FlowEdit 0.3096 0.8687 0.2269 0.7671 0.2319
FlowChef 0.3025 0.8831 0.2563 0.7456 0.2471

Kalman-Edit 0.2957 0.9492 0.1407 0.9141 0.0793
Kalman-Edit* 0.3220 0.8986 0.2488 0.8237 0.1454

Table 4: Comparison of CLIP-I (left) and LPIPS scores(right) for different Kalman filter strengths
and steps evaluated on the ZONE dataset.

Filter strength / Added steps 15-18 15-22 15-27

0.1 0.8770 0.9219 0.9346
0.2 0.9043 0.9282 0.9226
0.3 0.9014 0.8921 0.9079

Filter strength / Added steps 15-18 15-22 15-27

0.1 0.2433 0.2035 0.1487
0.2 0.2325 0.1944 0.1521
0.3 0.2284 0.2008 0.1886

images generated through DALL-E 3 and GPT-4V. The ZONE dataset features 100 images designed
for object insertion, editing, and removal tasks. DIV2K serves as a standard benchmark for super-
resolution tasks, comprising 1,000 real-world images. Due to practical computational constraints, we
evaluate our approach on the subsets of these benchmarks, including 1,200 images from SFHQ, 320
images from HQ, and 105 images from ZONE and DIV2K. Following the setting of Rout et al. [43],
we employ an instruction prompt that adds glasses to all face images in the SFHQ dataset.

Metrics. Six metrics are employed to evaluate both editing quality and consistency. For editing
quality, CLIP-T [40] is adopted to measure the semantic adherence between edited image and input
prompts. Meanwhile, we also use Face Rec. metric to quantify identity similarity on the face-specific
SFHQ dataset. Regarding editing consistency, CLIP-I and DINO [7] measure high-level semantic
similarity, while LPIPS [57] captures low-level similarity such as pixel-level details. Moreover,
Dreamsim [13] is responsible for evaluating mid-level similarity, including image layout.

Baselines. Our method is compared against eight image editing baselines spanning rectified flow
and diffusion models. For rectified flow-based editing, we consider RF-Edit [53], RF-Inversion [43],
FlowEdit [27] and FlowChef [38]. For diffusion-based editing counterparts, we compare against
SDEdit [34], P2P [16], MasaCtrl [6] and DDPM-Inv [18]. To ensure a fair comparison, we follow the
original recommended hyperparameter settings (e.g., where to add the controller) for all baselines.

Implementation details. For flow-based editing, we use FLUX.1 dev [4] with N = 28 sampling
steps. For diffusion-based editing, we use Stable Diffusion 1.4 [41] with N = 50 sampling steps.
The measurement length l is set to 14, and δ is 6 by default. More details are provided in Appendix B.

4.2 Experimental results

Quantitative results. As demonstrated in Table 1 and Table 2, our method maintains high facial
similarity after editing on the SFHQ dataset and effectively adheres to complex editing prompts on
the HQ dataset. The basic version of Kalman-Edit demonstrates strong performance, achieving state-
of-the-art results in most metrics. And Kalman-Edit∗ (the accelerated variant) produces comparable
results on SFHQ and HQ datasets. This discrepancy can be attributed to the fact that Kalman-Edit∗
directly estimates the second original latent, which may result in the loss of low-level structural
information. As shown in Table 3, Kalman-Edit and Kalman-Edit∗ also outperform the four baseline
methods across most metrics on ZONE and DIV2K datasets, showing the effectiveness of our method.

Ablation analysis. In this section, we conduct ablation experiments to determine the optimal filter
strength and steps at which the filter is applied, as well as to highlight the importance of Kalman
control in structural preservation. Following previous research [56], we observe that the generation
process of rectified flow can also be divided into two stages: semantic formation and refinement.
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Figure 2: Comparison of structure preservation and editing quality on ZONE and DIV2K dataset.
The top three rows demonstrate that our method effectively preserves local details, ensuring strong
structural consistency. Meanwhile, the bottom two rows highlight its ability to adhere to the target
prompt, accurately incorporating elements such as flowers and brick walls. They illustrate that our
method achieves both better structure preservation and editing quality. Better viewing when enlarged.

Table 5: Ablation study of Kalman filter in LQR-based control method on ZONE dataset.
Metrics CLIP-T ↑ CLIP-I ↑ LPIPS ↓

w/o Kalman filter 0.2952 0.8784 0.2695
w/ Kalman filter 0.2961 0.9346 0.1487

Since the Kalman filter is designed to refine structural details, we apply Kalman control during the
refinement stage, which corresponds to the latter half of the generation steps. As shown in Tables 4
and 5, the best CLIP-I and LPIPS scores are achieved when using a relatively small filter strength
combined with a large number of added steps. Also, from each row of Table 4 we conclude that more
steps of Kalman control help recover more pixel-level details. From each column of Table 4, we
observe that small strength helps to generate structural details more efficiently and smoothly, while
large strength causes significant performance drop. This indicates that a longer measurement sequence
enhances structural details, while lower filter strength steers the trajectory toward a higher-quality
distribution. Overall, our method is effective across a fairly wide range of hyperparameters.

To validate the effectiveness of our approach, we conduct ablation experiments to assess the impact
of Kalman control. Specifically, we compare our method against the RF-Inversion baseline without
the Kalman control. As shown in Table 5, our method achieves higher CLIP-I and LPIPS scores,
indicating superior structural consistency. Furthermore, the CLIP-T metric confirms that our approach
maintains high editing quality, demonstrating its advantages in both structure and semantics.

Qualitative results. Our qualitative comparison results are presented in Figures 2 and 3, showcasing
both real-world and synthetic images to demonstrate our method’s ability to maintain high structural
consistency and editing quality. In particular, Fig. 2 compares the structural preservation capabilities
of our method against baseline approaches. As shown, our method retains more local details than
the baselines. For instance, in the second row of Fig. 2, only our method successfully recovers the
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Original Image RF-Inversion FlowEdit Ours Original Image RF-Inversion FlowEdit Ours

Figure 3: Qualitative results obtained using human face images from SFHQ dataset. The first two
rows are edited with target prompt “A person wearing glasses" and the last row is edited with target
prompt “A person with beard". The edited results are compared with baseline methods, demonstrating
our approach’s superior ability to preserve the structural details of human faces (i.e., our method
produces edited images of higher fidelity, recovering facial features more accurately than baseline
approaches).

traffic cones on the road. Similarly, in the last row, our edited results accurately incorporate multiple
elements specified in the target prompt, demonstrating our method’s flexibility in handling longer
and more complex prompts. In contrast, baseline methods struggle to recover structural details while
maintaining overall editing quality. Compared to the baselines, our method significantly outperforms
in preserving the structure of the original images while effectively editing the desired areas. Further-
more, to demonstrate the effectiveness of our method in preserving structural information across
various image structures, we present editing results on human faces in Fig. 3. Specifically, we first
modify the images by adding glasses to each face, following the approach in [43]. To further validate
the generality of our method, we then edit the images by adding beards to each face. The edited
results maintain a high degree of structural similarity to the original faces, highlighting our method’s
ability to preserve facial structural consistency. For additional qualitative results on tasks such as
style transfer and scene editing, please refer to Appendix D.

Figure 4: Running time comparison of different
flow-based methods highlighting efficiency.

Computational efficiency. Figure 4 compares
the time usage of our approach against flow-
based editing methods. Since RF-Edit takes
much time to load models, we report the time
cost from the starting point of inversion to the
time editing is completed to ensure the fairness.
From the comparison, we observe that FlowChef
has the fastest editing speed. Our proposed
Kalman-Edit∗ is slower than RF-Inversion and
FlowChef, but faster than all other baselines.
This indicates that our algorithm strikes a com-
petitive balance between editing performance and efficiency.

Failure cases. For tasks such as object removal, our method requires hyperparameter tuning to
achieve optimal results. This necessity arises from our design that leverages historical inversion
latents as the measurement sequence to rectify the final generation process. As a consequence, the
original details and residual artifacts from the original image tend to appear in edited images at the
default control strength settings, as illustrated by the boat example in Appendix G.

Style transfer and Scene editing. To further evaluate our method on a wider range of tasks,
such as style transfer and scene editing, we present additional qualitative results. As illustrated in
Fig. 5, our method demonstrates strong capability in transforming an old rusty room with a cement
floor into a simple and elegant room with a wooden floor, converting a castle into a Disney-style
cartoon scene, transforming a house into a white church with stained-glass windows, and replacing
a beach background with snow-covered mountains. Moreover, our method effectively preserves
structural consistency, maintaining both local details and the overall spatial layout. For example,
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Change the castle to Disney cartoon style and add a bridgeChange the beach in the background to a snow mountain

[Simple and elegant style] an empty room with wooden floor and a view of the [impressionism beach]

[Stained glass window of] a white [cartoon] church sits on a hill in a field

Figure 5: High-resolution qualitative results of style transfer and scene editing tasks. The left image
is the original input and the right one is the edited result. As illustrated above, our method achieves
precise prompt adherence and delivers high-quality editing outcomes.

the edited result in the top case of Fig. 5 retains the room’s geometric structure, while in the car
case, it accurately preserves the road direction and car position. These results demonstrate that our
method can successfully handle a broad variety of complex tasks and produce high-quality, structure-
preserving outputs. Additional discussions on broader tasks and high-resolution visualization results
are provided in Appendix D and Appendix E.

5 Conclusion

In this paper, we propose Kalman-Edit, a training-free flow-based image editing method based
on optimal control theory. Existing rectified flow editing methods struggle to balance structural
consistency and editing quality. To address this challenge, we derive fundamental equations from
Linear Quadratic Gaussian (LQG) control, effectively utilizing history information in the editing
trajectory with a Kalman filter-based algorithm. Through extensive experiments, we demonstrate that
Kalman-Edit achieves superior structural consistency while maintaining high editing quality.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
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versions (if applicable).
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6. Experimental setting/details
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The datasets we use are large, and conducting a comprehensive statistical
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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error rates).
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information of compute resources in Appendix B.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
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9. Code of ethics
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Answer: [Yes]

Justification: Our research follows the NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts in Appendix G.
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• The answer NA means that there is no societal impact of the work performed.
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We would include safeguards in our released data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited all relevant works and follow the public licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Additional theoretical results: Proof of convergence for Kalman control
iteration

We show that the error covariance sequence Pk decreases at each iteration, ensuring convergence.
According to the Kalman iteration in Eq. (9), the update rule is given by:

Pk = (I −KkH)Pk−1, (14)

Kk = Pk−1H
TS−1

k , (15)

Sk = HPk−1H
T + T. (16)

Substituting Eq. (15) into Eq. (14), we obtain:

Pk = Pk−1 − Pk−1H
TS−1

k HPk−1. (17)

Defining M = Pk−1H
TS−1

k HPk−1, we need to show M is positive semidefinite to conclude
Pk ⪯ Pk−1.

Assuming P0 is positive definite and Pk−1 remains positive definite, and also that H is positive
semidefinite and T is positive definite with proper initialization, we first show that S−1

k is positive
definite. According to Eq. (16), since Pk−1 is positive definite, HPk−1H

T is positive semidefinite.
As T is positive definite, their sum Sk is also positive definite, implying S−1

k is positive definite.

To establish M ⪰ 0, for any nonzero vector x, we compute

xTMx = xTPk−1H
TS−1

k HPk−1x. (18)

Letting y = HPk−1x, this simplifies to

xTMx = yTS−1
k y. (19)

Since S−1
k is positive definite, yTS−1

k y ≥ 0, proving M ⪰ 0. This guarantees Pk ⪯ Pk−1, showing
that the error covariance sequence decreases. If the system is stable, Pk converges to a steady-state
value.

Table 6: Experiment hyperparameters.
Steps Base model CFG scale Control strength

SDEdit 50 SD 1.4 4.0 -
P2P 50 SD 1.4 7.5 -
MasaCtrl 50 SD 1.4 7.5 -
DDPM-Inv 50 SD 1.4 9 -
RF-Edit 28 FLUX.1 dev 2 -
RF-Inversion 28 FLUX.1 dev 3.5 (0.7, 0.95)
FlowEdit 28 FLUX.1 dev (1.5,5.5) -
FlowChef 28 FLUX.1 dev 2 -
Ours 28 FLUX.1 dev 3.5 0.95

B Additional details for experiment settings

First, we show the detailed hyperparameters setting for all baseline methods in Table 6. As demon-
strated, for diffusion-based editing methods SDEdit [34] and P2P [16], we test both of them with
50 sampling steps and use StabeDiffusion 1.4 [41] as the base model. For all flow-based editing
methods, we test all of them with 28 steps and use FLUX.1 dev [4] as base model. The timesteps are
determined by Euler discrete scheduler. We also summarize the CFG scale and control strength in the
table. These CFG values follow the default settings recommended in each baseline’s implementation.

Next, we explain the hyperparameter settings for our proposed method. We set the steps to add the
Kalman filter l to 14, which is half of the total steps. And we set the steps L to be the later half steps of
the generation (i.e., steps 15 to 28). The hyperparameter δ determining the two types of measurement
sequences is 6 by default. The coefficient hyperparameters µ and λ are set to 0.7 and 0.1 by default.
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We also set the matrices A, B, and H in Eq. (9) to be identity matrices, which is computationally
efficient and has proven to be effective in experiments. We also set the initial covariance matrix P0 to
be an identity matrix. The noise term is approximated by an identity matrix multiplied by a small
coefficient 0.1 or 0.01. The complete procedure of our algorithm is given in Algorithm 2. All of our
experiments are conducted on a single NVIDIA A40 GPU.

Algorithm 2 Detailed procedure of Kalman-Edit

Input: original image xs, timesteps {ti}Ti=0, source prompt cs, target prompt ct, strength coefficients
{λ}Ti=0 and {µ}Ti=0, step sets S1, S2 for adding controller, and L for adding Kalman filter (with
|L| = l).
Init: xtN ← xs, M ← ∅
/* Phase 1: Backward Denoising with Source Prompt */
for i = N to 1 do

vti ← Vθ(xti , ti, cs)
if ti ∈ S1 then

xti−1
← xti + (ti−1 − ti)

(
λ vti + (1− λ)uti

)
else

xti−1
← xti + (ti−1 − ti) vti

if ti ∈ L then
Add ti to M ▷ Construct measurement sequence {yi}li=0

xorig1 ← xt0

/* Phase 2: Forward Denoising with Target Prompt */
for i = 0 to N − 1 do

vti ← −Vθ(xti , ti, ct)
if ti ∈ S1 then

xti+1
← xti + (ti − ti+1)

(
λ vti + (1− λ)uti

)
else

xti+1
← xti + (ti − ti+1) vti

xmid ← xtN ▷ Middle latent

/* Phase 3: Backward Refinement with Controller S2 */
for i = N to 1 do

vti ← Vθ(xti , ti, cs)
if ti ∈ S2 then

xti−1 ← xti + (ti−1 − ti)
(
λ vti + (1− λ)uti

)
else

xti−1
← xti + (ti−1 − ti) vti

xorig2 ← xt0 ▷ Alternatively, one can use:
xorig2 ← xorig1 + (xmid − xs)

/* Phase 4: Forward Refinement with Target Prompt and Kalman Filter */
for i = 0 to N − 1 do

vti ← −Vθ(xti , ti, ct)
if ti ∈ S2 then

xti+1 ← xti + (ti − ti+1)
(
λ vti + (1− λ)uti

)
else if ti ∈ L then

xti+1 ← xti + (ti − ti+1)
(
µ vti + (1− µ) kti

)
▷ kti : Kalman filter terms (see Eq. (12))

else
xti+1

← xti + (ti − ti+1) vti
Output: edited image xt ← xtN
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C Detailed Kalman-Edit algorithm

The detailed editing algorithm of our approach is presented in Algorithm 2. Phases 1 and 2 correspond
to the first stage, where we construct the measurement sequence, while Phases 3 and 4 make up the
second stage, where Kalman control is applied. Concretely, in Phase 1, we apply ODE inversion
using rectified flow to construct the first part of the measurement sequence, {yi}δ−1

i=0 , from early
inversion latents and obtain xorig1. In Phase 2, we build the second part of the measurement sequence,
{yi}li=δ , using generation latents from later timesteps and acquire xmid. We then compute xorig2 either
via shortcut estimation or a second inversion. In Phase 4, the Kalman filter is applied to produce more
accurate results that align with both the target prompt and the structural integrity of the original image.
For hyperparameters, we define filter strengths {λ}Ti=0 and {µ}Ti=0 to control the guidance strength in
the Kalman control process. We also specify step sets S1 and S2 to indicate where controllers should
be applied, and step set L to identify where the Kalman filter should be used. All hyperparameters
are set to default values but may require tuning for different editing tasks.

D Illustration of more capabilities: Style transfer, Scene editing and large
area modification

We showcase additional capabilities of Kalman-Edit, including style transfer, complex scene editing,
and large-area modifications. Our method effectively adapts images to various styles, edits intricate
backgrounds, and modifies extensive regions within an image. For instance, in Fig. 6, all four cases
demonstrate our method’s capability to edit complex background scenes while producing high-quality
results. Figure 7 presents additional style transfer examples, such as converting a room into a
medieval setting and performing large-area modifications, exemplified by the parrot case. In Fig. 8,
we further highlight another large-area modification involving a giraffe. Moreover, Fig. 9, Fig. 10,
and Fig. 11 illustrate various high-resolution style transfer cases, including transforming a picnic
scene into a cartoon style and rendering a woman in the style of Van Gogh. Overall, these examples
demonstrate the flexibility and effectiveness of our method in handling diverse and complex image
editing tasks.

E Additional qualitative results

We present additional qualitative results, including real-world image edits and diverse editing tasks.
We provide additional examples to further demonstrate the strong structural consistency and high
editing quality achieved by our method. In Fig. 12, we present edited results on real-world images
sampled from the DIV2K dataset. Our method effectively preserves the overall structure in non-target
regions while accurately adhering to the editing prompts. For instance, in the boat insertion example,
the foggy atmosphere is well preserved as a boat is naturally integrated into the scene. Other examples
similarly exhibit high editing fidelity and strong structural consistency. Furthermore, Fig. 13 includes
more diverse editing tasks, such as changing the breed of a dog. These results highlight the versatility
and robustness of our approach in handling various types of image edits. In addition, Fig. 14 presents
ablation studies on the effect of controller placement. The first row of images shows that applying
controllers to early generation steps primarily influences the semantic structure, steering the output
toward the original content (e.g., generating a cat) but missing background details. Conversely, the
second row demonstrates that applying controllers to later steps refines visual details more effectively.
These observations support our understanding of the controller’s impact at different stages and help
guide the selection of hyperparameters in Algorithm 2.

F Discussion of controller-based methods

In this section, we briefly discuss controller-based approaches, which are grounded in optimal control
theory. As noted in [43], such methods can be applied to both diffusion-based and flow-based
generative models (i.e., they can operate on both stochastic differential equations (SDEs) and ordinary
differential equations (ODEs)). With recent advances in flow-based models like Flux, there has
been growing interest in applying control techniques specifically to ODE-based systems. From the
perspective of optimal control theory, ODEs offer more favorable mathematical properties than SDEs,
often enabling the derivation of more effective optimal controllers. For this reason, our proposed
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Change the child to animate style wearing a grey hoodie and blue jeans, studying with books, and add a yellow chair and a teddy 
bear on the floor while maintaining the overall structure of the picture 

Change the castle to Disney cartoon style and add a bridge

Change the beach in the background to a snow mountain

Change the skateboard to a bike, change the scene to a skatepark, and add multiple riders performing tricks in the background while 
maintaining the overall structure of the picture 

Change the city track to a sandy beach environment with many skyscrapers and  birds flying in the background while maintaining the 
overall structure of the picture 

 Change the city street to a racetrack environment, all illuminated by bright lights while maintaining the overall structure of the picture 
 

Change to a rustic wooden table in a medieval-style kitchen with stone walls and antique kitchenware 
while maintaining the overall structure of the picture 

Add an Egyptian hieroglyphic mural with symbols on the wall, a green couch, a wooden coffee table with a vase of 
daisies and a red apple on it while maintaining the overall structure of the picture 

Change to a snowy arctic landscape with icy cliffs, snow-covered trees, and polar bears while maintaining the 
overall structure of the picture 

Original Image RF-EditFlowEdit Ours Original Image RF-EditFlowEdit Ours

Figure 6: Illustration of intricate scene editing. We present complex scene editing cases, such as
adding and modifying multiple room elements in the last-row example, and altering background
scenes from a city track to a sandy beach and from a city street to a racetrack in the second-row
example. Compared with baseline methods, our approach exhibits significantly stronger prompt
adherence. These cases further demonstrate the robustness and versatility of our method in handling
intricate editing tasks.

method adopts a flow-based framework. Nevertheless, similar to other controller-based approaches,
our method can also be extended to diffusion-based models. Kalman-Edit presents a principled
solution for achieving more accurate and consistent image editing through optimal control.

G Broader impact and limitations

Broader impact. While our Kalman-based method advances the quality and consistency of image
editing methods, such techniques should be treated with caution due to their increasing potential for
malicious use. Noteworthy, our method is training-free and does not rely on any private datasets
for evaluation, thereby posing no data privacy concerns or associated negative impacts. To facilitate
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Change the child to animate style wearing a grey hoodie and blue jeans, studying with books, and add a yellow chair and a teddy 
bear on the floor while maintaining the overall structure of the picture 

Change the castle to Disney cartoon style and add a bridge

Change the beach in the background to a snow mountain

Change the skateboard to a bike, change the scene to a skatepark, and add multiple riders performing tricks in the background while 
maintaining the overall structure of the picture 

Change the city track to a sandy beach environment with many skyscrapers and  birds flying in the background while maintaining the 
overall structure of the picture 

 Change the city street to a racetrack environment, all illuminated by bright lights while maintaining the overall structure of the picture 
 

Change to a rustic wooden table in a medieval-style kitchen with stone walls and antique kitchenware 
while maintaining the overall structure of the picture 

Add an Egyptian hieroglyphic mural with symbols on the wall, a green couch, a wooden coffee table with a vase of 
daisies and a red apple on it while maintaining the overall structure of the picture 

Change to a snowy arctic landscape with icy cliffs, snow-covered trees, and polar bears while maintaining the 
overall structure of the picture 

Original Image RF-EditFlowEdit Ours Original Image RF-EditFlowEdit Ours

Figure 7: Illustration of large-area modification. We present examples including room style transfor-
mation (first-row case) and the addition of multiple new elements (second-row case). Furthermore, we
demonstrate a case involving substantial background modification, where a forest scene is replaced
with icy cliffs and polar bears (last-row case).

further open research into its practical uses and any potential societal impacts, our code would be
open sourced at https://github.com/anonymous-138384/Kalman-Edit-Pytorch/.

Limitation. Due to our design focus on leveraging historical inversion latents as the measurement
sequence to rectify the final generation process, the method requires additional hyperparameter tuning
for tasks such as object removal. We illustrate these failure cases in Fig. 15. In addition, the noise and
artifacts from the original image tend to appear in the edited images at our default control strength.
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Figure 8: Illustration of large-area modification and complex scene editing. The giraffe example
demonstrates our method’s ability to preserve image structure, as evidenced by the chandelier
remaining correctly positioned. The owl example features a complex background, and our result
retains most structural details in the non-target regions. In the cat example, our method maintains
strong structural consistency while accurately adhering to the target prompt.
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The [surrealism style] wolf is wearing armor and has a crown on his head

[Cartoon style] a picnic table with a bottle of wine and fruit on it

Figure 9: Additional qualitative results on the style transfer task. We present examples of style
transfer in surrealism and cartoon styles.
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A [realism 
style] cat 
and a bunny

[Cartoon of] 
a [van gogh 
style] 
woman in 
white sitting 
on a bench 
with a hat

Figure 10: Additional qualitative results on the style transfer task. We present examples of style
transfer in realism and van gogh styles.
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Add a cup 
with flowers 
in it while 
maintain the 
overall 
structure of 
the picture 

[pen and ink 
sketch of] 
wind turbine 
in the sunset

Figure 11: Additional qualitative results on the style transfer task. We present an example of style
transfer to a pen-and-ink style, and additionally include a bathroom editing case.
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Figure 12: Additional results on real-world image editing. We present examples involving complex
scenes such as urban environments and beaches, as well as images with intricate structures like the
boat and the panda. These results highlight the flexibility and effectiveness of our method in handling
diverse and challenging editing tasks.
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Figure 13: Additional results on diverse image editing tasks. We present more examples with a wide
range of target prompts, such as changing a dog’s breed and transforming roses into tulips. These
results further demonstrate the strong performance and versatility of our approach.
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Figure 14: Additional ablation results on controller placement. We evaluate the effects of adding
controllers at different stages of the generation process. These insights inform the hyperparameter
choices in our proposed algorithm. For a detailed analysis, please refer to Appendix E.

Original Image Edit with large strength

Remove 

the boat

Change 

the

bike to 

a Vespa

 

Edit with small strength

Figure 15: Limitation of our method. Improper hyperparameter settings may cause our method to fail
in some editing cases, such as certain object removal tasks. See Appendix G for detailed explanation.
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