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ABSTRACT

In this paper, we propose Guided Positive Sampling Self-Supervised Learning
(GPS-SSL), a general method to embed a priori knowledge into Self-Supervised
Learning (SSL) positive samples selection. Current SSL methods leverage Data-
Augmentations (DA) for generating positive samples and their performance heav-
ily relies on the chosen set of DA. However, designing optimal DAs given a target
dataset requires domain knowledge regarding that dataset and can be costly to
search and find. Our method designs a metric space where distances better align
with semantic relationship thus enabling nearest neighbor sampling to provide
meaningful positive samples. This strategy comes in contrast with the current
strategy where DAs are the sole mean to incorporate known properties into the
learned SSL representation. A key benefit of GPS-SSL lies in its applicability to
any SSL method, e.g. SimCLR or BYOL. As a direct by-product, GPS-SSL also
reduces the importance of DA to learn informative representations, a dependency
that has been one of the major bottlenecks of SSL. We evaluate GPS-SSL along
with multiple baseline SSL methods on multiple downstream datasets from dif-
ferent domains when the models use strong or minimal data augmentations. We
show that when using strong DAs, GPS-SSL outperforms the baselines on under-
studied domains. Additionally, when using minimal augmentations –which is the
most realistic scenario for which one does not know a priori the strong DA that
aligns with the possible downstream tasks– GPS-SSL outperforms the baselines
on all datasets by a significant margin. We believe that opening a new avenue to
impact the SSL representations that is not solely based on altering the DA will
open the door to multiple interesting research directions, greatly increasing the
reach of SSL.

1 INTRODUCTION

Self-supervised learning (SSL) has recently shown to be one of the most effective learning
paradigms across many data domains (Radford et al., 2021; Girdhar et al., 2023; Assran et al., 2023;
Chen et al., 2020; Grill et al., 2020; Bardes et al., 2021; Balestriero et al., 2023). SSL belongs to the
broad category of annotation-free representation learning approaches, which have enabled machine
learning models to use abundant and easy-to-collect unlabeled data, facilitating the training of
ever-growing deep neural network architectures.

Despite the SSL promise, current approaches require handcrafted a priori knowledge to learn
useful representations. This a priori knowledge is often injected through the positive sample – i.e.,
semantically related samples – generation strategies employed by SSL methods (Chen et al., 2020).
In fact, SSL representations are learned so that such positive samples get as similar as possible
in embedding space, all while preventing a collapse of the representation to simply predicting a
constant for all inputs. The different strategies to achieve that goal lead to different flavors of SSL
methods (Chen et al., 2020; Grill et al., 2020; Bardes et al., 2021; Zbontar et al., 2021; Chen & He,
2021). In computer vision, positive sample generation mostly involves sampling an image from the
dataset, and applying multiple handcrafted and heavily tuned data augmentations (DAs) to it, such
as rotations and random crops, which preserve the main content of the image.

The importance of selecting the right DAs is enormous as it impacts performances to the point
of producing a near random representation, in the worst case scenario (Balestriero et al., 2023).
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As such, tremendous time and resources have been devoted to designing optimal DA recipes,
most notably for eponymous datasets such as ImageNet (Deng et al., 2009). From a practitioner’s
standpoint, positive sample generation could thus be considered solved if one were to deploy SSL
methods only on such popular datasets. Unfortunately – and as we will thoroughly demonstrate
throughout this paper –, common DA recipes used in those settings fail to transfer to other datasets.
We hypothesize that as the dataset domains get semantically further from ImageNet, on which the
current set of optimal DAs are designed, the effectiveness of DAs reduces. For example, since
ImageNet consists of natural images, mostly focused around 1000 different object categories, we
observe and report this reduction of performance on datasets consisting of more specialized images,
such as hotel room images (Stylianou et al., 2019; Kamath et al., 2021), or only focus on different
types of airplanes (Maji et al., 2013), or medical images (Yang et al., 2023). Since searching for
the optimal DAs is computationally intense, there remains an important bottleneck when it comes
to deploying SSL to new or under-studied datasets. This becomes in particular important when
applying SSL methods on data gathered for real-world applications.

In this paper, we introduce a strategy to obtain positive samples, which generalizes the well
established NNCLR SSL method (Dwibedi et al., 2021). While NNCLR proposes to obtain
positive samples by leveraging known DAs and nearest neighbors in the embedding space of
the network being trained, we propose to perform nearest neighbour search in the embedding
space of a pre-defined mapping of each image to its possible positive samples. The mapping may
generated by a clone of the network being trained – therefore recovering NNCLR – but perhaps
most interestingly may also be generated by any pre-trained network or even hand-crafted. This
flexibility allows to (i) enable simple injection of prior knowledge into positive sampling –without
relying on tuning the DA– and most importantly (ii) makes the underlying SSL method much more
robust to under-tuned DAs parameters. By construction, the proposed method – coined GPS-SSL
for Guided Positive Sampling Self-Supervised Learning–, can be coupled off-the-shelf with any
SSL method used to learn representations, e.g., BarlowTwins (Zbontar et al., 2021), SimCLR (Chen
et al., 2020), BYOL (Grill et al., 2020). We validate the proposed GPS-SSL approach on a
benchmark suite of under-studied datasets, namely FGVCAircraft, PathMNIST, TissueMNIST, and
show remarkable improvements over baseline SSL methods. We further evaluate our model on a
real-world dataset, Revised-Hotel-ID (R-HID) (Feizi et al., 2022) and show clear improvements of
our method compared the baseline SSL methods. Finally, we validate the approach on commonly
used image datasets with known effective DAs recipes, and show that GPS remains competitive.
Through comprehensive ablations, we show that GPS-SSL takes a step towards shifting the focus of
designing well-crafted DAs to having a better prior knowledge embedding space in which choosing
the nearest neighbour becomes an attractive positive sampling strategy.

The main contributions of this paper can be summarized as follows:

• We propose a positive sampling strategy, Guided Positive Sampling Self-Supervised Learning
(GPS-SSL) that enables SSL models to use prior knowledge about the target-dataset to help
with the learning process and reduce the reliance on carefully hand-crafted augmentations.
The prior knowledge is a mapping between images and a few of their closest nearest
neighbors that could be calculated with a pre-trained network or even hand-crafted.

• Moreover, we evaluate GPS-SSL by applying it to baseline SSL methods and show that
with strong augmentations, they perform comparable to, or better than, the original meth-
ods. Moreover, they significantly outperform the original methods when using minimal
augmentations, making it suitable for learning under-studied or real-world datasets (rather
than transfer-learning).

• To further evaluate our model on datasets with under-studied applications, we consider
hotel retrieval task in the counter human trafficking domain. Similar to benchmark
datasets, we see on this less studied dataset, our proposed GPS-SSL outperforms the
baseline SSL methods by a significant margin.

We provide the code for GPS-SSL and downloading and using R-HID on GitHub, available at:
https://anonymous.4open.science/r/gps-ssl-1E68, for the research community.
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2 RELATED WORK

Self Supervised Learning (SSL) is a particular form of unsupervised learning methods in which a
given Deep Neural Network (DNN) learns meaningful representations of their inputs without labels.

The variants of SSL are numerous. At the broader scale, SSL defines a pretext task on the input data
and train themselves by solving the defined task. In SSL for computer vision, the pretext tasks gener-
ally involve creating different views of images and encoding both so that their embeddings are close
to each other. However, that criteria alone would not be sufficient to learning meaningful represen-
tations as a degenerate solution is for the DNN to simply collapse all samples to a single embedding
vector. As such, one needs to introduce an “anti-collapse” term. Different types of solutions have
been proposed for this issue, splitting SSL methods into multiple groups, three of which are: 1) Con-
trastive(Chen et al., 2020; Dwibedi et al., 2021; Kalantidis et al., 2020): this group of SSL methods
prevent collapsing by considering all other images in a mini-batch as negative samples for the posi-
tive image pair and generally use the InfoNCE (Oord et al., 2018) loss function to push the negative
embeddings away from the positive embeddings. 2) Distillation(Grill et al., 2020; He et al., 2020;
Chen & He, 2021): these methods often have an asymmetric pair of encoders, one for each positive
view, where one encoder (teacher) is the exponential moving average of the other encoder (student)
and the loss only back-propagates through the student encoder. In general, this group prevents col-
lapsing by creating asymmetry in the encoders and defines the pre-text task that the student encoder
must predict the teach encoder’s output embedding. 3) Feature Decorrelation(Bardes et al., 2021;
Zbontar et al., 2021): These methods focus on the statistics of the embedding features generated
by the encoders and defines a loss function to encourage the embeddings to have certain statistical
features. By doing so, they explicitly force the generated embeddings not to collapse. For example,
Bardes et al. (2021) encourages the features in the embeddings to have high variance, while being in-
variant to the augmentations and also having a low covariance among different features in the embed-
dings. Besides these groups, there are multiple other techniques for preventing collapsing, such as
clustering methods (Caron et al., 2020; Xie et al., 2016), gradient analysis methods (Tao et al., 2022).

Although the techniques used for preventing collapse may differ among these groups of methods,
they generally require the data augmentations to be chosen and tuned carefully in order to achieve
high predictive performance (Chen et al., 2020). Although choosing the optimal data augmentations
and hyper-parameters may be considered a solved problem for popular datasets such as Cifar10
(Krizhevsky et al., 2009) or ImageNet (Deng et al., 2009), the SSL dependency on DA remains
their main limitation to be applied to large real-world datasets that are not akin natural images.
Due to the importance of DA upon the DNN’s representation quality, a few studies have attempted
mitigation strategies. For example, Cabannes et al. (2023b) ties the impact of DA with the implicit
prior of the DNN’s architecture, suggesting that informed architecture may reduce the need for
well designed DA although no practical answer was provided. Cabannes et al. (2023a) proposed
to remove the need for DA at the cost of requiring an oracle to sample the positive samples from
the original training set. Although not practical, this study brings a path to train SSL without DA.
Additionally, a key limitation with DA lies in the need to be implemented and fast to produce. In
fact, the strong DA strategies required by SSL are one of the main computational time bottleneck of
current training pipelines (Bordes et al., 2023). Lastly, the over-reliance on DA may have serious
fairness implications since, albeit in a supervised setting, DA was shown to impact the DNN’s
learned representation in favor of specific classes in the dataset (Balestriero et al., 2022).

All in all, SSL would greatly benefit from a principled strategy to embed a priori knowledge into
generating positive pairs that does not rely on DA. We propose a first step towards such Guided
Positive Sampling (GPS) below.

3 GUIDED POSITIVE SAMPLING FOR SELF-SUPERVISED LEARNING

We propose a novel strategy, Guided Positive Sampling Self-Supervised Learning (GPS-SSL), that
takes advantage of prior knowledge for positive sampling to make up for the sub-optimality of
generating positive pairs solely from DA in SSL.
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Figure 1: Our strategy, GPS-SSL, for positive sampling based on prior knowledge DA-based methods.

3.1 GPS-SSL: NEAREST NEIGHBOR POSITIVE SAMPLING IN ANY DESIRED EMBEDDED
SPACE

As theoretically shown in various studies (HaoChen et al., 2021; Balestriero & LeCun, 2022; Kiani
et al., 2022), the principal factors that impacts the quality of the learned representation resides in how
the positive pairs are defined. In fact, we recall that in all generality, SSL losses that are minimized
can mostly be expressed as

LSSL =
∑

(x,x′)∈PositivePairs

Distance(fθ(x), fθ(x′))− Diversity({fθ(x),x ∈ X}), (1)

for the current training or mini-batch X, a distance measure such as the ℓ2 norm or the cosine
similarity, and a diversity measure such that the rank of the embedings or proxies of their entropy. All
in all, defining the right set of PositivePairs is what determines the ability of the final representation
to solve downstream tasks. The common solution is repeatedly apply a DA onto a single datum to
generate such positive pairs:

PositivePairs ≜ {(DA(x),DA(x)),∀x ∈ X}, (2)

where the DA operator includes the random realisation of the DA such as the amount of rotation
or zoom being applied onto its input image. However that strategy often reaches its limits since
such DAs need to be easily implemented for the specific data that is being used, and it needs to
be known a priori. When considering an image dataset, the challenge of designing DA for less
common datasets, e.g., FGVCAircraft, led practitioners to instead train the model on a dataset such
as ImageNet, where strong DAs have already been discovered, and then transferring the model to
other datasets. This however has its limits, e.g. when considering medical images.

As an alternative, we propose an off-the-shelf strategy to sample positive pairs that can be equipped
onto any baseline SSL method, e.g., SimCLR, VICReg, coined GPS-SSL and which is defined by
defining positive pairs through nearest neighbour sampling in an a priori known embedding space:

PositivePairsGPS ≜ {(DA(x),DA(x′)),∀(x,x′) ∈ X2 : argmax
u∈X

∥gγ(u)− gγ(x)∥22 < τ}, (3)

for some positive value τ . In short, replace the set of positive pairs generated from applying a given
DA to a same input, by applying a given DA onto two different inputs found so that one is the nearest
neighbor of the other in some embedding space provided by gγ . From this, we obtain a first direct
result below making GPS-SSL recover a powerful existing method known as NNCLR.

Proposition 1 For any employed DA, GPS-SSL which replaces eq. (2) by eq. (3) in any SSL loss
(eq. (1)) recovers (i) input space nearest neighbor positive sampling when gγ is the identity and
τ ≫ 0, (ii) standard SSL when gγ is the identity but τ → 0, and (iii) NNCLR when gγ = fθ and
τ → 0.

The above result provides a first strong argument demonstrating how GPS-SSL does not reduce
the capacity of SSL, in fact, it introduces a novel axis of freedom–namely the design of (gγ , τ)–to
extend current SSL beyond what is amenable solely by tweaking the original architecture fθ, or the
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original DA. In particular, the core motivation of the presented method is that this novel ability to
design gγ also reduces the burden to design DA. In fact, if we consider the case where the original
DA is part of the original dataset

∀x ∈ X,∃ρ : DA(x; ρ) ∈ X, (4)
i.e., for any sample in the training set X, there exists at least one DA configuration (ρ) that produces
another training set sample, GPS-SSL can recover standard SSL albeit without employing any DA.

Theorem 1 Performing standard SSL (employing eq. (2) into eq. (1)) with a given DA and a training
set for which eq. (4) holds, is equivalent to performing GPS-SSL (employing eq. (2) into eq. (1))
without any DA and by setting gγ to be invariant to that DA, i.e. gγ(DA(x)) = gγ(x).

By construction from eq. (4) and assuming that one has the ability to design such an invariant gγ ,
it is clear that the nearest neighbour within the training set for any x ∈ X will be the correspond-
ing samples DA(x) therefore proving theorem 1. That result is quite impractical but nevertheless
provides a great motivation to GPS-SSL. Having the ability to design gγ not only has the ability to
encompass the burden of design a DA, but both can be used jointly allowing one embed as much a
priori knowledge as possible through both venues simultaneously.

The design of gγ . The proposed strategy (eq. (3)) is based on finding the nearest neighbors of
different candidate inputs in a given embedding space. There are multiple ways for acquiring an
informative embedding space, i.e., a prescribed mapping gγ . Throughout our study, we will focus
on the most direct solution of employing a previously pretrained mapping. The pre-training may
or may not have occurred on the same dataset being considered for SSL. Naturally, the alignment
between both datasets affects the quality and reliability of the embeddings. If one does not have
access to such pretrained model, another solution is to first learn an abstracted representation, e.g.,
an auto-encoder or VAE (Kingma & Welling, 2013), and then use the encoder for gγ . In that setting
the motivation lies in the final SSL representation being superior to solve downstream tasks that
the encoder (gγ) alone. We provide some examples of the resulting positive pairs with our strategy
in Figure 1. In this figure, we use a pretrained model to calculate the set of k nearest neighbors
for each image x in the target dataset. Then for each image x, the model randomly chooses the
positive image from the nearest neighbors in embedding space (recall eq. (3)). Finally, both the
original image and the produced positive sample are augmented using the chosen DA and passed
as a positive pair of images through the encoders. Note that as per proposition 1, GPS-SSL may
choose the image itself as its own positive sample, but the probability of it happening reduces as τ
increases. As we will demonstrate the later sections, the proposed positive sampling strategy often
outperforms the baseline DA based positive pair sampling strategy on multiple datasets.

Relation to NNCLR The commonality of NNCLR and GPS-SSL has been brought forward in
proposition 1. In short, they both choose the nearest neighbor of input images as the positive sample.
However, the embedding space in which the nearest neighbor is chosen is different; in NNCLR, the
model being trained creates the embedding space which is thus updated at every training step, i.e.,
gγ = fθ. However, GPS-SSL generalizes that in the sense that the nearest neighbors can stem from
any prescribed mapping, without the constraint that it is trained as part of the SSL training, or even
that it takes the form of a DNN. The fact that NNCLR only considers the model being trained to
obtain its positive samples also makes it heavily dependent on complex and strong augmentations
to produce non degenerate results. On the other hand, our ability to prescribe other mappings for
the nearest neighbor search makes GPS-SSL much less tied to the employed DA. We summarize
those methods in Figure 3.

3.2 EMPIRICAL VALIDATION ON BENCHMARKED DATASETS

In our experiments, we train the baseline SSL methods and the proposed GPS-SSL with two general
sets of augmentations, StrongAug, which are augmentations that have been finetuned on the target
dataset (for Cifar10 (Krizhevsky et al., 2009)) or ImageNet in the case of under-studied datasets
(for FGVCAircraft (Maji et al., 2013), PathMNIST (Yang et al., 2023), TissueMNIST (Yang et al.,
2023), and R-HID), and RHFlipAug, representing the scenario where we do not know the correct
augmentations and use minimal ones. The set of StrongAug consists of random-resized-crop,
random-horizontal-flip, color-jitter, gray-scale, gaussian-blur while
solarization while RHFlipAug only uses random-horizontal-flip.
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(a) (b) (d)Original
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Figure 2: An example (a) StrongAug and (b) RHFlipAug applied to an image from the FGVCAircraft dataset.
Furthermore, (c) and (d) depict examples of the 4 nearest neighors calculated by CLIP and VAE embeddings,
respectively.
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Figure 3: Architectures of SimCLR, NNCLR, and GPS-SimCLR. This figure demonstrates where the data
augmentaiton (DA) happens in each method and also how the nearest neighbor (NN) search is different between
NNCLR and GPS-SimCLR. Note that the ‘queue’ in NNCLR has a limited size, usually set to 65536. This
issue could lead to under-represented classes to not be learned efficiently.

Table 1: Classification accuracy of a ResNet18 in different ablation settings; Left: Comparison GPS-SimCLR
when different pretrained networks are used for generating embeddings for nearest-neighbor calculation, i.e.,
prior knowledge. Right: Best performance in StrongAug setting of SimCLR and GPS-SimCLR given different
learning rates (LR).

GPS-SimCLR FGVCAircraft
RHFlipAug StrongAug

V iTBMAE 10.53 29.55
V iTLMAE 14.70 35.28
RN50SUP 18.15 41.47
RN50V AE 11.04 32.06
RN50CLIP 19.38 50.08

LR FGVCAircraft
SimCLR GPS-SimCLR

0.003 21.39 35.7
0.01 30.18 43.68
0.03 39.27 49.57
0.1 39.81 50.08
0.3 39.87 48.10

In order to thoroughly validate GPS-SSL as an all-purpose strategy for SSL, we consider SimCLR,
BYOL, NNCLR, and VICReg as baseline SSL models, and for each of them, we will consider
the standard SSL positive pair generation (eq. (2)) and the proposed one (eq. (3)). We opted for a
randomly-initialized backbone ResNets (He et al., 2016) as the encoder. We also bring forward the
fact that most SSL methods are generally trained on a large dataset for which strong DAs are known
and well-tuned, such as Imagenet, and the learned representation is then transferred to solve tasks on
smaller and less known datasets. In many cases, training those SSL models directly on those atypical
dataset lead to catastrophic failures, as the optimal DAs have not yet been discovered. Lastly, we
will consider five different embeddings for gγ , one obtained from supervised learning, one from
CLIP training (Radford et al., 2021) trained on LAION-400M Schuhmann et al. (2021), one for
VAE (Kingma & Welling, 2013), and two for MAE (He et al., 2022) all trained on ImageNet and
furthermore show our method is more robust to hyper-parameter changes (Table 1). Before delving
in our empirical experiments, we emphasize that the supervised gγ is employed in the RHFlipAug
setting for two reasons. First, it provides what could be thought of as an optimal setting where the
class invariants have been learned through the label information. Second, as a mean to demonstrate
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Table 2: Classification accuracy of baseline SSL methods with and without GPS-SSL on four
datasets on ResNet50 using pretrained RN50CLIP embeddings for positive sampling. We consider
both StrongAug (Strong Augmentation) and RHFlipAug (Weak Augmentation) settings. The set of DA
used for StrongAug are random-resized-crop, random-horizontal-flip, color-jitter,
gray-scale, gaussian-blur, and solarization. For the RHFlipAug setting, the only DA used
is random horizontal flip. We mark the first, second, and third best performing models accordingly.

Aug. Method
Datasets

Cifar10 FGVCAircraft PathMNIST TissueMNIST
(10 classes) (100 classes) (9 classes) (8 classes)

R
H

F
lip

Au
g

SimCLR 47.01 5.61 63.42 50.35
BYOL 41.79 6.63 67.08 48.00

NNCLR 28.46 6.33 56.70 37.98
Barlow Twins 41.73 5.34 53.27 43.57

VICReg 37.51 6.18 46.46 39.79
GPS-SimCLR (ours) 85.08 18.18 87.79 53.14
GPS-BYOL (ours) 84.07 13.50 87.67 53.05
GPS-Barlow (ours) 84.45 17.34 88.77 56.63
GPS-VICReg (ours) 85.58 18.81 88.91 56.44

St
ro

ng
Au

g

SimCLR 90.24 47.11 93.64 58.53
BYOL 90.50 34.23 93.29 56.63

NNCLR 90.03 34.80 92.87 52.57
Barlow Twins 88.34 18.12 92.03 61.69

VICReg 91.21 38.74 93.22 60.18
GPS-SimCLR (ours) 91.17 55.60 92.30 55.59
GPS-BYOL (ours) 91.15 44.28 92.40 55.03
GPS-Barlow (ours) 88.52 15.47 91.98 57.04
GPS-VICReg (ours) 89.71 47.29 92.55 55.79

how one could combine a supervised dataset as a mean to produce prior information into training an
SSL model on a different dataset. Since the said models are trained on ImageNet, all the provided
results throughout this study remain practical since the labels of the target datasets, on which SSL
models are trained and evaluated, are never observed for the training of neither gγ nor fθ.

Strong Augmentation Experiments. The DAs in the StrongAug configuration consist of strong aug-
mentations that usually distort the size, resolution, and color characteristics of the original image.
First, we note that in this setting, GPS-SSL generally does not harm the performance of the baseline
SSL model on common datasets, i.e. Cifar10 (Table 2). In fact, GPS-SSL performs comparable to
the best-performing baseline SSL model on Cifar10, i.e., VICReg, showcasing that GPS-SSL does
not negatively impact performances even on those datasets. We believe that the main reason lies
in the fact that the employed DA has been specifically designed for those datasets (and ImageNet).
However, we observe that GPS-SSL outperforms (on FGVCAircraft and TissueMNIST) or is com-
parable to (on PathMNIST) the baseline SSL methods for the under-studied and real-word datasets.
(Table 2). The reason for this is that, the optimal set and configuration of DA for one dataset is not
necessarily the optimal set and configuration for another, and while SSL solely relies on DA for its
positive samples, GPS-SSL is able to alleviate that dependency through gγ and uses positve samples
that can be more useful than default DAs, as seen in Figure 2. The results for these experiments can
be seen in Table 2. Note that our method’s runtime is similar to the baseline SSL method on the
dataset it is learning and does not hinder the training process (Figure 4).

Weak-Augmentation Experiments. We perform all experiments under the RHFlipAug setting as
well, showing GPS-SSL produces high quality representations even in that setting, validating the-
orem 1. As seen in Table 2, GPS-SSL significantly outperforms all baseline SSL methods across
both well-studied and under-studied datasets. These results show that our GPS-SSL strategy, though
conceptually simple, coupled with the RHFlipAug setting, approximates strong augmentations used
in the StrongAug configuration. This creates a significant advantage for GPS-SSL to be applied
to real-world datasets where strong augmentations have not been found, but where the invariances
learned by gγ to generalize to them.
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BYOL vs. GPS-BYOLSimCLR vs. GPS-SimCLR

Figure 4: Comparing the runtime of BYOL vs. GPS-BYOL and SimCLR vs. GPS-SimCLR for two datasets,
i.e., FGVCAircraft and Cifar10. In general, we see while the runtime of GPS-SSL remains the same as the
original baseline SSL method, it improves the performance.
Table 3: Test accuracy comparison of GPS-SSL after 1K epochs versus 400 training epochs. We show
the improvements of GPS-SimCLR are still significant on FGVCAircraft and comparable on Cifar10.

Method Cifar10 FGVCAircraft
400 eps 1000 eps 400 eps 1000 eps

SimCLR 88.26 91.25 39.87 45.55
GPS-SimCLR 89.57 91.10 50.08 51.64

VICReg 89.34 90.61 33.21 41.19
GPS-VICReg 89.68 89.84 45.48 49.29

Ablation Study In this section we explore multiple ablation experiments in order to show GPS-SSL
improves SSL and is indeed a future direction for improving SSL methods. First, we compare
SSL and GPS training on Cifar10 and FGVCAircraft starting from a backbone initialized
with random (realistic setting), supervised ImageNet pretrained, or CLIP pretrained weights
to explore whether the improvement of GPS-SSL is due to better positive sampling or simply
because of using a strong prior knowledge. We show in Table 4 that GPS-SSL performs better
than the baseline SSL methods, even when they both have access to the pretrained network
weights. This proves that the improvement in performance of GPS-SSL compared to baseline
SSL methods is indeed due to better positive sampling.

Next, we compare GPS-SimCLR with three different embeddings for gγ ; supervised, VAE, and
CLIP embeddings. We observe that as the embeddings get higher in quality based on the pre-trained
network, as the performance increases in both the RHFlipAug and StrongAug setting. However, note
that even given the worst embeddings, i.e., the VAE embeddings, GPS-SimCLR still outperforms
the original SimCLR in the RHFlipAug setting, showcasing that the nearest neighbors add value to
the learning process when the augmentations are unknown.

We further explore if the improvement of GPS-SSL holds when methods are trained longer.
To that end, we train a ResNet18 for 1000 epochs with SimCLR and VICReg with StrongAug,
along with their GPS versions, on Cifar10 and FGVCAircraft and compare the results with
the performance from 400 epochs. As seen in Table 3, the improvement of GPS-SSL compared
to the baseline SSL method holds on FGVCAircraft dataset and remains comparable on
Cifar10, showcasing the robustness of GPS-SSL.

Finally, we aim to measure the sensitivity of the performance of a baseline SSL method to a hyper-
parameter, i.e., learning rate, with and without GPS-SSL. In this ablation experiment, we report
the best performance of SimCLR and GPS-SimCLR given different learning rates in the StrongAug
setting. We observe that GPS-SSL when applied to a baseline SSL method is as much, if not more,
robust to hyper-parameter change. The results of both ablations are reported in Table 1. We further
compare GPS-SSL with linear probing’s performance and other ablations in Appendix A.3.

4 CASE STUDY ON THE HOTELS IMAGE DATASET

In this section, we study how GPS-SSL compares to baseline SSL methods on an under-studied
real-world dataset. We opt the R-HID dataset for our evaluation which gathers hotel images for the
purpose of countering human-trafficking. R-HID provides a single train set alongside 4 evaluation
sets, each with a different level of difficulty.
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Table 4: Comparing SimCLR with and without GPS-SimCLR with different initializations with a
ResNet50. RAND, PTSUP , and PTCLIP represent random weights, ImageNet supervised weights, and
CLIP pretrained weights.

Method Weight Init. Cifar10 FGVCAircraft
Weak Aug Strong Aug Weak Aug Strong Aug

SimCLR RAND 46.69 87.39 5.67 27.36
GPS-SimCLR 85.2 90.48 17.91 43.56

SimCLR PTSUP
43.99 94.02 17.91 59.92

GPS-SimCLR 91.3 95.53 39.45 66.88
SimCLR PTCLIP

45.57 90.26 6.21 41.04
GPS-SimCLR 89.44 91.23 24.15 49.63

Table 5: R@1 on different spltis on R-HID Dataset for SSL methods. The splits are namely, DSS : {branch:
seen, chain: seen}, DSU : {branch: unseen, chain: seen}, DUU : {branch: unseen, chain: unseen} and D??:
{branch: unknown, chain: unknown}. We mark the best performing score in bold.

Method DSS DSU DUU D??

SimCLR 3.28 16.76 20.30 16.00
BYOL 3.69 19.27 23.02 18.47

Barlow Twins 3.04 15.54 18.96 15.06
VICReg 3.41 17.52 20.45 16.53

GPS-SimCLR (ours) 4.84 23.67 26.30 22.28
GPS-BYOL (ours) 3.89 19.64 23.18 19.38
GPS-Barlow (ours) 4.49 21.98 25.23 20.82
GPS-VICReg (ours) 5.33 25.71 28.29 23.78

We evaluate the baseline SSL models with and without GPS-SSL to the R-HID dataset and report
the Recall@1 (R@1) for the different splits introduced. Based on the findings from 2, we adapt the
StrongAug setting along with the prior knowledge generated by a CLIP-pretrained ResNet50.

As seen in Table 5, SSL baselines always get an improvement when used with GPS-SSL. The
reason the baseline SSL methods underperform compared to their GPS-SSL version is that the
positive samples generated only using DA lack enough diversity since the images from R-HID
dataset have various features and merely DAs limits the information the network learns; however,
paired with GPS-SSL, we see a clear boost in performance across all different splits due to the
additional information added by the neareset neighbors.

5 CONCLUSIONS

In this paper we proposed GPS-SSL which presents a novel strategy to obtain positive samples for
Self-Supervised Learning. In particular, GPS-SSL moves away from the usual DA-based positive
sampling by instead producing positive samples from the nearest neighbors of the data as measure in
some prescribed embedding space. That is, GPS-SSL introduces an entirely novel axis to research
and improve SSL that is complementary to the design of DA and losses. Through that strategy, we
were for example able to train SSL on atypical datasets such as medical images –without having
to search and tune for the right DA. Those results open new avenues to the existing strategy of
SSL pretraining on large dataset, and then transferring the model to those other datasets for which
DAs as not available. In fact, we observe that while GPS-SSL meets or surpass SSL performances
across our experiments, the performance gap is more significant when the optimal DAs are not
known, e.g., in PathMNIST and TissueMNIST we observe the performance of GPS-SSL with
weak augmentations is slightly less than with strong augmentations. Besides practical applications,
GPS-SSL finally provides a novel strategy to embed prior knowledge into SSL.

Limitations. The main limitation of our method is akin to the one of SSL, it requires the knowledge
of the embedding in which the nearest neighbors are obtain to produce the positive samples. This
limitation is on par with standard SSL’s reliance on DA, but its formulation is somewhat dual (recall
theorem 1) in that one may know how to design such an embedding without knowing the appropriate
DA for the dataset, and vice-versa. Alternative techniques like training separate and simple DNs to
provide such embeddings prior to the SSL learning could be considered for future research.
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A APPENDIX

A.1 R-HID SPLITTING METHOD

R-HID (Feizi et al., 2022) is created carefully to make sure no data leakage occurs. They men-
tion how the total data is divided into the train and the multiple test splits. More specifically,
first a set of chains (along with all their branches) are reserved for the DUU to make sure the
chains (super-classes) and branches (classes) are not seen during training. Next, out of the
remaining chains, a set of the branches are chosen to add all of their images to the DSU test
split (since the training set will have other images from other branches from the same chain,
but not the same branch images). Finally, out of the remaining branches, the images in each
are split between DSS and train, creating the final test split that has a subset of the branches
seen during training. With this procedure, they make sure of the table of overlapping below.
More details regarding the splits is provided in the original paper.

A.2 HYPER-PARAMETER SEARCH

In all experiments, we train for 400 epochs with a batch size of 256 using one RTX 8000 GPU for all
methods. To ensure we are choosing the correct hyper-parameters for a fair comparison, we search
over a vast range of hyper-parameter combinations (lr ∈ {1e−3, 3e−3, 3e−2, 1e−2, 3e−1, 1e−1, 1},
classifier lr ∈ {3e−2, 1e−2, 3e−1, 1e−1, 1, 3}, weight decay ∈ {1e−4, 1e−3}) and for GPS-SSL
with all SSL baselines we also search over k ∈ {1, 4, 9, 49}). For experiments using RHFlipAug
and StrongAug, we use nearest neighbors calculated based on embeddings created from a
ResNet50 that have been CLIP pre-trained as the prior knowledge. Finally, for each method, we
report the best classification accuracy for Cifar10, FGVCAircraft, PathMNIST, and TissueMNIST,
and Recall@1 (R@1) for R-HID in Tables 2, 5, and 7. To calculate both metrics, we first train the
encoder on the target dataset using the SSL method, with or without GPS-SSL. Then, for classifica-
tion accuracy, we train a linear classifier on top of it, and for R@1, we encode all the images from
the test set and calculate the percentage of images which their first nearest neighbor is from the same
class.

A.3 ABLATION STUDY

A.3.1 DIFFERENT BACKBONE

First, we provide the same experiments as in Table 2, but trained with a ResNet18 instead of a
ResNet50 and provide the results in Table 6. We see the same results for ResNet50 (discussed
for Table 2) also hold when ran on a smaller architecture, i.e., ResNet18. This shows the
improvements of GPS-SSL over baseline SSL methods is more reliable and robust.

A.3.2 FINETUNING FOR R-HID

We further try a trivial way of transferring knowledge from a pretrained network to other SSL base-
line models and compare it to GPS-SimCLR; we initialize the base encoder in any SSL method, i.e.,
the ResNet18, to the pretrained network’s weights, as opposed to random initialization, and train it
i.e., finetuning. Ultimately, we compare the results on R-HID in Table 7.

Although this might perform better if the pretrained network was trained on a visually similar dataset
to the target dataset, Table 7 shows that it may harm the generalization on datasets that are different,
e.g., ImageNet and R-HID, compared to being trained from scratch. However, GPS-SSL proves to
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Table 6: Classification accuracy of baseline SSL methods with and without GPS-SSL on four
datasets on ResNet18 using pretrained RN50CLIP embeddings for positive sampling.. We con-
sider both StrongAug (Strong Augmentation) and RHFlipAug (Weak Augmentation) settings. The
set of DA used for StrongAug are random-resized-crop, random-horizontal-flip,
color-jitter, gray-scale, gaussian-blur, and solarization. For the RHFlipAug
setting, the only DA used is random horizontal flip. We mark the first, second, and third
best performing models accordingly.

Aug. Method
Datasets

Cifar10 FGVCAircraft PathMNIST TissueMNIST
(10 classes) (100 classes) (9 classes) (8 classes)

R
H

F
lip

Au
g

SimCLR 47.62 7.70 62.99 52.30
BYOL 49.72 8.99 77.77 51.00

NNCLR 71.74 8.10 56.92 42.59
Barlow Twins 42.00 7.53 64.82 49.43

VICReg 36.04 4.95 56.92 50.26
GPS-SimCLR (ours) 85.83 18.48 88.62 55.98
GPS-BYOL (ours) 84.56 14.79 81.66 56.21
GPS-Barlow (ours) 84.83 18.12 87.79 55.86
GPS-VICReg (ours) 85.38 20.16 87.83 55.26

St
ro

ng
Au

g

SimCLR 88.26 39.87 91.56 61.51
BYOL 86.90 27.33 91.24 60.73

NNCLR 87.95 39.12 91.14 52.42
Barlow Twins 88.89 25.71 92.23 60.06

VICReg 89.34 33.21 92.27 59.41

GPS-SimCLR (ours) 89.57 50.08 92.19 62.76
GPS-BYOL (ours) 88.46 32.07 91.05 54.05
GPS-Barlow (ours) 88.39 25.35 91.55 62.93
GPS-VICReg (ours) 89.68 45.48 91.88 62.46

be a stable method for transferring knowledge even if the pretrained and target dataset are visually
different (Table 5).

Table 7: Comparing the R@1 performance of SSL methods on R-HID when trained from scratch
against being initialzied to a ImageNet pretrained network. The models with pretrained-initialized
encoders (finetuned) are marked with ‘FT-’. We highlight the difference in R@1 of the pretrained
against the scratch version with green when it improves and red when it worsens.

Method DSS DSU DUU D??

SimCLR 3.23 16.10 19.62 15.12
FT-SimCLR -0.10 -0.21 -0.40 +0.27

BYOL 3.27 16.25 20.20 15.91
FT-BYOL -0.57 -1.75 -2.23 -1.50

NNCLR 2.84 13.91 17.15 13.96
FT-NNCLR -0.54 -2.44 -3.18 -2.67

VICReg 3.24 16.67 19.97 15.86
FT-VICReg -0.43 -1.54 -2.45 -1.92
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Table 8: Comparison of Linear probing (LP) and GPS-VICReg’s (with ResNet50) classification accu-
racy on FGVCAircraft with different GPS backbones (GPS BB) pretrained with CLIP and masked auto
encoders (MAE) on different datasets without supervision (GPS DS). The performance of the vanilla VI-
CReg is also depicted for comparison. RN50 and ViT-L refer to ResNet50 and ViT-Large, respectively.

GPS-BB GPS-DS LP GPS-VICReg VICReg

RN50CLIP LAION-400M 44.55 46.44
39.99ViT-LMAE ImageNet 37.32 38.44

ViT-LMAE FGVCAircraft 17.01 42.87

Table 9: Classification accuracy comparison of linear probing (LP) using embeddings with different GPS
backbones (GPS-BB) pretrained with CLIP and masked auto encoders (MAE) on different upstream
datasets, i.e. GPS-DS, and a trained ResNet50 with GPS-SimCLR on FGVCAircraft and Cifar10 using
the same GPS backbones and datasets. RN50, ViT-L, and Vit-B refer to ResNet50, ViT-Large, and ViT-
Base respectively.

GPS-BB GPS-DS Cifar10 FGVCAircraft
LP GPS-SimCLR LP GPS-SimCLR

RN50CLIP LAION-400M 87.85 91.17 44.55 53.81
ViT-BMAE ImageNet 85.78 87.35 27.96 29.55
ViT-LMAE ImageNet 91.45 90.11 37.29 35.28
ViT-LMAE FGVCAircraft —– —– 17.01 46.93

A.3.3 COMPARING TO LINEAR PROBING

Finally, we compare the linear probing performance of the embeddings generated from dif-
ferent architectures, i.e. GPS backbones (GPS-BB), pretrained on different datasets, i.e., GPS
Datasets (GPS-DS), with the performance of GPS-SSL using them. More specifically, in Ta-
bles 9 and 8, we compare the linear probe performance of the CLIP pretrained ResNet50 on
LAION-400M (Schuhmann et al., 2021) along with vision transformers (ViTs) pretrained on
ImageNet using Masked Auto Encoders (MAE) (He et al., 2022), a popular self-supervised
method that also does not rely on strong augmentations. We see our method outperforms the
linear probe accuracy of CLIP embeddings for both Cifar10 and FGVCAircraft and matches
that of ViT-Base and ViT-Large for Cifar10 and ViT-Large for FGVCAircraft.

However, we further see that if we train the ViT-Large on the FGVCAircraft, using MAE with
minimal augmentations, we can use that as the positive sampler for GPS-SSL and beat the
baseline SSL method on FGVCAircraft. This shows that GPS-SSL does not entirely rely on
huge pretrained models and that there is potential possibilities for training a positive sampler
prior to applying GPS-SSL to further boost the performance of baseline SSL methods.
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