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ABSTRACT

Graph-structured data are considered non-Euclidean as they provide superior rep-
resentations of complex relations or interdependency. Many variants of graph
neural networks (GNNs) have emerged for graph representation learning which
is essentially equivalent to node feature embedding, since an instance in graph-
structured data is an individual node. GNNs obtain node feature embedding with a
given graph structure, however, graph representation learning tasks entail underly-
ing factors such as homophilous relation for node classification or structure-based
heuristics for link prediction. Existing graph representation learning models have
been primarily developed toward focusing on task-specific factors rather than gen-
eralizing the underlying factors. We introduce Graph dissipation model that cap-
tures latent factors for any given downstream task. Graph dissipation model lever-
ages Laplacian smoothing and subgraph sampling as a noise source in the forward
diffusion process, and then learns the latent factors by capturing the intrinsic data
distribution within graph structure in the denoising process. We demonstrate the
effectiveness of our proposed model in two distinct graph representation learning
tasks: link prediction tasks and node classification tasks, highlighting its capa-
bility to capture the underlying representational factors in various graph-related
tasks.

1 INTRODUCTION

A fundamental concept in representation learning is that data distributions have effective lower-
dimensional structures. For example, consider image data, which is presumed to exist on a lower-
dimensional manifold within the pixel-space. This assumption relies on the presence of a collec-
tion of underlying factors that capture the semantics of an image. However, graph-structured data
are considered non-Euclidean since they represent complex interdependency or relations that ex-
tensively exist in networks, e.g., citation network, social network, interaction network, and neuron
connectome.

Since data instances in a network graph are individual nodes, graph representation learning essen-
tially reduces to learning node embeddings. Thus, graph representation learning has evolved pre-
dominantly with node classification tasks and graph classification tasks. There has been growing
attention on link prediction tasks recently, however, models that perform well in node classification
tasks do not necessarily promise a similar level of performance in link prediction tasks. This dis-
parity results from the unique characteristics of link prediction tasks that edges form based not only
on node feature embeddings but also on structure-based information such as neighborhood-overlap
heuristics or higher-order heuristics. Existing graph representation models such as Graph neural
networks(GNNs), which heavily rely on node feature embeddings, often struggle to effectively cap-
ture some structural information that is required for more accurate link prediction. In this manner,
underlying latent factors of a network graph required for learning optimal representations vary de-
pending on the specifics of graph representation learning tasks. Still, graph representation learning
models are not capable of learning latent factors of network graphs without explicit task-oriented
assumptions.

This work aims to capture the comprehensive and integrated latent factors of a graph that are not
limited to a specific downstream task. However, the challenge of learning latent factors of a graph
is that it is difficult to define it within a family of known probability distributions since arbitrary
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underlying structures are complex but unknown, i.e., non-Euclidean. This problem becomes more
challenging in network graphs. A network graph constitutes an entire data, and it lacks well-defined
rules or assumptions regarding the optimal results.

We introduce Graph dissipation model (GDM) based on a diffusion model, which learns the com-
prehensive latent distribution of the graph, enabling it to effectively solve any given downstream
tasks without task-specific assumptions. Graph dissipation model captures the latent factors of a
network graph, owing to its diffusion model architecture with the intuition of capturing arbitrary
data distribution. Our model, GDM, has novel approaches. GDM leverages Laplacian smoothing
as a noise source of the feature diffusion process, incorporating over-smoothing and the concept
of dissipation. We encourage node features in a graph to be smoothed (i.e., blurred) by Laplacian
smoothing based on Laplacian matrix since it preserves inherent structural characteristics of a net-
work graph, i.e., node dependency. Besides, Laplacian smoothing is a particular case of diffusion
process across a graph, where information flows between neighboring nodes. This interpretation
aligns with dissipation-based diffusion models (e.g., Rissanen et al. (2022)). We exploit the intu-
ition that information or signal is not only smoothed but also erased as it flows between instances
(i.e., nodes) within graph structures, leading to our unique approach of utilizing over-smoothing as
the final state of the feature diffusion process. Namely, there are dissipation of signal while feature
information of a graph is blurred through iterative Laplacian smoothing during the diffusion pro-
cess from GDM. Lastly, GDM conveys signal dissipation from feature space to a graph structure by
defining Dissipative structure sampling, a subgraph sampling that reflects feature dissipation, in the
structural diffusion process. Our objective is capturing latent factors underlying a network graph,
leading to optimal representations applicable to various graph representation learning tasks while
naturally regarding specifics inherent in a given task, e.g., node classification or link prediction.
GDM is a diffusion model-based graph representation learning model that is universally applica-
ble to network graph representation learning tasks without explicit task-oriented assumptions. The
contributions of the paper are summarized as follows:

• We propose Graph dissipation model (GDM) leverages the intuition from diffusion mod-
els to address the motivation that underlying latent factors of a network graph are com-
plex but unknown, which leads graph representation learning to relying on task-oriented
approaches. To the best of our knowledge, GDM is the initial work on network graph
representation learning that raises and addresses such motivation.

• GDM introduces a unique perspective by defining Laplacian smoothing as a noise source
and over-smoothing as a convergence state. Theoretically, Laplacian smoothing as a noise
source of a diffusion model aligns with the intuition of diffusion models in image domain,
especially in resoultion perspective. Also, we leverage feature-based structure sampling to
lift dissipation in features to a graph structure during the structural diffusion process.

• We demonstrate the effectiveness of GDM in two downstream tasks, link prediction and
node classification tasks on 7 benchmark datasets. In addition, we conduct ablation studies
to provide insights into which component is advantageous to the given task.

2 RELATED WORK

Denoising Diffusion Probabilistic Models. Denoising diffusion probabilistic models (DDPMs), or
diffusion models, have become powerful generative models in computer vision tasks. Sohl-Dickstein
et al. (2015) proposed a deep unsupervised learning framework, known as Diffusion probabilistic
models, based on nonequilibrium thermodynamics. Closely related to this, Ho et al. (2020) in-
troduced Denoising Diffusion Probabilistic Models (DDPMs), the powerful generative model that
gradually perturbs data with Gaussian noise in a diffusion process for learning probabilistic models,
then learning data distribution by an iterative denoising process. Song et al. (2020) introduced a
modified denoising diffusion process to non-Markovian diffusion process to accelerate efficiency.
Rissanen et al. (2022) introduce a novel methodology parametrized by inverse heat equation instead
of diffusion processes, reflecting multi-resolution inductive bias. Furthermore, DDPMs or diffusion
models are not only used for generation tasks (Ho et al., 2020; Dockhorn et al., 2021; Bao et al.,
2022) but also for other tasks. The latent representations obtained through diffusion models have
been used for diverse computer vision tasks e.g., image segmentation (Baranchuk et al., 2021) and
image classification (Zimmermann et al., 2021).
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Graph Representation Learning. As a data point in graph-structured data is a node, prevalent
Graph neural networks usually demonstrate their efficacy on node classification tasks. GCN (Kipf
& Welling, 2017) defines convolutional operation in graph domains to aggregate messages or infor-
mation of neighboring nodes. This work emphasizes the semi-supervised node classification setting
that is inherent in graph structures due to nodes’ interdependency. GAT (Veličković et al., 2018)
improves graph representation learning by allowing nodes to attend to each neighboring node with
varying degrees of importance which is learned through attention mechanism. GRAND (Chamber-
lain et al., 2021) approaches graph representation learning as a continuous diffusion process that
information or heat diffused on a graph, and interprets existing GNNs as discretizations of an under-
lying partial differential equation of graph diffusion. Unlike node classification tasks, link prediction
tasks do not solely rely on node embedding. Zhang & Chen (2018) investigated the importance of
structure-based heuristics in link prediction tasks and proposed SEAL that extracts h-hop enclosing
subgraph to learn structural features to enhance link prediction tasks. On top of that, Neo-GNNs
(Yun et al., 2021) and NBFNet (Zhu et al., 2021) generalize neighborhood overlap heuristics and
Bellman-Ford Algorithms to capture useful structural information for link prediction tasks, respec-
tively. However, existing graph representation learning models for network graphs focus only on
either node classification tasks or link prediction tasks. Our work aims to improve both node classi-
fication tasks and link prediction tasks by leveraging insight from diffusion models.

DDPMs on Graph domain. In terms of generative graph models, Ma et al. (2019) and Elinas et al.
(2020) introduce early variational methods to learn graph representation employing independent
Bernoulli distribution as a graph distribution. Jo et al. (2022) proposed score-based generation
model that learns joint distribution of nodes and edges. Vignac et al. (2022) adopted a diffusion
model to generate molecular graphs, defined with categorical distribution. Haefeli et al. (2022)
generates random graph structure and emphasizes graph domain benefits from discrete time-space
than continuous time-space. Chen et al. (2023) propose an efficient graph generation methodology
for generating large-scale random graphs by perturbing structures with an edge removal process that
drops all the edges connected to selected nodes.

3 PRELIMINARY

3.1 LAPLACIAN SMOOTHING

The Laplacian smoothing operation in a graph is based on the Laplacian matrix, denoted by L, which
captures the structural properties and propagates signal on a graph structure. According to Chung
(1997), the unnormalized Laplacian matrix is defined as L = D − A, where A is an adjacency
matrix and D is a degree matrix of A, i.e., D = diag(d1, d2, ..., dN ), di =

∑
j Ãij . Given an initial

node feature matrix X ∈ RN×F , the smoothed feature representation X ′ obtained by Laplacian
smoothing (Taubin, 1995), i.e., x′

i = xi + λ△xi. △ is a Laplacian operator and λ is a scaling
coefficient that controls the extent of the smoothing operation, i.e., 0 < λ ≤ 1. This can be rewritten
in the matrix formulation as

X ′ = (I − λD− 1
2LD− 1

2 )X = (I − λLsym)X,

X ′ = (I − λD−1L)X = (I − λLRW )X,

where I denotes the identity matrix. Along with this, Lsym and LRW indicate two variants of nor-
malized Laplacian matrices. Laplacian smoothing produces the diffusion of signal across the graph,
leading to a filtered representation of the signal on the graph structure with respect to neighborhood
nodes’ features. Note that Laplacian smoothing can be applied iteratively to propagate the signal on
the graph further, gradually blurring node representations.

Over-smoothing. As the Laplacian smoothing operation is performed multiple times, the signal
from neighboring nodes gets increasingly diffused, leading to a convergence of node representa-
tions towards a common average value (Oono & Suzuki, 2019; Keriven, 2022). This convergence
eliminates the subtle differences between nodes, blurring out the important structural and contextual
representation in the graph. Thus, the over-smoothing problem makes the node features indistin-
guishable. Theoretical proof of over-smoothing is in Appendix B.

3



Under review as a conference paper at ICLR 2024

3.2 DENOISING DIFFUSION PROBABILISTIC MODEL

Denoising Diffusion Probabilistic Models(DDPMs) or Diffusion models are defined by two pro-
cesses: a forward process that gives discriminative noise on input images and a reverse process
that learns data distribution by denoising tasks. Let a data instance be sampled from a real date
distribution x0 ∼ pdata, a forward diffusion process produces a sequence of noisy data samples
(x1,x2, ...,xT ) by adding random Gaussian noise to the given data sample at time step t with vari-
ance βt from variance schedule {βt ∈ (0, 1)}Tt=1. The significance of diffusion models is that a
forward diffusion process is a Markov chain that gradually adds Gaussian noise, thus, the posterior
distribution q(x1:T |x0) is approximated under Markov property and variance schedule (Ho et al.,
2020),

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1),

q(xt|xt−1) :=N (
√

1− βtxt−1, βtI).

βt can be held constant or learned by reparametrization trick, however, Ho et al. (2020) sets β as
hyperparameters. Hence, a forward diffusion process does not contain trainable parameters.

In a reverse denoising process, on the other hand, a denoising model pθ learns to invert the noisy
sequence obtained in the forward diffusion process. In a reverse denoising process, a denoising
model would be able to regenerate the sample from a Gaussian noise input xT ∼ N (0, I) as it
inverts the forward process, extracting the distribution q(xt−1|xt). Since q(xt−1|xt) is intractable,
a denoising model p[θ] approximate the distribution as follows:

pθ(xt−1|xt) :=N (xt−1;µθ(xt, t),Σθ(xt, t)),

pθ(x0:T ) =p(xT )

T∏
t=1

pθ(xt−1|xt).

Gaussian noise term µθ is reparametrized to minimize the distance from µt which equals noise
prediction. The intuition behind these processes is that trainable network pθ learns an arbitrary data
distribution by filtering out noise based on an assumed distribution q. To approximate the conditional
probability distribution in the reverse process,

4 GRAPH DISSIPATION MODEL

Graph dissipation model (GDM) aims to learn latent representations from a graph that is universally
applicable to various network graph representation learning tasks while naturally regarding specifics
of those tasks without explicit task-oriented assumptions. Graph dissipation model (GDM) is a
diffusion model framework for network graph representation learning. As illustrated in Fig.1, GDM
consists of two parts, the forward process and the reverse process. To dissipate graph signals with the
aspect of feature and structure simultaneously, we define Laplacian smoothing as noise source and
propose dissipative structure sampling regarding dissipation. From spectral perspective, leveraging
Laplacian smoothing gives promising support for capturing latent factors of network graph. During
the reverse process, GDM learns the latent distribution with its own Denoising network fθ.

Notations. Consider an undirected graph G = (V, E) with N nodes, denoted by V =
{v1, v2, . . . , vN}, and a set of edges denoted by E . The adjacency matrix A ∈ RN×N is defined
by Aij = 1 if eij ∈ E and 0 otherwise. Each node in G has a feature vector xi ∈ R1×d of di-
mension d, and the collection of these feature vectors is represented by the matrix X ∈ RN×d, i.e.,
G = (A,X).

4.1 FORWARD PROCESS

To simultaneously blur and dissipate graph-structured data, we leverage a coupled diffusion process
that merges feature space and structural space. Given the graph G = (A,X), the diffusion on
the graph involves information dissipation, i.e., frequency decay. We define the noise source of
the forward process of GDM with Laplacian smoothing operation. According to Corollary B.1,
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Figure 1: Graphical Model of Graph dissipation model. Our model leverages the Laplacian smooth-
ing to define the forward process, inducing signal dissipation on a graph and reflecting the important
aspect of a graph domain, i.e., node dependency. As Laplacian smoothing assures signal dissipation
on feature space, GDM lifts dissipation from feature to a graph structure by dissipative structure
sampling.

iterative Laplacian smoothing operation blurs out node features that converge to over-smoothing
which makes each node indistinguishable. Laplacian smoothing directly operates on node features
as a noise source. Smoothed blurry feature of Markov state t is obtained as,

Xt = (I− αL)Xt−1 = (I− αL)tX0, (1)
where t denotes time step t and X0 is an initial feature matrix.

Ultimately, Laplacian smoothing assures dissipation on a network graph. Laplacian smoothing
bridges the gap between dissipation and graph representation. Since we can rewrite Laplacian
smoothing using eigendecomposition, transforming to a spectral domain,

Xt = (I− αL)tX0 = U(I− αΛ)tU⊤X0. (2)
U forms a basis for the graph spectral domain and the diagonal matrix Λ contains the eigenval-
ues, which represent the frequencies corresponding to each eigenvector (Belkin & Niyogi, 2001).
Specifically, (I − αΛ)t implies the decay of high frequencies on the graph spectral domain. As
high-frequency components are decayed, the feature noise (I − αΛ) converges towards a smooth
signal that resides in the low-frequency components on the graph spectrum.

In other words, when high frequency gradually decays, the difference between signals also gradually
diminishes in the spectral domain. In the spatial domain of a graph, it is interpreted as a loss of
discrepancy in feature information among distinct nodes. This implies that the amount of decayed
signal or information discrepancy varies for each node at each time step, converging over-smoothed
feature. This aligns with the intuition of diffusion models, suggesting that our model GDM can learn
the latent factors of a given graph by recovering this dissipated signal or information. Additionally,
in real-world scenarios, as noise or missing information (e.g., missing links) exists in the features
or adjacency of a network graph, the observations may not constitute perfect ground truth. This
associates graph representation learning with inferring the most optimal graph information from a
noisy observed graph. From the image-resolution perspective, our approach is also analogous to
diffusion models utilizing a coarse-to-fine strategy to enhance resolution quality. This supports that
our proposed approach shows promising results on capturing latent factors underlying a network
graph, leading to optimal representations applicable to various graph representation learning tasks
while naturally regarding specifics inherent in a given task.

Note that, our feature diffusion process can follow Markov chain property but also we can factorize
Laplacian smoothing until time step t based on Eq.1. Therefore, the feature diffusion process is
written as

q(X1:T |X0) =

T∏
t=1

q(Xt|X0), q(Xt|X0) := (I−L)tX0|X0, (3)
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letting α = 1. We termed the decrease in the differences between node features as dissipation of
signal. Signal dissipation is naturally defined in feature space, however, defining signal dissipation
on graph structure is complicated to obtain directly. For a straightforward approach, we lift the dis-
sipation of features to the graph structure. To lift feature dissipation to the graph structure, we define
the structural diffusion process with dissipative structure sampling based on subgraph sampling as
follows:

X̂t = Xt + ϵ where ϵ ∼ N (0, ζI) (4)

At[ij] ∼ Bern(At|At−1[ij] = 1, p = s(x̂
(t)
i , x̂

(t)
j )) (5)

where ζ is a relaxation hyperparameter to prevent similarity converges to 1. x̂(t−1)
i denotes a feature

vector of node vi at time step t − 1 and s, p denotes a similarity function and drop probability,
respectively. The structural diffusion process follows Markov chain property, implying gradual
dissipation of structural information reflecting dissipation of graph signals. The structure diffusion
process is defined with Binomial distribution,

q(A1:T |A0) =

T∏
t=1

q(At|At−1), q(At|At−1) := B(At|At−1, s(X̂t)). (6)

Consequently, q(X1:T |X0) and q(A1:T |A0) can provide a broader range of underlying patterns as it
increases data diversity, considering that a network graph is an entire dataset on its own.

4.2 REVERSE PROCESS

The reverse process pθ models the posterior of the previous state given the current state. Let the
forward process be q(G1:T |G0) since it is a coupled process and the underlying pattern of a graph
relies on both feature and structural representation. Then, we can optimize a denoising network fθ
by maximizing log p(G0) as follows:

− log p(G0) ≤ Eq(G1:T |G0)

[
− log

pθ(G0:T )

q(G1:T |G0)

]
(7)

= Eq(G1:T |G0)

[
− log

��
���p(GT )

q(GT |G0)
−

T∑
t=2

log
pθ(Gt−1|Gt)

q(Gt−1|G0)
− log pθ(G0|G1)

]
(8)

The first term does not require learnable parameters since it is constant. However, the posterior of the
forward process q(Gt−1|Gt, G0) has no closed-form expression. To approximate q(Gt−1|Gt, G0),
we decompose G into X and A. Then, the loss function for GDM LGDM is derived as follows:

T∑
t=2

EqD [q(Xt−1|X0)∥pθ(Xt−1|Xt)] +

T∑
t=2

EqD [q(At−1|A0)∥pθ(At−1|At)]

+Eq [− log pθ(X0|X1)] + Eq [− log pθ(A0|A1)] =: LGDM

(9)

According to Eq. 1, D [q(Xt−1|X0)∥pθ(Xt−1|Xt)] is equivalent to predicting less smooth features
which means deblurring signal dissipation on feature space.

D [q(Xt−1|X0)∥pθ(Xt−1|Xt)] = ∥fθ(Xt, At)−Xt−1∥22.

Since we lift feature dissipation to the forward structural process, under the mild assumption,
q(At|At−1) can be approximated, i.e., q(At|At−1) ≈ q(At|A0). Note that, to make the graph
structure sparser as the node features converge to oversmoothing, we defined the forward structural
process with stochastic structure sampling dependent on features.

q(A
(t−1)
ij |A(0)

ij ) = B(A(t−1)
ij ; p ∝∼ LX = I − (I − LX)), if A(0)

ij = 1 (10)

The edge probability p estimation has uncertainty because we lift the feature distance upon edge
existence probability through the forward structural process. However, due to the intuition of the
forward structural process, edge probability p is approximately correlated to Laplacian matrix which
feature dissipation relies on. The intuition behind the forward structural process is lifting signal
dissipation to a graph structure. Leveraging this intuition, the edge probability p can be estimated
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by discrepancy of structural information which implies dissipation on a graph structure. Therefore,
D [q(At−1|A0)∥pθ(At−1|At)] is approximated with a discrepancy between L and Lt−1,

D [q(At−1|A0)∥pθ(At−1|At)] = ∥fθ(Xt, At)− (L0 − Lt−1)∥22
predicting the discrepancy between graph Laplacian where dissipation is dependent.

Therefore, the loss for Graph dissipation model is defined as

LGDM =βt

T∑
t=2

∥fθ(Xt, At)−Xt−1∥22︸ ︷︷ ︸
Lfeat

+γ

T∑
t=2

∥fθ(Xt, At)− (L0 − Lt−1)∥22︸ ︷︷ ︸−LLap

+ β0 ∥fθ(X1, A1)−X0∥22︸ ︷︷ ︸
Lfeat-recon

+λBCE(fθ(X1, A1), A0)︸ ︷︷ ︸
Lrecon

,

(11)

where β0, γ, β1 and λ denotes weighting hyperparameters. Hyperparameter sensitivity analysis is in
Appendix A.2. Finally, the total loss of Graph dissipation model can be written as follows:

L = LGDM + Ltask, (12)

where Ltask is a downstream task loss.

Additionally, we design the architecture of the denoising network fθ to effectively learn compre-
hensive latent distribution with aspects of both features and structures. Our denoising network fθ
consists of 2 layers of multilayer perception (MLP) as the encoder and 3 layers of MLP as the
decoder for denoising tasks. Specifically, the decoder can be shared as the predictor when a down-
stream task handles link prediction tasks. Since the forward process in GDM converges to overly
blurred features and nearly empty structures, we define the learnable parameters, latent Laplacian
values in the denoising network, to incorporate the minimum latent information during the reverse
process and stabilize the learning towards denoising tasks. We also define the predictor for each
downstream task, link prediction task, and node classification task. For the link prediction task, we
employ a predictor equivalent to the decoder, and for the node classification task, we utilize 1 layer
of MLP as a classifier.

5 EXPERIMENTS

We demonstrate the effectiveness of our proposed model against various baselines on node clas-
sification benchmarks and link prediction benchmarks. Then we analyze the contribution of the
structural process and feature process of our model.

5.1 EXPERIMENTAL SETUP

Datasets. To validate our models, we utilize Open Graph Benchmark (OGB) dataset for link pre-
diction tasks and node classification tasks (Hu et al., 2020). We use four OGB link property datasets
for link prediction tasks: OGB-PPA, OGB-Collab, OGB-DDI, and OGB-Citation2. OGB-PPA is an
undirected and unweighted graph representing protein association. Nodes are proteins from different
specifies and edges mean biological associations. Each node feature is a one-hot vector indicating
the species to which the protein belongs. OGB-Collab is an undirected graph, which represents a
collaboration network where edges denote collaborations between authors. OGB-DDI is an undi-
rected, unweighted graph that contains drug-drug interactions, with edges indicating interactions
such as combined effects. Please note that this dataset lacks node features. OGB-Citation2 is a
citation network graph with direction. Each node in the graph corresponds to a paper, and a directed
edge indicates that one paper cites another. Both OGB-Citation2 and OGB-Collab include node
features obtained from embedding models. For node classification tasks, we use three benchmark
datasets: OGB-Arxiv, OGB-Products, and PubMed.

Evaluation. We evaluate our model with Hits@K metric and Mean reciprocal rank (MRR) in link
prediction. Hits@K is based on ranking positive test edges against randomly sampled negative
edges. The ranking performance is measured by the ratio of positive test edges ranked at or above the
K-th position. In OGB-PPA, the K-th position is set to 100, while for OGB-Collab and OGB-DDI,
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Table 1: Link prediction performances on Open Graph Benchmark (OGB) datasets. OOM denotes
’out of memory’. Bold underline indicates the best performance and bold indicates the second best
performance.

Model OGB-PPA OGB-Collab OGB-DDI OGB-Citation2
Common Neighbors 27.65± 0.00 50.06± 0.00 17.73± 0.00 76.20± 0.0

Adamic Adar 32.45± 0.00 53.00± 0.00 18.61± 0.00 76.12± 0.0
Resource Allocation 49.33 ± 0.00 52.89± 0.00 6.23± 0.00 76.20± 0.0
Matrix Factorization 23.78± 1.82 34.87± 0.23 13.29± 2.32 50.48± 3.09

MLP 0.99± 0.15 16.05± 0.48 N/A 25.13± 0.28
GCN 15.37± 1.25 44.57± 0.64 40.87± 6.08 82.57± 0.26
GAT OOM 41.73± 1.01 32.57± 3.48 OOM

SAGE 12.51± 2.02 47.86± 0.64 47.06± 5.21 80.18± 0.15
JKNet 11.73± 1.98 47.52± 0.73 57.95 ± 7.69 OOM
SEAL 47.18± 3.60 54.27 ± 0.46 29.86± 4.37 86.77 ± 0.31

GDM(ours) 48.32 ± 0.68 53.82 ± 0.35 60.56 ± 2.32 84.52 ± 0.42

it is set to 50 and 20, respectively. The evaluation metric for OGB-Citation2 is MRR. It calculates
the reciprocal rank of the true edges within the pool of negative candidates for each source node
and then averages these values across all source nodes. To further demonstrate the ability to learn
compendious underlying structures in node classification, we constrain a semi-supervised setting by
vastly reducing the number of nodes per label in train sets. Under this setting, accuracy measures
the performance on OGB-Arxiv, OGB-Products, and PubMed.

Baselines. For baselines on link prediction, we include prevalent GNN-based models: GCN (Kipf
& Welling, 2017), GAT (Veličković et al., 2018), GraphSAGE (Hamilton et al., 2017), JKNet (Xu
et al., 2018), Variational Graph Autoencoder (Kipf & Welling, 2016) and SEAL (Zhang & Chen,
2018). Note that SEAL extracts enclosing subgraph to utilize in link prediction. Additionally, three
link prediction heuristics (Liben-Nowell & Kleinberg, 2003; Adamic & Adar, 2003; Zhou et al.,
2009), Matrix factorization (Koren et al., 2009), and Multi-layer perceptron (Haykin, 1994) are
included in baselines. Baseline models for semi-supervised node classification include GCN, GAT,
APPNP (Klicpera et al., 2019), GCNII (Ming Chen et al., 2020), and C&S (Huang et al., 2020).

Implementation Details. We implemented link prediction heuristics, such as Common Neigh-
bor(CN), Adamic Adar(AA), and Resource Allocation(RA), based on the paper (Liben-Nowell &
Kleinberg, 2003; Adamic & Adar, 2003; Zhou et al., 2009). For GCN, GraphSAGE, GAT, JKNet,
APPNP, GCNII, and MLP we used the implementation in PyTorch Geometric (Fey & Lenssen,
2019), and for SEAL and C&S, we used the implementation from the official repository. We trained
Graph dissipation model with a 2-layer GDM encoder for OGB-Collab, OGB-DDI, OGB-Arxiv,
OGB-Products, and PubMed. Due to memory issues, we trained OGB-PPA, OGB-Citation2 with
a 3-layer GDM encoder. Note that we compute normalized Laplacian for numerical stability and
we use random sample from dropped edges in denoising task for efficiency. Also, we set diffusion
state to 6 for OGB-Collab, OGB-DDI, 10 for OGB-PPA, 3 for OGB-Citation2. For fair compari-
son, we reported performances of all baselines and GDM as the mean and the standard deviation
obtained from 10 independent runs with fixed random seed {0 9}. To simulate more real world-like
scenario, we did not use validation edges as input in OGB-Collab. The experiments are conducted
on A100(40GB) and A40(48GB).

5.2 LINK PREDICTION RESULTS

Table 1 reports the results of OGB link prediction benchmarks. In terms of performance, our Graph
dissipation model generally shows improved performance than other baselines. This indicates our
GDM is capable of learning latent distribution of underlying factors. Specifically, Graph dissipation
model shows the second-best performance which is fairly close to the best performance in OGB-
Collab and OGB-PPA, following SEAL and Adamic Adar heuristic, which means OGB-Collab and
OGB-PPA have important but hidden structural properties. This implies our GDM captures latent
structural factors as well as structure heuristics and SEAL, which is designed to generalize higher-
order heuristics. On the other hand, OGB-Citation2 seems to have a latent distribution containing
both informative features and structure factors. Our model also showed outperforms the baselines
except for SEAL. Note that our GDM still showed the second-best performance without using the

8
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Table 2: Node classification performance on OGB-Arxiv, OGB-Products, and PubMed dataset.
OOM denotes ’out of memory’. Bold indicates the best performance.

Model OGB-Arxiv OGB-Products PubMed

Fixed k nodes k = 1 k = 5 k = 10 k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

GCN 31.69± 2.74 52.97± 0.94 58.39± 0.50 38.93± 2.09 62.69± 1.27 66.23± 0.91 45.87± 2.44 60.56± 1.44 69.50± 0.68
GAT 25.60± 2.95 50.87± 1.78 57.23± 0.75 35.81± 2.42 60.72± 1.93 64.80± 1.21 43.57± 2.71 58.38± 2.06 68.40± 1.49

APPNP 29.36± 2.19 52.47± 1.26 56.42± 0.83 36.35± 2.20 63.01± 2.10 66.85± 0.84 43.04± 1.72 56.94± 1.90 69.99± 0.73
GCNII 30.94± 2.30 51.94± 1.18 57.65± 0.94 33.64± 2.32 61.43± 2.36 64.90± 1.39 43.29± 2.53 56.18± 1.84 70.60± 0.93
C&S 30.63± 1.88 51.73± 1.30 56.57± 1.43 40.47± 1.97 62.18± 1.57 67.53± 1.40 44.91± 1.24 57.44± 1.36 68.78± 1.07

GDM(ours) 38.40 ± 1.64 57.22 ± 0.85 60.97 ± 0.40 48.96 ± 1.81 67.03 ± 1.05 70.22 ± 0.69 53.06 ± 1.53 66.79 ± 0.92 72.42 ± 0.71

Table 3: Ablation study analyzing the efficacy of each component of the coupled diffusion process.
Dataset GDM (original) GDM w/o feature process GDM w/o structure process

OGB-Collab 53.86± 0.35 46.31± 2.35 44.43± 2.91
OGB-PPA 49.32± 0.68 25.15± 4.12 20.24± 3.56

full graph to train GDM. GDM achieves the best performance on OGB-DDI, where SEAL shows
poor performance. This can be interpreted as SEAL is more focused on capturing structural infor-
mation while OGB-DDI requires feature learning to investigate important latent factors. Since our
model shows improved performance whether the dataset is more dependent on feature or structure,
this implies our GDM reasonably captures the integrated and comprehensive latent distribution of a
graph.

5.3 SEMI-SUPERVISED NODE CLASSIFICATION RESULTS

We conduct experiments on semi-supervised node classification benchmark datasets to validate the
effectiveness of GDM on learning node embeddings. We constrained the training index by the fixed
k nodes per label. The number k is set to 1, 5, 10. Table 2 shows the performance of a semi-
supervised node classification task that is extremely limited to label scarcity. GDM outperforms
other baselines on all datasets and settings. C&S is known to show high accuracy in node classifica-
tion tasks due to its correlation propagation scheme, however, it seems fairly low performance in this
setting. One possible implication is that C&S employs label propagation which may require a mini-
mum number of nodes. According to the results, GDM is effectively captures the latent distribution
of nodes, even under very constrained conditions.

5.4 ABLATION STUDY

We empirically validate the efficacy of each component in Graph dissipation model through ablation
experiments. First, we evaluate GDM without the feature diffusion process and structural diffusion
process and evaluate the average performance on link prediction tasks. OGB-Collab requires models
to learn both feature and structural hidden representation from a graph. GDM without feature dif-
fusion process and GDM without structural diffusion process both shows degraded performance on
OGB-Collab. Similarly, in OGB-PPA, which seems to have important structural latent factors, GDM
without structural process shows a slightly larger degradation in the performance. It is interesting
that the gap between GDM without feature process and GDM without structure process is larger in
OGB-PPA.

6 CONCLUSION

In this paper, we introduced the Graph dissipation model (GDM) as a novel approach to learn latent
factors of graph-structured data, regarding specifics of various network graph learning tasks. GDM
defines Laplacian smoothing as noise during the forward process and lifts dissipation to a structure
to capture latent factors that are comprehensive to network graph learning tasks. In future work, we
plan to further develop GDM by focusing on learning interpretable latent distribution.
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A APPENDIX

A.1 DERIVATION OF LOSS FUNCTION OF GDM

This section provides a derivation of the variational lower bound (ELBO) and the loss function of
Graph dissipation model (GDM).

Let G0 be a given observed graph data consisting of (X, A), denoting node features and adjacency
matrix, respectively. Taking negative log-likelihood, we get

log pθ(G0) ≤ −
∫

q(G1:T |G0) log pθ(G0|G1:T )
pθ(G1:T )

q(G1:T |GG0)
dG (13)

= Eq(G1:T |G0)

[
− log

pθ(G0:T )

q(G1:T |G0)

]
. (14)

The variational lower bound (ELBO) is obtained as follows:

Eq(G1:T |G0)

[
− log

pθ(G0:T )

q(G1:T |G0)

]
= Eq(G1:T |G0)

[
− log

pθ(GT )
∏T

t=1 pθ(Gt−1|Gt)∏T
t=1 q(Gt|G0)

]
(15)

= Eq(G1:T |G0)

[
− log

pθ(GT )

q(GT |G0)
− log

T∏
t=2

pθ(Gt−1|Gt)

q(Gt−1|G0)
− log pθ(G0|G1)

]
(16)

= Eq(G1:T |G0)

[
− log

�
����p(GT )

q(GT |G0)
−

T∑
t=2

log
pθ(Gt−1|Gt)

q(Gt−1|G0)
− log pθ(G0|G1)

]
(17)

=

T∑
t=2

EqD [q(Gt−1|G0)∥pθ(Gt−1|Gt)] + Eq [− log pθ(G0|G1)] (18)

The first term is not trainable as it equals constant and the second term is KL divergence
DKL[q(Gt−1|G0)∥Pθ(Gt−1|Gt)]. Posterior q(Gt−1|G0) cannot be expressed in a closed-form so-
lution because q(Gt−1|G0) is unknown as we did not define a prior distribution on a network graph.
Several well-known distributions are inadequate to define a network graph due to its structural char-
acteristics. Thus, posterior q(Gt−1|G0) is intractable.

However, we can approximate q(Gt−1|G0) by decomposing G into features X and a structure A.
We can rewrite the second term into

D [q(Gt−1|G0)∥pθ(Gt−1|Gt)] = D [q(Xt−1|X0)∥pθ(Xt−1|Xt)]+D [q(At−1|A0)∥pθ(At−1|At)] .
(19)

Recall the forward process of GDM,

q(X1:T |X0) =

T∏
t=1

q(Xt|X0), q(Xt|X0) := (I−L)tX0 (20)

q(A1:T |A0) =

T∏
t=1

q(At|At−1), q(At|At−1) := B(At|At−1, s(X̂t)). (21)
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Based on Eq.20, D [q(Xt−1|X0)∥pθ(Xt−1|Xt)] indicates deblurring smoothed features,

D [q(Xt−1|X0)∥pθ(Xt−1|Xt)] = ∥fθ(Xt, At)−Xt−1∥22.

which is equivalent to predicting less smoothed features. Note that we lift feature dissipation to the
forward structural process, under the mild assumption, approximated q(At|At−1) ≈ q(At|A0) can
be used as follows:

q(A
(t−1)
ij |A(0)

ij ) =

{
B(A(t−1)

ij ; p ∝∼ LX = I − (I − LX)), if A(0)
ij = 1

B(A(t−1)
ij ; p = 0), if A(0)

ij = 0
(22)

Only in the first case, edge existence probability p is uncertain. Note that edge probability p is
correlated to Laplacian matrix which feature dissipation relied on. To make the graph structure
sparser as the node features converge to oversmoothing, we defined the forward structural process
with stochastic structure sampling dependent on features. However, the edge probability p estima-
tion has uncertainty because we lift the feature distance upon edge existence probability through
the forward structural process. The intuition behind the forward structural process is to lift signal
dissipation to a graph structure. Leveraging this intuition, the edge probability p can be estimated
by discrepancy of structural information which implies dissipation on a graph structure. Therefore,
D [q(At−1|A0)∥pθ(At−1|At)] is approximated with a discrepancy between L and Lt−1,

D [q(At−1|A0)∥pθ(At−1|At)] = ∥fθ(Xt, At)− (L0 − Lt−1)∥22

predicting the discrepancy between graph Laplacian where dissipation is dependent.

Finally, we obtain the loss function as follows:

− log p(G0) ≤ Eq(G1:T |G0)

[
− log

pθ(G0:T )

q(G1:T |G0)

]
(23)

= Eq(G1:T |G0)

[
− log

�
����p(GT )

q(GT |G0)
−

T∑
t=2

log
pθ(Gt−1|Gt)

q(Gt−1|G0)
− log pθ(G0|G1)

]
(24)

=

T∑
t=2

EqD [q(Xt−1|X0)∥pθ(Xt−1|Xt)] +

T∑
t=2

EqD [q(At−1|A0)∥pθ(At−1|At)]

+Eq [− log pθ(X0|X1)] + Eq [− log pθ(A0|A1)] =: LGDM
(25)

Based on the aforementioned approximation of q(Xt−1|X0) and q(At−1|A0), the loss function be-
comes

LGDM =βt

T∑
t=2

∥fθ(Xt, At)−Xt−1∥22 + γ

T∑
t=2

∥fθ(Xt, At)− (L0 − Lt−1)∥22

+ β1∥fθ(X1, A1)−X0∥22 + λBCE(fθ(X1, A1), A0).

(26)

βt, β1, γ and λ are weighting hyperparameters.

A.2 HYPERPARAMETER SENSITIVITY ANALYSIS

We analyze Graph dissipation model (GDM) to demonstrate how hyperparameters affect the per-
formance of GDM. We conduct experiments with 4 hyperparameters in GDM loss function, LGDM.
βt, β1, γ and λ is weighting hyperparameters for Lfeat, Lfeat-recon, LLap, and Lrecon, respectively. We
measure Hits@50 by changing one hyperparameter while the rest of hyperparameters are fixed to
the best value. The result (Figure. 2) demonstrates that GDM is fairly robust to hyperparameters
that weight the components of GDM loss LGDM.
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Figure 2: Visualization of hyperparameter sensitivity analysis on OGB-Collab.

B PRELIMINARY OF OVER-SMOOTHING

Laplacian smoothing is written in the matrix formulation as

X ′ = (I − λD− 1
2LD− 1

2 )X = (I − λLsym)X,

X ′ = (I − λD−1L)X = (I − λLRW )X,

where I denotes the identity matrix. Laplacian smoothing produces the diffusion of signal across
the graph, leading to a filtered representation of the signal on the graph structure with respect to
neighborhood nodes’ features. Note that Laplacian smoothing can be applied iteratively to propagate
the signal on the graph further, gradually blurring node representations.

Corollary B.1 (Li et al., 2018) For any x ∈ Rd and 0 < λ ≤ 1, a graph without bipartite compo-
nents converges to a linear combination of {1(c)}Cc=1:

lim
l→∞

(1− λLsym)lx = D− 1
2 [
∥∥C
c=1

1(c)]w,

lim
l→∞

(1− λLRW )lx = [
∥∥C
c=1

1(c)]w,

where w ∈ Rc, and c indicates connected components.
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