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Abstract

Applying Reinforcement learning (RL) fol-001
lowing pre-training is a versatile method for002
enhancing neural machine translation (NMT)003
performance. However, recent work has ar-004
gued that the gains produced by RL for NMT005
are mostly due to promoting tokens that have006
already received a fairly high probability in007
pre-training. We hypothesize that the large008
action space is a main obstacle to RL’s effec-009
tiveness in MT, and conduct two sets of ex-010
periments that lend support to our hypothe-011
sis, focusing on low-resource settings. First,012
we find that reducing the size of the vocabu-013
lary improves RL’s effectiveness. Second, we014
find that effectively reducing the dimension of015
the action space without changing the vocabu-016
lary also yields notable improvement as eval-017
uated by BLEU, semantic similarity, and hu-018
man evaluation. Indeed, by replacing the net-019
work’s final fully connected layer (that maps020
the network’s internal dimension to the vocab-021
ulary dimension), with a layer that generalizes022
over similar actions, we obtain a substantial023
improvement in RL performance.1024

1 Introduction025

The standard training method for sequence-to-026

sequence prediction tasks, and specifically for027

NMT is to maximize the likelihood of a token028

in the target sentence, given a gold standard pre-029

fix (henceforth, maximum likelihood estimation or030

MLE). However, despite the strong performance031

displayed by MLE-trained models, this token-level032

objective function is limited in its ability to pe-033

nalize sequence-level errors, and is at odds with034

the sequence-level evaluation metrics it aims to035

improve. One appealing method for addressing036

this gap is applying policy gradient methods that037

allow incorporating non-differentiable reward func-038

tions, such as the ones often used for MT evalua-039

1Codebase and datasets will be released upon publication.

tion (Shen et al., 2016, see §2). For brevity, we will 040

refer to these methods simply as RL. 041

The RL training procedure consists of several 042

steps: (1) generating a translation with the pre- 043

trained MLE model, (2) computing some sequence- 044

level reward function, usually one that assesses 045

the similarity of the generated translation and a 046

reference, and (3) updating the model so that its fu- 047

ture outputs receive higher rewards. The method’s 048

flexibility, as well as its ability to address the expo- 049

sure bias (Ranzato et al., 2016; Wang and Sennrich, 050

2020), makes RL an appealing avenue for improv- 051

ing NMT performance. 052

However, a recent study (C19; Choshen et al., 053

2019) suggests that current RL practices are likely 054

to improve the prediction of target tokens only 055

where the pre-trained model has already assigned 056

that token a fairly high probability. In this work, 057

we observe that one main difference between NMT 058

and other tasks in which RL methods excel is the 059

size of the action space. Typically, the size of the 060

action space in NMT includes all tokens in the 061

vocabulary, usually tens of thousands. By con- 062

trast, common RL settings have either small dis- 063

crete action-spaces (e.g., Atari games (Mnih et al., 064

2013)), or continuous action-spaces of low dimen- 065

sion (e.g., MuJoCo (Todorov et al., 2012) and simi- 066

lar control problems). Intuitively, RL takes (sam- 067

ples) actions and assesses their outcome, unlike 068

supervised learning (MLE) that directly receives 069

a value for all actions. Therefore, the number of 070

actions that RL assesses grows with the size of the 071

action space. Accordingly, we experiment with two 072

methods for decreasing the size of the action space, 073

and evaluate their impact on RL’s effectiveness. 074

We begin by decreasing the vocabulary size (or 075

equivalently, the number of actions), conducting 076

experiments on translating four languages into En- 077

glish in low-resource settings, using BLEU both as 078

the reward function and the evaluation metric. Our 079

results show that RL yields a considerably larger 080
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performance increase (1 BLEU point more on av-081

erage) over pre-training, than is achieved by RL082

with the standard vocabulary size. Moreover, our083

findings indicate that reducing the size of the vocab-084

ulary can improve upon the pre-trained model even085

in cases where it was not close to being correct.086

See §4.087

However, in some cases it may be undesirable088

or unfeasible to change the vocabulary. We there-089

fore experiment with two methods that effectively,090

reduce the dimensionality of the action space with-091

out changing the vocabulary. We note that gener-092

ally in NMT architectures, the dimensionality of093

the decoder’s internal layers (henceforth, d) is sig-094

nificantly smaller than the target vocabulary size095

(henceforth, |VT |), which is the size of the action096

space. A fully connected layer is generally used to097

map the internal representation to suitable outputs.098

We may therefore refer to the rows of the matrix099

(parameters) of this layer, as target embeddings,100

mapping the network’s internal low-dimensional101

representation back to the vocabulary size, the ac-102

tions. We use this term to underscore the analogy103

between the network’s first embedding layer, map-104

ping vectors of dimension |VT | to vectors of di-105

mension d, and target embeddings that work in an106

inverse fashion. Indeed, it is often the case (e.g.,107

in BERT, Devlin et al., 2019) that the weights of108

the source and target embeddings are shared during109

training, emphasizing the relation between the two.110

Using this terminology, we show in simulations111

(§5.1) that when similar actions share target em-112

beddings, RL is more effective. Moreover, when113

target embeddings are initialized based on high-114

quality embeddings (BERT’s in our case), freezing115

them during RL yields further improvement still.116

We obtain similar results when experimenting on117

NMT. Indeed, using BERT’s embeddings for target118

embeddings, improves performance on the four lan-119

guage pairs, and freezing them yields an additional120

improvement on both MLE and RL as reported121

by both automatic metrics and human evaluation.122

Moreover, when using BERT’s embeddings, RL’s123

ability to improve performance on target tokens to124

which the pre-trained model did not assign a high125

probability, is enhanced (§5.2).126

2 Background127

2.1 RL in Machine Translation128

RL is used in text generation (TG) for its ability129

to incorporate non-differentiable signals, to tackle130

the exposure bias, and to introduce sequence-level 131

constraints. The latter two are persistent challenges 132

in the development of TG systems, and have also 133

been addressed by non-RL methods (e.g., Zhang 134

et al., 2019; Ren et al., 2019). In addition, RL is 135

grounded within a broad theoretical and empirical 136

literature, which adds to its appeal. 137

These properties have led to much interest in 138

RL for TG in general (Shah et al., 2018) and NMT 139

in particular (Wu et al., 2018a). Numerous policy 140

gradient methods are commonly used, notably RE- 141

INFORCE (Williams, 1992), and Minimum Risk 142

Training (MRT; e.g., Och, 2003; Shen et al., 2016). 143

However, despite increasing interest and strong re- 144

sults, only a handful of works studied the source 145

of observed performance gains by RL in NLP and 146

its training dynamics, and some of these have sug- 147

gested that RL’s gains are partly due to artifacts 148

(Caccia et al., 2018; Choshen et al., 2019). 149

In a recent paper, C19 showed that existing RL 150

training protocols for MT (REINFORCE and MRT) 151

take a prohibitively long time to converge. Their 152

results suggest that RL practices in MT are likely 153

to improve performance only where the pre-trained 154

parameters are already close to yielding the correct 155

translation. They further suggest that observed 156

gains may be due to effects unrelated to the training 157

signal, but rather from changes in the shape of the 158

distribution curve. These results may suggest that 159

one of the drawbacks of RL is the uncommonly 160

large action-space, which in TG includes all tokens 161

in the vocabulary, typically tens of thousands of 162

actions or more. 163

To the best of our knowledge, no previous work 164

considered the challenge of large action spaces in 165

TG, and relatively few studies considered it in dif- 166

ferent contexts. One line of work assumed prior 167

domain knowledge about the problem, and par- 168

titioned actions into sub-groups (Sharma et al., 169

2017), or similar to our approach, embedding ac- 170

tions in a continuous space where some metric 171

over this space allows generalization over similar 172

actions (Dulac-Arnold et al., 2016). More recent 173

work proposed to learn target embeddings when 174

the underlying structure of the action space is apri- 175

ori unknown using expert demonstrations (Tennen- 176

holtz and Mannor, 2019; Chandak et al., 2019). 177

This paper establishes that the large action 178

spaces are a limiting factor in the application of 179

RL for NMT, and to propose methods to tackle this 180

challenge. Our techniques restrict the size of the 181
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embedding space, either explicitly or implicitly by182

using an underlying continuous representation.183

2.2 Technical Background and Notation184

Notation. We denote the source sentence with185

X = (x1, ..., xS) and the reference sentence with186

Y = (y1, ..., yT ). Given X , the network generates187

a sentence in the target language Y ′ = (y′1, ..., y
′
M ).188

Target tokens are taken from a vocabulary VT . Dur-189

ing inference, at each step i, the probability of gen-190

erating a token y′i ∈ VT is conditioned on the sen-191

tence and the predicted tokens, i.e., Pθ(yi|X, y′<i),192

where θ is the vector of model parameters. We193

assume there is exactly one valid target token, the194

reference token, as in practice, training is done195

against a single reference (Schulz et al., 2018).196

Given N training sentence pairs197

{X(j), Y (j)}Nj=1, MLE training of θ is the198

maximization of the conditional log likelihood:199

Lmle = ΣN
j=1logPθ(Y

j |Xj)

= ΣN
j=1Σ

m(j)
i=1 logPθ(y

j
i |y

j
<iX

j)
(1)200

NMT with RL. In RL terminology, one can201

think of an NMT model as an agent, which in-202

teracts with the environment. In this case, the en-203

vironment consists of the previous words y′<i and204

the source sentence X . At each step, the agent205

selects an action according to its policy, where206

actions are tokens. The policy is defined by the207

parameters of the model, i.e., the conditional prob-208

ability Pθ(y′i|y′<i, X). Reward is given only once209

the agent generates a complete sequence Y ′. The210

standard reward for MT is the sentence level BLEU211

metric (Papineni et al., 2002). Our goal is to find212

the parameters that will maximize the expected213

reward.214

In this work, we use MRT (Och, 2003; Shen215

et al., 2015), a policy gradient method adapted to216

NMT. The key idea of this method is to optimize217

at each step a re-normalized risk, defined only over218

the sampled batch. Concretely, the expected risk is219

defined as:220

Lrisk =
∑

u∈U(X)

R(Y, u)
P (u|X)β∑

u′∈U(X) P (u′|X)β

(2)221

where u is a candidate hypothesis sentence, U(x)222

the sample of k candidate hypotheses, Y the refer-223

ence, β a smoothness parameter, and R is BLEU.224

3 Methodology 225

Data Prepossessing. We use BPE (Sennrich 226

et al., 2016) for tokenization. The vocabulary size 227

is set to 40K for the combined source and target 228

vocabulary. For the small target vocabulary experi- 229

ments, we change the target vocabulary size to 1K 230

and keep the source vocabulary unchanged. 231

Objective Functions. Following Edunov et al. 232

(2018), we train models with MLE with label- 233

smoothing (Szegedy et al., 2016; Pereyra et al., 234

2017) of size 0.1. For RL, we fine-tune the model 235

with a weighted average of the MRT Lrisk and the 236

token level loss Lmle. 237

Our fine-tuning objective thus becomes: 238

LAverage = α · Lmle + (1− α) · Lrisk (3) 239

After tuning α, we set it to be 0.3 in our ex- 240

periments (Wu et al., 2018b). We set β to 1. We 241

generate eight hypotheses for each MRT step (k=8) 242

with beam search. We use smoothed BLEU (Lin 243

and Och, 2004) from the Moses implementation.2 244

Data & Optimization. We experiment with four 245

languages: German (De), Czech (Cs), Russian 246

(Ru), and Turkish (Tr), translating each of them 247

to English (En). We train the MLE objective over 248

200 epochs and the combined RL objective over 15. 249

We select the model with the lowest validation loss. 250

(see more on data, optimization and architecture in 251

Supp. §B) 252

4 Reducing the Vocabulary Size 253

We begin by directly testing our hypothesis that 254

the size of the action space is a cause for the long 255

convergence time of RL for NMT. To do so, we 256

train a model with target-side BPE taken from a 257

much smaller vocabulary than is typically used. 258

We begin by training two MLE models, one with 259

a large (17K-31K) target vocabulary (LTV) and 260

another with a target vocabulary of size 1K (STV). 261

The source vocabulary remains unchanged. We 262

start with the MLE pretraining, and then train each 263

of the two models with RL. 264

Results (Table 1) show that RL with STV 265

achieves 1 BLEU point more than RL with LTV.3 266

For comparison of the entropy of the models see 267

2https://github.com/jwieting/
beyond-bleu/blob/master/multi-bleu.perl

3Preliminary experiments showed that altering the random
seed changes the BLEU score by ±0.01 points.
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Model De-En Cs-En Ru-En Tr-En

LTV 28.05 17.40 17.39 15.21
LTV+RL 28.66 17.65 17.80 15.25
Diff. 0.61 0.25 0.41 0.04

STV 36.24 26.96 27.99 21.85
STV+RL 37.75 28.11 29.48 23.79
Diff. 1.51 1.15 1.49 1.94

Table 1: BLEU scores for translating four languages
to English using MLE pretraining followed by RL, and
comparing a model with a large vocabulary (LTV) to
a small one (STV). The top (bottom) block presents
results for LTV (STV) with and without RL, and the
difference between them (Diff.). RL with STV gains
more then 1 point more (on average) over the pretrained
model, than RL with LTV.

Supp. §C. In order to verify that the improvement268

does not stem from the choice of α mixing RL and269

MLE (see Eq. 3), we repeat the training for De-En270

with α ∈ {0, 1}, we find that α = 0.3 is superior to271

both. Moreover, RL improves STV more than LTV272

when training with only the RL objective (α = 1).273

This indicates that RL training contribute to the274

observed improvement.275

Those experiments focus on a low-resource set-276

ting. We choose this setting as RL experiments277

are computationally very demanding. We repeat278

this and further experiments with medium size data279

only for German and got similar results (see Supp.280

§C).281

We next turn to analyze what tokens are responsi-282

ble for the observed performance gain. Specifically,283

we examine whether reducing the vocabulary size284

resulted in RL being able to promote target tokens285

that received a low rank by the pretrained model.286

For each model, for 700K trials, we compute what287

rank the model assigns to the gold token yi for a288

context y′<i and source sentence X . We then com-289

pare the rank distribution of the pre-trained model290

to that of the RL model by subtracting those two291

distributions. This subtraction represents how RL292

influences the model’s ability to assign the correct293

token yi for each position. The greater the posi-294

tive effect of RL is, the more probable it is that295

the probability will be positive for the first rank,296

and negative for lower ranks (due to the probability297

shift to first place).298

Figure 1 presents the probability difference per299

rank for LTV and STV. We can see that for the300

first rank the probability shift due to RL training301

Figure 1: Comparison of probability shift due to RL
training of assign ybest for ten first words for both LTV
and STV. in green, you can see the results with BPE of
size 1,000, STV. in blue are the results with BPE of size
30,000, LTV. a clear improvement of assigning ybest in
first place for STV.

with STV is more than twice the shift caused by 302

RL training with LTV. Consequently, the probabil- 303

ity shift for the following ranks is usually more 304

negative for small vocabulary settings. The figure 305

indicates that indeed the shift of probability mass 306

to higher positions occurs substantially more when 307

we apply RL using a smaller action space. More- 308

over, the STV training was able to shift probability 309

mass from lower ranks upwards compared to LTV. 310

An indication for that is that, within the first one 311

hundred ranks, STV reduces the probability of 83 312

of them, whereas LTV of only 2. See results for 313

smaller model in Supp. §D. 314

5 Reducing the Effective Dimensionality 315

of the Action Space 316

Finding that reducing the number of actions im- 317

proves RL’s performance, we propose a method 318

for reducing the effective number of actions, with- 319

out changing the actual output. The vocabulary 320

size might be static, as in pretrained models (De- 321

vlin et al., 2019), and reducing it might help RL 322

but be sup-optimal for MLE (Gowda and May, 323

2020), or introduce out-of-domain words (Koehn 324

and Knowles, 2017). We propose to do so by using 325

target embeddings that generalize over tokens that 326

appear in similar contexts. We explore two imple- 327

mentations of this idea, one where we initialize 328

the target embeddings with high-quality embed- 329

dings, and another where we freeze the learned 330

target embeddings during RL. We also explore a 331

combination of the two approaches. Freezing the 332

target embeddings (the decoder’s last layer) can 333
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be construed as training the network to output the334

activations of the penultimate layer, where a fixed335

function then maps it to the dimension of the vo-336

cabulary.337

We note that although freezing is a common pro-338

cedure (Zoph et al., 2016; Thompson et al., 2018;339

Lee et al., 2019), as far as we know, it has never340

been applied in the use of RL for sequence to se-341

quence models.342

Denote the function that the network computes343

with fθ. fθ can be written as hθ2 ◦ gθ1 , where344

θ = (θ1, θ2), g maps the input – source sentence345

X and model translation prefix y′<i – into Rd, and346

h maps g’s output into R|VT |.347

Using this notation, we can formulate the method348

as loading pre-trained target embeddings to hθ2 or349

freezing it (or both). As for many encoder-decoder350

architectures (including the Transformer) it holds351

that d � |VT |, this can be thought as constrain-352

ing the agent to select a d-dimensional continuous353

action, where hθ2 is a known transformation per-354

formed by the environment.355

The intuition behind the importance of target em-356

beddings is as follows. Assume two tokens have the357

same embedding, and similar semantics, i.e., they358

are applicable in the same contexts (synonyms).359

Since they have the same target embeddings, dur-360

ing training the network will perform the same361

gradient updates when encountering either of them,362

except for in the last layer (since they are still con-363

sidered different outputs). If the target embeddings364

are not frozen, encountering either of them during365

training will lead to very similar updates (since they366

have the same target embeddings), but their target367

embeddings may drift slightly apart, which will368

cause a subsequent drift in the lower layers. If the369

target embeddings are frozen, the gradient updates370

they will yield will remain the same and expedite371

learning. We hypothesize a similar effect during372

training, where tokens that have similar (but not373

identical) embeddings, and a similar (but not iden-374

tical) distribution would benefit in training from375

each other. This motivates us to explore a combi-376

nation of informative initialization and parameter377

freezing. (see formal proof in Supp. §H).378

5.1 Motivating Simulation through Policy379

Parameterization in Large Action Spaces380

In order to examine the intuition outlined above381

in a controlled setting, we consider a synthetic RL382

problem in which the action space is superficially383

enlarged. The task is a (contextual) multi-armed- 384

bandit, with K actions. At each step, an input 385

state is sampled from the environment (the "con- 386

text"; a random vector sampled from a multivari- 387

ate Gaussian distribution). A random, fixed, non- 388

linear binary classifier determines whether action 389

#1 or action #2 is rewarding based on the given 390

context (actions 3-K are never rewarding), and the 391

reward for each action is r + z where r = 1 for 392

the rewarding action and 0 for all other actions, 393

and z ∼ N (0, 0.1). Crucially, we duplicate each 394

action a times, resulting in a total of K × a actions 395

at the policy level – whereas for the environment 396

all ‘copies’ of a given action are equivalent. 397

The underlying classifier itself is unknown to 398

the RL agent, which directly optimizes a policy 399

parameterized as a fully-connected feed-forward 400

neural network. We control two aspects of the last 401

layer of the policy network, resulting in a total of 402

four variants of agents. First, the last layer can 403

be frozen to its initial value, or learned (by RL). 404

Second, the last layer can be initialized at random, 405

or induce a prior regarding the duplicated actions 406

(such that weight vectors projecting to different 407

copies of a given action are initialized identically). 408

We call the latter the informative initialization. 409

We stress that the informative initialization car- 410

ries no information about the underlying reward 411

structure of the problem (i.e., the classifier, and 412

the identity of the rewarding actions), but only as 413

to which actions are duplicated. Nevertheless, as 414

shown in Figure 2, a prior regarding the structure 415

of the action space is helpful on its own, leading to 416

faster learning (compare Informative to Full net). 417

Results fit the intuition presented. With infor- 418

mative last layer initialization, learning in previous 419

layers generalizes over the duplicated actions and 420

boosts early stages of learning, leading to faster 421

convergence. We note that in this setting faster 422

learning is not only the result of learning fewer 423

parameters. Notably, freezing the last layer with 424

random initialization, prohibits the network from 425

learning the task. This is due to the regime of a 426

very large action space (output layer; width 4000) 427

compared to the dimensionality of the hidden rep- 428

resentations (width 300). Freezing an informative 429

initialization, on the other hand, sets the network 430

in a rather different regime, in which the effective 431

size of the output layer is (much) smaller than the 432

hidden representation (i.e #‘real’ actions; 10). In 433

this regime, the network is generally expressive 434
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Figure 2: Simulating learning in large action-spaces.
Figures show a moving average over 20 steps of the
underlying binary reward. Solid curves denote mean,
shaded area denote ±0.5 s.d. (N = 50 trials per agent,
K = 10, a = 400, network architecture: 10-300-300-
4000). Informative initialization is effective on its own,
and more so when freezing is applied.

enough so that it can quickly learn the task even435

with a fixed, random readout layer (Hoffer et al.,436

2018).437

To conclude, this example provides evidence438

that initializing, and possibly freezing the last layer439

in the policy network in a way that respects the440

structure of the action space is helpful for learning441

in vast action spaces, as it supports generalization442

over similar or related actions. Importantly, this443

helps even when the (frozen) initialization does444

not contain task-specific information. In a more445

realistic scenario, actions are not simply a complete446

duplicate of each other, but rather are organized in447

some complex structure. Informative initialization,448

then, accounts not for duplicating weights, but for449

initializing them in such a way that a-priori reflects,450

or is congruent, with this structure. This motivates451

our approach – in the realistic, complicated task of452

MT – to freeze a learned output layer for the policy453

network, from a model whose embeddings have454

been shown to be effective across a wide range of455

tasks (in our case, BERT).456

5.2 NMT Experiments457

The motivating analysis and simulations indicate458

that it is desirable to use target embeddings that459

assign similar values to similar actions. Doing so460

can be viewed as an effective reduction in the di-461

mensionality of the action space. We turn to exper-462

iment with this approach on NMT. We explore two463

approaches: (1) freezing h during RL; (2) informa-464

tively initializing h, as well as their combination. 465

Our main results are presented in Table 2. 466

As a baseline, we experiment with freezing un- 467

informative target embeddings: target embeddings 468

are randomly initialized and are frozen during both 469

MLE and RL. Unsurprisingly, doing so does not 470

help training, and in fact greatly degrades it (in 471

about 2 BLEU points in En-De). 472

Next, we examine whether the target embed- 473

dings of the MLE pretraining are informative 474

enough, namely whether freezing them during RL 475

leads to improved effectiveness. Results show a 476

slight improvement in BLEU when doing so, which 477

is encouraging given that the frozen embeddings’ 478

weights consist of almost half of the network’s 479

trainable parameters. Indeed, freezing the embed- 480

ding layers has a dramatic impact on the volume of 481

trainable parameters, decreasing their size by more 482

than 60%, in Supp. §F we present the number of 483

trainable parameters in each setting. 484

We therefore hypothesize that, as in the simula- 485

tions (§5.1), the quality of the frozen embedding 486

space is critical for the success of this approach. 487

As using frozen MLE embeddings improves per- 488

formance, but only somewhat, we further consider 489

target embeddings that were trained on much larger 490

datasets, specifically BERT’s embedding layer.4 491

For this set of experiments, we adjust the tar- 492

get vocabulary to be BERT’s vocabulary of size 493

|VT | = 30526. Notably, using BERT’s vocabulary 494

lowers the MLE results compared to the joint BPE 495

vocabulary (§B) which is known to be helpful, es- 496

pecially when source and target languages are close 497

(Sennrich et al., 2016), this is aligned with our re- 498

sults (Table 2). These considerations are peripheral 499

to our discussion, which specifically targets the 500

effectiveness of the RL approach. 501

We train RL models with and without freezing 502

the embedding layers and with and without loading 503

BERT embedding. We report results of MLE train- 504

ing with BERT’s embedding when the embedding 505

is kept frozen as it reaches superior results (see 506

Supp. §E). 507

The results (bottom part of Table 2) directly par- 508

allel our findings in the simulations: Initializing 509

from BERT improves performance across all lan- 510

guage pairs, and freezing yields an additional im- 511

provement in most settings, albeit a more modest 512

one. Combining both methods provides additional 513

improvement. We report semantic similarity scores 514

4HuggingFace implementation
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MODEL De-En Cs-En Ru-En Rr-En

MLE 22.38 15.81 17.31 12.60
+RL 23.19 15.81 17.31 12.66

+RL+FREEZE 23.14 16.04 17.78 13.18
+BERT 23.46 16.59 18.14 14.15
+BERT+RL 24.44 18.68 18.46 14.37
+BERT+RL+FREEZE 24.71 19.50 18.30 14.55

Table 2: BLEU scores on translating four languages
to English. FREEZE and BERT are helpful both in-
dependently and in conjunction. Moreover, comparing
+BERT to MLE shows that initializing with BERT is
beneficial for MLE as well. The upper block shows the
baseline scores of training only with MLE, and with
MLE followed by RL. RL presents modest improve-
ment (if any) over only using MLE. +RL+FREEZE
shows some improvement due to freezing the target em-
beddings. The lower three rows show results when us-
ing BERT’s target embeddings (informative initializa-
tion). RL is more effective in this setting (the differ-
ence between +RL+BERT and +BERT is greater than
the difference between +RL and MLE). Additional ben-
efit is seen from freezing (+RL+BERT+FREEZE).

in Supp. §I.515

Finally, initializing from BERT increases RL’s516

ability to promote tokens that were not ranked high517

according to the pre-trained model (Fig. 5).518

6 Human Evaluation519

We perform human evaluation, comparing the base-520

lineRL with our proposed model. We selected 100521

translations from the respective test sets of each522

language. The annotation was performed by two523

professional annotators (contractors of the project),524

who work in the field of translation. Both are native525

English speakers. The annotators then assigned a526

score from 0 to 100 based on how well the trans-527

lation conveyed the information contained in the528

reference (see annotators instructions in Supp. §J).529

From Fig. 3, we see that our proposed model scores530

the highest across all language pairs. To test statis-531

tical significance, we use the Wilcoxon rank sum532

test to standardize score distributions fitted for our533

setting(Graham et al., 2015). Comparing the two534

models’ distributions we got a p-value of 8.5e−5535

indicating the improvement is significant.536

7 Comparing Target Embedding Spaces537

The previous section discussed how BERT’s target538

embeddings improve RL performance, compared539

to target embeddings learned by MLE. We now540

turn to directly analyze the generalization ability of541

the two embeddings. We do so by comparing the542

Figure 3: Average human ratings on 200 sentences
from the test set for each of the respective languages.
RL is the baseline RL model and RL+ + is our model
(+BERT + RL + FREEZE). The performance of
our model is consistently better than the baseline.

embeddings of semantically related words. 543

We use WordNet (Miller, 1998) and spaCy5 to 544

compile three lists of word pairs: inflections (e.g., 545

’documentaries’ / ’documentary’, ’boxes’ / ’box’, 546

’stemming’ / ’stem’), synonyms (e.g., ’luckily’ / 547

’fortunately’, ’amazement’ / ’astonishment’, ’pur- 548

posely’ / ’intentionally’), and random pairs, and 549

compare the embeddings assigned to these pairs us- 550

ing BERT and MLE embeddings. Figure 4 presents 551

the distributions of the cosine similarity of the pairs 552

in the three lists for both embedding spaces. Re- 553

sults show that MLE embeddings for the different 554

lists have almost identical distributions, demon- 555

strating the limited informativeness of these target 556

embeddings. In contrast, BERT embeddings only 557

display a small overlap between the similarity dis- 558

tributions of inflections, and random pairs. How- 559

ever, synonyms’ distribution remain quite similar to 560

that of random pairs. In conclusion, BERT embed- 561

dings better discern semantics overall compared to 562

MLE embeddings, which may partly account for 563

their superior performance. Results also indicate 564

BERT’s embeddings could be further improved. 565

8 Conclusion 566

In this paper, we addressed the limited effective- 567

ness of RL for NMT, seeking to understand its 568

origins and offer means for tackling it. We hypoth- 569

esized that this limitation arises from the size of 570

the action spaces used in NMT and examined two 571

ways of reducing their effective dimension. In the 572

first method, we experiment with smaller vocabu- 573

5https://spacy.io/
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(a) MLE embeddings

(b) BERT embeddings

Figure 4: Comparison of the distribution of the cosine
similarity between word pairs from three groups: ran-
dom word pairs (in green), synonym pairs that do not
share a stem (in orange), and pairs of synonyms that
share a stem (in blue). The top figure refers to the tar-
get embeddings learned by MLE, and the bottom one to
BERT embeddings. The ability of the embeddings to
distinguish between these three groups is informative
of their ability to map semantically related words to
similar embeddings. The better discrimination ability
of BERT embeddings is thus likely related to their su-
periority as target embeddings over MLE embeddings.

laries, showing improved RL effectiveness. While574

this method constrains the size of the vocabulary,575

which may be limiting in some settings (Ding et al.,576

2019; Gowda and May, 2020), the strong results577

we obtain may justify its use in real world settings.578

The second approach introduces a new method579

of using informative target embeddings, and po-580

tentially freezing them during RL. We find that581

this method may be beneficial as well, but that its582

effectiveness crucially depends on the quality of583

the employed embeddings. Indeed, we find using584

both simulations and NMT experiments that freez-585

ing in itself results in some improvement in RL586

performance, but that combined with target em-587

beddings that generalize over words with a similar588

distribution, it may yield substantial gains as shown589

Figure 5: Comparison of the change in the rank distri-
bution of the target token following RL in two settings,
one where RL training with frozen BERT embeddings
is used (green) and the second when we used basic RL
training (blue). The gain in probability in the first rank
indicates that the model is more probable to be correct
(which is reflected in its superior performance over the
pretrained model). The negative values in the following
places demonstrate how RL with frozen high-quality
target embeddings can improve not only when the pre-
trained model is initially close to being correct.

by BLEU, semantic similarity, and human evalua- 590

tion. We compare the target embeddings produced 591

by MLE and those by BERT, finding the latter to 592

be considerably stronger. Those results in low re- 593

sources settings, encourage further research aiming 594

to address the problem of large action space for TG 595

in richer data settings by adapting and extending 596

our methods (see Supp. §C). 597

Future work will increase the exploration abil- 598

ity of RL training in NMT. A promising line of 599

research towards this goal is using off-policy meth- 600

ods. Off-policy methods, in which observations are 601

sampled from a different policy than the one we cur- 602

rently optimize, are prominent in RL (Watkins and 603

Dayan, 1992; Sutton et al., 1998), and were also 604

studied in the context of policy gradient methods 605

(Degris et al., 2012; Silver et al., 2014). We be- 606

lieve that the adoption of such methods to enhance 607

exploration, combined with our proposed method 608

for using target embeddings, can be a promising 609

path forward for the application of RL in NMT, and 610

more generally in TG 611

A different line of future work will focus on 612

changing the network’s architecture to predict a d 613

dimension continuous action, instead of discrete 614

actions. Such an approach may directly reduce the 615

size of the action space without limiting the amount 616

of words that can be predicted. 617
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A Computing Infrastructure001

We train our models using 4 NVIDIA GTX Titan002

Black GPUs. The run time of the models varies003

between ten to twenty hours.004

B Methodology005

Architecture. We use a similar setup as used by006

Wieting et al. (2019), adapting their fairSeq-based007

(Ott et al., 2019) codebase to our purposes.1 Simi-008

lar to their Transformer architecture we use gated009

convolutional encoders and decoders (Gehring010

et al., 2017). We use 4 layers for the encoder and011

3 for the decoder, the size of the hidden state is012

768 for all layers, and the filter width of the ker-013

nels is 3. Additionally, the dimension of the BPE014

embeddings is set to 768.015

Optimization. We optimize with Nesterov’s ac-016

celerated gradient method (Sutskever et al., 2013)017

with a learning rate of 0.25, a momentum of 0.99,018

and re-normalize gradients to a 0.1 norm (Pascanu019

et al., 2012).020

Data. For training data for cs-en, de-en, and ru-021

en, we use the WMT News Commentary v132 (Bo-022

jar et al., 2017) for training the models. Test sets are023

the official WMT18 test sets. For tr-en, we used for024

training the WMT 2018 parallel data, which con-025

sists of the SETIMES2 corpus (Tiedemann, 2012).026

The validation set is a concatenation of newsdev027

2016 and 2017 released for WMT18. Our use of028

the data is aligned with the license and intended029

use of the data.030

Lang. Train Valid Test

de-en 284,246 6,003 2,998
cs-en 218,384 6,004 2,983
ru-em 235,159 5,999 3,000
tr-en 207,678 6,007 3,000

Table 1: Number of sentence pairs in the train-
ing/validation/test sets for all four languages.

C Entropy of STV and LTV031

As C19 suggested we can compare the peakiness032

of the two models by calculating their distributions033

1https://github.com/jwieting/
beyond-bleu

2http://data.statmt.org/wmt18/
translation-task

entropy. Lower entropy indicates a more peaky dis- 034

tribution. We used KL divergence with respect to 035

the uniform distribution in order to normalize the 036

entropy and compare the peakiness of the two mod- 037

els. The STV model starts RL training with mean 038

entropy of 0.300 and finishes with 0.269 while the 039

LTV begins with 0.258 and finishes with 0.264. 040

This indicates that before RL training the LTV 041

model was slightly more peaky than the STV, but 042

after RL training they have similar peakiness. 043

D STV and LTV in small model 044

We also train STV and LTV models with inner di- 045

mension of size d = 256. In this case, as we can 046

see in figure 1 the LTV is able to shift probability 047

to the first place although STV is doing it more suc- 048

cessfully. In addition, within the first one hundred 049

ranks, STV reduces the probability of 88 of them, 050

whereas LTV only of 77. 051

Figure 1: Comparison of probability shift due to RL
training of assign ybest for ten first words for both LTV
and STV with d=256. in green, you can see the results
with BPE of size 1,000, STV. in blue are the results
with BPE of size 30,000, LTV. a clear improvement of
assigning ybest in first place for STV.

E Loading Bert embedding 052

We consider two options for loading Bert embed- 053

dings for the MLE training, one when we freeze 054

the embedding layer and the second when we let 055

the embedding layer continue adjusting. The re- 056

sults were unequivocal, freezing embedding layers 057

have a very constructive effect on the results (table 058

2). We estimate that freezing the embedding lay- 059

ers causes such vast improvement in performance 060

because it enables us to avoid the catastrophic for- 061

getting of BERT parameters. Therefore, although 062

1

https://github.com/jwieting/beyond-bleu
https://github.com/jwieting/beyond-bleu
 http://data.statmt.org/wmt18/translation-task
 http://data.statmt.org/wmt18/translation-task


using BERT embedding is helpful as initialization,063

by freezing the parameters we allow the model to064

better utilize BERT’s embeddings.065

Model de-en cs-en ru-en tr-en

MLE 22.38 15.81 17.31 12.60
MLE+Bert W/o freeze 22.99 15.32 17.57 12.65
MLE+Bert with freeze 23.46 16.59 18.14 14.15
diff. 0.47 1.27 0.57 1.50

Table 2: Compassion of MLE models with BERT em-
bedding with and without freezing.

F Number of parameters066

Here we provide a comparison of the number of067

trainable parameters in two settings, one when we068

are freezing the embedding layer and the second069

when we don’t freeze.070

# parameters de-en cs-en ru-en tr-en

Freeze 30.2M 29.3M 27.9M 29.4M
W/o freeze 77.2M 76.2M 74.8M 76.4M
Ratio 0.39 0.38 0.37 0.38

Table 3: Comparison if trainable parameters.

G Medium Size Data Experiment071

For those experiments, we use English-German072

data containing 2, 826, 714 sentences (WMT073

Dataset after some filtering). We conduct the exper-074

iments with both proposed methods. The results of075

the first method where we reduce the target vocabu-076

lary size are on table 4. Results indicate that indeed077

smaller action space enable better generalization078

even in medium-size data scenarios.079

Model de-en

LTV 31.10
LTV+RL 32.44
Diff. 1.34

STV 41.55
STV+RL 43.35
Diff. 1.80

Table 4: BLEU score of STV and LTV with medium
size data. Results indicating that the method is helpful
in medium size data setting as well

MODEL de-en

MLE 29.62
+RL 32.75
Diff. 3.13

+BERT 28.39
+BERT+RL 31.92
Diff. 3.53

Table 5: BLEU score of second method with medium
size data. Results showing that the improvement of RL
when using BERT’s target embedding is bigger then
the baseline. Nevertheless, the MLE model with BERT
gain inferior results. This can be a results of the ability
of the model to learn somewhat good embedding from
the data signal when it is big enough

In the second method, we aim to implicitly re- 080

duce the effective action space size by incorporat- 081

ing informative target embedding and freezing it. 082

Results in table 5 show that the MLE result with- 083

out BERT is higher than the results with BERT. 084

This is not surprising as a better embedding ma- 085

trix can be learned when more data is available. 086

Although this observation, ruining the experiment 087

described in §7 shows similar results to the embed- 088

ding learned with a small amount of data. Regard- 089

ing the effect of the RL training with informative 090

target embedding, it seems that there is a relative 091

gain to +BERT + RL over +RL. Regarding 092

freezing, when combine with basic +RL led to 093

inferior improvement of 2.98 BLEU points and to- 094

gether with +BERT+RL gain 2.63 BLEU points 095

over +BERT . These results show that freezing 096

the target embedding when more data is available 097

can lead to lesser results. The cause for this can be 098

the change in the model capacity. Overall, it seems 099

that our proposed method has some differences 100

when moving to medium resources scenario but 101

the core idea that RL training benefit from small 102

action space and that informative target embedding 103

is important remains. 104

H Formalizing the intuition behind 105

freezing the embedding layer 106

Here we want to formalize the intuition behind 107

freezing the embedding layer. We explicitly calcu- 108

late the gradients of the cross-entropy (CE) loss of 109

the one-hot vector, y, and the distribution vector, 110

ŷ of the model fθ = hθ2 ◦ gθ1 output (henceforth, 111

we will discard the parameters notation from f, g 112

and h). We will discuss two cases, one when we 113

2



freeze θ2 and the second when we are not. We note114

that θ2 ∈ Rd×|VT | is the embedding layer where115

each row, ρi, is the representation of the k’s word116

in the vocabulary. Moreover, h : Rd → R|VT |117

is the function defined by multiplying the out-118

put of g, denoted by v ∈ Rd, by θ2, and then119

taking the soft-max of the output vector, hence120

∀k ∈ |VT |;hk(v) = exp(ρk·v)∑
l exp(ρl·v)

. Therefore assign-121

ing to each word some probability, ŷk, to be the122

next one in the sentence.123

Now, we want to investigate the update defined124

by the gradients of the CE loss in the setting when125

two words, w1 and w2 have the same representa-126

tion, ρ1 = ρ2. We consider the case where one of127

them is the gold token, w.l.g. w1. We note this case128

by
∣∣∣1.129

We turn to examine the gradient in this setting130

for both cases. We start by realizing that if all the131

partial derivatives of the CE loss, L, exist then the132

gradient is the vector of all the partial derivatives133

meaning, ∇θL =

(
∇θ1L
∇θ2L

)
and we can separate134

the calculation into two parts, one with respect to135

θ1 and the second with respect to θ2.136

By definition, in the case where we freeze θ2 we137

will keep ρ1 and ρ2 the same. We will now show138

that in the case when we don’t freeze θ2 the update139

will be different.140

Lemma H.1. If θ2 is not frozen then: Updates are141

differe: ∆ρ1! = ∆ρ2.142

Proof. We start by noticing that multiplying v by143

θ2 is a linear transformation so for points p1 and144

p2 we will get the same derivative as ρ1 = ρ2,145

moreover by taking the soft-max of those identical146

outputs we will get the same outputs. Hence, we147

get that ∀i ∈ [d]; ∂ŷ1∂vi
= ∂ŷ2

∂vi
, similarly ∂ŷ1

∂ρ1i
= ∂ŷ2

∂ρ2i
.148

We continue by calculating the derivative of the149

CE. The CE loss is defined by:150

L(y, ŷ) =
∑
i

yilog(ŷi) (1)151

The derivative is: ∂L
∂ŷi

=
∑

i yi
1
ŷi

we notice that152

y is a one hot vector i.e., y1 = 1 and ∀i ∈153

[2, |VT |]; yi = 0. Therefore, the derivative will154

be different from i = 1 to all other i’s. Specifically,155

∀i ∈ [d]; ∂L
∂ρ1i
6= ∂L

∂ρ2i
. Putting it all together we156

get:157

∂L

∂ρ1i
=
∂L

∂ŷ1
· ∂ŷ1
∂ρ1i

6= ∂L

∂ŷ2
· ∂ŷ2
∂ρ2i

=
∂L

∂ρ2i
(2)158

Proving that ρ1 and ρ2 updates are different. 159

� 160

Lemma H.2. For both cases, the update of θ1 is 161

symmetric to the gold being w1 or w2. ∇θ2L
∣∣∣1 = 162

∇θ2L
∣∣∣2. 163

Proof. Given a parameter λ ∈ θ1, we inspect the 164

derivative of L with respect to λ. We use here 165

Einstein summation notation. 166

∂L

∂λ

∣∣∣1 =
∂L

∂vi
· ∂vi
∂λ

∣∣∣1 =
∂L

∂vi
· ∂vi
∂λ

∣∣∣2 =
∂L

∂λ

∣∣∣2 (3) 167

We deduce ∂vi
∂λ

∣∣∣1 = ∂vi
∂λ

∣∣∣2, as the derivative of vi is 168

independent of the question which word is the gold. 169

In order to justify the second equality we used, we 170

will write the derivative of L with respect to vi. 171

∂L

∂vi

∣∣∣1 =
∂L

∂ŷk
· ∂ŷk
∂vi

(4) 172

Clearly, we only need to check the elements that 173

change by switching the gold from being w1 to w2 174

or vice versa. Therefor all the second terms that 175

multiply by ∂L
∂ŷk

for k ∈ [3, |VT |] didn’t change. 176

We already proved that ∀i ∈ [d]; ∂ŷ1∂vi
= ∂ŷ2

∂vi
Finally, 177

because we switch the gold, ∂L
∂ŷ1

and ∂L
∂ŷ2

indeed 178

switch there values but both of them are multiply 179

by the same values as ∂ŷ1
∂vi

= ∂ŷ2
∂vi

. Overall, the 180

derivative is unchanged. � 181

To conclude, in the motivational setting we dis- 182

cussed, when we freeze θ2 we keep semantically 183

close vectors unchanged while if we don’t freeze 184

θ2 we enable them to change. As consequence, in 185

further steps, this change will affect on θ1 also. In 186

a similar manner, as long as the representation is 187

similar, all layers but the penultimate would update 188

both words similarly. 189

I Semantic scores for the second method 190

Our method of freezing informative initialization 191

of the embedding layer aims to generalize across 192

different but semantically close actions. In order to 193

test the ability of our model to generalize we used 194

SIM. SIM is a measure of semantic similarity that 195

assigns partial credit to semantically correct but lex- 196

ically different translations (Wieting et al., 2019). 197

Table 6 shows our model results and exhibits simi- 198

lar trends to the BLEU scours. Here we see even 199

greater gains for cs-en and ru-en languages pairs. 200

3



Those results may indicate that the model was able201

to predict tokens that are semantically close to the202

gold token.203

MODEL de-en cs-en ru-en tr-en

MLE 70.03 63.29 66.17 59.68
+RL 71.17 63.29 66.17 59.99

+RL+FREEZE 71.03 64.29 66.66 60.52
+BERT 71.56 64.26 66.70 61.75
+BERT+RL 72.44 67.94 79.62 63.59
+BERT+RL+FREEZE 72.81 76.67 67.66 63.59

Table 6: SIM scores on translating four languages to
English.

J Human Evaluation Information204

We recruited the service of two professional trans-205

lators via translations providers.206

J.1 Human Evaluation Instructions207

You will be shown:208

1. An English segment of text;209

2. Corresponding translation into English.210

There are three parts to each annotation:211

1. Read the English segment;212

2. Read the translation and compare its meaning213

to the meaning of the original English seg-214

ment;215

3. Give a score between 1-100 describing how216

close the meaning of the translation is to the217

meaning of the original English segment.218
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