
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEANER TRANSFORMERS:
MORE HEADS, LESS DEPTH

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have reshaped machine learning by leveraging attention to capture
complex dependencies, driving major advances across domains. Their success has
fueled the belief that ever-larger models are required for strong performance. In
this paper, we challenge this assumption by showing that many transformers are
unnecessarily oversized. We present a theoretical principle that redefines the role
of multi-head attention, demonstrating that multiple heads improve the condition-
ing of the Jacobian of the attention block. Guided by this insight, we redesign
popular architectures with more heads and fewer layers. This trade-off reduces
parameter counts by up to 30-50% while preserving accuracy, yielding leaner yet
equally effective models. We validate our approach across a range of transformer-
based architectures and scales, showing consistent benefits on tasks in computer
vision (ImageNet-1k) and language and sequence modeling (GLUE, TinyStories,
and the Long-Range Arena benchmark).

1 INTRODUCTION

Transformer architectures introduced by Vaswani (2017) have become the dominant architecture
across a wide range of fields, including natural language processing (NLP) (Vaswani, 2017; Devlin
et al., 2018; Zhuang et al., 2021; Zhen et al., 2022), computer vision (Dosovitskiy et al., 2020; Carion
et al., 2020; Liu et al., 2021; Touvron et al., 2021), and robotics (Fu et al., 2024; Maiti et al., 2023;
Salzmann et al., 2020). At the heart of their success lies the attention mechanism, which dynamically
assigns relevance scores to input elements, enabling the model to capture complex dependencies in
data more effectively than traditional architectures.

As transformers continue to scale, the prevailing belief is that heavy overparameterization is neces-
sary for strong performance. Standard designs increase capacity through three main avenues: (1)
expanding the number of attention heads, (2) widening feedforward layers, and (3) deepening the
network with more layers. While the roles of width and depth have been extensively studied in the
context of optimization and generalization (Agarwal et al., 2021; Arora et al., 2018; Zhou & Feng,
2018; Kabkab et al., 2016; Li et al., 2018; Liu et al., 2022; Jacot et al., 2018), the trade-offs involv-
ing attention heads remain comparatively underexplored (Levine et al., 2020b;a; Petty et al., 2023;
Sanford et al., 2023).

In this paper, we revisit the conventional design of transformers and ask whether current architec-
tures are structured optimally. We introduce a theoretical principle showing that multi-head attention
improves the conditioning of the Jacobian of attention layers, lowering its condition number and
thereby stabilizing gradient-based optimization (Nocedal & Wright, 1999). Guided by this insight,
we demonstrate that attention heads can often be traded for depth, enabling leaner architectures
that maintain both optimization stability and accuracy. Since each layer contributes significantly
to parameter count, this trade-off offers substantial reductions in model size and memory without
compromising performance.

We validate our findings by modifying and retraining a range of existing models in both vision and
NLP. Across tasks such as ImageNet-1k classification (Steiner et al., 2021), language modelling on
TinyStories (Eldan & Li, 2023), GLUE benchmark evaluation (Wang et al., 2018), and long-context
modeling with the LRA benchmark (Tay et al., 2021), we show that transformers redesigned with
more heads and fewer layers consistently match or exceed the performance of their original coun-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

terparts. These results raise important questions about heavy overparameterization in transformers
and highlight opportunities for more principled architecture design.

Our contributions are summarized as follows:

1. A theoretical framework offering a new perspective on multi-head attention, showing that
one of its central roles is to improve the conditioning of attention layers.

2. An empirical design principle derived from this theory, demonstrating that depth can be
traded for additional heads to reduce parameter count without sacrificing accuracy.

3. A comprehensive empirical validation, confirming the effectiveness of this trade-off on
widely used benchmarks.

2 RELATED WORK

Efficient attention-based architectures. Numerous approaches have been proposed to enhance
the efficiency and effectiveness of transformers, particularly by reducing the computational com-
plexity of the attention layer. DeiT (Data-Efficient Image Transformer) (Touvron et al., 2021) im-
proves training efficiency by leveraging distillation tokens, enabling strong performance with sig-
nificantly fewer data requirements. XCiT (Cross-Covariance Image Transformer) (Ali et al., 2021)
introduces a novel attention mechanism that operates on spatial feature cross-covariances, improv-
ing feature interactions while substantially reducing computational overhead. VOLO (Vision Out-
looker) (Yuan et al., 2022) incorporates outlook attention, which efficiently captures long-range de-
pendencies, outperforming traditional vision transformers (ViTs) while maintaining computational
efficiency. Nyströmformer (Xiong et al., 2021b) tackles the quadratic complexity of self-attention
using a Nyström-based approximation, reducing it to near-linear time while preserving key attention
properties. Other efficient transformer variants have further addressed attention-related bottlenecks.
Linformer (Wang et al., 2020) approximates self-attention with low-rank projections, achieving lin-
ear complexity by compressing the sequence length dimension. Performer (Choromanski et al.,
2021) employs kernelized attention with random feature projections, enabling scalable attention
with linear time complexity. Reformer (Kitaev et al., 2020) utilizes locality-sensitive hashing to
significantly reduce memory and computational costs, making attention efficient even for long se-
quences. We take a different approach, exploring whether the inherent complexity of transformers
can be reduced to create more compact models that maintain strong performance. Our insights on
conditioning are orthogonal to the above methods and demonstrate benefits on several of the afore-
mentioned architectures (ViTs, Nyströmformers).

Conditioning. The existing literature provides theoretical support for improved performance of
MLPs with better-conditioned weight matrices trained with gradient descent. Liu et al. (2022) used
the Neural Tangent Kernel (NTK) framework (Jacot et al., 2018) to show that increasing network
width reduces the NTK’s condition number, leading to better convergence. As MLPs widen, their
weight matrices enter the regime described in theorem 3.1 where the condition number approaches
1. By direct application of the chain rule, this implies that the improved conditioning of the weight
matrices leads to a better-conditioned NTK. A vast literature has also explored the roles of width
and depth (Poole et al., 2016; Vardi et al., 2022). Arora et al. (2018) showed that, in linear MLPs,
depth serves as a preconditioner for stochastic gradient descent, improving optimization as depth
increases. Similarly, Agarwal et al. (2021) found that depth enhances the conditioning of non-linear
MLPs, provided that activations are properly normalized, thereby facilitating better convergence
with gradient-based algorithms. The above studies underscore the importance of both width and
depth in achieving good optimization for MLPs. A similar theoretical understanding for transform-
ers is lacking (Levine et al., 2020b;a; Petty et al., 2023; Sanford et al., 2023) and our work helps
fill this gap. We reveal a crucial role of multi-head attention in the optimization of transformers and
explore its empirical relationship with model depth.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 THEORETICAL FINDINGS

3.1 PRELIMINARIES AND NOTATION

Transformers. We first briefly review the the transformer architecture (Vaswani, 2017; Doso-
vitskiy et al., 2020; Prince, 2023). A transformer is composed of stacked layers, also known as
“transformer blocks”. Each layer is formally represented as a mapping

T : RN×D → RN×D (1)

defined by the expression
T(X) = F(A(X) +X). (2)

The dimension N is generally the number of tokens and D is the token embedding dimension
(Prince, 2023). The component F denotes a feedforward multi-layer perceptron (MLP, typically
with one hidden layer and a residual connection), and A represents the self-attention mechanism.
In general, depending on the application after stacking such components T together in a feedfor-
ward manner the transformer may have a final head H that consists of a MLP. For example, for
classification H would be the final classifying head, see Prince (2023) for details.

The self-attention mechanism A uses three learnable matrices, the query (Q), key (K), and value (V)
matrices. Given an input sequence X ∈ RN×D, the matrices are first applied as follows: q=QX ,
k=KX , v=V X , where Q,K ∈ RD×d and V ∈ RD×d. These are then combined to produce the
output of the self-attention head as follows:

A(X) := softmax

(
q k⊤√

d

)
v (3)

where the softmax is applied row-wise, d is known as the head dimension and the scaling 1√
d

is
so that the softmax values don’t saturate (Vaswani, 2017). In general, eq. (3) computes the query-
value product by a dot-product qk⊤. However, more general forms of attention exist that replace the
dot-product with a general similarity measure ϕ and thus compute an attention block using ϕ(q, k):
A(X) := softmax(ϕ(q, k)) v. In this paper, our theoretical claims will be given in the context of
self-attention so that we can provide concrete formulas. However, our insights hold true for general
forms of attention as we will see in the experiments section 4.

Equation (3) defines the formula for one attention head within a transformer block. In general,
transformers use multiple heads leading to multi-head attention. Given an integer h > 0, known as
the number of heads, we have an attention matrix Ai for each 1 ≤ i ≤ h, each of dimension N × d.
Their outputs are then concatenated together to form a block of attention matrices

[A1, · · · ,Ah] (4)

where each Ai is known as an attention head. Note that as each head has dimension N×d and there
are h heads we have that the block [A1, · · · ,Ah] ∈ RN×hd. It’s often the case that d = D

h and h

and thus h must divide D. Finally, applying a projection matrix P ∈ Rhd×D we obtain multi-head
attention

MH = [A1, · · · ,Ah] ·P (5)

giving MH ∈ RN×D.

The attention head of a layer in a transformer A(X) ∈ RN×d has parameters given by those param-
eters in X from the previous layer and those given by Q, K and V that define A(X), see eq. (3).
Our work will consider the Jacobian of A(X) with respect to the parameters within the layer of
A(X), namely Q, K and V . Therefore, when we speak of the Jacobian of A(X) it will be with
respect to Q, K, V . We will denote this Jacobian by J(A(X)) and note that it is defined by

J(A(X)) =

[
∂A(X)

∂Q
,
∂A(X)

∂K
,
∂A(X)

∂V

]⊤
(6)

where each of ∂A(X)
∂Q , ∂A(X)

∂K and ∂A(X)
∂V has dimension (Nd) · (Dd). Therefore, J(A(X)) has

dimension (3Dd)× (Nd).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Given a matrix M ∈ Rm×n we denote the vectorization of M by vec(M) ∈ Rmn×1 (Magnus &
Neudecker, 2019). Note that for such a matrix there is a transformation Tmn ∈ Rmn×mn such that
Tmnvec(M) = vec(M⊤) where M⊤ denotes the transpose of M . The matrix Tmn is known as
a commutation matrix and is a permutation matrix (Magnus & Neudecker, 2019). The maximum
singular value of a matrix M will be denoted by σmax(M) and the minimum singular value by
σmin(M). We will use the standard terminology SVD to denote the singular value decomposition
of a matrix. Given a vector z ∈ Rn the notation ||z||2 will denote the vector 2-norm of z. Finally
we will need the notion of a lim sup which we remind the reader is the largest value that a sequence
gets arbitrarily close to infinitely often, capturing its long-term upper bound behavior (Dym, 2004).

Condition number. The condition number of a matrix is the ratio of its largest to smallest singular
values. In gradient-based optimization of linear and non-linear systems, the condition number serves
as a quantitative measure of how well the optimizer will converge. Lower values indicate a more
stable and efficient convergence (Nocedal & Wright, 1999).

Definition 3.1. The condition number of a full-rank, n × m matrix M is defined as κ(M) :=
σ1(M) / σk(M), with the singular values σ1(M) ≥ · · · ≥ σk(M) and k = min(m,n). Since M
is of full rank, all singular values are positive and the condition number is thus well defined. And
since σ1(M) ≥ σk(M), the condition number satisfies κ(M) ≥ 1.

3.2 MAIN THEORETICAL RESULTS

In this section we provide our main theorem of the paper. From eq. (4), we saw that each attention
head has dimension N × d, where N is the numbers of tokens, D is the token embedding dimen-
sion. Concatenating h such heads and then applying a projection we produced the final multi-head
attention block MA of dimension N ×D. The following lemma shows how the Jacobian of MA
can be determined in terms of the Jacobian of each head Ai and the projection matrix P.

Lemma 3.1. Let MA ∈ RN×D denote a multi-head attention layer of a transformer block as in
eq. (4). Then

J(MH) =

[
Diag(J(A1), . . . ,J(Ah))(P⊗ IN)

([A1, . . . ,Ah]
⊤ ⊗ ID)

]
∈ R(3hDd+Dhd)×ND (7)

The proof of lemma 3.1 is given in section A.1.1. We can now give the statement of the main
theorem of this paper.

Theorem 3.1. Let MA ∈ RN×D denote a multi-head attention layer of a transformer block as
in eq. (4) built via h attention heads Ai ∈ RN×d for 1 ≤ i ≤ h and a projection P ∈ Rhd×D.
Assume, uniformly in h > 0, there exists constants C1, C2 > 0 and C3, C4 > 0 such that

0 < C1 ≤ σmin(Ai) ≤ σmax(Ai) ≤ C2 for 1 ≤ i ≤ h (8)
0 < C3 ≤ σmin(P) ≤ σmax(P) ≤ C4 (9)

and the columns of [A1 . . . ,Ah] are independent, mean zero, Gaussian distributed entries with
covariance Σ satisfying 0 < λmin(Σ) ≤ λmax(Σ). Then with probability approaching 1 we have
the following asymptotic bound

lim sup
h→∞

κ(J(MA) ≤

√
λmax(Σ)

λmin(Σ)
. (10)

Furthermore, if we assume that the columns of [A1, . . . ,Ah] are isotropic, so that Σ = σ2IN ,
then with probability approaching 1 we have

κ(J(MA)) = 1 +O(

√
N

hd

)
as h → ∞. (11)

In particular, for large h we have that κ(J(MA)) ≈ 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The theorem highlights that, while the Jacobian of an individual attention head J(Ai) of dimen-
sion Nd × Nd may not be well-conditioned, the concatenation of multiple heads leads to a well-
conditioned Jacobian of a multi-head layer, under some assumptions. The proof of theorem 3.1 is
given in section A.1.1. For a discussion of the assumptions in theorem 3.1 we refer the reader to
section A.1.1.

Why scale the number of heads? Beyond spectral considerations, increasing the number of heads
provides a useful inductive bias: more heads yield more distinct attention patterns. With a moderate
per-head dimension d (e.g., 64-128), each head can specialize to different spatial correlations in the
token sequence, effectively offering multiple “views” of the data. By contrast, enlarging d within
a single head makes that head richer but does not multiply the number of patterns. In practice, this
multi-view bias from additional heads often proves more effective across tasks.

Implementation. In many transformers the dimensions D, d, and h (see section 3.1) satisfy
d = D/h. Thus, increasing h can make the per-head width d very small. In our experiments
(section 4), we instead fix the model width D and set the per-head size to d ∈ {64, 128}; we then
increase h without enforcing d = D/h.

3.3 TRADING DEPTH FOR HEADS

The literature reviewed in section 2 indicates that depth and width play complementary roles in the
optimization of neural networks. Building on this, Theorem 3.1 shows that increasing the number of
heads improves the conditioning of the multi-head Jacobian, which should facilitate optimization.
At the same time, adding heads increases model capacity, which can itself improve performance.
Our interest is in whether these benefits can be harnessed to trade depth for heads: can we use more
heads to maintain accuracy while reducing the number of layers?

Hypothesis (trading depth for heads). For a fixed token embedding dimension D and per–head
dimension d, increasing the number of attention heads h improves optimization, via more diverse
and better-conditioned attention mappings, so that the number of transformer layers L can be
reduced without degrading performance.

Motivation. A single transformer layer typically carries a large parameter budget, dominated by
the feed-forward block, whereas adding several heads within a layer increases parameters more
modestly. Thus, reducing depth can quickly shrink model size, and additional heads may preserve
performance by providing richer, complementary attention patterns. In section 4 we evaluate this
hypothesis across architectures and tasks. A full theoretical account of when (and why) depth can
be traded for head multiplicity remains open. Our results suggest concrete directions for future
work on optimal architecture design.

4 EXPERIMENTS

We perform extensive experiments with a variety of transformer-based models. Our goals are (1) to
empirically verify the prediction of theorem 3.1 about improvements in conditioning and (2) to
evaluate the downstream benefits on a variety of different transformer architectures and applications.

4.1 IMAGE CLASSIFICATION

We consider standard vision transformers (ViTs) from the literature. We modify their architecture
according to the findings from section 3 and re-train them from scratch on ImageNet-1k (Steiner
et al., 2021). Our approach enables reductions in parameter count by up to 30-50% of existing
models without compromising their accuracy. The explicit training details, implementation and
hardware used for all experiments in this subsection can be found in section A.2.1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1 4 8 12 16 20 24
Number of heads

104

106

108

1010

1012

1014

Av
. C

on
dit

ion
 nu

mb
er

Varying heads

6 18 48 64 88 104122
Head size

104

106

108

1010

1012

1014

Av
. C

on
dit

ion
 nu

mb
er

Varying head size

Figure 1: Empirical measurement of the condition number of the attention layers in ViT-Bs with
different numbers of heads (left) and varying head dimension (left). In both cases the condition
number of the Jacobian improves (lower number) following the predictions of theorem 3.1 and
theorem A.2.

4.1.1 STANDARD VITS

We adopt the ViT-Base (ViT-B) architecture (Dosovitskiy et al., 2020), a widely used model for
image classification. An input image is divided into non-overlapping 16!×!16 patches, which are
linearly projected into 768-dimensional token embeddings that serve as input to the transformer
layers. ViT-B consists of 12 layers, each with 12 attention heads of dimension 64 (so that 12× 64 =
768, matching the embedding size). The MLP blocks use hidden layers of size 4× 768 = 3,072.

Validating the effects on conditioning. To validate theorem 3.1, we varied the number of heads
in a ViT-B while fixing the head dimension at d = 64 and the number of layers at 12, training
models on ImageNet-1k with h ∈ 1, 4, 8, 12, 16, 20, 24. Since theorem 3.1 also applies when fixing
h and increasing d (see theorem A.2), we performed a second experiment with h = 12 and d ∈
6, 18, 48, 64, 88, 104, 122 to match parameter counts. Each model was trained for 300 epochs, and
every 50 epochs we computed the Jacobian condition number of the attention matrix (averaged
across layers). As shown in fig. 1, the condition number decreases markedly with more heads,
confirming theorem 3.1.

Varying number of heads. We first fix the depth at 12 layers and vary the number of heads
from 2 to 18 with head dimension 64. To further test the hypothesis from section 3.3, we repeat
the experiment with depth reduced to 8 layers. All models are trained on ImageNet-1k for 300
epochs with AdamW, following standard protocols (Steiner et al., 2021; Dosovitskiy et al., 2020)
(see section A.2.1). As shown in fig. 2, accuracy consistently increases with more heads: in the
12-layer setting, performance surpasses the original baseline once h > 12, while in the 8-layer
setting, accuracy remains strongly correlated with head count. Importantly, reducing depth offsets
the parameter cost, with models above 12 heads outperforming the baseline using substantially fewer
parameters (61.2–67.4M vs. 86.6M).

Varying head dimension. Next, we fix the number of heads at h = 12 and vary the head di-
mension over d ∈ {10, 18, 32, 48, 54, 64, 80, 88, 96}. This setup yields parameter counts directly
comparable to those in the head-variation experiments. As shown in fig. 3 (left), accuracy improves
consistently as the head dimension increases. Repeating the experiment with a reduced depth of 8,
we observe that for d ∈ {88, 96} the model slightly outperforms the standard ViT-B while using
fewer parameters.

Varying heads vs. head dimension. Table 1 reports training times when varying head dimension
d with fixed heads h = 12, compared with varying heads h while fixing d = 64, for a depth
of 12. The table highlights a clear advantage for varying heads: models train faster for the same
parameter budget compared to varying head dimension. Furthermore, comparing fig. 3 with fig. 2,
we find that increasing heads at depth 8 produces three configurations that outperform all head-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

12 Layers 8 Layers

5 10 15
Number of heads

79.2

79.4

79.6

79.8

80.0

80.2
To

p-
1%

 te
st

 a
cc

ur
ac

y

63.0 67.7

72.4

77.1

81.8

86.6
91.3

96 100.7

Original ViT-B

5 10 15
Number of heads

78.0

78.5

79.0

79.5

80.0

80.5

81.0

To
p-

1%
 te

st
 a

cc
ur

ac
y

86.6 million

42.5

45.6

48.7
51.9

55.0
58.1

61.2

64.3 67.4

Figure 2: Empirical measurement of the condition number of the attention layers in ViT-Bs with
different numbers of heads (left) and varying head dimension (left). In both cases the condition
number of the Jacobian improves (lower number) following the predictions of theorem 3.1 and
theorem A.2.

12 Layers 8 Layers

20 40 60 80 100
Number of heads

78.0

78.5

79.0

79.5

80.0

80.5

To
p-

1%
 te

st
ac

cu
ra

cy

62.6

66.2

72.4

79.5

82.1

86.6 93.797.2
100.7

Original ViT-B

20 40 60 80 100
Number of heads

77.5

78.0

78.5

79.0

79.5

80.0

80.5
To

p-
1%

 te
st

ac
cu

ra
cy

86.6 million

42.3

44.6

48.8

53.5

55.3

58.2
62.9

65.367.7

Figure 3: Empirical measurement of the condition number of the attention layers in ViT-Bs with
different numbers of heads (left) and varying head dimension (left). In both cases the condition
number of the Jacobian improves (lower number) following the predictions of theorem 3.1 and
theorem A.2.

dimension variants. Overall, in parameter-matched comparisons, varying the number of heads yields
both shorter training times and stronger accuracy. Therefore, in this paper we focus primarily on
varying heads.

Table 1: Rows 2-4 report the effect of varying the head dimension d while keeping the number of
heads h fixed. Rows 5-7 instead vary h while holding d fixed. Row is the standard ViT-B baseline.
All models use 12 layers. We observe that adjusting h yields shorter training times for the same
parameter budget compared to adjusting d.

Depth h d Acc. (%) Params. (M) Time (h:min)
12 12 64 80.1 86 29:34
12 12 80 80.1 94 35:08
12 12 88 80.1 97 39:18
12 12 96 80.2 101 45:41
12 14 64 80.2 91 31:16
12 16 64 80.2 96 33:42
12 18 64 80.2 101 36:51

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

● Ours (more heads, fewer layers) ● Original

30 40 50 60 70 80 90
Number of parameters (millions)

80

82

84

86

Im
ag

eN
et

-1
k

ac
cu

ra
cy

 (
%

)

XCiT-MTNT-B

ViT-B

DeiT-B

VOLO-d3

DaViT-B

-54%

-30%

-54%

-45%

-53%

-30%

50 100 150 200 250 300 350
Memory usage during training (GB)

80

82

84

86

Im
ag

eN
et

-1
k

ac
cu

ra
cy

 (
%

)

ViT-B

XCiT-M

DeiT-B

VOLO-d3

TNT-B

DaViT-B

-43%

-38%

-43%

-31%

-24%

-21%

Figure 4: Other vision transformer architectures. Improvements in accuracy relative to parameter
count (left) and training memory usage (right). All models benefit significantly from our approach.

● Ours (more heads, fewer layers) ● Original

80 100 120 140 160 180 200
Number of parameters (millions)

80

82

84

86

88

Im
ag

eN
et

-1
k

ac
cu

ra
cy

 (
%

)

ViT-L

XCiT-L

DeiT-L

VOLO-d4

DaViT-L

-51%

-45%

-51%

-45%

-29%

100 150 200 250 300
Memory usage during training (GB)

80

82

84

86

88

Im
ag

eN
et

-1
k

ac
cu

ra
cy

 (
%

)

ViT-L

XCiT-L

DeiT-L

VOLO-d4

DaViT-L

-42%

-42%

-42%

-36%

-22%

Figure 5: Large vision transformer architectures. We observe consistent improvements in accuracy
relative to parameter count (left) and in training memory usage (right), mirroring the trends observed
for smaller models.

4.1.2 OTHER VISION TRANSFORMERS

We apply our strategy to a variety of alternative transformer-based architectures in the 60-90 M
parameter range: DeiT (Touvron et al., 2021), XCiT (Ali et al., 2021), TNT (Han et al., 2021),
VOLO (Yuan et al., 2022), and DaViT (Ding et al., 2022), all pretrained on ImageNet-1k. We report
our best configurations in fig. 4 . In all cases, reducing depth and increasing the number heads
leads to models with similar or higher accuracy with substantial reductions in parameter count.
This indicates that many models are unnecessarily oversized. This also corresponds to substantial
reductions in memory during training (reported separately in fig. 4). For an ablation, see section A.2.
We also evaluate models in the 180 - 200 M parameter range. Figure 5 shows similar improvements
in accuracy, parameter count, and memory usage.

What about width? In section A.2.1, we analyze variations in the hidden-layer size of the MLP
blocks in a ViT-B model as an alternative way to adjust model width, but find that this has only
limited impact on performance compared to increasing the number of attention heads.

4.2 LANGUAGE MODELING

Crammed BERT. We first consider the Crammed-BERT architecture (Geiping & Goldstein,
2023). trained on the Pile dataset (Gao et al., 2021) following Geiping & Goldstein (2023). We
evaluate these models on the GLUE benchmark (Wang et al., 2018). The original model uses 12
heads and 16 layers. As hypothesized, we find that increasing the number of heads leads to bet-
ter performance, so much so that the depth can be reduced and still match the performance of the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Comparison of a pretrained original Crammed BERT (16 layers, 12 heads per layer) with
our leaner variant (10 layers, 24 heads) on the GLUE benchmark. For each task our learner variant
achieves comparable performance with much less parameters.

MNLI SST-2 STSB RTE QNLI QQP MRPC CoLA GLUE Params. Mem.

Original 83.8 92.3 86.3 55.1 90.1 87.3 85.0 48.9 78.6 119M 13.8GB
Ours 83.7 92.3 86.3 55.3 90.1 87.3 85.2 48.9 78.6 84M (−29%) 10.3GB (−25%)

Table 3: GPT-2 models trained on the TinyStories dataset. We compare a baseline model with 12
layers and 12 attention heads (Eldan & Li, 2023) and our variant with 4 layers and 16 heads. We
achieve superior performance at a much smaller size and memory usage.

Val. loss Parameters Memory

GPT-2 (original) 2.47 89M 12.8GB
GPT-2 (ours) 2.41 64M (-28%) 9.7GB (-24%)

original model (see table 2). In particular, we find that 24 attention heads and 10 layers produce a
compact architecture that performs similarly on GLUE as the original model.

GPT-2. We proceed similarly with a GPT-2 architecture trained on the TinyStories dataset (Eldan
& Li, 2023). As the original configuration, we use the 12-layer, 12-head model (89 M parameters)
from Eldan & Li (2023). We then increase the number of heads to 16 while reducing the depth to 4
layers. As shown in table 3, our variant outperforms the original in both validation loss. Moreover,
it achieves these improvements with fewer parameters and reduced memory usage during training.

4.3 LONG RANGE SEQUENCE MODELING ON LRA BENCHMARK

Long-range sequence modeling is critical for transformers, allowing them to capture dependencies
across hundred/thousands of tokens. To assess our approach in this regime, we use the Long Range
Arena (LRA) benchmark, a standard suite for testing long-context modeling (see section A.2.2).

5 CONCLUSIONS

In this work, we reexamined the role of multi-head attention in transformers. Our analysis revealed
that increasing the number of heads improves the conditioning of the Jacobian of the attention ma-
trices, a finding we confirmed empirically on vision transformers. Building on previous studies
of MLP conditioning, we hypothesized that an increase of the number of heads could reduce the
depth required to achieve high performance. We tested this on tasks including image classification,
language generation, and long sequence modeling, and found that leaner, shallower architectures
with more attention heads perform comparably to their deeper counterparts. These results suggest a
promising avenue for designing efficient transformers without sacrificing performance.

6 LIMITATIONS AND OPEN QUESTIONS

While our results demonstrate that depth can be traded for additional attention heads without loss
in performance, a complete theoretical explanation of this balance remains open, and developing
quantitative tools to predict such trade-offs is an important direction. Our theorem shows that more
heads improve the Jacobian’s condition number, but the precise effect on training dynamics and
accuracy is supported only empirically, leaving a deeper understanding of this link as an open chal-
lenge. Finally, our experiments were limited to models of up to ∼200M parameters due to resource
constraints, it remains to be seen whether the observed benefits persist at larger scales such as ∼1B.
1

1Digital writing assistance tools were used for grammar and formatting. No large language models were
involved in the research itself, and all scientific contributions are original work by the authors.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Naman Agarwal, Pranjal Awasthi, and Satyen Kale. A deep conditioning treatment of neural net-
works. In Algorithmic Learning Theory, pp. 249–305. PMLR, 2021.

Alaaeldin Ali, Hugo Touvron, Mathilde Caron, Piotr Bojanowski, Matthijs Douze, Armand Joulin,
Ivan Laptev, Natalia Neverova, Gabriel Synnaeve, Jakob Verbeek, et al. Xcit: Cross-covariance
image transformers. Advances in neural information processing systems, 34:20014–20027, 2021.

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. In International conference on machine learning, pp. 244–
253. PMLR, 2018.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pp. 213–229. Springer, 2020.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Alex Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. In International Conference on Learning Representations (ICLR), 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Mingyu Ding, Bin Xiao, Noel Codella, Ping Luo, Jingdong Wang, and Lu Yuan. Davit: Dual
attention vision transformers. In European conference on computer vision, pp. 74–92. Springer,
2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Clive Dym. Principles of mathematical modeling. Elsevier, 2004.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english? arXiv preprint arXiv:2305.07759, 2023.

Daocheng Fu, Xin Li, Licheng Wen, Min Dou, Pinlong Cai, Botian Shi, and Yu Qiao. Drive like
a human: Rethinking autonomous driving with large language models. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 910–919, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Aadi Thite, Eric Nabeshima, et al. The pile: An 800gb dataset of diverse
text for language modeling. arXiv preprint arXiv:2101.00027, 2021.

Jonas Geiping and Tom Goldstein. Cramming: Training a language model on a single gpu in one
day. In International Conference on Machine Learning, pp. 11117–11143. PMLR, 2023.

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in
transformer. Advances in neural information processing systems, 34:15908–15919, 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Maya Kabkab, Emily Hand, and Rama Chellappa. On the size of convolutional neural networks
and generalization performance. In 2016 23rd International Conference on Pattern Recognition
(ICPR), pp. 3572–3577. IEEE, 2016.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Learning Representations (ICLR), 2020.

Yoav Levine, Noam Wies, Or Sharir, Hofit Bata, and Amnon Shashua. The depth-to-width interplay
in self-attention. arXiv preprint arXiv:2006.12467, 2020a.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yoav Levine, Noam Wies, Or Sharir, Hofit Bata, and Amnon Shashua. Limits to depth efficiencies
of self-attention. NeurIPS, 33:22640–22651, 2020b.

Xingguo Li, Junwei Lu, Zhaoran Wang, Jarvis Haupt, and Tuo Zhao. On tighter generalization
bound for deep neural networks: Cnns, resnets, and beyond. arXiv preprint arXiv:1806.05159,
2018.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-
parameterized non-linear systems and neural networks. Applied and Computational Harmonic
Analysis, 59:85–116, 2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Jan R Magnus and Heinz Neudecker. Matrix differential calculus with applications in statistics and
econometrics. John Wiley & Sons, 2019.

Abhisek Maiti, Sander Oude Elberink, and George Vosselman. Transfusion: Multi-modal fusion
network for semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6536–6546, 2023.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Jackson Petty, Sjoerd van Steenkiste, Fei Sha, Ishita Dasgupta, Dan Garrette, and Tal Linzen. The
impact of depth and width on transformer language model generalization. openreview, 2023.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponen-
tial expressivity in deep neural networks through transient chaos. Advances in neural information
processing systems, 29, 2016.

Simon JD Prince. Understanding deep learning. MIT press, 2023.

Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone. Trajectron++: Multi-
agent generative trajectory forecasting with heterogeneous data for control. arXiv preprint
arXiv:2001.03093, 2, 2020.

Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of
transformers. NeurIPS, 36:36677–36707, 2023.

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas
Beyer. How to train your vit? data, augmentation, and regularization in vision transformers. arXiv
preprint arXiv:2106.10270, 2021.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Julian Heinrich, Dai Hua, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
International conference on machine learning, pp. 10347–10357. PMLR, 2021.

Gal Vardi, Gilad Yehudai, and Ohad Shamir. Width is less important than depth in relu neural
networks. In Conference on learning theory, pp. 1249–1281. PMLR, 2022.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Fei Tan, Glenn Fung, Vikas Singh, Xi-
aodong Yuan, Sungsoo Ahn Wang, Dimitris Papailiopoulos, and Katerina Fragkiadaki. Github
repository, 2021a. URL https://github.com/mlpen/Nystromformer.

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, and
Vikas Singh. Nyströmformer: A nyström-based algorithm for approximating self-attention. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 2021b.

Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, and Shuicheng Yan. Volo: Vision outlooker for
visual recognition. IEEE transactions on pattern analysis and machine intelligence, 45(5):6575–
6586, 2022.

Q Zhen, W Sun, H Deng, D Li, Y Wei, B Lv, J Yan, L Kong, and Y Zhong. cosformer: rethinking
softmax in attention. In International Conference on Learning Representations, 2022.

Pan Zhou and Jiashi Feng. Understanding generalization and optimization performance of deep
cnns. In International Conference on Machine Learning, pp. 5960–5969. PMLR, 2018.

Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. A robustly optimized bert pre-training approach
with post-training. In Proceedings of the 20th chinese national conference on computational
linguistics, pp. 1218–1227, 2021.

12

https://github.com/mlpen/Nystromformer

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

ETHICS STATEMENT

All experiments in this study were conducted on publicly available benchmark datasets. No human
subjects, personal information, or sensitive data were used. The methods introduced are intended
purely for fundamental research in machine learning.

REPRODUCIBILITY STATEMENT

We have taken care to ensure the reproducibility of all results presented in this paper. Where external
code was used, explicit references are provided, and all experimental settings, including hardware
details, are documented in the appendix. In addition, full proofs of all theoretical results are included
in the appendix to enable independent verification.

USE OF LLMS

We used digital writing assistance tools for grammar and formatting. No large language models
were involved in conducting the research, and all scientific contributions are the original work of the
authors.

A.1 THEORETICAL RESULTS

A.1.1 PROOF OF RESULTS FROM SECTION 3

In this section we give the proofs of lemma 3.1 and theorem 3.1. In order to prove theorem 3.1,
we will need an auxiliary theorem that provides bounds on the singular values of the Jacobian of a
multi-head attention layer which is given by theorem A.1.

We will start with the proof of lemma 3.1.

Proof of lemma 3.1. We break the proof up into a number of steps. We use two standard vectorized
Kronecker identities. For arbitrary matrices A,B,C:

vec(AB) = (I ⊗A) vec(B), vec(AB) = (B⊤⊗ I) vec(A). (12)

Step 1: Vectorize the multi-head output. Let Acat = [A1, . . . ,Ah]. By eq. (12),

y = vec(AcatP) = (P⊤⊗ IN) vec(Acat) = (ID ⊗Acat) vec(P). (13)

The first equality will be used for derivatives w.r.t. the head parameters (which affect Acat); the
second for derivatives w.r.t. P.

Step 2: Jacobian w.r.t. P. From the second representation in eq. (13), y = (ID ⊗Acat) vec(P).
In row–Jacobian form this gives ∂y

∂ vec(P) = ID ⊗ Acat ∈ R(ND)×(Dhd). Transposing yields the
column–Jacobian block

∂ vec(P)

∂ y
=

(
ID ⊗Acat

)⊤ ∈ R(Dhd)×(ND).

Step 3: Jacobian w.r.t. head parameters. From the first representation in eq. (13), y = (P⊤⊗
IN) vec(Acat). Differentiate w.r.t. the stacked head parameters

[
θ1; . . . ; θh

]
. Only the i-th block

Ai depends on θi, hence
∂ y

∂ [θ1; . . . ; θh]
=

(
P⊤⊗ IN

)
Diag

(
J(A1)

⊤, . . . ,J(Ah)
⊤) ∈ R(ND)×(3hDd).

Transposing gives the desired column–Jacobian block:

∂ [θ1; . . . ; θh]

∂ y
= Diag

(
J(A1), . . . ,J(Ah)

) (
P⊗ IN

)
∈ R(3hDd)×(ND).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Step 4: Stack the blocks. By definition, θ =
[
θ1; . . . ; θh; vec(P)

]
, so stacking the two col-

umn–Jacobian blocks from Steps 2–3 yields

∂ θ

∂ y
=

[
Diag

(
J(A1), . . . ,J(Ah)

) (
P ⊗ IN

)(
ID ⊗Acat

)⊤
]
.

Step 5: Dimensions. Since J(Ai) ∈ R(3Dd)×(Nd), we have Diag(J(A1), . . . ,J(Ah)) ∈
R(3hDd)×(Nhd) and P ⊗ IN ∈ R(Nhd)×(ND), hence the upper block is (3hDd) × (ND). Also
ID ⊗ Acat ∈ R(ND)×(Dhd), so its transpose is (Dhd) × (ND). Stacking gives a grand col-
umn–Jacobian of size (3hDd+Dhd)× (ND), as claimed.

To establish the proof of theorem 3.1, we first require an auxiliary result of our own. This theo-
rem provides explicit bounds on the singular values of the Jacobian associated with the multi-head
attention block, and will serve as a key technical tool in the argument that follows.

Theorem A.1. Let MA ∈ RN×D denote a multi-head attention layer of a transformer block as
in eq. (4) built via h attention heads Ai ∈ RN×d for 1 ≤ i ≤ h and a projection P ∈ Rhd×D.
Then we have that

σmin(J(MA)) ≥

√
σmin(P)2

((
min

1≤i≤h
σmin(J(Ai))

)2
+ (σmin([A1, . . . ,Ah])2

)
(14)

σmax(J(MA)) ≤

√
σmax(P)2

((
max
1≤i≤h

σmax(J(Ai))
)2

+ (σmax([A1, . . . ,Ah])2
)
. (15)

Therefore, we have the following condition number bound

κ(J(MA)) ≤

√√√√√√√
σmin(P)2

((
min1≤i≤h σmin(J(Ai))

)2
+ (σmin([A1, . . . ,Ah])2

)
σmax(P)2

((
max1≤i≤h σmax(J(Ai))

)2
+ (σmax([A1, . . . ,Ah])2

) (16)

Proof. We break the proof up into a number of steps. Let

Acat = [A1, . . . ,Ah] ∈ RN×(hd), P ∈ R(hd)×D, MA = AcatP ∈ RN×D,

and for each head i,

θi =
[
vec(WQi

); vec(WKi
); vec(WVi

)
]
∈ R3Dd, J(Ai) ∈ R(3Dd)×(Nd).

Let y := vec(MA) ∈ RND and θ := [θ1; . . . ; θh; vec(P)] ∈ R3hDd+Dhd.

Step 1: A block formula for the Jacobian. We use the standard vectorization identities, valid for
arbitrary matrices A,B,C:

vec(AB) = (I ⊗A) vec(B), vec(AB) = (B⊤ ⊗ I) vec(A). (17)

Applying eq. (17) twice gives two equivalent expressions for y:

y = vec(AcatP) = (P⊤ ⊗ IN) vec(Acat) = (ID ⊗Acat) vec(P). (18)

Only the i-th block of vec(Acat) = [vec(A1); . . . ; vec(Ah)] depends on θi; differentiating eq. (18)
yields the Jacobian block

Diag
(
J(A1), . . . ,J(Ah)

)
(P⊗ IN)

Likewise, differentiating y = (ID ⊗ Acat)vec(P) w.r.t. vec(P) gives the second Jacobian block
A⊤

cat ⊗ ID. Altogether,

J(MA) =

[
Diag

(
J(A1), . . . ,J(Ah)

)
(P⊗ IN)(

ID ⊗Acat

)⊤
]
∈ R(3hDd+Dhd)×(ND). (19)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Step 2: Singular-value bounds for a vertical stack. For ease of exposition, write J :=

J(MA) =

[
U
V

]
with

U := Diag
(
J(A1), . . . ,J(Ah)

)
(P⊗ IN), V :=

(
ID ⊗Acat

)⊤
.

Then JJ⊤ = UU⊤ + V V ⊤. For any unit vector x,

x⊤(UU⊤ + V V ⊤)x = x⊤UU⊤x+ x⊤V V ⊤x ≥ λmin(UU⊤) + λmin(V V ⊤),

hence
σmin(J)

2 = λmin(JJ
⊤) ≥ σmin(U)2 + σmin(V)2. (20)

By the operator-norm triangle inequality,

σmax(J)
2 = ∥UU⊤ + V V ⊤∥2 ≤ ∥UU⊤∥2 + ∥V V ⊤∥2 = σmax(U)2 + σmax(V)2. (21)

Step 3: Bounding the factors U and V . We invoke standard singular-value facts: for any con-
formable A,B,

σmin(AB) ≥ σmin(A)σmin(B), σmax(AB) ≤ σmax(A)σmax(B). (22)

For a block diagonal matrix,

σmin

(
Diag(M1, . . . ,Mh)

)
= min

i
σmin(Mi), σmax

(
Diag(M1, . . . ,Mh)

)
= max

i
σmax(Mi).

(23)
For Kronecker products (with I denoting an identity),

σmin(A⊗B) = σmin(A)σmin(B), σmax(A⊗B) = σmax(A)σmax(B). (24)

Applying eq. (22)–eq. (24) to U gives

σmin(U) ≥ σmin

(
Diag(J(Ai)

⊤)
)
σmin(P⊗ IN) =

(
min
i

σmin(J(Ai))
)
σmin(P),

σmax(U) ≤ σmax

(
Diag(J(Ai)

⊤)
)
σmax(P⊗ IN) =

(
max

i
σmax(J(Ai))

)
σmax(P).

For V = (ID ⊗Acat)
⊤, singular values are invariant under transpose and

σmin(V) = σmin(ID ⊗Acat) = σmin(Acat), σmax(V) = σmax(ID ⊗Acat) = σmax(Acat).

Step 4: Combine. Substituting these bounds into eq. (20)–eq. (21) yields

σmin(J) ≥
√

σmin(P)2
(
min
i

σmin(J(Ai))
)2

+ σmin(Acat)2 ,

σmax(J) ≤
√

σmax(P)2
(
max

i
σmax(J(Ai))

)2

+ σmax(Acat)2 .

Dividing the second inequality by the first proves the stated condition-number bound for J(MA)
and completes the proof.

Using the above theorem A.1 we can give the proof of theorem 3.1.

Proof of the theorem 3.1. We will break the proof up into a number of steps. We start by recalling
some notation we have been using.

Setup and notation. Fix the per–head width d and let h ∈ N, so that

Acat = [A1, . . . ,Ah] ∈ RN×(hd), P ∈ R(hd)×D, MA = AcatP ∈ RN×D.

For each head i, collect parameters θi ∈ R3Dd and define the (row) Jacobian J(Ai) :=
∂ vec(Ai)

∂ θi
∈

R(Nd)×(3Dd). Let y := vec(MA) ∈ RND and θ := [θ1; . . . ; θh; vec(P)] ∈ R3hDd+Dhd. Recall
J(MA) is the Jacobian we are analyzing.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Step 1: Invoking theorem A.1 By the theorem 3.1 we have the following bounds

σmin(J) ≥
√

σmin(P)2
(
min
i

σmin(J(Ai))
)2

+ σmin(Acat)2 (25)

σmax(J) ≤
√

σmax(P)2
(
max

i
σmax(J(Ai))

)2
+ σmax(Acat)2 . (26)

Step 2: Uniform bounds on per–head Jacobians and the projection. By the assumptions eq. (8)
and eq. (9), there exist 0 < C1 ≤ C2 < ∞ and 0 < C3 ≤ C4 < ∞, independent of h, such that for
all i,

C1 ≤ σmin(J(Ai)) ≤ σmax(J(Ai)) ≤ C2, C3 ≤ σmin(P) ≤ σmax(P) ≤ C4.

Substituting these into eq. (25) yields

σmin(J) ≥
√

C2
3C

2
1 + σmin(Acat)2 , σmax(J) ≤

√
C2

4C
2
2 + σmax(Acat)2 . (27)

Hence

κ(J) =
σmax(J)

σmin(J)
≤

√
C2

4C
2
2 + σmax(Acat)2

C2
3C

2
1 + σmin(Acat)2

. (28)

Step 3: Random–matrix control of σmin /max(Acat). Recall that we assumed: the m := hd

columns of Acat are independent, mean–zero, Gaussian in RN with common covariance Σ satisfy-
ing 0 < λmin(Σ) ≤ λmax(Σ) < ∞, and N/m → 0 as h → ∞ (with d fixed). Standard results
for tall random matrices with independent Gaussian columns, see Vershynin (2018), give constants
C, c > 0 such that, for every τ ∈ (0, 1), with probability at least 1− 2 exp(−cτ2m),

√
m

√
λmin(Σ)

(
1− C

√
N/m− τ

)
≤ σmin(Acat) (29)

≤ σmax(Acat) (30)

≤
√
m

√
λmax(Σ)

(
1 + C

√
N/m+ τ

)
. (31)

Define εm := C
√
N/m+ τ ; then εm → 0 as m = hd → ∞ since N/m → 0.

Step 4: Plug the concentration into eq. (28). Using eq. (31) in eq. (28) and writing m = hd, we
obtain, with the same high probability,

κ(J) ≤

√
C2

4C
2
2 +mλmax(Σ) (1 + εm)2

C2
3C

2
1 +mλmin(Σ) (1− εm)2

=

√√√√ C2
4C

2
2

m + λmax(Σ) (1 + εm)2

C2
3C

2
1

m + λmin(Σ) (1− εm)2
. (32)

Letting h → ∞, so that m → ∞, forces C2
4C

2
2

m ,
C2

3C
2
1

m → 0 and εm → 0, hence

lim sup
h→∞

κ(J) ≤

√
λmax(Σ)

λmin(Σ)
. (33)

Since κ(J) ≥ 1 always, eq. (33) shows that, in the general (non–isotropic) case, the limiting upper
bound is

√
κ(Σ).

Step 5: Isotropic specialization ⇒ limit 1. If, moreover, the columns of Acat are isotropic—i.e.,
Σ = σ2IN for some σ2 > 0 (in particular, λmax(Σ) = λmin(Σ) = σ2) then eq. (32) simplifies to

κ(J) ≤

√√√√ C2
4C

2
2

m + σ2(1 + εm)2

C2
3C

2
1

m + σ2(1− εm)2
−−−−→
m→∞

1 + εm
1− εm

−−−−→
m→∞

1,

again with probability tending to 1. Since κ(J) ≥ 1, we conclude κ(J) → 1 in probability (indeed,
with high probability) as h → ∞ with d fixed.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Asymptotic rate. In the isotropic case Σ = σ2I , the bound derived there gives (with high proba-
bility)

κ(J) ≤

√√√√ C2
4C

2
2

m + σ2(1 + εm)2

C2
3C

2
1

m + σ2(1− εm)2
=

1 + εm
1− εm

(
1 + o(1)

)
(m → ∞).

Using the expansion
1 + εm
1− εm

= 1 + 2εm +O(ε2m) and εm = O
(√

N/m
)
, we obtain

κ(J) = 1 +O
(√

N
m

)
= 1 +O

(√
N
hd

)
as h → ∞ with d fixed.

Discussion of assumptions. The assumptions of theorem 3.1 are natural for multi-head atten-
tion at (and near) random initialization, and remain reasonable under standard training prac-
tices. For the first assumption, each per–head Jacobian J(Ai) factors through linear maps
(X 7→ XWQi

, XWKi
, XWVi

) and the row–wise softmax derivative. With common initializations
(Xavier/He or orthogonal), the operator norms of WQi

,WKi
,WVi

are O(1); modern transformers
apply LayerNorm so inputs are scale–controlled; and the softmax Jacobian has a uniformly bounded
operator norm (depending only on temperature). Thus σmin /max

(
J(Ai)

)
admit h–independent

lower/upper bounds C1, C2. For second assumption on P, we observe that P is typically initialized
with approximately orthonormal columns, for example via QR/orthogonal initialization or Xavier
initialization, implying σmin(P) and σmax(P) are both close to 1, giving constants C3, C4 indepen-
dent of h. For final assumption, with fixed d and independently initialized heads, the m = hd fea-
ture columns of Acat are linear/nonlinear combinations of Gaussian ingredients (token features after
LayerNorm and independent weight columns), and hence are themselves Gaussian with a common
covariance Σ that, at initialization, is often close to a scalar multiple of the identity. Independence
across columns is exact across heads and across channels within a head (different columns of WV),
any residual dependence due to the shared input is mild in high dimension, and standard matrix
concentration still captures the growth of σmin(Acat) as m increases.

A.1.2 FURTHER THEORETICAL INSIGHTS.

In this section, we give the analogue of theorem 3.1 where we fix the number of heads h and allow
the dimension d to vary.

Theorem A.2. Fix the number of heads h ∈ N and let d ∈ N vary. For each head i = 1, . . . , h, let

Ai ∈ RN×d, Acat := [A1, . . . ,Ah] ∈ RN×(hd), P ∈ R(hd)×D,

and define the multi-head output MA := AcatP ∈ RN×D. Let

y := vec(MA) ∈ RND, θ := [θ1; . . . ; θh; vec(P)] ∈ R3hDd+Dhd,

where θi = [vec(WQi
); vec(WKi

); vec(WVi
)] ∈ R3Dd, and define the (row) per-head Jacobians

J(Ai) ∈ R(3Dd)×(Nd).

Let the Jacobian of the multi-head attention be given by

J := J(MA) =
∂θ

∂y
∈ R(3hDd+Dhd)×(ND).

Assume the following bounds hold uniformly in d (for all sufficiently large d):

(B1) There exist constants 0 < C1 ≤ C2 < ∞ such that C1 ≤ σmin(J(Ai)) and
σmax(J(Ai)) ≤ C2 for all i.

(B2) There exist constants 0 < C3 ≤ C4 < ∞ such that C3 ≤ σmin(P) and σmax(P) ≤ C4.

(B3) Writing m := hd, the m columns of Acat are independent, mean-zero, Gaussian in RN

with common covariance Σ satisfying 0 < λmin(Σ) ≤ λmax(Σ) < ∞.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Then:

(i) Analogue of theorem A.1.

σmin(J) ≥
√

C2
3C

2
1 + σmin(Acat)2 , σmax(J) ≤

√
C2

4C
2
2 + σmax(Acat)2 ,

hence

κ(J) ≤

√
C2

4C
2
2 + σmax(Acat)2

C2
3C

2
1 + σmin(Acat)2

.

(ii) Asymptotic high-probability bound (analogue of first part of theorem 3.1. With probabil-
ity tending to 1 as d → ∞ (with h fixed),

lim sup
d→∞

κ(J) ≤

√
λmax(Σ)

λmin(Σ)
.

(iii) Isotropic specialization (analogue of second part of theorem 3.1). If the columns of Acat

are isotropic, i.e. Σ = σ2IN , then with probability tending to 1,
κ(J) −→ 1 as d → ∞ with h fixed,

and, moreover,

κ(J) = 1 + O
(√

N
hd

)
.

Proof. The proof is identical in structure to how we proceeded with theorem A.1 and theorem 3.1,
with m := hd now growing via d → ∞ (and fixed h).

Step 1. An analogue of lemma 3.1 yields the two-block bounds

σmin(J) ≥
√

σmin(P)2
(
min
i

σmin(J(Ai))
)2

+ σmin(Acat)2 (34)

σmax(J) ≤
√

σmax(P)2
(
max

i
σmax(J(Ai))

)2
+ σmax(Acat)2 . (35)

Step 2 (Uniform bounds). By (B1)–(B2), for all large d,
C1 ≤ σmin(J(Ai)) ≤ σmax(J(Ai)) ≤ C2, C3 ≤ σmin(P) ≤ σmax(P) ≤ C4,

which gives the deterministic bound in (i).

Step 3 (Random-matrix control). By (B3) and standard Gaussian singular value estimates for tall
matrices with m = hd independent columns, with high probability√
mλmin(Σ) (1−C

√
N/m−τ) ≤ σmin(Acat) ≤ σmax(Acat) ≤

√
mλmax(Σ) (1+C

√
N/m+τ),

for universal constants C, c > 0 and any τ ∈ (0, 1) (with probability ≥ 1− 2e−cτ2m).

Step 4 (Asymptotics). Plugging these into the bound from Step 2 and letting m = hd → ∞ yields
(ii). In the isotropic case Σ = σ2I , the ratio simplifies to 1+εm

1−εm
with εm = O(

√
N/m), giving

κ(J) = 1 +O
(√

N
m

)
= 1 +O

(√
N
hd

)
,

which proves (iii).

A.2 EXPERIMENTS

A.2.1 VISION TRANSFORMERS ON IMAGENET-1K

MLP width. We now consider variations of the hidden-layer size of the MLPs inside a ViT-B
model, as an alternative strategy to affect the width of the model. The original model uses a size of
768×4 = 3, 072, where 768 is the token embedding size and 4 is referred to as the “MLP ratio”. We
train models with a ratio between 1 and 8. fig. 6 shows a limited impact on accuracy that contrasts
with the clear large effects of the number of heads from fig. 2. This agrees with the hypothesis made
in section 3.3 that MLPs are likely to be already well-conditioned and do not benefit in this regard
as much as attention blocks in transformers.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

12 Layers 8 Layers

2 4 6 8
MLP ratio

79.0

79.2

79.4

79.6

79.8

80.0

80.2

To
p-

1%
 te

st
 a

cc
ur

ac
y

(%
)

44.1

58.2

86.6
114.8

143.2

Original

2 4 6 8
MLP ratio

78.5

79.0

79.5

80.0

To
p-

1%
 te

st
 a

cc
ur

ac
y

(%
)

86.6 million

29.8

39.3

58.2

77.1

95.9

Figure 6: Similar experiments as fig. 2, where each model is now a variant of ViT-B with a different
MLP width (X axes, reported as a factor of the token-embedding size). According to our predic-
tions, increasing the width of MLPs has a weaker effect than adding attention heads. The slight
benefit observed with 12 layers (left) cannot compensate for a reduction of depth to 8 layers (right),
unlike what was observed with additional heads in fig. 2.

Best configurations. We evaluate additional configurations with depths below 8 in fig. 7. We ad-
just the number of heads to match the accuracy of the original ViT-B (≥ 80.1%). All configurations
still use much fewer parameters than the original model with a better accuracy.

MLP hidden-layer width: ■ 2× ● 4× token embedding size

25 30 35 40 45 50 55 60 65 70 75
Number of parameters (millions)

77

78

79

80

81

Im
ag

eN
et

-1
k

ac
cu

ra
cy

 (
%

)

 -51%

 -44%

 -38%
 -35%

 -26%

 -62%

 -57%

 -55%

 -54%
 -47%

(4,28)

(5,24)

(6,20)

(7,16)
(8,16)

(# layers, # heads)

ViT-B
86.6M

Figure 7: Additional variants of ViT-B with different numbers of layers and heads, and MLP width.
Each model is annotated with its reduction in parameters. For 6—8 layers, doubling the MLP width
yields little benefit, indicating that the number of heads is more important.

Detailed results for vision transformers In section 4.1.2, we demonstrated that several base vi-
sion transformers from the literature, ranging from 60 to 90 million parameters, benefit from our
approach of increasing the number of heads in each attention layer while reducing the overall depth.
In every instance, our configuration performed on par with or better than the original architecture
while significantly lowering both parameter count and memory usage (see fig. 4). The detailed
configurations are provided in table 4.

We also showed that our methodology could be applied to larger vision transformers with roughly
180-200 million parameters (fig. 5). The configurations for these larger ViTs are given in table 5.

Hardware and implementation. All models were trained on 8 Nvidia A100 GPUs using the
code base from huggingface: https://github.com/huggingface/pytorch-image-models. Note that we
couldn’t find an implementation of a TNT large architecture in this code base and that is why we
did not have TNT large in our analysis for large vision transformers. The training of each vision
transformer architecture we considered follows the original papers cited in section 4.1.

A.2.2 LONG RANGE SEQUENCE MODELING

We evaluate our approach on Nyströmformers (Xiong et al., 2021b), a transformer-like architecture
that uses an approximation of the self-attention with better computational complexity. Our objective
is to evaluate the relevance of our findings to an architecture that slightly departs from the original

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: Detailed configurations for a variety of base vision transformers from the literature. In-
creasing the heads and reducing depth (green) we obtain several transformers that outperform their
original counterparts (red) with less parameters and less memory for training.

ViT-B on ImageNet-1k
(Depth, Heads) MLP dim. Top-1% Acc. Top-5% Acc. Params. (millions) Memory (GB)

(12, 12) 3072 80.1 94.2 86.6 178.4
(7,16) 1536 80.4 94.9 40.1 101.6

DeiT-B on ImageNet-1k
(Depth, Heads) MLP dim. Top-1% Acc. Top-5% Acc. Params. (millions) Memory (GB)

(12, 12) 3072 80.4 95.1 86.6 178.4
(7,16) 1536 80.8 95.3 40.1 101.6 ↓

XCiT-Medium on ImageNet-1k
(Depth, Heads) MLP dim. Top-1% Acc. Top-5% Acc. Params. (millions) Memory (GB)

(24, 8) 2048 81.4 95.5 84.4 320.8
(12,16) 2048 81.7 95.6 59.0 196

TNT-B on ImageNet-1k
(Depth, Heads) MLP dim. Top-1% Acc. Top-5% Acc. Params. (millions) Memory (GB)

(12, 10) 2560 82.3 95.7 65.4 266.4
(8,16) 2560 82.3 95.8 30.9 200.8

VOLO-d3 on ImageNet-1k
(Depth, Heads) MLP dim. Top-1% Acc. Top-5% Acc. Params. (millions) Memory (GB)

([8, 8, 16, 4], [8, 16, 16, 16]) (1024, 2048, 2048, 2048) 82.6 95.6 86 209.2
([4, 4, 8, 2], [16, 32, 32, 32]) (768, 1536, 1536, 1536) 82.6 95.7 47.5 144.8

DaViT-B on ImageNet-1k
(Depth, Heads) MLP dim. Top-1% Acc. Top-5% Acc. Params. (millions) Memory (GB)

([1,1,9,1], [4, 8, 16, 32]) (512, 1024, 2048, 4096) 83.3 96.0 88.0 294.4
([1, 1, 5, 1], [4, 8, 32, 32]) (512, 1024, 2048, 4096) 83.5 96.1 62.0 233.6

Table 5: Detailed configurations for a variety of large vision transformers from the literature. In-
creasing the heads and reducing depth (green) we obtain several transformers that outperform their
original counterparts (red) with less parameters and less memory for training.

ViT-L on ImageNet-1k
(Depth, Heads) MLP dim. Top-1% Acc. Top-5% Acc. Params. (millions) Memory (GB)

(24, 16) 4096 80.6 94.4 203.6 200.0
(8,30) 2048 81.1 95.1 98.6 115.2

DeiT-L on ImageNet-1k
(Depth, Heads) MLP dim. Top-1% Acc. Top-5% Acc. Params. (millions) Memory (GB)

(24, 16) 4096 81.5 95.3 203.6 200.0
(8,30) 2048 81.8 95.4 98.6 115.2 ↓

XCiT-L on ImageNet-1k
(Depth, Heads) MLP dim. Top-1% Acc. Top-5% Acc. Params. (millions) Memory (GB)

(24, 16) 3072 82.1 95.9 189.1 275.2
(12,24) 3072 82.4 95.9 103.8 160.8

VOLO-d4 on ImageNet-1k
(Depth, Heads) MLP dim. Top-1% Acc. Top-5% Acc. Params. (millions) Memory (GB)

([8, 8, 16, 4], [12, 16, 16, 16]) (1536, 3072, 3072, 3072) 83.0 96.1 193.0 294.4
([4, 4, 8, 2], [24, 32, 32, 32]) (768, 1536, 1536, 1536) 83.1 96.2 105.6 188.8

DaViT-L on ImageNet-1k
(Depth, Heads) MLP dim. Top-1% Acc. Top-5% Acc. Params. (millions) Memory (GB)

([1,1,9,1], [6, 12, 24, 48]) (768, 1536, 3072, 6144) 83.6 96.5 196.8 238.4
([1, 1, 5, 1], [6, 12, 48, 48]) (768, 1536, 3072, 6144) 83.6 96.6 140.0 186.4

transformer architecture of Vaswani (2017). Nyströmformers are well suited to long sequences and
we therefore evaluate them on the Long-Range Arena (LRA) benchmark (Tay et al., 2021).

Our base model follows the original paper Xiong et al. (2021b) and uses 2 layers and 2 attention
heads per layer. We also train variants with 2-8 heads and 1-2 layers. The results on the ListOps
task (see fig. 8) and the Text classification task (see fig. 9) show that additional heads increase the
accuracy. This allows reducing the depth to a single layer while improving its accuracy. These
results hold across other tasks of the LRA benchmark (see table 6).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

2 Layers 1 Layer

2 4 6 8
Number of heads

36.4

36.6

36.8

37.0

37.2

37.4

Te
st

 a
cc

ur
ac

y
(%

)

193.2k

209.8k
242.9k

276.1k
309.3k

Original

2 4 6 8
Number of heads

36.0

36.5

37.0

37.5

38.0

Te
st

 a
cc

ur
ac

y
(%

)

209.8k

159.7k
176.3k

192.9k 209.5k

226.1k

Figure 8: Accuracy on the ListOps task of the LRA benchmark with variants of the Nyströmformer.
The original model from Xiong et al. (2021b) uses 2 layers (left) and we also evaluate models with a
single layers (right). Each model is annotated with its total number of parameters. According to our
predictions, the number of heads correlates with performance. Remarkably, our models with just 1
layer and ≥ 4 heads (green dots) all obtain a higher test accuracy with fewer parameters than the
original model (dotted line).

2 Layers 1 Layer

2 4 6 8
Number of heads

62.9

63.0

63.1

63.2

63.3

63.4

Te
st

 a
cc

ur
ac

y
(%

)

354.0k
371.2k

404.0k
437.6k 470.2k

Original

2 4 6 8
Number of heads

62.0

62.5

63.0

63.5

64.0
Te

st
 a

cc
ur

ac
y

(%
)

371.2k

321.6k

337.8k

354.0k
370.2k

386.4k

Figure 9: Accuracy on the text classification task of the LRA benchmark with variants of the
Nyströmformer. The original model from Xiong et al. (2021b) uses 2 layers (left) and we also evalu-
ate models with a single layers (right). Each model is annotated with its total number of parameters.
According to our predictions, the number of heads correlates with performance. Remarkably, our
models with just 1 layer and ≥ 4 heads (green dots) all obtain a higher test accuracy with fewer
parameters than the original model (dotted line).

Hardware and implementation. The Nyströmformer experiments carried out on one Nvidia
A6000 GPU. The implementation followed the original paper of Xiong et al. (2021b) and its GitHub
repo (Xiong et al., 2021a).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 6: Evaluation of variants of the Nyströmformer (Xiong et al., 2021b) on different datasets
of the Long-Range Arena (LRA) benchmark (Tay et al., 2021). We compare the original model (2
layers, 2 heads) with our variant (1 layer, 4 heads). On every task, it outperforms the original model
with the same number or slightly fewer parameters.

ListOps
(Depth, heads) Top-1% Acc. Parameters

(2, 2) 36.79 209.8k
(1,4) 37.13 192.9k (-9%)

Text Classification
(Depth, heads) Top-1% Acc. Parameters

(2, 2) 62.95 371.2k
(1,4) 63.82 354.0k (-5%)

Document Retrieval
(Depth, heads) Top-1% Acc. Parameters

(2, 2) 79.3 394.8k
(1,4) 79.5 394.8k (same)

Image Classification
(Depth, heads) Top-1% Acc. Parameters

(2, 2) 37.2 191.2k
(1,4) 38.2 191.2k (same)

Pathfinder
(Depth, heads) Top-1% Acc. Parameters

(2, 2) 69.8 190.2k
(1,4) 69.9 190.2k (same)

22

	Introduction
	Related Work
	Theoretical Findings
	Preliminaries and Notation
	Main Theoretical Results
	Trading Depth for Heads

	Experiments
	Image Classification
	Standard ViTs
	Other Vision Transformers

	Language Modeling
	Long range sequence modeling on LRA benchmark

	Conclusions
	Limitations and Open Questions
	Appendix
	Theoretical Results
	Proof of results from sec:theory
	Further theoretical insights.

	Experiments
	Vision transformers on ImageNet-1k
	Long range sequence modeling

