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ABSTRACT

Tabular machine learning has garnered increasing attention due to its practical
value. Unlike the complete and standardized data often assumed in academia,
tabular data primarily originates from industrial contexts and usually faces
the issue of incomplete data samples, i.e., some features of a sample may
be unpredictably missing. In this work, we introduce MaskTab, a masked
tabular data modeling framework designed to facilitate model learning despite
missing features. Instead of pursuing to accurately restore missing features like
existing imputation methods, we jointly approach missing feature modeling and
downstream tasks (e.g., classification) with a unified objective. Concretely, we
propose to randomly drop out some solid features during training, equipped with
a missing-related masked attention mechanism, to help the model rely more on
trustworthy features when making decisions. Experiments on the very recent
industry-grade benchmark, TabReD, suggest that our method surpasses the second
DNN-based competitor by a clear margin, demonstrating its effectiveness and
robustness in real-world scenarios. We will release the code and the model to
facilitate reproduction.

1 INTRODUCTION

Machine learning (ML) models applied to tabular data have significant industrial applications,
such as credit assessment (Aziz et al.,, 2022) and medical diagnosis (Hassan et al., 2020).
Recent advancements in deep tabular models have demonstrated promising effectiveness in various
academic scenarios. However, tabular data primarily originates from industrial contexts and usually
faces the issue of incomplete data samples, which requires further investigation for modeling with
missing features under industrial scenarios.

To address the issue of missing data, imputation methods (Du et al., 2024; Ma & Zhang, 2021;
Jinsung Yoon & van der Schaar, 2019) have been developed to estimate missing values using
observed data. However, these methods often prioritize accurate restoration of missing values and
neglect the significance of imputation for downstream tasks, which can be suboptimal for prediction
models, as indicated by recent studies (Daniel Jarrett & van der Schaar, 2022). Moreover, the
assessment of these imputation methods typically involves synthetic data with simulated missing
values, which may not adequately reflect the challenges posed by real-world data absence.

Recent advancements in deep tabular models have focused on the development of sophisticated
network architectures, such as enhanced multilayer perceptrons (MLPs) and transformers (Chen
et al., 2022; Gorishniy et al., 2021). Additionally, improvements in retrieval based methods have
emerged, for instance, TabR (Gorishniy et al., 2024) has shown superior performance compared
to XGBoost (Chen & Guestrin, 2016) on GBDT-friendly benchmarks (Grinsztajn et al., 2022).
However, these approaches have predominantly been assessed on academic datasets characterized
by low feature dimensionality and minimal missing values, which do not reflect the complexities of
real-world industrial applications. Newly established industry-grade tabular benchmarks, TabReD
(Rubachev et al., 2024), indicate that these advanced methods often underperform relative to more
straightforward tree-based models when applied to industrial data. Notably, XGBoost continues
to excel, particularly on the HomeCredit Default dataset, which characterized by significant
missingness and dimensionality, greatly surpassing the performance of deep tabular models. This
highlights the need to enhance the capabilities of deep tabular models in modeling missing features.
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Another promising development in deep tabular models involves leveraging pre-training techniques,
such as contrastive learning (Bahri et al., 2022; Somepalli et al., 2022), masked modeling (Ye
et al., 2024), and technologies associated with large language models (Yan et al., 2024; Borisov
et al., 2023). The pre-training of models to impart knowledge demonstrates significant potential in
situations marked by limited samples and data scarcity.

In this work, we introduce MaskTab, a masked tabular data modeling framework designed to
facilitate model learning despite missing features. Instead of pursuing to accurately restore missing
features like existing imputation methods, we jointly approach missing feature modeling and
downstream tasks (e.g., classification) with a unified objective. Concretely, we propose to randomly
discarding essential features during the training process, which act as a simulation process to
generate additional missing features in samples that are truly incomplete. Further, we introduce
a joint learning framework, that integrates the reconstruction of simulated missing features with the
optimization of downstream tasks, to learn a more robust embedding representation for truly missing
values. We represent both true missing and simulated missing by initializing a parameter-shared,
learnable mask embedding, to enhance the practical utility of the missing representation. Moreover,
considering the joint learning framework, we emphasize the significance of masking strategies to
minimize significant shifts in data distribution, as such shifts can negatively impact downstream
task performance. We investigate the criteria for effective masking strategies and provide
valuable insights applicable to diverse scenarios involving feature missingness. Additionally, we
implement a missing-related masked attention mechanism, that integrates prior information of
feature missingness into the attention computation, which enables the model to prioritize trustworthy
features when making decisions for each sample. Experiments on the very recent industry-grade
benchmark, TabReD, show the effectiveness of MaskTab in real-world industrial scenarios.

Our contributions are as follow:

* We propose MaskTab, a masked tabular data modeling framework to tackle the feature
missing problem in industrial scenarios, experiments on TabReD demonstrate that our
method surpasses the second DNN-based competitor by a clear margin.

* Ablation studies reveal that both the joint learning framework and the embedding represen-
tation specifically designed to handle genuinely missing values are effective. Additionally,
the missing-related masked attention mechanism proves beneficial. Our findings provide
significant insights applicable to a wide range of real-world scenarios.

* MaskTab employs an end-to-end training approach that eliminates the need for imputing
missing features, which is both straightforward and effective.

2 RELATED WORK

Masked Modeling. Masked training was initially introduced as a pre-training strategy for language
models. This technique occludes specific words in a sentence, requiring the model to predict the
masked tokens based on the visible context. It has led to significant advancements in both natural
language processing (NLP) and computer vision (CV), as exemplified by models like BERT (Devlin
etal., 2018) and BEit (Bao et al., 2022). Recently, masked training has gained impact as a restoration
pre-training task in the domain of tabular data. XTab (Zhu et al., 2023) and CM2 (Ye et al.,
2024) employ masked learning on cross-table data to develop tabular foundation models. ReMask
(Du et al., 2024) implementes missing feature imputation through optimizing the autoencoder by
reconstructing a randomly re-masked features. TabMT (Gulati & Roysdon, 2023) designs advanced
masking techniques to generate synthetic tabular data.

Deep Tabular Models. With advancements in deep neural networks, deep tabular models have
transitioned from multilayer perceptrons (MLPs) to more sophisticated architectures, including
ResNet (Gorishniy et al., 2021), SNN (Klambauer et al., 2017), DANets (Chen et al., 2022),
and DCNv2 (Wang et al., 2020). These approaches typically operate directly on raw features.
Transformer-based methodologies have garnered attention recently, which treat individual raw
features as tokens and convert feature values into high-dimensional vectors using either lookup tables
or linear mappings. Notable approaches including TransTab (Wang & Sun, 2022), Autolnt (Song
et al., 2019), T2G-Former (Yan et al., 2023) and FT-Transformer (Gorishniy et al., 2021). These
methods effectively utilize the attention mechanism to enhance feature interactions. Furthermore,
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Figure 1: Overall framework of MaskTab. The left part delineates the masking for Simulating
Missing Features, where the masking strategy is carefully designed with missing rate distribution
of dataset. The right part provides an overview of masked modeling, including various data types
feature embedding, transformer backbone and joint learning approach.

several studies have examined improved embedding representations for various data types. For
instance, prior art (Gorishniy et al., 2022) enhances numerical representations, while CM2 (Ye
et al.,, 2024) leverages word embeddings from a pre-trained BERT model to extract features
from both categorical and textual data. Additionally, TP-BERT (Yan et al., 2024) introduces
Relative Magnitude Tokens (RMT), enabling the language model to recognize relative dense value
magnitudes within the language space. In addition, there are neighborhood-based methods, which
involve extracting features from test samples and performing feature retrieval across the entire
training dataset to identify the nearest neighbors. Regression or classification is then conducted
using these neighbors. Notable examples of such methods include DNNR (Nader et al., 2022) and
TabR (Gorishniy et al., 2024).

3 MASKTAB

We present MaskTab, as depicted in Fig. 1, we detail the method in this section. First, we outline
the task formalization and the masked modeling for missing features, next, we present the feature
embedding module, followed by the design of the tabular transformer in feature missing scenarios,
finally, we detail the joint training approach for modeling missing features and downstream tasks.

3.1 TASK FORMALIZATION

Let us consider a dataset represented as D = (x;,y;)I,, where n indicates the total number of

samples. Each sample x; is composed of three distinct components: x; = {xt xMum xmiss},

Specifically, x$ = {zl ,z2,...,29} corresponds to a categorical or textual features, while

x™m ¢ R® denotes b numerical features. Furthermore, XM = {nan}, nan?, ..., nan¥} accounts
for k£ missing features within the data. All samples within the dataset share equivalent tabular
headers, which collectively constitute the feature names denoted by C; = {c!,c?, ..., ca+b+k}.
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Our objective is to enhance the accuracy of predicting y; in scenarios involving missing features. To
simplify the notation, we omit the sample index ¢ in the descriptions of the methods that follow.

3.2 MASKED MODELING FOR MISSING FEATURES

We employ a masked tabular data modeling framework to enhance the model’s effectiveness in sce-
narios with feature missingness. Given a sample with truly missing features x = {x¢t x"um xmissl,
we employ a defined probability, referred to as mask_prob (e.g., 15%), to determine whether to
simulate an increased level of feature missingness for it. For the samples that require simulation, we
drop features—excluding those that are truly missing—at a specified mask _ratio (e.g., 30%). This
process transforms the original sample into x = {x¢ xmum xmiss ymaskedl “hear xmasked denotes
the simulated missing values. We initialize a parameter-shared, learnable mask embedding for both
true and simulated missing values. In Sec 3.5, we present a joint learning approach that integrates
missing feature reconstruction with downstream task optimization, to improve the applicability of
the mask embedding for downstream applications. Furthermore, it is essential to carefully design
the masking strategy to mitigate significant shifts in data distribution, which could negatively impact
the performance of downstream tasks. We investigate the effective criteria of masked strategy in
Sec 4, provide valuable insights for applications across various real-world scenarios characterized
by feature missingness.

3.3 FEATURE EMBEDDING MODULE

Tabular data consists of various data types, predominantly characterized by cat features (including
categorical and text features), num features (numerical features), and features with missing values.
To improve the understanding of the semantic information associated with features, we employ a
pre-trained BERT model to extract embeddings for the feature names. Additionally, to enhance the
alignment between the learned mask embedding and the embeddings of both num and cat features,
we propose a unified approach for integrating embeddings of feature names and feature values.

Specifically, we treat feature names and cat feature values as text. These are processed sequentially
through tokenization, word embedding, and pooling to obtain their embedded representations, as
illustrated in the following formulas:

¢’ = pooling(emb(tokenize(c¢’))),j € {0,1,2,...,a + b+ k}, (1)

pi€eat _ pooling(emb(tokenize(xjecat)))- 2)

Next, For num features, we employ a separate linear layer for each feature to convert individual
values into embeddings, as formula below:

x/ €™M = Linear; (27 €M), (3)

Notably, we initialize a shared learnable mask embedding x,,;ss to represent missing values.

Finally, we concat value embeddings of different data types into X, then combine the feature name
embeddings C' with the value embeddings X in a unified manner, as following:

E=C + COHC&t(Xcat, Xnum7 Xmiss)a (4)

where E € R™* 4 represent all feature embeddigns serve as inputs to the transformer model, m and
d represent number of features and embedding dimensions respectively.

3.4 DESIGN OF TABULAR TRANSFORMER IN FEATURE MISSING SCENARIOS

Transformer Backbone. To facilitate comprehensive interactions among high dimensional features,
and to learn the latent representations of missing features by leveraging information from other
visible features, we employ an encoder-only transformer architecture that utilizes Multi-Head Self-
Attention (MHSA) as the feature interaction module. By incorporating feature names into the feature
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Figure 2: Illustrating the missing-related masked attention mechanism. We establish a masked atten-
tion computation for each sample, informed by prior information concerning feature missingness.

embeddings, we eliminate the necessity for positional encoding. Furthermore, we augment the Feed-
Forward Network (FFN) structure within the transformer encoder layer by substituting the original
ReLU activation function with SwiGLU. The gating mechanisms inherent in SwiGLU enhance the
transformer’s capacity to evaluate the significance of features automatically.

The feature embeddings E are input into the transformer backbone, yielding the transformed feature
representation . Subsequently, H is treated as a token sequence and processed by a mask head
composed of linear layers. For num features, the linear layer has dimensions of d x 1, whereas for
cat features, the dimensions are of d x d. Additionally, H is processed through pooling operations
along the feature dimension to obtain an aggregated representation of each sample, then input into a
task head to generate downstream prediction.

Missing-Related Masked Attention Mechanism. Specifically, we incorporate prior information
about missing features into the computation of attention. This approach can alleviates the impact of
missing features on self-attention calculations, thereby preserving the importance of other critical
features, which can help the model rely more on trustworthy features when making decisions. We
achieve this by masked attention computation, as following formula.

QK"
Vd
for ease of description, we represent the commonly used query, key, and value in self-attention as @,

K and V respectively. Additionally, M denotes the mask derived from the information on missing
features, as depicted in Fig. 2, which can be defined as follows:

Attention(Q, K, V') = Softmax( + M)V, (5)

— if k € missand k # j
M, — { 00 miss £ g ©)

0 else

3.5 JOINTLY APPROACH MISSING FEATURE MODELING AND DOWNSTREAM TASKS

As outlined in Section 3.2, we randomly drop specific features to create simulated missingness,
which serves as a supervisory signal for feature reconstruction. Since both true missingness and
simulated missingness are represented by mask embedding x,,;ss, and the embedding is optimized
during joint training, this process facilitates enhanced representations of missing features during
downstream tasks. We implement reconstruction loss to optimize the distance between predicted
values and original values. For cat and num features, we apply the following two losses:

e, 1o Sl @)
K Z l€;s1lle;l]”
=Y (a5 — )%, (8)
jeD
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Table 1: The details of datasets. We reported the sample size, number of numerical features (#num
features), and number of categorical features (#cat features) for 8 datasets. Additionally, we also
collected information on the missing condition for each dataset, categorizing the feature missing
rates into 3 bins and counting the sample proportion for each bins.

sample proportion at feature missing rates

task type dataset name #samples #num features #cat features
0%,33%] (33%,66%] (66%,100%]
Ecom Offers 160,057 113 6 0.00% 0.00% 0.00%
Classification ~ Homesite Insurance 260,753 253 46 89.93% 0.00% 0.00%
HomeCredit Default 381,664 612 84 57.16% 36.93% 5.91%
Sberbank Housing 28,321 365 27 100.00% 0.00% 0.00%
Cooking Time 319,986 186 6 99.10% 0.00% 0.00%
Regression Delivery ETA 350,516 221 2 91.50% 3.71% 0.00%
Maps Routing 279,945 984 2 97.08% 2.82% 0.10%
Weather 423,795 100 3 0.00% 2.21% 0.03%

where S and D represent the cat and num features, respectively, that are selected for masking in a
given sample. Moreover, we optimize the objectives of downstream tasks in conjunction with the
previously mentioned reconstruction loss, as following:

L = Liask + Ligha + Linas, ©)

we use Mean Square Error and Cross Entropy loss for regression and classification task respectively.

4 EXPERIMENTS

In this section, we validated the effectiveness of our method on the TabReD (Rubachev et al., 2024),
a industry-grade tabular benchmark. The experiments demonstrate that the MaskTab achieves
superior performance on both classification and regression tasks. Furthermore, we conducted
ablation experiments on each module to verify the effectiveness of our method.

4.1 EXPERIMENTAL DETAILS

Datasets. We employed the TabReD benchmark, which exclusively consists of tabular data
obtained from real-world industrial applications. This benchmark comprises 8 datasets, including 3
classification tasks and 5 regression tasks. As outlined in Table 1, each dataset is characterized by a
substantial number of samples and features. Furthermore, we evaluated the rates of missing features
for each dataset and found that most exhibit varying degrees of incompleteness. Additionally,
these datasets were divided into training, validation, and testing sets based on temporal criteria.
These characteristics are frequently encountered in industrial applications, rendering this benchmark
particularly suitable for assessing model performance in such contexts.

Data Pre-processing. Follwing FT-transformer (Gorishniy et al., 2021), we categorize the columns
of the table into numerical and categorical features. Numerical features are processed through
quantile normalize using the Scikit-learn library, with normalization parameters calculated solely
on the training set. For regression tasks, we apply the standardization to the labels. Notably, in the
experiments conducted with MaskTab, we did not fill with any value for missing features.

Experimental Setup. We configured the model using default parameters informed by empirical
evidence, incorporating 4 transformer blocks, each equipped with 8 attention heads, a feature
embedding size of 128, and a dropout rate of 15% within the feed-forward network. The batch
size was set at 128, and we employed the AdamW optimizer with a learning rate of 1le — 4. In the
vicinity of the default parameters, Hyperparameters were optimized for each dataset through grid
search, guided by performance metrics derived from the validation set, notably, the test set was kept
untouched during this tuning process. Experiments were conducted on 8 NVIDIA A100 GPUs, and
the optimal model checkpoint was selected via early stopping, based on validation metrics. For
evaluation, we utilized the receiver operating characteristic area under the curve (ROC AUC) for
classification tasks and the root mean square error (RMSE) for regression tasks.
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Table 2: Comparing MaskTab with current Gradient Boosted Decision Tree (GBDT) methods
and deep tabular models using the TabReD benchmark. The entries highlighted in bold indicate the
best-performing models.

Classification (ROC AUC 1) Regression (RMSE |)
Method Homesite Ecom HomeCredit Sberbank Cooking Delivery Maps Avg. Rank
Insurance Offers Default Housing Time ETA Routing Weather

XGBoost 0.9601 0.5763 0.8670 0.2419 0.4823 0.5468 0.1616 1.4671 43
LightGBM 0.9603 0.5758 0.8664 0.2468 0.4826 0.5468 0.1618 1.4625 5.4
CatBoost 0.9606 0.5596 0.8621 0.2482 0.4823 0.5465 0.1619 1.4688 5.6
MLP 0.9500 0.6015 0.8545 0.2508 0.4820 0.5504 0.1622 1.5470 6.8
SNN 0.9492 0.5996 0.8551 0.2858 0.4838 0.5544 0.1651 1.5649 10.5
DCNv2 0.9392 0.5955 0.8466 0.2770 0.4842 0.5532 0.1672 1.5782 11.4
ResNet 0.9469 0.5998 0.8493 0.2743 0.4825 0.5527 0.1625 1.5021 8.0
MLP-PLR 0.9621 0.5957 0.8568 0.2438 0.4812 0.5527 0.1616 1.5177 44
Trompt 0.9546 0.5792 0.8381 0.2596 0.4834 0.5563 0.1652 1.5722 11.0
FT-Transformer 0.9622 0.5775 0.8571 0.2440 0.4820 0.5542 0.1625 1.5104 6.4
TabR 0.9522 0.5850 0.8484 0.2851 0.4825 0.5541 0.1637 1.4622 8.6
TabNet 0.9531 0.5855 0.7701 0.2828 0.4813 0.5567 0.1651 1.5877 10.5
TransTab 0.9564 0.5868 0.8498 - - - - - -

CM2 0.9560 0.5890 0.8392 0.2287 0.4838 0.5569 0.1638 1.5339 9.0
MaskTab (ours) 0.9635 0.6016 0.8660 0.2337 0.4806 0.5495 0.1618 1.4883 2.5

Compared Methods. To adequately validate the effectiveness of our method, we compare it with
two major categories of methods: Gradient Boosted Decision Trees (GBDT) and Deep Learning
methods. The former includes XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017),
and CatBoost (Prokhorenkova et al., 2018), while the latter has MLP (Gorishniy et al., 2021), SNN
(Klambauer et al., 2017), ResNet (Gorishniy et al., 2021), DCNv2 (Wang et al., 2020), TabNet (Arik
& Pfister, 2021) , MLP-PLR (Gorishniy et al., 2022), Trompt (Chen et al., 2023), as well as attention-
based method, FT-Transformer (Gorishniy et al., 2021). Further, we include a recent advanced
method named TabR (Gorishniy et al., 2024), a retrieval-based model, demonstrated impressive
performance. Additionally, we also compared pre-trained method like TransTab (Wang & Sun,
2022) and CM2 (Ye et al., 2024). For all methods, we applied the same training set, validation set,
and test set, and calculate the average ranking across 8 dataset.

4.2 OVERALL PERFORMANCE

The comparative results of MaskTab and other methods are presented in Table 2. By calculating
the average ranking across 8 datasets, our method achieves an average rank of 2.5. This perfor-
mance surpasses XGBoost, the preeminent algorithm among GBDT methods, and significantly
exceeds that of other deep tabular models. In comparison to GBDT-based methods, our model
demonstrates comparable performance or slight improvements across various datasets. Specifically,
in classification tasks involving datasets Homesite Insurance and Ecom Offers, we achieved AUC
values of 0.9635 and 0.6016, respectively, outperforming three GBDT methods. Additionally, in
the regression task utilizing dataset Sberbank Housing, our model attained an RMSE of 0.2337,
surpassing GBDT methods, which generally produce RMSE values exceeding 0.24. Compared to
deep learning methods, our approach demonstrates a significant advantage on dataset HomeCredit
Default. Specifically, our method achieves an AUC of 0.8660, while other deep tabular models
exhibit AUC values below 0.860, with the highest being 0.8571 for FT-Transformer. Notably, this
dataset contains 612 numerical features and 84 categorical features, and it experiences considerable
feature missingness, with 36.93% of samples have a missing rate ranging from 33% to 66%. The
superior performance of our method underscores its effectiveness in contexts characterized by a
high dimensionality and considerable missing data, thereby positioning it as a promising option for
industrial applications.

4.3 ABLATION STUDY

In this section, we conducted ablation studies to systematically evaluate the contribution of each
component. We selected two representative datasets, HomeCredit Default and Sberbank Housing,
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Table 3: Ablation studies to verify the effectiveness of each component in MaskTab, including the
joint learning approach, learned mask embedding, and the missing-related masked attention.

HomeCredit Default  Sberbank Housing

Module

(ROC AUC 1) (RMSE )
Training Objective
only task training 0.8634 0.2862
masked training — task training 0.8616 0.2366
masked training + task training 0.8660 0.2337
Imputation Strategy
zero value 0.8610 0.2405
mode value 0.8599 0.2390
Hyperlmpute - 0.2468
ReMasker 0.8593 0.2469
mask embedding 0.8660 0.2337
Missing-Related Masked Attention
w/o 0.8640 0.2371
in first transformer layer 0.8628 0.2364
in all transformer layers 0.8605 0.2527
in last transformer layer 0.8660 0.2337

both of which exhibit a high rate of missing features. The former corresponds to a classification
task, while the latter pertains to a regression task.

Joint Masked Training and Task Training. To rigorously validate the advantages of joint training,
we devised two supplementary training methodologies for comparison: only task training and a two-
stage approach consisting of masked training followed by task training. All three training methods
preserving the other improvements to ensure fair evaluation. From the "training objective” section
of Table 3, it is evident that the two-stage approach did not enhance the model’s performance on
HomeCredit Default compared with only task training. This suggests that masked training, by itself,
does not effectively promote the development of representations advantageous for downstream tasks.
Conversely, joint training produced optimal performance across both datasets.

Mask Embedding vs. Imputation. In comparing various imputation methods, we employed
joint training while excluding the masked embedding for missing features, retaining all other
modules to ensure fairness. The imputation techniques analyzed included mean imputation, mode
imputation, and two advanced model-based approaches. As shown in the “Imputation Strategy”
section of Table 3, the mask embedding learned by Ma sk Tab effectively captured the characteristics
of missing values, yielding superior performance across both datasets. In implementing the
Hyperimpute on HomeCredit Default, we encountered difficulties due to the excessively large
volume of data. Additionally, training the imputation model ReMasker presented challenges in
parameter tuning, which resulted in suboptimal performance on downstream tasks. In contrast, our
method is more straightforward and facilitates practical usability in real-world applications.

Missing-Related Masked Attention. We examine the effectiveness of the missing-related masked
attention, as indicated in the final section of Table 3. The results indicate that this module is
not suitable for integration at every layer of the Transformer architecture. Instead, its application
in the final layer—where critical decision-making occurs—demonstrates optimal performance in
downstream tasks. We hypothesize that this module functions to accentuate reliable features, playing
a crucial role during the model’s decision-making phase, without interfering with the learning of
shallow feature interactions in the earlier layers.

Performance under Different Missing Rates. To illustrate the significant utility of MaskTab in
addressing samples with missing features, we partitioned the test set into three subsets of equal size,
categorized by low, medium, and high missing rates. We assessed the performance of downstream
tasks across these three subsets. As indicated in Table 4, we compared MaskTab with a version
that omits all improved modules. The results demonstrate that our proposed modules yield a more
substantial enhancement in the high missing rate category. Specifically, for HomeCredit Default, the
AUC improvement for samples in the high missing rate subset was 0.0031, in contrast to 0.0015 for
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Table 4: Performance of MaskTab at varying missing rates. The terms low, medium, and high
refer to three distinct levels of feature missing, which partition the test set into three equal-sized
subsets. The term MaskTab * denotes a variant of our method that excludes all enhancements.

HomeCredit Default Sberbank Housing
Method (ROCAUC 1) (RMSE |)
low medium high low medium  high
XGBoost 0.8563 0.8770 0.8656  0.2402  0.2899  0.1892
MaskTab * 0.8561 0.8747 0.8595 0.2322  0.2889  0.2203
MaskTab 0.8576 0.8765 0.8626  0.2258  0.2821 0.1826

Relative Improvement  +0.0015  +0.0018  +0.0031 -0.0064 -0.0068  -0.0377

those in the low missing rate group. Similarly, in Sberbank Housing, the RMSE improvements were
0.0377 versus 0.0064, respectively.

Masking Strategy Analysis. To examine the relationship between the feature missing rate and
the employed masking strategy, we selected two datasets: HomeCredit Default, characterized by
a substantially higher missing rate, and Ecom Offers, which exhibits a missing rate of zero. We
conducted experiments using a range of mask probs ([0.25,0.50, 0.75, 1.0]) alongside varying mask
ratios ([0.1,0.3,0.5,0.7]). As shown in Fig. 3, We find that for datasets with a high missing rate, a
lower mask prob and mask ratio result in improved performance. Conversely, for datasets with a low
missing rate, the model is capable of tolerating a relatively higher level of missing data simulation.
We suggest that in the former scenario, the model is required to learn representations of missing data
while accommodating a slight shift in the underlying data distribution. In contrast, for the latter,
the introduction of additional dropped features act as data augmentation to effectively facilitate the
feature learning.

HomecCredit Default Ecom Offers
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0.8600 0.5950
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Figure 3: Analysis of masking strategy in Mask Tab. Different colored curves correspond to various
mask prob, while the x-axis represents the mask ratio. The left part presents the analysis results
for HomeCredit Default, which exhibits a high rate of missing values. In contrast, the right part
illustrates the analysis results for Ecom Offers, characterized by a lower rate of missing values.

5 CONCLUSIONS AND FUTURE WORK

In this study, we examine the applicability of deep tabular models in industrial contexts, which
are characterized by high dimensionality and significant amounts of missing data. To address the
challenge of feature absence, we introduce MaskTab, which employs a masked modeling approach
for tabular data. Furthermore, our specifically optimized modules exhibit notable effectiveness.
Comparative analyses position our method as a promising candidate for industrial applications. A
future direction for optimization involves conducting cross-table training using extensive industrial
datasets to determine whether larger data scales result in enhanced performance. Additionally, in
certain industrial scenarios, some critical features may be entirely absent for specific test samples.
We aim to investigate whether training on samples that encompass all features could improve
predictive accuracy for those samples with missing key attributes.
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