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Abstract

Most prior work on information extraction (IE)001
typically predicts labels of individual instances002
(e.g., event triggers, relations, entities) inde-003
pendently regardless of their interactions. We004
propose a novel framework, HighIE, that aims005
to integrate high-order cross-subtask and cross-006
instance dependencies in both learning and in-007
ference. High-order inference on label vari-008
ables is an NP-hard problem. To address it,009
we propose a high-order decoder that is un-010
folded from an approximate inference algo-011
rithm. The experimental results show that012
our approach achieves consistent improvement013
compared with prior work.1014

1 Introduction015

Information Extraction (IE) is the task of extract-016

ing structured information from unstructured texts.017

It is comprised of various subtasks, such as entity018

recognition, coreference resolution, relation extrac-019

tion, and event extraction. Conventional approach020

construct IE models by solely based on local fea-021

tures. Recent advances point out that high-order022

interactions (e.g., cross-subtask and cross-instance023

interactions) among different instances (e.g., event024

triggers, relations, entities) can provide rich in-025

formation in various IE subtasks (Li et al., 2014;026

Miwa and Sasaki, 2014; Yang and Mitchell, 2016;027

Kirschnick et al., 2016; Luan et al., 2018, 2019;028

Wadden et al., 2019; Lin et al., 2020). Specifically,029

types of entities can provide information that is use-030

ful to predict their relations or limit the roles they031

play in some events. Similarly, a relation between032

two entities would restrict the types of the entities.033

Take event extraction as an example, in event DIE,034

a PERSON entity is more likely to play a role of035

VICTIM; two entities having LIVEIN relation are036

more likely to be PERSON and LOCATION types.037

1The code and trained models can be found at https:
//anonymous.

Some recent work has demonstrated improve- 038

ments on local features by leveraging interactions 039

between different instances or different subtasks. 040

For example, Luan et al. (2018) implicitly lever- 041

ages information from other tasks by jointly train- 042

ing multiple sub-tasks with shared embeddings; 043

Luan et al. (2019) and Wadden et al. (2019) use 044

a dynamic span graph to update span representa- 045

tions according to the prediction of task-specified 046

relations. However, these methods only implic- 047

itly model interactions via representation learning. 048

Different from them, Lin et al. (2020) designs a 049

template to generate global features and takes them 050

as global constraints in the training process. How- 051

ever, their global features require human design 052

and cannot be directly used in the inference process. 053

Wang and Pan (2021) try to learn intensive corre- 054

lations between labels variables in inference by 055

designing a logic network, but they cannot achieve 056

end-to-end training, which leads to unsatisfactory 057

performance. 058

In this work, we aim to automatically integrate 059

high-order interactions across instances or sub- 060

tasks and propose a novel model named HighIE 061

that can automatically incorporate high-order cor- 062

relations across sub-tasks and sub-instances in both 063

training and inference. HighIE consists of two 064

modules: the identification module and the classifi- 065

cation module. We first train the identification mod- 066

ule to identify triggers and entities in a sentence 067
2, then fix the identification module and take the 068

predictions as input to train a classification module 069

with high-order interactions to jointly predict the 070

labels of all instances. Exact high-order inference 071

in this situation is NP-hard, so we design a neu- 072

ral decoder that is unfolded from mean-field vari- 073

ational inference (Zheng et al., 2015; Wang et al., 074

2Different from most previous work that jointly trains the
identification and classification modules, we empirically find
that separate training achieves stabler and better performance.
The same observation has been demonstrated by Zhong and
Chen (2020) in relation extraction.
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2019; Wang and Tu, 2020) to achieve approximate075

inference and end-to-end training. Experimental076

results show that our approach achieves significant077

improvement over previous work.078

2 Approach079

Task Formulation Given a sentence w = {wi :080

i = 1, .., n} with n words,081

� Entity recognition (ER) aims to identify some082

spans in a sentence as entities and label entity types,083

ei = (ai, bi, l
E) denotes the i-th entity with entity084

type lE consisting of wai , .., wbi words.085

� Relation extraction (RE) aims to label rela-086

tions between entity pairs, rRE
ij = (i, j, lRE) de-087

notes the directed relation from the entity ei to the088

entity ej , with lRE being the relation type.089

� Event extraction (EE) aims to label event090

types, triggers and argument roles. We take the091

event type lT as the label of its trigger and thus the092

prediction targets are triggers {tj = (aj , bj , l
T)},093

denoting the j-th trigger consisting of waj , .., wbj094

words with lT as its label, and roles {rTE
ji =095

(j, i, lTE)}, each denoting a relation between the096

j-th trigger and the i-th entity (argument) with lTE097

as the role type that the argument plays.098

Encoder Both the identification network099

and classification network adopt pre-trained100

transformer-based encoders. For the i-th word,101

we use the average of all sub-word embeddings102

extracted from the encoder as the word’s repre-103

sentation ht
i, where t ∈ {I, C} and I represents104

the identification task while C represents the105

classification task.106

2.1 Identification Module107

Following previous work (Lin et al., 2020), we for-108

mulate event trigger identification and entity iden-109

tification as sequence labeling tasks with a BIO110

schema. We use a linear-chain conditional random111

field (CRF) (Lafferty et al., 2001) as a decoder to112

predict the optimal output sequence. Details refer113

Appendix A.114

2.2 Classification Module115

The classification module predicts event types (la-116

bels of triggers), entity types, existence and types117

of roles between trigger-entity pairs, and existence118

and labels of relations between entity-entity pairs.119

We consider high-order interactions and the joint120

inference between ER and EE tasks, and between121

ER and RE tasks.122

We first obtain the trigger representation zT
j = 123

Avg(hC
aj , ...,h

C
bj
) and entity representation zE

i = 124

Avg(hC
ai , ...,h

C
bi
) by averaging all word representa- 125

tions in the j-th trigger and i-th entity respectively. 126

We directly input the trigger representation into 127

an MLP to obtain the first-order scores of possi- 128

ble event types sT
j = MLP1(z

T
j ), where sT

j is a 129

R1-dimensional vector with R1 being the num- 130

ber of possible event types. In a similar way, 131

the first-order scores of possible entity types are 132

sE
i = MLP2(z

E
i ), where sE

i is a R2-dimensional 133

vector with R2 being the number of possible entity 134

types. For role prediction between trigger-entity 135

pairs, the trigger representation and entity represen- 136

tation are concatenated and then fed into an MLP to 137

obtain the first-order scores sTE
ji = MLP3([z

T
j ; z

E
i ]), 138

where sTE
ji is R3-dimensional vector with R3 being 139

the number of possible role types, including an ad- 140

ditional “None” label denoting that the entity is not 141

an argument of the event. Similarly, for relation pre- 142

diction between entity-entity pairs, we calculate the 143

first-order relation scores sRE
ij = MLP4([z

E
i ; z

E
j ]), 144

where sRE
ij is R4-dimensional vector with R4 being 145

the number of possible relation types, including an 146

additional “None” label. 147

To leverage high-order interactions between dif- 148

ferent instances of different sub-tasks, we design 149

two classes of high-order factors: trigger-role- 150

entity (tre) factors to model the correlations be- 151

tween event types, entity types and role types; 152

entity-relation (er) factors to model the correlations 153

of entity types and relation types. We use a de- 154

composed penta-linear function fpen and tri-linear 155

function ftri to calculate the high-order scores as 156

follows: 157

S(tre)
j,ji,i = fpen(z

T
j , z

E
i ,g

T
j ,g

TE
ji ,g

E
i ) 158

=

k∑
m=1

z′j ◦ z′i ◦ gT
j ◦ gTE

ji ◦ gE
i 159

S(er)
i,ij = ftri(z

E
i ,g

E
i ,g

RE
ij ) =

k∑
m=1

z′′i ◦ gE
i ◦ gRE

ij 160

z′j = U1z
T
j z′i = U2z

E
i z′′i = U3z

E
i 161

where U1, ..., U3 are three (d×k)-dimensional ma- 162

trices. d is the hidden size of the input represen- 163

tations. k is the decomposition rank. gT
j , gE

i , gTE
ji , 164

and gRE
ij are learnable parameter matrix with sizes 165

(R1 × k), (R2 × k), (R3 × k), and (R4 × k) re- 166

spectively. S(tre)
j,ji,i is (R1 ×R3 ×R2)-dimensional 167
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tensor and S(er)
i,ij is (R2 ×R4)-dimensional matrix.168

◦ denotes element-wise product.169

Inference For first-order inference without con-170

sidering the high-order scores, we adopt the same171

beam decoding as in Lin et al. (2020). For high-172

order inference, we predict all the entity types,173

trigger types, roles and relations by maximizing174

the sum of their first-order scores and high-order175

scores. Since it is an NP-hard problem, we use176

Mean Field Variational Inference (MFVI) (Xing177

et al., 2012) for approximate inference. MFVI up-178

dates approximate posterior marginal distributions179

Q(·) according to messages F(·) passed by vari-180

ables in the same factors. For joint ER and EE181

tasks, the messages are calculated as follows:182

FT(t−1)
j =

∑
i

∑
lE

Q
E(t−1)
i (lE)

(∑
lTE

Q
TE(t−1)
ji (lTE)(S(tre)

j,ji,i)lTE
)
lE

FE(t−1)
i =

∑
j

∑
lT

Q
T(t−1)
j (lT)

(∑
lTE

Q
TE(t−1)
ji (lTE)(S(tre)

j,ji,i)lTE
)
lT

FTE(t−1)
ji =

∑
lT

Q
T(t−1)
j (lT)

(∑
lE

Q
E(t−1)
i (lE)(S(tre)

j,ji,i)lE
)
lT

183

Then the posteriors Q(·) are updated according to184

the messages F(·).185

Q
T(t)
j ∝ exp{sT

j + FT(t−1)
j }

Q
E(t)
i ∝ exp{sE

i + FE(t−1)
i }

Q
TE(t)
ji ∝ exp{sTE

ji + FTE(t−1)
ji }

186

The joint ER and RE tasks deploy a similar pro-187

cess:188

FRE(t−1)
ij =

∑
lE

Q
E(t−1)
i (lE)(S(er)

i,ij)lE

+
∑
lE

Q
E(t−1)
j (lE)(S(er)

j,ij)lE

FE(t−1)
i =

∑
j ̸=i

∑
lRE

Q
RE(t−1)
ij (lRE)(S(er)

i,ij)lRE

Q
E(t)
i ∝ exp{sE

i + FE(t−1)
i }

Q
RE(t)
ij ∝ exp{sRE

ij + FRE(t−1)
ij }

189

The initial distribution Q(0) is set by normalizing190

exponentiated first-order scores. After a fixed N191

number of iterations, we obtain the posteriors Q(N).192

Then we use beam search to get the predictions of193

all items according to the posteriors.194

Learning The training target is to maximize the 195
probability of the ground truth. We do multi-task 196
learning with cross entropy losses as follows: 197

L = −
∑
i

logP (l̂Ei |w)−
∑
j

logP (l̂Tj |w) 198

−
∑
ji

logP (l̂TE
ji |w)−

∑
ij

logP (l̂RE
ij |w) 199

P (l̂X|w) = QX(N)(l̂X) 200

where X ∈ {T,E,TE,RE} and l̂ is the target 201

labels of each task. 202

3 Experiments 203

Dataset We evaluate our model on the ACE2005 204

corpus (Walker et al., 2005) which provides the 205

entity, relation, and event annotations for different 206

languages including English, Chinese, and Arabic. 207

Following (Lu et al., 2021; Lin et al., 2020; Wad- 208

den et al., 2019), we conduct experiments on two 209

English datasets: ACE05-R for ER and RE and 210

ACE05-E and ACE05-E+ for ER and EE, with 211

the same data pre-processing and train/dev/test 212

split. There are 7 entity types, 6 relation types, 213

33 event types, and 22 argument roles defined in 214

these datasets. Detailed data statistics are provided 215

in Appendix B. 216

Evaluation We use F1 scores to evaluate our 217

model’s performance as in most previous work (Lu 218

et al., 2021; Lin et al., 2020; Wadden et al., 2019). 219

For the ER task, an entity (Ent) is correct if both 220

its type and offsets match a gold entity. For the RE 221

task, a relation (Relation) is correct if both its type 222

and the offsets of its related entities match a gold 223

relation. A trigger is correctly identified (Trig-I) 224

if its offsets match a gold trigger. It is correctly 225

classified (Trig-C) if its corresponding event type 226

also matches the reference trigger. An argument 227

is correctly identified (Arg-I) if its offsets match a 228

gold argument and its corresponding event type is 229

correct. It is correctly classified (Arg-C) if its role 230

type also matches the reference argument. 231

Implementation Details For fair comparison 232

with the state-of-the-art system (Lin et al., 2020), 233

we use the bert-large-cased model (Devlin et al., 234

2018) as our encoder for ACE2005 English 235

datasets. We train our model with BERTAdam 236

optimizer. All hyper-parameters of our base model 237

are the same as in Lin et al. (2020). For our high- 238

order model, we set the decomposed size k = 150 239

and the iteration number N = 3. Detailed hyper- 240

parameter values are provided in Appendix C. 241
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Ent Trig-I Trig-C Arg-I Arg-C
DYGIE++ 89.7 - 69.7 53.0 48.8
ONEIE 90.2 78.2 74.7 59.2 56.8
T2E - - 71.9 - 53.8
HighIE 91.1 77.9 74.7 59.6 57.6

Table 1: F1 scores averaged on three runs on the ACE05-
E dataset. We use tre factor in this setting.

Ent Trig-I Trig-C Arg-I Arg-C
ONEIE 89.6 75.6 72.8 57.3 54.8
T2E - - 71.8 - 54.5
HighIE 90.7 76.5 73.9 60.0 58.1

Table 2: F1 scores on the ACE05-E+ dataset. We use
tre factor in this setting.

DYGIE++ ONEIE HighIE
Entity 88.6 88.8 89.0

Relation 63.4 67.5 68.5

Table 3: F1 scores on the ACE05-R dataset. We use er
factor in this setting.

Comparisons Some previous work of event ex-242

traction leveraged gold triggers or gold entities.243

However, our approach assumes that all the trig-244

gers and entities are unreachable and should be pre-245

dicted. Besides, we jointly train the different tasks246

(ER, RE, and EE) in the ACE05-E and ACE05-247

E+ datasets. Therefore, we compare our approach248

with the following models in the same settings:249

(1) DYGIE++ (Wadden et al., 2019) which is a250

general multi-task IE framework learning dynamic251

span representation, (2) OneIE (Lin et al., 2020)252

which extends DYGIE++ by incorporating global253

features, (3) TEXT2EVENT (denoted by T2E) (Lu254

et al., 2021) which formulates event extraction as a255

sequence-to-structure generation paradigm to share256

knowledge between different components.257

3.1 Results and Analyses258

Main Results Table 1, Table 2 and Table 3 show259

the experimental results of our approach on ACE05-260

E, ACE05-E+ and ACE05-R, respectively. We only261

use tre factor in the experiments on ACE05-E and262

ACE05-E+ datasets, thus we only report the perfor-263

mance of ER and EE tasks. In this situation, the264

RE is trained as auxiliary task and its performance265

is comparable with previous work. ACE05-R only266

contains entity and relation annotations and we267

only train ER and RE tasks on this dataset. We268

can find that our HighIE performs better in most269

cases. Despite the F1 score of Trig-I (predicted by270

the identification module) in Table 1 is a bit lower271

than ONEIE, the F1 scores of Arg-C is still higher272

than ONEIE. Note that the Arg-C is the most dif-273

Ent Trig-I Trig-C Arg-I Arg-C
Joint 90.7 77.0 74.4 58 55.0
Our base 91.1 77.9 74.3 58.3 56.2
HighIE 91.1 77.9 74.7 59.6 57.6

Table 4: Comparison of separate and joint learning of
identification module on the ACE05-E dataset.

324
241
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(a) Baseline predictions statistics
of arguments

(b) Argument classification error 
fixed by high-order model

Figure 1: Error type ‘failure’ means the model assigns a
wrong role of an identified argument and ‘miss’ means
the model assigns a gold argument with a “None” label.

ficult sub-task in EE because it requires that the 274

argument offsets, the roles and the corresponding 275

event types are all correctly predicted. Therefore, 276

our good performance on Arg-C proves that the 277

intensive high-order interactions between variables 278

are beneficial to label classifications. 279

Analysis of Separate Learning In Tabel 4, we 280

compare the joint learning baseline (Joint), the sep- 281

arate learning baseline (Our base), and our high- 282

order model (HighIE) on the ACE05-E dataset. It 283

can be seen that training the identification module 284

independently from the classification module per- 285

forms better on most sub-tasks than jointly training. 286

With high-order inference, the results get further 287

improvement. 288

Error Fixed by High-order Model We count 289

the number of different errors in argument classifi- 290

cation (Arg-C) of our base model and the number 291

of error corrections by our HighIE model in Fig.1. 292

For ‘failure’ error, we only consider the arguments 293

with correct span boundaries to exclude the error 294

from upstream identification module. A case study 295

is provided in Appendix E. 296

4 Conclusion 297

In this paper, we propose a novel framework that 298

can leverage high-order interactions between differ- 299

ent instances and different IE sub-tasks. Our frame- 300

work consists of identification module to identify 301

event triggers and entities and classification mod- 302

ule with high-order inference to label all instances. 303

Experimental results show that our high-order ap- 304

proach achieves consistent improvement over pre- 305

vious work. 306
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A Identification Module394

A multi-layer perceptron (MLP) takes word repre-395

sentations HI = [hI
1, ...,h

I
n] as input and outputs396

an emission score ui for each word. With a learn-397

able transition score matrix A, a labeled sequence398

y = (y1, ..., yn) can be scored as s(y, HI) =399 ∑n
i=1(ui)yi +Ayi−1,yi .400

Inference We use the Viterbi algorithm (Forney,401

1973) to obtain the sequence that has the highest402

score: ŷ = argmaxy s(y, H
I).403

Learning We maximize the probability of the404

target sequence to learn the identification module.405

P (y∗|w) =
exp(s(y∗, HI))∑
y′ exp(s(y′, HI))

=
1

Z exp(s(y∗, HI))406

where y∗ is the target sequence and Z is the par-407

tition function. We can use the forward-backward408

algorithm (Dugad and Desai, 1996) to calculate Z .409

B Dataset Statistics410

Statistics of all datasets we used are shown in Tabel411

5.412

Split #Sentences #Entities #Relations #Events

ACE05-R
Train 10,051 26,473 4,788 -
Dev 2,424 6,362 1,131 -
Test 2,050 5,476 1,151 -

ACE05-E
Train 17,172 29,006 4,664 4,202
Dev 923 2,451 560 450
Test 832 3,017 636 403

ACE05-E+
Train 19,240 47,525 7,152 4,419
Dev 902 3,422 728 468
Test 676 3,673 802 424

Table 5: Datasets statistics

C Hyper-parameters413

We use the default hyper-parameters following (Lin414

et al., 2020). The main hyper-parameters are listed415

in Table 6.416

D Comparison of Base Model and HighIE417

Tabel 7 and Tabel 8 give the results comparison418

of our base model and HighIE on ACE05-E+ and419

ACE05-R datasets.420

E Case Study421

Fig. 2 offers an example where our high-order422

model fixes a wrong prediction by the baseline423

model. In the sentence, ’bombed’ is the trigger and424

Network Hidden size
FFN(ER) 2*150
FFN(RE) 2*150
FFN(EE) 2*600
Decomposed rank 150
Iteration of inference 3
Dropouts Dropout rate
FFN 0.4
Optimizer
Learning rate of BERT 5e-5
LR decay of BERT 1e-5
Learning rate of other parameters 1e-3
LR decay of other parameters 1e-3
Grad clipping 5.0

Table 6: Summary of hyper-parameters

Ent Trig-I Trig-C Arg-I Arg-C
Our base 90.6 76.5 74.1 59.2 57.6
HighIE 90.7 76.5 73.9 60.0 58.1

Table 7: Comparison of our base model and HighIE on
the ACE05-E+ dataset.

ACE05-R
Ent Rel

Our base 88.8 67.7
HighIE 89.0 68.5

Table 8: Comparison of our base model and HighIE on
the ACE05-R dataset.

’bridges’ is the corresponding candidate argument. 425

The baseline model predicts ’bridges’ to take the 426

’Target’ role while the gold role should be ’Place’. 427

U.S. aircraft bombed Iraqi tanks holding bridges close to the city.

Entities: 1) ‘U.S.’: GPE        4) ‘tanks’: VEH 
                  2) ‘aircraft’: VEH    5) ‘bridges’: FAC 

            3) ‘Iraqi’: GPE        6) ‘city’: GPE 
               

Events: 1) Attack: ‘bombed->U.S. [Attacker]’,   
                                     ‘bombed->aircraft [Instrument]’,  

                            ‘bombed->tanks [Target]’,   
                             ‘bombed->bridges [Place]’

Events: 1) Attack: ‘bombed->aircraft [Instrument]’,  
                    ‘bombed->tanks [Target]’,  

                      ‘bombed->bridges [Target]’

Events: 1) Attack: ‘bombed->aircraft [Instrument]’,  
                    ‘bombed->tanks [Target]’,  

                 ‘bombed->bridges [Place]’

Gold

Base

HighIE

Figure 2: Case study where our baseline model predicts
a wrong role and our high-order model fixes the error.
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