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Abstract

Most prior work on information extraction (IE)
typically predicts labels of individual instances
(e.g., event triggers, relations, entities) inde-
pendently regardless of their interactions. We
propose a novel framework, HighlE, that aims
to integrate high-order cross-subtask and cross-
instance dependencies in both learning and in-
ference. High-order inference on label vari-
ables is an NP-hard problem. To address it,
we propose a high-order decoder that is un-
folded from an approximate inference algo-
rithm. The experimental results show that
our approach achieves consistent improvement
compared with prior work.!

1 Introduction

Information Extraction (IE) is the task of extract-
ing structured information from unstructured texts.
It is comprised of various subtasks, such as entity
recognition, coreference resolution, relation extrac-
tion, and event extraction. Conventional approach
construct IE models by solely based on local fea-
tures. Recent advances point out that high-order
interactions (e.g., cross-subtask and cross-instance
interactions) among different instances (e.g., event
triggers, relations, entities) can provide rich in-
formation in various IE subtasks (Li et al., 2014,
Miwa and Sasaki, 2014; Yang and Mitchell, 2016;
Kirschnick et al., 2016; Luan et al., 2018, 2019;
Wadden et al., 2019; Lin et al., 2020). Specifically,
types of entities can provide information that is use-
ful to predict their relations or limit the roles they
play in some events. Similarly, a relation between
two entities would restrict the types of the entities.
Take event extraction as an example, in event DIE,
a PERSON entity is more likely to play a role of
VICTIM; two entities having LIVEIN relation are
more likely to be PERSON and LOCATION types.

"The code and trained models can be found at https:
//anonymous.

Some recent work has demonstrated improve-
ments on local features by leveraging interactions
between different instances or different subtasks.
For example, Luan et al. (2018) implicitly lever-
ages information from other tasks by jointly train-
ing multiple sub-tasks with shared embeddings;
Luan et al. (2019) and Wadden et al. (2019) use
a dynamic span graph to update span representa-
tions according to the prediction of task-specified
relations. However, these methods only implic-
itly model interactions via representation learning.
Different from them, Lin et al. (2020) designs a
template to generate global features and takes them
as global constraints in the training process. How-
ever, their global features require human design
and cannot be directly used in the inference process.
Wang and Pan (2021) try to learn intensive corre-
lations between labels variables in inference by
designing a logic network, but they cannot achieve
end-to-end training, which leads to unsatisfactory
performance.

In this work, we aim to automatically integrate
high-order interactions across instances or sub-
tasks and propose a novel model named HighlE
that can automatically incorporate high-order cor-
relations across sub-tasks and sub-instances in both
training and inference. HighlE consists of two
modules: the identification module and the classifi-
cation module. We first train the identification mod-
ule to identify triggers and entities in a sentence
2 then fix the identification module and take the
predictions as input to train a classification module
with high-order interactions to jointly predict the
labels of all instances. Exact high-order inference
in this situation is NP-hard, so we design a neu-
ral decoder that is unfolded from mean-field vari-
ational inference (Zheng et al., 2015; Wang et al.,

Different from most previous work that jointly trains the
identification and classification modules, we empirically find
that separate training achieves stabler and better performance.
The same observation has been demonstrated by Zhong and
Chen (2020) in relation extraction.
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2019; Wang and Tu, 2020) to achieve approximate
inference and end-to-end training. Experimental
results show that our approach achieves significant
improvement over previous work.

2 Approach

Task Formulation Given a sentence w = {w; :
i =1,..,n} with n words,

>  Entity recognition (ER) aims to identify some
spans in a sentence as entities and label entity types,
e; = (a;, b;, IF) denotes the i-th entity with entity
type [E consisting of wg,, .., wy, words.

>  Relation extraction (RE) aims to label rela-
tions between entity pairs, TIEE = (i,7,IRE) de-
notes the directed relation from the entity e; to the
entity e;, with IRE being the relation type.

>  Event extraction (EE) aims to label event
types, triggers and argument roles. We take the
event type [T as the label of its trigger and thus the
prediction targets are triggers {t; = (a;,b;,(")},
denoting the j-th trigger consisting of wg, .., wp
words with (T as its label, and roles {T;rZE =
(4,1,1™)}, each denoting a relation between the
j-th trigger and the i-th entity (argument) with [TE
as the role type that the argument plays.

<%

Encoder Both the identification network
and classification network adopt pre-trained
transformer-based encoders. For the -th word,
we use the average of all sub-word embeddings
extracted from the encoder as the word’s repre-
sentation h!, where t € {I,C} and I represents
the identification task while C' represents the
classification task.

2.1 Identification Module

Following previous work (Lin et al., 2020), we for-
mulate event trigger identification and entity iden-
tification as sequence labeling tasks with a BIO
schema. We use a linear-chain conditional random
field (CRF) (Lafferty et al., 2001) as a decoder to
predict the optimal output sequence. Details refer
Appendix A.

2.2 Classification Module

The classification module predicts event types (la-
bels of triggers), entity types, existence and types
of roles between trigger-entity pairs, and existence
and labels of relations between entity-entity pairs.
We consider high-order interactions and the joint
inference between ER and EE tasks, and between
ER and RE tasks.

We first obtain the trigger representation z

Avg(hac;,7 s hg) and entity representation z- =

SO}

Avg(haC;7 very hg) by averaging all word representa-
tions in the j-th trigger and ¢-th entity respectively.

We directly input the trigger representation into
an MLP to obtain the first-order scores of possi-
ble event types s; = MLP(z}), where sj is a
R;-dimensional vector with R; being the num-
ber of possible event types. In a similar way,
the first-order scores of possible entity types are
= MLP;y(zF), where sE is a Ry-dimensional
vector with Ry being the number of possible entity
types. For role prediction between trigger-entity
pairs, the trigger representation and entity represen-
tation are concatenated and then fed into an MLP to
obtain the first-order scores s = MLP3([z}; z;]),
where sj is R3- dlmenswnal Vector with Rg belng
the number of possible role types, including an ad-
ditional “None” label denoting that the entity is not
an argument of the event. Similarly, for relation pre-
diction between entity- entity pairs we calculate the
first-order relation scores s = MLP,([zF; z JE])
where SEE is Ry- d1mens1ona1 vector with R, being
the number of possible relation types, including an
additional “None” label.

To leverage high-order interactions between dif-
ferent instances of different sub-tasks, we design
two classes of high-order factors: trigger-role-
entity (tre) factors to model the correlations be-
tween event types, entity types and role types;
entity-relation (er) factors to model the correlations
of entity types and relation types. We use a de-
composed penta-linear function fe, and tri-linear
function f;,; to calculate the high-order scores as
follows:
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where Uy, ..., Us are three (d x k)-dimensional ma-
trices. d is the hidden size of the input represen-
tations. k is the decomposition rank. gJT-, gk, ngZE
and g%E are learnable parameter matrix with sizes
(Rl X k) (Rg >< k‘) (R3 X k) and (R4 X ]f) re-

spectively. SJ( jii 18 (B1 x R x Ry)-dimensional



tensor and Sz(elr]) is (R2 x Ry)-dimensional matrix.

o denotes element-wise product.

Inference For first-order inference without con-
sidering the high-order scores, we adopt the same
beam decoding as in Lin et al. (2020). For high-
order inference, we predict all the entity types,
trigger types, roles and relations by maximizing
the sum of their first-order scores and high-order
scores. Since it is an NP-hard problem, we use
Mean Field Variational Inference (MFVI) (Xing
et al., 2012) for approximate inference. MFVI up-
dates approximate posterior marginal distributions
Q(+) according to messages F(-) passed by vari-
ables in the same factors. For joint ER and EE
tasks, the messages are calculated as follows:
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Then the posteriors Q(-) are updated according to
the messages F(+).
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The joint ER and RE tasks deploy a similar pro-
cess:
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The initial distribution Q(©) is set by normalizing
exponentiated first-order scores. After a fixed N
number of iterations, we obtain the posteriors QW)
Then we use beam search to get the predictions of
all items according to the posteriors.

Learning The training target is to maximize the
probability of the ground truth. We do multi-task
learning with cross entropy losses as follows:

fZlogP(fﬂw fZlogP [[|W)
fZIOgP L|W ZlogP[RE
P(i*|w) =Q"‘N><l )

where X € {T,E,TE,RE} and [ is the target
labels of each task.

3 Experiments

Dataset We evaluate our model on the ACE2005
corpus (Walker et al., 2005) which provides the
entity, relation, and event annotations for different
languages including English, Chinese, and Arabic.
Following (Lu et al., 2021; Lin et al., 2020; Wad-
den et al., 2019), we conduct experiments on two
English datasets: ACE05-R for ER and RE and
ACEO5-E and ACEO5-E+ for ER and EE, with
the same data pre-processing and train/dev/test
split. There are 7 entity types, 6 relation types,
33 event types, and 22 argument roles defined in
these datasets. Detailed data statistics are provided
in Appendix B.

Evaluation We use F1 scores to evaluate our
model’s performance as in most previous work (Lu
et al., 2021; Lin et al., 2020; Wadden et al., 2019).
For the ER task, an entity (Ent) is correct if both
its type and offsets match a gold entity. For the RE
task, a relation (Relation) is correct if both its type
and the offsets of its related entities match a gold
relation. A trigger is correctly identified (7rig-I)
if its offsets match a gold trigger. It is correctly
classified (Trig-C) if its corresponding event type
also matches the reference trigger. An argument
is correctly identified (Arg-I) if its offsets match a
gold argument and its corresponding event type is
correct. It is correctly classified (Arg-C) if its role
type also matches the reference argument.

Implementation Details For fair comparison
with the state-of-the-art system (Lin et al., 2020),
we use the bert-large-cased model (Devlin et al.,
2018) as our encoder for ACE2005 English
datasets. We train our model with BERTAdam
optimizer. All hyper-parameters of our base model
are the same as in Lin et al. (2020). For our high-
order model, we set the decomposed size k = 150
and the iteration number N = 3. Detailed hyper-
parameter values are provided in Appendix C.



Ent Trig-1 Trig-C Arg-1 Arg-C
DYGIE++|89.7 - 69.7 53.0 48.8
ONEIE 902 78.2 747 592 56.8
T2E - - 71.9 - 53.8
HighlE 91.1 779 747 59.6 57.6

Table 1: F1 scores averaged on three runs on the ACEOS-
E dataset. We use tre factor in this setting.

Ent Trig-1 Trig-C Arg-1 Arg-C
ONEIE|89.6 75.6 72.8 57.3 548
T2E - - 71.8 - 545
HighlE|90.7 76.5 739 60.0 58.1

Table 2: F1 scores on the ACEQ5-E+ dataset. We use
tre factor in this setting.

DYGIE++ ONEIE HighlE
Entity 88.6 88.8 89.0
Relation 63.4 67.5 68.5

Table 3: F1 scores on the ACEO5-R dataset. We use er
factor in this setting.

Comparisons Some previous work of event ex-
traction leveraged gold triggers or gold entities.
However, our approach assumes that all the trig-
gers and entities are unreachable and should be pre-
dicted. Besides, we jointly train the different tasks
(ER, RE, and EE) in the ACEO5-E and ACEOQ5-
E+ datasets. Therefore, we compare our approach
with the following models in the same settings:
(1) DYGIE++ (Wadden et al., 2019) which is a
general multi-task IE framework learning dynamic
span representation, (2) OnelE (Lin et al., 2020)
which extends DYGIE++ by incorporating global
features, (3) TEXT2EVENT (denoted by T2E) (Lu
et al., 2021) which formulates event extraction as a
sequence-to-structure generation paradigm to share
knowledge between different components.

3.1 Results and Analyses

Main Results Table 1, Table 2 and Table 3 show
the experimental results of our approach on ACEQ5-
E, ACEO5-E+ and ACEO5-R, respectively. We only
use tre factor in the experiments on ACEO5-E and
ACEOQ5-E+ datasets, thus we only report the perfor-
mance of ER and EE tasks. In this situation, the
RE is trained as auxiliary task and its performance
is comparable with previous work. ACE05-R only
contains entity and relation annotations and we
only train ER and RE tasks on this dataset. We
can find that our HighlE performs better in most
cases. Despite the F1 score of Trig-I (predicted by
the identification module) in Table 1 is a bit lower
than ONEIE, the F1 scores of Arg-C is still higher
than ONEIE. Note that the Arg-C is the most dif-

Ent Trig-1 Trig-C Arg-I Arg-C
Joint 90.7 77.0 744 58 55.0
Our base|91.1 77.9 743 583 56.2
HighlE |91.1 779 747 59.6 57.6

Table 4: Comparison of separate and joint learning of
identification module on the ACEOQS-E dataset.

350 324 27 26
300 241 26
250 25
200 149 24
150 23 22
100 22
50 21
0 20
correct miss failure miss failure

(a) Baseline predictions statistics
of arguments

(b) Argument classification error
fixed by high-order model

Figure 1: Error type ‘failure’ means the model assigns a
wrong role of an identified argument and ‘miss’ means
the model assigns a gold argument with a “None” label.

ficult sub-task in EE because it requires that the
argument offsets, the roles and the corresponding
event types are all correctly predicted. Therefore,
our good performance on Arg-C proves that the
intensive high-order interactions between variables
are beneficial to label classifications.

Analysis of Separate Learning In Tabel 4, we
compare the joint learning baseline (Joint), the sep-
arate learning baseline (Our base), and our high-
order model (HighlIE) on the ACEO5-E dataset. It
can be seen that training the identification module
independently from the classification module per-
forms better on most sub-tasks than jointly training.
With high-order inference, the results get further
improvement.

Error Fixed by High-order Model We count
the number of different errors in argument classifi-
cation (Arg-C) of our base model and the number
of error corrections by our HighIE model in Fig.1.
For ‘“failure’ error, we only consider the arguments
with correct span boundaries to exclude the error
from upstream identification module. A case study

is provided in Appendix E.

4 Conclusion

In this paper, we propose a novel framework that
can leverage high-order interactions between differ-
ent instances and different IE sub-tasks. Our frame-
work consists of identification module to identify
event triggers and entities and classification mod-
ule with high-order inference to label all instances.
Experimental results show that our high-order ap-
proach achieves consistent improvement over pre-
vious work.
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A Identification Module

A multi-layer perceptron (MLP) takes word repre-
sentations H! = [h!, ..., hl] as input and outputs
an emission score u; for each word. With a learn-
able transition score matrix A, a labeled sequence
y = (y1,...,yn) can be scored as s(y, H') =

Z?:l (ui)yi + Ayi—layi‘

Inference We use the Viterbi algorithm (Forney,
1973) to obtain the sequence that has the highest
score: ¥ = arg maxy s(y, HY).

Learning We maximize the probability of the
target sequence to learn the identification module.

* I
exp(s(y", H")) _ le><p(s(y*71‘11))

P(y"|w) = Zy’ exp(s(y’, HT)) Z

where y* is the target sequence and Z is the par-
tition function. We can use the forward-backward
algorithm (Dugad and Desai, 1996) to calculate Z.

B Dataset Statistics

Statistics of all datasets we used are shown in Tabel
5.

Split #Sentences #Entities #Relations #Events
Train 10,051 26473 4,788 -
ACEO05-R |Dev 2,424 6,362 1,131 -
Test 2,050 5,476 1,151 -
Train 17,172 29,006 4,664 4,202
ACEO5-E |Dev 923 2,451 560 450
Test 832 3,017 636 403
Train 19,240 47,525 7,152 4,419
ACEO5-E+ | Dev 902 3,422 728 468
Test 676 3,673 802 424

Table 5: Datasets statistics

C Hyper-parameters

We use the default hyper-parameters following (Lin
et al., 2020). The main hyper-parameters are listed
in Table 6.

D Comparison of Base Model and HighlE

Tabel 7 and Tabel 8 give the results comparison
of our base model and HighIE on ACEO5-E+ and
ACEOQ5-R datasets.

E Case Study

Fig. 2 offers an example where our high-order
model fixes a wrong prediction by the baseline
model. In the sentence, "bombed’ is the trigger and

Network Hidden size
FFN(ER) 2*%150
FFN(RE) 2*150
FFN(EE) 2%600
Decomposed rank 150
Iteration of inference 3
Dropouts Dropout rate
FFN 0.4
Optimizer

Learning rate of BERT Se-5
LR decay of BERT le-5
Learning rate of other parameters le-3
LR decay of other parameters le-3
Grad clipping 5.0

Table 6: Summary of hyper-parameters

Ent Trig-1 Trig-C Arg-I Arg-C
Our base | 90.6  76.5 74.1 59.2 576
HighlE | 90.7 76.5 73.9 60.0 58.1

Table 7: Comparison of our base model and HighIE on

the ACEO5-E+ dataset.

ACEO05-R
| Ent  Rel
Our base | 88.8 67.7
HighlIE 89.0 68.5

Table 8: Comparison of our base model and HighIE on

the ACEO5-R dataset.

"bridges’ is the corresponding candidate argument.
The baseline model predicts *bridges’ to take the
"Target’ role while the gold role should be ’Place’.

.S. aircraft bombed Iragi tanks holding bridges close to the city.

Entities: 1) ‘U.S.":

GPE 4) ‘tanks’: VEH

2) ‘aircraft’: VEH  5) ‘bridges” FAC

3) ‘lIraqi’:

Gold

Events: 1) Attack:

GPE 6) ‘city’: GPE
‘bombed->U.S. [, T,
‘bombed->aircraft [Instrument]’
‘bombed->tanks [Target]’,
‘bombed->bridges [Place]’

Base Events: 1) Attack:

‘bombed->aircraft [Instrument]’,
‘bombed->tanks [Target]’,
‘bombed->bridges [Target]’

HighIE Events: 1) Attack:

‘bombed->aircraft [Instrument]’,
‘bombed->tanks [Target]’,
‘bombed->bridges [Place]’

Figure 2: Case study where our baseline model predicts
a wrong role and our high-order model fixes the error.



