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ABSTRACT

Uncertainty quantification (UQ) for large language model (LLM) outputs has
attracted increasing attention, as it is crucial for hallucination detection and selective
generation; however, existing semantic methods based on cross-output consistency
require multiple sampling and thus incur additional cost. We hypothesize that,
for reliable answers, LLMs exhibit consistent forward reasoning and backward
explanation paths. Building on this, we propose Reasoning–Explanation Symmetry
(RES) to quantify uncertainty from the answer itself without multiple sampling: for
each question, we first generate structured reasoning and an answer, then condition
on the answer to generate a structured explanation; bidirectional natural language
inference (NLI) assesses the semantic entailment between the two to construct a
symmetry score. RES yields more accurate estimates with small sampling counts
and offers stronger interpretability. We evaluate RES on six datasets for both
uncertainty quantification and best-answer selection, and the results demonstrate
significant advantages on complex reasoning tasks.

1 INTRODUCTION

Recently, the uncertainty quantification (UQ) in LLM outputs has attracted increasing attention, as
such uncertainty serves as a signal for hallucination detection and selective generation (Kuhn et al.,
2024; Ren et al., 2023a). This is crucial for ensuring the safety and reliability of LLM outputs, with
broad applications in content moderation, medical diagnosis, and fraud detection (Shorinwa et al.,
2025).

Traditional probability-based methods estimate uncertainty using output probabilities or entropy(Liu
et al., 2020; Kadavath et al., 2022; Malinin & Gales, 2021; Gawlikowski et al., 2021) . However,
studies have shown that these measures correlate weakly with generation quality, as LLMs tend to be
overconfident, often assigning high confidence to incorrect answers(Chen et al., 2023). In contrast,
semantic-level approaches, which compare results across multiple sampled outputs, better reflect
reliability. For instance, Semantic Entropy clusters sampled outputs into semantically equivalent
classes and computes entropy across their distribution (Kuhn et al., 2024); Semantically Diverse
Likelihood Generation (SDLG) leverages importance sampling to guide models toward generating
semantically diverse alternatives (Aichberger et al., 2024); and Self-Evaluation requires models to
judge the truthfulness or quality of their own outputs, combined with token-level calibration, to
improve the reliability of selective generation (Ren et al., 2023a).

However, due to their reliance on multiple sampling, semantic-level uncertainty quantification
methods inevitably incur additional time and token costs, and higher sampling counts are often
required to obtain more accurate estimates(Manakul et al., 2023). Another issue is that cross-sample
semantic metrics are inherently designed for questions rather than answers: by aggregating the entire
sample set into a single uncertainty score, they offer no guidance for selecting the most reliable answer
when an LLM presents multiple uncertain candidates, which limits their practical utility(Nikitin et al.,
2024; Kossen et al., 2024; Liu, 2025).

This raises a question: can uncertainty be measured not by comparing consistency across outputs, but
rather by examining the internal consistency of each output itself? Consider the analogy of a teacher
grading exams: correct answers often converge on similar reasoning patterns, while incorrect answers
exhibit a wide variety of disorganized approaches. Inspired by this observation, we hypothesize that
if an LLM output is reliable, its reasoning process should converge toward consistent and coherent
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paths; conversely, unreliable outputs will display scattered or contradictory reasoning(Williams et al.,
2018; Kryściński et al., 2020; Laban et al., 2022). An example supporting this hypothesis is illustrated
in Fig. 1.

Based on this hypothesis, we propose measuring output uncertainty through the
Reasoning–Explanation Symmetry (RES). Specifically, we first prompt the LLM with a
question to generate reasoning and an answer, then feed both the question and answer back to
the model to elicit an explanation of the reasoning. If the answer is reliable, the reasoning and
explanation should be symmetric; that is, their semantic relationship should reflect mutual entailment.
In contrast, unreliable outputs are more likely to produce neutral or contradictory relationships.

RES is flexible: it can be applied independently for UQ or used in multi-sampling to select the
best answer. Unlike other sampling-based methods, it does not depend on inter-output comparison,
enabling better performance even with limited samples. RES is also applicable to estimating black-
box generative outputs, as it does not require access to the model’s internal information. Moreover,
by directly comparing reasoning and explanation, RES offers greater interpretability in UQ.

We conducted extensive experiments across six datasets, results demonstrate the effectiveness of the
proposed RES in both UQ and best-answer selection. Our main contributions are:

• We propose reasoning–explanation symmetry, which evaluates the consistency between an
answer’s reasoning and explanation to assess reliability.

• Our method addresses the limitations of traditional approaches that require large sam-
ple counts. It achieves superior performance with fewer samples and provides intuitive
interpretability through reasoning-path comparison.

• Building on uncertainty quantification, our method can also select more accurate answers
among multiple candidate outputs with relatively low time and token overhead, thereby
mitigating hallucinations.

Figure 1: Reasoning–explanation symmetry as an uncertainty cue: the correct answer shows symmet-
ric paths, whereas the incorrect one exhibits divergent/contradictory paths.

2 RELATED WORK

Uncertainty estimation from model outputs is a common approach. Classical metrics such as predic-
tive entropy, perplexity, and energy-based OOD scores provide quick, model-agnostic uncertainty
signals (Malinin & Gales, 2021; Ren et al., 2023b; Liu et al., 2020). Self-knowledge signals (e.g.,
p(True)) can correlate with correctness but often suffer from overconfidence or calibration issues (Ka-
davath et al., 2022). To improve reliability, semantic-level methods aggregate multiple outputs, such
as Semantic Entropy, which clusters semantically equivalent outputs, and diverse decoding methods
like Diverse Beam Search, which increase diversity before measuring dispersion (Kuhn et al., 2024;
Vijayakumar et al., 2018). Graph statistics and representation space density further refine uncertainty
estimates (Lin et al., 2024; Li et al., 2024; Jiang et al., 2024), while clarification-based ensembling
separates epistemic and aleatoric uncertainty (Hou et al., 2024). However, these methods often require
large sample sizes, increasing computational and token costs (Manakul et al., 2023). In contrast,
our RES method mitigates this by measuring uncertainty in individual outputs through symmetry
between reasoning and explanation, enabling effective uncertainty scoring even with limited samples.

Another line of research focuses on hallucination detection and confidence scoring, often without
accessing model internals. Zero-resource detectors like SelfCheckGPT and InterrogateLLM evaluate
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consistency across multiple generated outputs (Manakul et al., 2023; Yehuda et al., 2024). BSDetector
assigns confidence scores for Top-1 answer selection (Chen & Mueller, 2024), and HaloScope flags
hallucinations by training discriminators on unlabeled outputs (Du et al., 2024). Graph-based
methods use claim-text bipartite graphs and centrality measures to detect false content in long-form
outputs (Jiang et al., 2024). Strategies to improve robustness include focusing attention on relevance
and encouraging semantic diversity before scoring (Duan et al., 2023; Zhang et al., 2024). RES
fits into this category by providing confidence estimates for individual outputs, comparing each
candidate’s reasoning with its explanation, reducing overhead while maintaining strong detection and
calibration.

A growing set of methods uses internal model signals or interventions for uncertainty estimation.
Azaria and Mitchell demonstrate that hidden state activations can detect lies or false statements (Azaria
& Mitchell, 2023). The INSIDE framework uses eigenvalues of internal covariance structures to
derive self-consistency signals (Chen et al., 2024), while Inference-Time Intervention (ITI) modifies
activations along truth-aligned directions (Li et al., 2023). PRISM improves cross-domain generaliza-
tion by guiding internal structures via prompts (Zhang et al., 2025), and reflection-based methods
like Maximum Confidence Selection enhance confidence estimation (Bodhwani et al., 2025). These
techniques typically require access to model internals. In contrast, RES uses only externalized rea-
soning and explanation, providing interpretable and efficient uncertainty estimates that complement
internal-based methods.

3 METHODOLOGY

Figure 2: Pipeline of our approach.

To address the limitations of existing Uncertainty Quantification (UQ) methods for LLMs, which
rely on costly sampling and fail to provide scores for individual samples, we propose a novel UQ
framework based on reasoning-explanation symmetry, and the workflow is shown in Fig. 2. Our
core hypothesis is that for a reliable, non-hallucinatory answer generated by an LLM, its forward
reasoning path and backward explanation path should be semantically consistent and symmetrical.

3.1 STRUCTURED REASONING SAMPLING

The objective of this stage is to generate a set of candidate samples for a given question Q, each
containing a distinct reasoning path and a potential answer, from which the final answer is explicitly
extracted. The prompt templates used below can be found in Appendix A.

Structured Prompt Construction: We construct a structured prompt to instruct the model to think
and respond in a three-part structure. This structured approach is primarily motivated by the limited
context length of the NLI model used for symmetry evaluation (Section 3.3). By breaking down
the text into semantically corresponding sections, we can perform more precise, section-aligned
comparisons. The expected content for each section is as follows:

• Premise/Evidence: This section isolates and lists the key facts and evidence from the
context required to answer the question.

• Reasoning: This section outlines the step-by-step logical process that connects the evidence
to the final answer.

• Conclusion: States the final, definitive answer derived from the reasoning process.
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Diversity Sampling: We employ temperature sampling (Renze, 2024) to generate k independent
candidate samples. Temperature sampling is used to introduce stochasticity into the generation
process by adjusting the probability distribution of the next token. This enables the model to generate
a diverse set of candidate samples instead of repeatedly outputting the most likely sequence.

Answer Extraction: To unambiguously identify the final answer from the full text of each rea-
soning sample Si, we mandate in the prompt that the model must enclose its final answer within
<final></final> tags. We use regular expressions to extract the final answer Ai from each
reasoning text Ri.

For a question Q, the output of this stage is a set of k independent reasoning samples {S1, S2, ..., Sk},
where each sample Si contains its complete reasoning text Ri and final answer Ai.

3.2 PAIRED EXPLANATION GENERATION

The goal of this stage is to generate a paired, backward explanation text Ei for each candidate answer
Ai produced in the previous stage.

We construct a new prompt for this stage. This prompt takes the original question Q and the extracted
answer Ai as input, instructing the LLM to explain why the given answer Ai is correct. Similarly, we
require the explanation text Ei to follow the “Premise/Evidence,” “Explanation,” and “Conclusion”
structure to enable section-wise alignment with the reasoning text Ri.

Upon completion of this stage, we obtain k reasoning-explanation pairs:

{(R1, E1), (R2, E2), . . . , (Rk, Ek)} (1)

3.3 SYMMETRY SCORING VIA NATURAL LANGUAGE INFERENCE

We quantify the uncertainty of each sample by measuring the semantic consistency between its
reasoning text Ri and explanation text Ei. We employ a pre-trained NLI model RoBERTa-Large-
MNLI (Liu et al., 2019)as our symmetry judge.

Structured NLI Evaluation: Since Ri and Ei are both structured, we decompose them into their
constituent sections. Let Ri = {Rp, Rr, Rc} and Ei = {Ep, Ee, Ec} represent the “Premise,” “Rea-
soning/Explanation,” and “Conclusion” sections of the reasoning and explanation texts, respectively.
We then compute the average entailment probabilities in both directions:

• Forward entailment probability (ei,fwd):

ei,fwd = P (Ei|Ri) =
1

3

∑
j∈{p,r/e,c}

P (Ej |Rj)entail (2)

• Backward entailment probability (ei,bwd):

ei,bwd = P (Ri|Ei) =
1

3

∑
j∈{p,r/e,c}

P (Rj |Ej)entail (3)

Symmetry Scores: We designed and implemented a series of score functions to aggregate the
bidirectional NLI probabilities (entailment, neutral, contradiction) into a single symmetry score,
Scorei. The primary modes include:

• min: Calculates the minimum of the bidirectional entailment probabilities. This repre-
sents the weakest link in the symmetry chain and measures the most conservative mutual
entailment strength.

Scorei = min(ei,fwd, ei,bwd) (4)

• mean: Computes the arithmetic mean of the bidirectional entailment probabilities, measur-
ing the overall mutual entailment strength.

Scorei =
ei,fwd + ei,bwd

2
(5)
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• penalized: Penalizes inconsistency by subtracting a term defined by the contradiction
probabilities from the mean entailment score.

Scorei = mean(ei,fwd, ei,bwd)− λ · mean(ci,fwd, ci,bwd) (6)

where c denotes the contradiction probability and λ is a penalty coefficient.

Ultimately, a higher score Scorei indicates stronger symmetry between the reasoning and explanation
paths, which we interpret as lower uncertainty and higher reliability of the answer.

4 EXPERIMENTAL SETUP

4.1 DATASETS

Table 1: Overview of datasets.

Dataset Task Open/Closed Book Scale
MultiRC
(Khashabi et al., 2018)

Reading comprehension over multi-sentence passages, judge
each candidate independently. Open-book ∼9k questions

BBH – Date Understanding
(Suzgun et al., 2022)

Date calculations and format conversions, we remove multiple-
choice options to make it free-form QA. Closed-book 250 questions

BBH – Multistep Arithmetic
(Suzgun et al., 2022) Mathematical demonstration calculation. Closed-book 250 questions

StrategyQA
(Geva et al., 2021)

Commonsense QA: infer implicit multi-hop steps to devise
a solving strategy. Closed-book ∼2.8k questions

TriviaQA (without doc)
(Joshi et al., 2017)

Originally open-domain RC, in our setting we hide evidence
documents to convert it to closed-book QA. Closed-book 110k QAs

CoQA
(Reddy et al., 2019)

Conversational QA over passages, free-form answers grounded
in evidence and dialogue history. Open-book 127k QAs

We employ datasets spanning reading comprehension, mathematical reasoning, commonsense reason-
ing, and logical reasoning to enable a comprehensive evaluation of our method. Dataset descriptions
are summarized in Table 1, and details of dataset usage are provided in Appendix B.

4.2 EVALUATION METRICS

For uncertainty quantification (UQ), AUROC is commonly used to assess quality (Abdar et al., 2021;
Bamber, 1975): it treats the UQ score as a confidence score, sweeps the decision threshold from
high to low, computes the true positive rate (TPR) and false positive rate (FPR) at each threshold
to trace the ROC curve in the TPR–FPR plane, and defines AUROC as the area under this curve
(Fawcett, 2006). For the best-answer selection task, we use Best-Choice Accuracy (TOP1-AUC) as a
complementary metric: for each question, we draw k samples, select the one with the highest UQ
score as the output, and then check whether that output is correct.

4.3 BASELINES

Uncertainty Quantification (AUROC): We select length-normalized predictive entropy (LN-PE)
as the representative probability-based method (Malinin and Gales, 2021), because it performs better
than PE/Perplexity (add citation here). Semantic Entropy (SE) is an important semantic baseline; it
samples multiple outputs for the same question, clusters them semantically, and measures uncertainty
as the entropy of the cluster distribution (Kuhn et al., 2024). SAR focuses on probability mass relevant
to the question and reweights uncertainty at the token/sentence level to improve discriminability
(Duan et al., 2023). BSDetector (Chen & Mueller, 2024) and INSIDE (Chen et al., 2024) serve as the
representative black-box and white-box approaches, respectively.

Best-Answer Selection (TOP1-AUC): We use greedy decoding (Gu et al., 2017) and the afore-
mentioned LN-PE, SAR, and BSDetector as baselines (other methods are not applicable to this task),
and we also include the widely used Self-Consistency, which selects the final answer by majority
vote (Wang et al., 2022).
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4.4 MODELS AND SETTINGS

We use models that cover recent major LLMs, including gpt-4o-mini, Llama-3-8B,
and Qwen3-8B(Achiam et al., 2023; Dubey et al., 2024; Yang et al., 2025). We employ
RoBERTa-large-MNLI (Liu et al., 2019) as the NLI model for entailment judgments. Fol-
lowing the method in Section 3.1, we construct few-shot prompts with the number of examples set to
3. We then generate k diversified candidate samples via temperature sampling with the temperature
set to 0.7, where k = 3. When evaluating AUROC, for free-form QA tasks we set the correctness
threshold to 0.5, i.e., an output is regarded as correct if its ROUGE-L score is greater than 0.5. For
the penalized score in Section 3.3, we set the penalty coefficient to λ = 1.2. The ablation studies
on λ and the correctness threshold can be found in Appendices C and D, while the ablations on other
parameters and modules are presented in Section 5.3.

5 RESULTS AND ANALYSIS

Table 2: AUROC evaluation of different methods. Best values in bold, second-best underlined.

Dataset Model LN-PE SE SAR BSDetector INSIDE RES(min) RES(mean) RES(penalized)

MultiRC
GPT-4o-mini 41.7 43.8 50.7 53.4 – 55.8 58 58.2
Qwen3-8B 47.1 46.9 51.5 56.8 49.3 58.7 62.5 59.8
Llama3-8B 44.1 48.9 52.2 53.2 48.0 52.2 58.9 58.0

Date Understanding
GPT-4o-mini 41.9 50.2 55.8 58.6 – 56.0 61.5 61.3
Qwen3-8B 44.0 42.8 52.6 62.8 48.3 62.6 66.2 66.5
Llama3-8B 41.0 40.9 46.0 53.9 43.4 59.0 59.7 59.7

Multistep Arithmetic
GPT-4o-mini 48.9 50.2 55.5 56.1 – 57.7 59.6 60.2
Qwen3-8B 48.0 57.4 85.5 90.4 60.5 92.4 99.6 99.2
Llama3-8B 48.9 49.2 54.7 55.6 48.5 53.3 57.3 60.5

StrategyQA
GPT-4o-mini 55.2 51.8 58.8 60.6 – 61.7 64.6 65.8
Qwen3-8B 51.7 52.3 54.6 55.0 53.7 56.0 63.4 60.8
Llama3-8B 50.2 47.8 51.7 53.1 52.1 52.4 54.1 53.7

TriviaQA
GPT-4o-mini 69.1 71.2 78.0 82.5 – 79.3 80.0 80.0
Qwen3-8B 68.8 70.7 75.8 80.7 74.0 73.9 76.6 75.6
Llama3-8B 64.5 66.7 73.5 79.5 70.6 71.5 75.3 76.5

CoQA
GPT-4o-mini 67.0 69.3 75.4 77.9 – 75.3 78.0 77.6
Qwen3-8B 65.1 66.2 73.0 77.0 68.6 72.7 75.1 75.6
Llama3-8B 75.4 72.6 76.9 78.2 76.8 76.0 77.8 76.5

Table 3: TOP1-AUC evaluation of different methods, we select the candidate with the highest UQ
score from k = 3 samples. Best values in bold, second-best underlined.

Dataset Model Greedy LN-PE SAR BSDetector Self-consis RES(min) RES(mean) RES(penalized)

MultiRC
GPT-4o-mini 84.2 84.6 82.6 84.8 83.8 85.0 85.6 85.8
Qwen3-8B 84.6 86.0 86.6 87.1 85.6 85.8 86.9 87.2
Llama3-8B 72.4 73.4 74.8 76.0 75.8 76.0 76.2 74.0

Date Understanding
GPT-4o-mini 70.4 71.2 70.8 73.5 71.6 71.5 73.2 74.0
Qwen3-8B 76.4 80.0 80.4 81.5 80.4 79.6 81.8 82.0
Llama3-8B 42.8 44.8 44.4 48.8 48.0 47.6 49.2 49.6

Multistep Arithmetic
GPT-4o-mini 88.4 88.4 88.4 90.4 89.6 90.4 92.4 92.0
Qwen3-8B 98.8 98.8 99.2 98.4 99.6 99.2 99.6 99.6
Llama3-8B 39.6 42.8 43.2 44.0 43.6 44.0 44.8 44.8

StrategyQA
GPT-4o-mini 76.2 77.4 76.1 77.8 77.2 77.5 78.9 78.8
Qwen3-8B 76.8 76.8 77.2 78.3 76.6 78.0 78.6 78.6
Llama3-8B 64.2 62.8 60.6 65.4 64.8 64.6 66.0 67.6

TriviaQA
GPT-4o-mini 63.6 64.8 64.8 66.5 63.6 64.0 64.5 64.6
Qwen3-8B 44.6 45.0 45.8 47.1 43.9 44.2 44.7 44.4
Llama3-8B 48.6 54.2 53.8 56.5 50.5 51.0 53.5 53.4

CoQA
GPT-4o-mini 48.4 48.8 49.8 49.6 49.0 49.4 50.8 51.0
Qwen3-8B 63.6 65.2 66.8 67.5 67.2 66.4 68.0 68.2
Llama3-8B 64.8 66.8 66.0 67.2 64.4 64.2 66.4 65.8
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5.1 TASK 1: UNCERTAINTY QUANTIFICATION

RES is more robust under small sampling count. As shown in Table 2, RES exhibits consistent
gains when the sampling count is small (k = 3) because it does not rely on cross-sample agreement
to estimate uncertainty; instead, it directly measures the output “reasoning–explanation” symmetry.
Methods such as SE and BSDetector require a larger sampling count to stabilize the estimated
distribution over answer clusters; with a small sampling count, they are sensitive to sampling variance
and limited diversity.

RES suits tasks requiring explicit multi-step reasoning. The advantage is most pronounced on
MultiRC, StrategyQA, and the two BBH subtasks (Date Understanding, Multistep Arithmetic), where
reliability cannot be judged well from token-level probabilities or shallow consistency, and unreliable
answers often reveal contradictory or unsupported explanation paths. By contrast, on TriviaQA
and CoQA the gains are modest and BSDetector can sometimes surpass RES: TriviaQA (without
documents) largely probes prior knowledge, so errors stem more from model-level hallucination than
the question itself (Ji et al., 2023); CoQA answers are mostly extractive, lacking explicit reasoning
structure for symmetry checks.

Which score works best? Among the three scoring variants, mean and penalized clearly
outperform min. The min rule behaves like a strong-AND over bidirectional entailment and thus
over-penalizes samples that are overall consistent but contain minor local mismatches—especially
in long reasoning chains. mean improves robustness via averaging, while penalized further
subtracts a contradiction penalty, better balancing consistency and conflict signals for more stable
global ranking.

5.2 TASK 2: BEST-ANSWER SELECTION

RES can improve answer accuracy under small sampling count. As shown in Table 3, the
results for the best-answer selection task are generally the same as in the previous task: on tasks that
require explicit multi-step reasoning, RES has a clear advantage, indicating that RES can select more
accurate answers from multiple candidate answers at relatively low cost, thereby improving answer
accuracy and mitigating hallucinations.

Additional notes on Multistep Arithmetic dataset. (i) On the Multistep Arithmetic dataset,
Qwen3-8B achieves significantly higher accuracy than the other models, and we suspect that there
may be data leakage. (ii) We also find that only RES attains similarly high AUROC for Qwen3-8B
on the same dataset in Table 2, which indicates that the UQ scores of other methods are unstable
across questions—affected by problem length, number of reasoning steps, and the distribution of
numeric tokens—resulting in poor global ranking; this further highlights RES’s advantage.

5.3 ABLATION STUDY

Table 4: Ablation study of RES on StrategyQA, CoQA, and Multistep Arithmetic using GPT-4o-mini.
We report AUROC and TOP1-AUC.

Method StrategyQA CoQA Multistep Arithmetic
AUROC TOP1-AUC AUROC TOP1-AUC AUROC TOP1-AUC

RES (penalized) 65.8 78.8 50.9 77.6 60.2 92.0
w/o structured prompt 63.0 (-2.8) 77.3 (-1.5) 46.9 (-4.0) 75.1 (-2.5) 55.5 (-4.7) 89.8 (-2.2)
w/ embedding 59.5 (-6.3) 75.8 (-3.0) 44.0 (-6.9) 74.0 (-3.6) 52.1 (-8.1) 88.0 (-4.0)
w/ LLM judge 69.9 (+4.1) 81.7 (+2.9) 56.5 (+5.6) 81.1 (+3.5) 67.0 (+6.8) 96.3 (+4.3)

Number of samples k. As shown in Fig. 3a, across both uncertainty quantification and best-answer
selection, RES outperforms alternative methods overall, and its gains are relatively insensitive to k
because it measures uncertainty via each answer’s internal self-consistency rather than cross-answer
consistency. At k = 3, RES already matches the performance of BSDETECTOR at k = 8, indicating
stronger early performance and stability with fewer samples.
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(a) Impact of the number of samples k. (b) Impact of the sampling temperature.

Figure 3: Ablation study on the number of samples k and temperature using GPT-4o-mini on
StrategyQA, evaluated on AUROC and TOP1-AUC.

Sampling temperature. As shown in Fig. 3b, RES achieves the best performance across all
temperatures, and most methods peak around t = 0.7. At low temperatures, answers become more
alike to one another and the internal reasoning paths also converge, reducing the separability between
correct and incorrect outputs and thereby degrading the performance of both multi-sample and single-
sample approaches. At high temperatures, increased diversity makes semantic clusters less stable;
meanwhile, within an answer, explanations and reasoning paths tend to include irrelevant or incoherent
content, which interferes with symmetry-based assessment and likewise harms performance.

The role of structured prompting. Structured prompting divides the reasoning process into a
three-part form; this is partly because the NLI model has limited input length and cannot ingest
the full chain of reasoning, and partly because such structuring better aligns the reasoning and
explanation paths. As show in Table 4, removing this structure (w/o structured prompt) results
in incomplete sentences and weakened organization, which prevents the NLI model from making
accurate judgments.

What if we use alternatives to the NLI model? Replacing the NLI model with embedding cosine
similarity (w/ embedding) likewise renders the uncertainty quantification less reliable, because
cosine similarity captures only shallow semantic proximity. In contrast, NLI distinguishes subtle
logical relations—entailment, neutrality, and contradiction—with directionality, thereby providing
a more faithful representation of an answer’s internal consistency. Using an LLM as the judge (w/
LLM judge) can further improve performance, as it aggregates multiple cues—including semantics,
causality, and logical coherence—beyond sentence-pair relations. However, this introduces additional
time and token costs, runs counter to our efficiency goals, and leads to unfair comparisons with other
methods. Nevertheless, it remains a promising direction for future work.

5.4 TIME-COMPLEXITY ANALYSIS

We conduct experiments on the StrategyQA dataset using Llama-3-8B on a single NVIDIA
GeForce RTX 4090 GPU. As shown in Fig. 4, we compare the average runtime per question and
the detailed time composition across different methods to enable a finer-grained analysis of time
complexity. Overall, RES achieves an average runtime between BSDETECTOR and LN-PE. The
additional overhead compared to LN-PE baseline mainly comes from explanation-path generation
(about 7s per call), while the cost of NLI-based judgment is negligible (about 0.2s). In contrast,
BSDETECTOR although obtaining moderate performance gains through multiple self-reflection calls
to the LLM, incurs substantially higher time overhead. In summary, RES strikes a favorable balance
between effectiveness and efficiency.
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(a) Total time per question (k = 3).

Method Time cost composition
RES k × gen + k × explain + 2k ×NLI
LN-PE k × gen

SAR k × gen +
(
k
2

)
× sim calculation

BSDETECTOR (r refl) k × gen + (k × r)× LLM reflection + 2k ×NLI

(b) Time cost composition of different methods.

Figure 4: Time complexity analysis of different methods.

On May 9th, 2017 Jane bought 40 eggs. She ate one per day. Today she ran out of eggs. What is the date 24 hours later in MM/DD/YYYY?

Cand. Reasoning Path Explanation Path Conf RES score

1 (Correct,
06/19/2017)

1) Premise/Evidence: Jane bought 40 eggs on May
9th, 2017, and ate one egg per day until she ran
out.
2) Reasoning: If Jane bought 40 eggs and ate one
per day, it would take her 40 days to finish all the
eggs. Starting from May 9, 2017, adding 40 days
takes us to June 18, 2017. Since she ran out of eggs
on June 18, 2017, the date 24 hours later would be
June 19, 2017.
3) Conclusion: <final>06/19/2017</final>

1) Premise/Evidence: Jane bought 40 eggs on May 9th, 2017, and ate one
egg per day. Since she consumed one egg each day, she would have 40 days
of eggs.
2) Explanation: Starting from May 9th, 2017, if Jane eats one egg per day,
she will run out of eggs after 40 days. Therefore, we can calculate the end
date by adding 40 days to May 9th, resulting in June 17th, 2017, as her last
day of egg consumption. When she runs out of eggs on June 17th, 2017, 24
hours later would be June 18th, 2017.
3) Conclusion: The final date after 24 hours on June 18th, 2017, is repre-
sented in the MM/DD/YYYY format as 06/19/2017. Thus, the answer is
<final>06/19/2017</final>.

0.9982 0.5953

2 (Incorrect,
06/18/2017)

1) Premise/Evidence: Jane bought 40 eggs on May
9th, 2017, and ate one egg per day until she ran
out.
2) Reasoning: If Jane bought 40 eggs and ate one
per day, it would take her 40 days to finish all the
eggs. Starting from May 9th, 2017, adding 40 days
brings us to June 17th, 2017. Running out of eggs
on June 17th means the last egg was eaten on that
day. The date 24 hours later is June 18th, 2017.
3) Conclusion: <final>06/18/2017</final>

1) Premise/Evidence: Jane bought 40 eggs on May 9th, 2017, and ate one
egg per day. Since she consumed one egg each day, she would have 40 days
of eggs.
2) Explanation: Starting from May 9th, 2017, if Jane eats one egg per day,
she will run out of eggs after 40 days. Counting 40 days from May 9th leads
to June 18th, 2017. After running out of eggs on June 18th, 24 hours later
would be June 19th, 2017. However, the question specifies the final date
(when she ran out of eggs), which is June 18th.
3) Conclusion: The final date when Jane ran out of eggs is accurately
represented as 06/18/2017. <final>06/18/2017</final>

1.0000 0.4673

Table 5: Case study: Conf (token-logit confidence) favors incorrect candidate 2, while RES correctly
identifies candidate 1 by evaluating reasoning–explanation symmetry.

5.5 CASE STUDY

Why does Conf fail? As shown in Table 5, in this case we extract the token-logits of the answer spans
from the reasoning path. The model assigns high confidence to both candidate answers, including
the incorrect ones, indicating an overconfidence issue (Kadavath et al., 2022). Such high confidence
merely reflects certainty about the date format rather than logical correctness.

Why does RES succeed? In Candidate 1, the reasoning chain follows the logic “40 days after 05/09
is 06/18 → add one more day is 06/19,” and the explanation chain consistently supports this reasoning.
This full alignment yields a high symmetry score. In contrast, Candidate 2 shows a conflict: the
reasoning chain assumes the last day is 06/17, while the explanation and conclusion claim 06/18,
leading to logical inconsistency and a lower symmetry score. This demonstrates that RES is more
robust than shallow confidence, and offering stronger interpretability for uncertainty quantification.

6 CONCLUSION AND FUTURE WORK

In this work, we proposed RES, a novel framework for uncertainty quantification in large language
models that leverages reasoning–explanation symmetry. By evaluating the bidirectional entailment
between structured reasoning and explanation paths, RES provides interpretable and reliable uncer-
tainty estimates while significantly reducing dependence on multi-sample consistency. Extensive
experiments across six datasets demonstrate that RES not only improves uncertainty quantification
but also enhances best-answer selection under limited sampling budgets.

Future work will focus on two main directions: (i) enhancing the performance of RES on common-
sense reasoning tasks; (ii) further reducing time and token costs, such as employing lightweight
explanation generation, with the ultimate goal of advancing more reliable and efficient LLM systems.
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ETHICS STATEMENT

Use unnumbered third level headings for the acknowledgments. All acknowledgments, including
those to funding agencies, go at the end of the paper. This study aims to enhance the reliability
and safety of LLM outputs, with a core goal that holds significant societal value. The "Reasoning-
Explanation Symmetry" (RES) method we propose is designed to assist in hallucination detection
and selective generation by quantifying uncertainty, thus reducing the risk of generating incorrect
or harmful information. We must emphasize that a key limitation of the RES method is that it
measures logical "consistency" rather than "factual correctness" or "social fairness." An answer
containing stereotypes or biases may still be rated highly (i.e., with low uncertainty) by our method if
its reasoning and explanation paths are logically symmetric. Therefore, RES should not be viewed as
a tool for eliminating bias. Its evaluation results should be used in conjunction with other tools, such
as fact-checking and bias detection, to ensure the fairness and accuracy of the final output.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of this research work. To this end, we provide
detailed descriptions of the algorithms, experimental setups, and implementation details in the paper.

• Core Algorithm: A comprehensive description of the proposed “Reasoning-Explanation
Symmetry” (RES) framework, including the three stages of structured sampling, paired
explanation generation, and symmetry scoring, is provided in the methodology section
(Section 3) and Appendix A.

• Experimental Setup: The complete experimental setup is detailed in Section 4.

• Datasets: All datasets used in this work are listed in Section 4.1 and Table 1, with further
usage details provided in Appendix B.

• Evaluation Metrics: The evaluation metrics for uncertainty quantification (AUROC) and
best-answer selection (TOP1-AUC) are clearly defined in Section 4.2.

• Hyperparameters and Models: All hyperparameters used in the experiments (e.g., sam-
pling temperature t = 0.7, sample count k = 3), as well as the specific versions of the large
language models and NLI models employed, are described in Section 4.4.

• Computing Environment: The computational hardware environment used for the time
complexity analysis is mentioned in Section 5.4.

• Code and Resources: To facilitate further reproducibility, the full source code will be
provided in the supplementary materials.
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You are a careful reasoner. Think first, then answer.
Rules:
1) Keep the content concise; no placeholders such as: No valid

answer, N/A, Unknown, None.
2) The LAST line must contain ONLY the final answer wrapped with

<final>YOUR ANSWER</final>.

Output format: Use EXACTLY these sections and headers:
1) Premise/Evidence:
2) Reasoning:
3) Conclusion:

Question: {question}
Answer:

A.2 EXPLANATION PROMPT

You already answered the question. Your ONLY task is to explain why
the given answer is correct.

Rules:
1) DO NOT change, contradict, paraphrase, or propose any other

answer.
2) Keep the content concise; no placeholders such as: No valid

answer, N/A, Unknown, None.
3) The LAST line must contain ONLY the ORIGINAL given answer

wrapped with <final>YOUR ANSWER</final>.

Output format: Use EXACTLY these sections and headers:
1) Premise/Evidence:
2) Explanation:
3) Conclusion:

Question: {question}
Given Answer: {answer_text}
Explanation:

B DATA DETAILS

Due to resource limitations, we selected approximately 3,000 QA pairs from the CoQA dev split and
about 3,000 QA pairs from the TriviaQA train split. For TriviaQA, we did not use the accompanying
reference documents, as we were more interested in examining the capability of RES to distinguish
commonsense reasoning without relying on external knowledge. The Date Understanding task
was originally in a multiple-choice format, but we removed the options and required the LLM to
independently derive the answer, since our goal was to evaluate RES on more challenging numerical
reasoning tasks. Many questions in CoQA are incomplete and depend on the conversational history
for correct answers; therefore, we included the previous QA history in the prompt and used the first
generated answer for each question.

Below we provide the few-shot prompts used for each task:

TriviaQA Few-shot Prompt
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756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
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Examples:

Question: In America, what became the 49th state to enter the union
in 1959?

Answer:
1) Premise/Evidence:
On January 3, 1959, following the signing of the Alaska Statehood

Act by President Dwight D. Eisenhower, Alaska was officially
admitted to the United States.

2) Reasoning:
The question requires identifying the state that fulfilled two

conditions: being the 49th to join the union and doing so in
the year 1959.

3) Conclusion:
<final>Alaska</final>

CoQA Few-shot Prompt

Examples:

Story: "Trinity College is a constituent college of the University
of Cambridge in England..."

Question: What kind of school is this?
Answer:
1) Premise/Evidence:
The text says "Trinity College is a constituent college of the

University of Cambridge in England."
2) Reasoning:
The term "constituent college" indicates it is part of a larger

university.
3) Conclusion:
<final>a constituent college</final>

Date Understanding Few-shot Prompt

Examples:

Question: Today is Christmas Eve of 1937. What is the date tomorrow
in MM/DD/YYYY?

Answer:
1) Premise/Evidence:
Today’s date is December 24, 1937.
2) Reasoning:
Add one day -> 12/25/1937.
3) Conclusion:
<final>12/25/1937</final>

Multistep Arithmetic Few-shot Prompt

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
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Examples:

Question: ((-1 + 2 + 9 * 5) - (-2 + -4 + -4 * -7)) =
Answer:
1) Premise/Evidence:
We are asked to compute the expression.
2) Reasoning:
- First part: -1 + 2 + 9 * 5 = 46
- Second part: -2 + -4 + -4 * -7 = 22
- Subtract: 46 - 22 = 24
3) Conclusion:
<final>24</final>

MultiRC Few-shot Prompt

Examples:

Passage: Carl the robot was missing a tire and a sun gatherer...

Question: What did Carl need before going to the lab?
Candidate option: Tire
Answer:
1) Premise/Evidence:
The passage states Carl was missing a tire.
2) Reasoning:
"Tire" was explicitly mentioned as needed.
3) Conclusion:
<final>Yes</final>

StrategyQA Few-shot Prompt

Examples:

Question: Is it unusual to play Happy hardcore music at a funeral?
Answer:
1) Premise/Evidence:
Happy hardcore is a fast-paced, upbeat electronic music genre.
2) Reasoning:
It contrasts with the solemn mood of funerals.
3) Conclusion:
<final>Yes</final>

C SENSITIVITY TO CORRECTNESS MEASURES

Table 6: Sensitivity of RES(mean) to ROUGE-L threshold on TriviaQA and CoQA (GPT-4o-mini).

Dataset Metric 0.3 0.5 0.7

TriviaQA AUROC 84.2 80.0 76.1
TOP1-AUC 68.2 64.5 62.0

CoQA AUROC 82.2 78.0 73.2
TOP1-AUC 56.4 50.8 49.0
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864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
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The threshold used to determine whether an answer is correct can substantially affect evaluation.
As shown in Table 6, increasing the ROUGE-L threshold leads to decreases in both AUROC and
TOP1-AUC. The main reason is that, in free-form QA, answers exhibit greater variability and
longer sequences, whereas our prompt asks the model to produce a concise final answer. When the
correctness threshold is set too high, the extracted answer may have limited overlap with the gold
label, resulting in degraded detection performance.

D SENSITIVITY TO PENALTY COEFFICIENT λ

Table 7: Ablation on the penalty coefficient λ for RES(PENALIZED) (GPT-4o-mini).

Dataset Metric 0.5 0.8 1.0 1.2 1.5

MultiRC AUROC 58.0 58.3 58.1 58.2 58.0
TOP1-AUC 85.5 85.7 85.6 85.8 85.5

Date Understanding AUROC 61.0 61.2 61.1 61.3 61.0
TOP1-AUC 73.7 73.9 73.8 74.0 73.6

Multistep Arithmetic AUROC 59.9 60.1 60.0 60.2 59.9
TOP1-AUC 91.8 91.9 91.8 92.0 91.7

StrategyQA AUROC 65.7 65.8 65.6 65.8 65.5
TOP1-AUC 78.6 78.7 78.5 78.8 78.4

TriviaQA AUROC 79.8 79.9 79.7 80.0 80.4
TOP1-AUC 64.4 64.5 64.3 64.6 65.2

CoQA AUROC 77.4 77.5 77.3 77.6 77.2
TOP1-AUC 50.7 50.9 50.6 51.0 50.6

As shown in Table 7, most datasets achieve their best performance around λ = 1.2, indicating that
the contradiction probability has strong discriminative power in uncertainty quantification and thus
should be assigned a relatively large coefficient. If λ is too small, contradictions are under-penalized,
causing ambiguous or partially incorrect answers to receive inflated scores and degrading ranking
and selection performance.

E THE USE OF LARGE LANGUAGE MODELS

This manuscript used a large language model only for light editorial support—namely grammar and
spelling checks, minor language polishing, and table formatting. The LLM did not generate scientific
content, results, analyses, or claims. All edits were reviewed by the authors, and the authors remain
fully responsible for the final text.
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