
Under review as a conference paper at ICLR 2024

OMNIINPUT: A MODEL-CENTRIC EVALUATION
FRAMEWORK THROUGH OUTPUT DISTRIBUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel model-centric evaluation framework, OMNIINPUT, to evalu-
ate the quality of an AI/ML model’s predictions on all possible inputs (including
human-unrecognizable ones), which is crucial for AI safety and reliability. Un-
like traditional data-centric evaluation based on pre-defined test sets, the test set
in OMNIINPUT is self-constructed by the model itself and the model quality is
evaluated by investigating its output distribution. We employ an efficient sampler
to obtain representative inputs and the output distribution of the trained model,
which, after selective annotation, can be used to estimate the model’s precision
and recall at different output values and a comprehensive precision-recall curve.
Our experiments demonstrate that OMNIINPUT enables a more fine-grained com-
parison between models, especially when their performance is almost the same on
pre-defined datasets, leading to new findings and insights for how to train more
robust, generalizable models.

1 INTRODUCTION

A safe, reliable AI/ML model deployed in real world should be able to make reasonable predictions
on all the possible inputs, including uninformative ones. For instance, an autonomous vehicle image
processing system might encounter carefully designed backdoor attack patterns (that may look like
noise) (Li et al., 2022; Liu et al., 2020b), which can potentially lead to catastrophic accidents if such
backdoor patterns interfere the stop sign or traffic light classification.

Existing evaluation frameworks are mostly, if not all, data-centric, meaning that they are based on
pre-defined, annotated datasets. The drawback is the lack of a comprehensive understanding of the
model’s fundamental behaviors over all possible inputs. Recent literature showed that a great perfor-
mance on a pre-defined (in-distribution) test set cannot guarantee a strong generalization to different
regions in the input space, such as out-of-distribution (OOD) test sets (Liu et al., 2020a; Hendrycks
& Gimpel, 2016; Hendrycks et al., 2019; Hsu et al., 2020; Lee et al., 2017; 2018) and adversarial test
sets (Szegedy et al., 2013; Rozsa et al., 2016; Miyato et al., 2018; Kurakin et al., 2016). One pos-
sible reason for poor generalization in the open-world setting is overconfident prediction (Nguyen
et al., 2015), where the model could wrongly predict OOD input as in-distribution objects with high
confidence.

Figure 1: An overview of our novel OMNIINPUT evaluation framework. (a) Use an efficient sam-
pler, e.g. GWL (Liu et al., 2023), to obtain the output distribution ⇢(z) and sample representative
inputs; (b) Annotate representative inputs; (c) Estimate the precision and recall at different thresh-
old �. r(z) denotes the precision of the model within the bin of output value z; (d) Construct a
precision-recall curve as evaluation results.
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Inspired by the evaluation frameworks for generative models (Heusel et al., 2017; Salimans et al.,
2016; Naeem et al., 2020; Sajjadi et al., 2018; Cheema & Urner, 2023), we propose a novel model
evaluation approach from a model-centric perspective: after the model is trained, we construct the
test set from the model’s self-generated, representative inputs corresponding to different model out-
put values. We then annotate these samples, and estimate the model performance over the entire
input space using the model’s output distribution. While existing generative model evaluation frame-
works are also model-centric, we are the first to leverage the output distribution as a unique quantity
to generalize model evaluation from representative inputs to the entire input space. To illustrate
our proposed novel evaluation framework OMNIINPUT, we focus on a binary classification task of
classifying if a picture is digit 1 or not. As shown in Fig. 1, it consists of four steps:

(a) We employ a recently proposed sampler to obtain the output distribution ⇢(z) of the trained
model (where z denotes the output value of the model) over the entire input space (Liu et al.,
2023) and efficiently sample representative inputs from different output value (e.g., logit) bins.
The output distribution is a histogram counting the number of inputs that lead to the same model
output. In the open-world setting without any prior knowledge of the samples, all possible inputs
should appear equally.

(b) We annotate the sampled representative inputs to finalize the test set, e.g., rate how likely the
picture is digit 1 using a score from 0 to 1.1

(c) We compute the precision for each bin as r(z), then estimate the precision and recall at different
threshold values �. When aggregating the precision across different bins, a weighted average of
r(z) by the output distribution ⇢(z) is required i.e.,

P
z�� r(z)·⇢(z)P

z�� ⇢(z) . See Sec. 2.2 for details.
(d) We finally put together the precision-recall curve for a comprehensive evaluation of the model

performance over the entire input space.

OMNIINPUT samples the representative inputs solely by the model itself, eliminating possible hu-
man biases introduced by the test data collection process. The resulting precision-recall curve can
help decide the limit of the model in real-world deployment. The overconfident prediction issue can
also be quantified precisely manifested by a low precision when the threshold � is high.

Our OMNIINPUT framework enables a more fine-grained comparison between models, especially
when their performance is almost the same on the pre-defined datasets. Take the MNIST dataset as
an example, many models (e.g., ResNet, CNN, and multi-layer Perceptron network (MLP)) trained
by different methods (e.g., textbook cross-entropy (CE), CE with (uniform noise) data augmentation,
and energy-based generative framework) can all achieve very high or nearly perfect performance.
Our experiments using OMNIINPUT reveals, for the first time, the differences in the precision-recall
curves of these models over the entire input space and provides new insights. They include:

• The architectural difference in MLP and CNN, when training with the CE loss and original training
set, can lead to significant difference in precision-recall curves. CNN prefers images with dark
background as representative inputs of digit 1, while MLP prefers to invert the background of
zeros as digit 1.

• Different training schemes used on the same ResNet architecture can lead to different perfor-
mance. Adding noise to the training set in general can lead to significant improvements in preci-
sion and recall than using energy-based generative models; however, the latter leads to samples
with a better visual diversity. These results suggest that combining the generative and classifica-
tion objectives may be the key for the model to learn robust classification criteria for all possible
samples.

Additionally, we have evaluated DistilBERT for sentiment classification and ResNet on CIFAR (bi-
nary classification) using OMNIINPUT. Our results indicate a significant number of overconfident
predictions, a strong suggestion of poor performance in the entire input space. It is worth mention-
ing that these findings are specific to the models we trained. Thus, this is not a conclusive study of
the differences of the models with different training methods and architectures, but a demonstration
of how to use our OMNIINPUT framework to quantify the performance of the models and generate
new insights for future research. The contributions of this work are as follows:

1In data-centric evaluations, the pre-defined test set is typically human-annotated as well. Our experiments
show that 40 to 50 human annotations per output bin are enough for a converged precision-recall curve (Fig. 4),
hence human involvement required is significantly smaller in our method.

2



Under review as a conference paper at ICLR 2024

• We propose to evaluate AI/ML models by considering all the possible inputs with equal probabil-
ity, which is crucial to AI safety and reliability.

• We develop a novel model-centric evaluation framework, OMNIINPUT, that constructs the test set
by representative inputs, and leverages output distribution to generalize the evaluation assessment
from representative inputs to the entire input space. This approach largely eliminates the potential
human biases in the test data collection process and allows for a comprehensive understanding
and quantification of the model performance.

• We apply OMNIINPUT to evaluate various popular models paired with different training methods.
The results reveal new findings and insights for how to train robust, generalizable models.

2 THE OMNIINPUT FRAMEWORK

In this section, we present a detailed background on sampling the output distribution across the entire
input space. We then propose a novel model-centric evaluation framework OMNIINPUT in which we
derive the performance metrics of a neural network (binary classifier) from its output distribution.

2.1 OUTPUT DISTRIBUTION AND SAMPLER
Output Distribution. We denote a trained binary neural classifier parameterized by ✓ as f✓ : x ! z
where x 2 ⌦T is the training set, ⌦T ✓ {0, ..., N}D, and z 2 R is the output of the model. In our
framework, z represents the logit and each of the D pixels takes one of the N + 1 values.

The output distribution represents the frequency count of each output logit z given the entire input
space ⌦ = {0, ..., N}D. In our framework, following the principle of equal a priori probabilities,
we assume that each input sample within ⌦ follows a uniform distribution. This assumption is based
on the notion that every sample in the entire input space holds equal importance for the evaluation
of the model. Mathematically, the output distribution, denoted by ⇢(z), is defined as:

⇢(z) =
X

x2⌦

�(z � f✓(x)),

where � is the Dirac delta function.
Samplers The sampling of an output distribution finds its roots in physics, particularly in the
context of the sampling of the density of states (DOS) (Wang & Landau, 2001; Vogel et al., 2013;
Cunha-Netto et al., 2008; Junghans et al., 2014; Li & Eisenbach, 2017; Zhou et al., 2006), but its
connection to ML is revealed only recently (Liu et al., 2023).

The Wang–Landau (WL) algorithm Wang & Landau (2001) aims to sample the output distribution
⇢(z) which is unknown in advance. In practical implementations, the “entropy” (of discretized bins
of z), S̃(z) = log ⇢̃(z), is used to store the instantaneous estimation of the ground truth S(z) =
log ⇢(z). The WL algorithm leverages the reweighting technique, where the sampling weight w(x)
is inversely proportional to the instantaneous estimation of the output distribution:

w(x) / 1

⇢̃(f✓(x))
. (1)

When the approximation ⇢̃(z) converges to the true value ⇢(z), the entire output space would be
sampled uniformly.

The fundamental connection between the output distribution of neural networks and the DOS in
physics has been discovered and elucidated in Ref. (Liu et al., 2023). Additionally, it is shown
that the traditional Wang–Landau algorithm sometimes struggles to explore the parameter space if
the MC proposals are not designed carefully. Gradient Wang–Landau sampler (GWL) (Liu et al.,
2023) circumvent this problem by incorporating a gradient MC proposal similar to GWG (Grathwohl
et al., 2021), which improves Gibbs sampling by picking the pixels that are likely to change. The
GWL sampler has demonstrated the feasibility and efficiency of sampling the entire input space for
neural networks.

The key component of the output distribution samplers is that they can sample the output space
equally and efficiently, thereby providing a survey of the input-output mapping for all the possible
logits. This is in contrast with traditional MCMC samplers which are biased to sample the logits
corresponding to high log-likelihood (possible informative samples) over logits correspond to low
log-likelihood (noisy and uninformative samples).
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2.2 MODEL-CENTRIC EVALUATION

Our model evaluation framework revolves around the output distribution sampler. Initially, we ob-
tain the output distribution and the representative inputs exhibiting similar output logit values.

Representative Inputs. Although there are exponentially many uninformative samples in the en-
tire input space, it is a common practice in generative model evaluation to generate (representative)
samples by sampling algorithms and then evaluate samples, such as Fréchet Inception Distance
(FID) (Heusel et al., 2017). In our framework, other sampling algorithms can also be used to col-
lect representative inputs. There should be no distributional difference in the representative inputs
between different samplers (Fig. 8). However, Wang–Landau type algorithms provide a more effec-
tive means for traversing across the logit space and are hence more efficient than traditional MCMC
algorithms in sampling the representative inputs from the output distribution.

Normalized Output Distribution. To facilitate a meaningful comparison of different models based
on their output distribution, it is important to sample the output distribution of (all) possible output
values to ensure the normalization can be calculated as accurately as possible. We leverage the fact
that the entire input space contains an identical count of (N + 1)D samples for all models under
comparison Landau et al. (2004). Consequently, the normalized output distribution ⇢(z) can be
expressed as:

log ⇢(z) = log ⇢̂(z)� log
X

z

⇢̂(z),

where ⇢̂(z) denotes the unnormalized output distribution.

Annotation of Samples. For our classifiers, we designate a specific class as the target class.The
(human) evaluators would assign a score to each sample within the same “bin” of the output dis-
tribution (each “bin” collects the samples with a small range of logit values [z � �z, z + �z)).
This score ranges from 0 when the sample completely deviates from the evaluator’s judgment for
the target class, to 1 when the sample perfectly aligns with the evaluator’s judgment. Following the
evaluation, the average score for each bin, termed “precision per bin”, r(z), is calculated. It is the
proportion of the total evaluation score on the samples relative to the total number of samples within
that bin. We have 200-600 bins for the experiments.

Precision and Recall. Without loss of generality, we assume that the target class corresponds to
large logit values: we define a threshold � such that any samples with z � � are predicted as the
target class. Thus, the precision given � is defined as

precision� =

P+1
z�� r(z)⇢(z)P+1

z�� ⇢(z)
.

The numerator is the true positive and the denominator is the sum of true positive and false positive.
This denominator can be interpreted as the area under curve (AUC) of the output distribution from
the threshold � to infinity.

When considering recall, we need to compute the total number of ground truth samples that the
evaluators labeled as the target class. This total number of ground truth samples remains constant
(albeit unknown) over the entire input space. Hence recall is proportional to

P+1
z�� r(z)⇢(z):

recall� =

P+1
z�� r(z)⇢(z)

number of positive samples
/

+1X

z��

r(z)⇢(z).

A higher recall indicates a better model. As demonstrated above, the output distribution provides
valuable information for deriving both precision and (unnormalized) recall. These metrics can be
utilized for model evaluation through the precision-recall curve, by varying the threshold �. In the
extreme case where ⇢(z) differs significantly for different z, precision� is approximated as r(z⇤)
where z⇤ = argmaxz�� ⇢(z) and recall� is approximated as maxz�� r(z)⇢(z).

Quantifying Overconfident Predictions in OMNIINPUT. Overconfident predictions refer to the
samples that (a) the model predicts as positive with very high confidence (i.e., above a very high
threshold �) but (b) human believes as negative. The ratio of overconfident predictions over the total
positive predictions is simply 1 � precision� in OMNIINPUT. Moreover, even if two models have
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nearly the same (high) precision, the difference in (unnormalized) recall recall� can indicate which
model captures more ground-truth-positive samples. Therefore, compared to methods that only
quantify overconfident prediction, OMNIINPUT can offer a deeper insight of model performance
using recall.

Scalability. Our OMNIINPUT framework mainly focuses on how to leverage the output distribution
for model evaluation over the entire input space. To handle larger input spaces and/or more compli-
cated models, more efficient and scalable samplers are required. However, it is beyond the scope of
this paper and we leave it as a future work. Our evaluation framework is parallel to the development
of the samplers and will be easily compatible to new samplers.

3 EXPERIMENTS ON MNIST AND RELATED DATASETS

The entire input space considered in our experiment contains 25628⇥28 samples (i.e., 28 ⇥ 28 gray
images), which is significantly larger than any of the pre-defined datasets, and even larger than the
number of atoms in the universe (which is about 1081).

Models for Evaluation. We evaluate several backbone models: convolution neural network (CNN),
multi-layer Perceptron network (MLP), and ResNet (He et al., 2015). The details of the model archi-
tectures are provided in Appendix A. We use the MNIST training set to build the classifiers, but we
extract only the samples with labels {0, 1}, which we refer to as MNIST-0/1. For generative mod-
els, we select only the samples with label=1 as MNIST-1; samples with labels other than label=1
are considered OOD samples. We build models using different training methods: (1) Using the
vanilla binary cross-entropy loss, we built CNN-MNIST-0/1 and MLP-MNIST-0/12 which achieve
test accuracy of 97.87% and 99.95%, respectively; (2) Using the binary cross-entropy loss and data
augmentation by adding uniform noise with varying levels of severity to the input images, we built
RES-AUG-MNIST-0/1, MLP-AUG-MNIST-0/1, and CNN-AUG-MNIST-0/1 which achieve test
accuracy of 99.95%, 99.91%, and 99.33%, respectively; and (3) Using energy-based models that
learn by generating samples, we built RES-GEN-MNIST-1 and MLP-GEN-MNIST-13.

3.1 TRADITIONAL DATA-CENTRIC EVALUATION

We show that data-centric evaluation might be sensitive to different pre-defined test sets, leading to
inconsistent evaluation results. Specifically, we construct different test sets for those MNIST binary
classifiers by fixing the positive test samples as the samples in the MNIST test set with label=1,
and varying the negative test samples in five different ways: (1) the samples in the MNIST test
set with label=0 (in-dist), and the out-of-distribution (OOD) samples from other datasets such
as (2) Fashion MNIST (Xiao et al., 2017), (3) Kuzushiji MNIST (Clanuwat et al., 2018), (4)
EMNIST (Cohen et al., 2017) with the byclass split, and (5) Q-MNIST (Yadav & Bottou, 2019).

Judging from the Area Under the Precision-Recall Curve (AUPR) scores in Table 1, pre-defined
test sets such as the ones above can hardly lead to consistent model rankings in the evaluation. For
example, RES-GEN-MNIST-1 performs the best on all the test sets with OOD samples while only
ranked 3 out of 4 on the in-distribution test set. Also, CNN-MNIST-0/1 outperforms MLP-MNIST-
0/1 on Kuzushiji MNIST, but on the other test sets, it typically performs the worst. Additional
inconsistent results using other evaluation metrics can be found in Appendix B.

3.2 OUR MODEL-CENTRIC OMNIINPUT EVALUATION

Precision-Recall Curves over the Entire Input Space. Fig. 2 presents a comprehensive precision-
recall curve analysis using OMNIINPUT. The results suggest that RES-AUG-MNIST-0/1 is probably
the best model and MLP-MNIST-0/1 is the second best, demonstrating relatively high recall and
precision scores. RES-GEN-MNIST-1, as a generative model, displays a low recall but a relatively
good precision. Notably, CNN-MNIST-0/1 and CNN-AUG-MNIST-0/1 exhibit almost no precision
greater than 0, indicating that “hand-written” digits are rare in the representative inputs even when
the logit value is large (see Appendix D). This suggests that these two models are seriously subjected
to overconfident prediction problem.

2The results for RES-MNIST-0/1 are omitted due to reported sampling issues in ResNet (Liu et al., 2023).
3CNN-GEN-MNIST-1 is untrainable because model complexity is low.
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Table 1: Traditional data-centric evaluations:
Area Under the Precision-Recall Curve (AUPR)
scores on pre-defined test sets with five different
types of negative samples, leading to inconsistent
evaluation results for model ranking.

in-dist out-of-distribution (OOD)
MNIST Fashion Kuzushiji EMNIST QMNISTModel label=0 MNIST MNIST

CNN-MNIST-0/1 99.81 98.87 93.93 79.42 13.84
RES-GEN-MNIST-1† 99.99 100.00 99.99 99.87 16.49
RES-AUG-MNIST-0/1 100.00 99.11 93.93 95.10 15.69
MLP-MNIST-0/1 100.00 99.42 92.03 90.68 15.81

Figure 2: OMNIINPUT: Precision-Recall
Curves over the entire input space.

Insights from Representative Inputs. An inspection of the representative inputs (Appendix D)
reveals interesting insights. Firstly, different models exhibit distinct preferences for specific types of
samples, indicating significant variations in their classification criteria. Specifically,

• MLP-MNIST-0/1 and MLP-AUG-MNIST-0/1 likely define the positive class as the background-
foreground inverted version of digit “0”.

• CNN-MNIST-0/1 classifies samples with a black background as the positive class (digit “1”).
• RES-GEN-MNIST-1, a generative model, demonstrates that it can map digits to large logit values.
• RES-AUG-MNIST-0/1, a classifier with data augmentation, demonstrates that adding noise during

training can help the models better map samples that look like digits to large logit values.

These results suggest that generative training methods can improve the alignment between model
and human classification criteria, though it also underscores the need for enhancing recall in gener-
ative models. Adding noise to the data during training can also help.

Moreover, RES-AUG-MNIST-0/1 exhibits relatively high recall as the representative inputs gener-
ally look like digit 1 with noise when the logits are high. Conversely, RES-GEN-MNIST-1 generates
more visually distinct samples corresponding to the positive class, but with limited diversity in terms
of noise variations.

Discussion of results. First, the failure case of CNN-MNIST-0/1 does not eliminate the fact that
informative digit samples can be found in these logit ranges. It indicates the number of these in-
formative digit samples is so small that the model makes much more overconfident predictions than
successful cases. Having this mixture of bad and (possibly) good samples mapped to the same
outputs means a bad model, because further scrutinization of the samples is needed due to unin-
formative and unreliable model outputs. Second, the model does not use reliable features, such as
the “shapes” to distinguish samples. Had this model use the shape to achieve high accuracy, the
representative inputs would have more shape-based samples instead of unstructured and black back-
ground samples. Third, this failure case also does not indicate our sampler fails, because the same
sampler finds informative samples for RES-GEN-MNIST-1.

The representative inputs of MLP-MNIST-0/1 and MLP-AUG-MNIST-0/1 display visual similar-
ities but decreasing level of noise when the logit increases, indicating how the noise affects the
model’s prediction. Importantly, this type of noise is presented by the model rather than trying dif-
ferent types of noise (Hendrycks & Dietterich, 2019). Our result indicates that OMNIINPUT finds
representative samples that may demonstrate distribution shifts with regard to model outputs.

Combining these findings with the previous precision-recall curve analysis suggests that different
types of diversity may be preferred by the models. Future research endeavors can focus on enhancing
both robustness and visual diversity.

Evaluation Effort, Efficiency and Human Annotation Ambiguity. We have at least 50 samples
per bin for evaluation for all the models after deleting the duplicates. The models with fewer samples
per bin typically have a larger number of bins due to the limitation in the sampling cost. Evaluating
these samples in our OMNIINPUT framework requires less effort than annotating a dataset collected
for data-centric evaluation, e.g., 60000 samples for MNIST.
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(a) RES-GEN-MNIST-1 (b) RES-AUG-MNIST-0/1 (c) CNN-MNIST-0/1 (d) MLP-MNIST-0/1

Figure 3: Four models of logit z and precision per bin r(z) with confidence interval, which is the
proportion of the total evaluation score relative to the total number of samples within the neighbor-
hood of z.

Figure 4: Convergence of OMNIINPUT w.r.t. to
the number of samples per bin. We use MLP-
MNIST-0/1 as an example. There are 40 bins in
total with at least 300 samples per bin.

In Fig. 4, we vary the number of annotated
samples per bin in OMNIINPUT from 10 to 50
and plot different precision-recall curves for the
MLP-MNNIST-0/1 model. The results show
that the evaluation converges quickly when the
number of samples approaches 40 or 50, em-
pirically demonstrating that OMNIINPUT does
not need many annotated samples though the
number required will be model-dependent. We
believe that this is because the representative
inputs follow some underlying patterns learned
by the model.

We observe that models exhibit varying degrees
of robustness and visual diversity. To assess the
ambiguity in human labeling, we examine the
variations in r(z) when three different individ-
uals label the same dataset (Fig. 3). Notably,
apart from the CNN model, the other models display different levels of labeling ambiguity.

4 RESULTS ON CIFAR-10 AND LANGUAGE MODEL

CIFAR10 and Other Samplers. We train a ResNet binary classifier for the first two classes in
CIFAR10, i.e., class 0 (airplane) vs. class 1 (automobile). The test set accuracy of this ResNet
model is 93.34%. In Appendix F, Fig. 9 shows the output distribution and Fig 8 provides some
representative inputs. We scrutinize 299 bins with 100 samples per bin on average. Even though the
representative inputs seem to have shapes when their logits are very positive or negative, they are
uninformative in general. We can conclude that this classifier should perform with almost 0 precision
(with the given annotation effort) and this model is subjected to serious overconfident prediction.

We also compare the representative inputs in OMNIINPUT and the samples from a Langevin-like
sampler (Zhang et al., 2022) in Fig 8. The sampling results show that our representative inputs
generally agree with those of the other sampler(s).

Language Model. We fine-tune a DistilBERT (Sanh et al., 2019) using SST2 (Socher et al., 2013)
and achieve 91% accuracy. We choose DistilBERT because of sampler efficiency concern and leave
LLMs as future work after more efficient samplers are developed. We then evaluate this model
using OMNIINPUT. Since the maximum length of the SST2 dataset is 66 tokens, one can define the
entire input space as the sentences with exactly 66 tokens. For shorter sentences, the last few tokens
can be simply padding tokens. One might be more interested in shorter sentences because a typical
sentence in SST2 contains 10 tokens. Therefore, we conduct the evaluation for length 66 and length
10, respectively. We sample the output distribution of this model until the algorithm converges;
some representative inputs can be found in Appendix E.

When the sentence has only 10 tokens, the representative inputs are not fluent or understandable
sentences. For sentence length equals 66, we have 15 bins with around 200 samples per bin. Look-
ing at the representative inputs per bin for each logit, it shows that the model classifies the positive
sentiment mostly based on some positive keywords without understanding the grammar and struc-
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ture of the sentences. Therefore, the precision of human evaluation is very low, if not exactly zero,
indicating the model is subjected to serious overconfident prediction.

5 DISCUSSIONS

Human Annotation vs. Model Annotation. In principle, metrics employed in eval-
uating generative models (Salimans et al., 2016; Heusel et al., 2017; Naeem et al.,
2020; Sajjadi et al., 2018; Cheema & Urner, 2023) could be employed to obtain the
r(z) values in our method. However, our framework also raises a question whether a
performance-uncertified model with respect to the entire input space can generate features
for evaluating another model. We examined the Fréchet Inception Distance (FID) (Heusel
et al., 2017) , one of the most commonly used generative model performance metrics.

Table 2: Labeling results between humans
and FID score. Although FID scores are sim-
ilar between two models, humans label sig-
nificantly differently than FID score.

RES-AUG-MNIST-0/1 CNN-MNIST-0/1

logits humans" FID# logits humans" FID#
43 0.9 360.23 12 0 346.42
42 0.88 362.82 11 0 358.37
41 0.85 368.75 10 0 363.23
40 0.83 375.58 9 0 365.01

Feature extractors generate features for both ground
truth test set images and the images generated by
the generative model. It then compares the distri-
butional difference between these features. In our
experiment, the ground truth samples are test set dig-
its from label=1. In general, the performance trends
are consistent between humans and FID scores, e.g.
for RES-AUG-MNIST-0/1, as FID score is decreas-
ing (better performance) and human score is increas-
ing (better performance) when the logit increases.
This result demonstrates that the scores for evaluat-
ing generative models may be able to replace human
annotations.

However, humans and these commonly used generative metrics can lead to very different results.
Comparing the results of RES-AUG-MNIST-0/1 and CNN-MNIST-0/1, Table 2 shows that the FID
score can be completely misleading. While the representative inputs of CNN-MNIST-0/1 do not
contain any semantics for the logits on the table, the FID scores are similar to those of samples from
RES-AUG-MNIST-0/1 where representative inputs are clearly “1.” This is not the only inconsistent
case between humans and metrics. The trend of FID for MLP-MNIST-0/1 is also the opposite of
human intuitions, as shown in Table 5 in Appendix C. When the logits are large, humans label
the representative inputs as “1.” When the logits are small, representative inputs look like “0.”
However, the FID scores are better for these “0” samples, indicating the feature extractors believe
these “0” samples look more like digits “1.” The key contradiction is that the feature extractors of
these metrics, when trained on certain datasets, are not verified to be applicable to all OOD settings,
but surely they will be applied in OOD settings to generate features of samples from models for
evaluation. It is difficult to ensure they will perform reliably.

Perfect classifiers and perfect generative models could be the same. Initially it is difficult to
believe the classifiers, such as CNN-MNIST-0/1, perform poorly in the open-world setting when
we assume the samples are from the entire input space. In retrospect, however, it is understandable
because the classifiers are trained with the objective of the conditional probability p(class|x) where
x are from the training distribution. In order to deal with the open-world setting, the models also
have to learn the data distribution p(x) in order to tell whether the samples are from the training
distribution. This seems to indicate the importance of learning p(x) and this is the objective of
generative models. In Fig. 10, if we can construct a classifier with perfect mapping in the entire input
space where the models successfully learn to map all positive and negative samples in the entire input
space to the high and low output values respectively, this model is also a generative model because
we can use traditional MCMC samplers to reach the output with high (or low) values. As we know
those output values only contain positive (or negative) samples, we are able to “generate” positive
(or negative) samples. Therefore, we speculate that a perfect classifier and a perfect generator
should converge to be the same model.
Our method indicates an important trade-off of generative models. The generative models trade the
recall for precision. This would mean the model may miss a lot of various ways of writing the digits
“1.” In summary, our method can estimate not only the overconfident predictions for the models,
but also the recall. Future work needs to improve both metrics in the entire input space for better
models.
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6 RELATED WORKS
Performance Characterization has been extensively studied in the literature Haralick (1992);
Klette et al. (2000); Thacker et al. (2008); Ramesh et al. (1997); Bowyer & Phillips (1998); Agh-
dasi (1994); Ramesh & Haralick (1992; 1994). Previous research has focused on various aspects,
including simple models Hammitt & Bartlett (1995) and mathematical morphological operators Gao
et al. (2002); Kanungo & Haralick (1990). In our method, we adopt a black box setting where the
analytic characterization of the input-to-output function is unknown (Courtney et al., 1997; Cho
et al., 1997), and we place emphasis on the output distribution (Greiffenhagen et al., 2001). This
approach allows us to evaluate the model’s performance without requiring detailed knowledge of its
internal workings. Furthermore, our method shares similarities with performance metrics used for
generative models, such as the Fréchet Inception Distance score (Heusel et al., 2017) and Inception
Score (Salimans et al., 2016). Recent works (Naeem et al., 2020; Sajjadi et al., 2018; Cheema &
Urner, 2023) have formulated the evaluation problem in terms of precision and recall of the dis-
tributional differences between generated and ground truth samples. While these methods can be
incorporated into our sampler to estimate precision, we leverage the output distribution to further
estimate the precision-recall curve. Rent works (Qiu et al., 2020; Lang et al., 2021; Luo et al.,
2023; Prabhu et al., 2023) evaluate model performance without test set. However, they use other
generators to generate samples to evaluate a model while we used a sampler to sample the model
to be evaluated. Sampling is model-free with convergence estimates, but other generators are still
considered as black boxes. Given the inherent unknown biases in models and the generative models,
utilizing other models to evaluate a model, as expounded in our human annotation section, carries
the risk of yielding unfair and potentially incorrect conclusions. Our method shifts the focus to the
model to be tested, tasking it with generating samples for scrutiny, rather than relying on potential
issues probed by human or other model-based speculations. This approach offers a novel framework
for estimating errors in the entire input space when comparing different models.
Samplers MCMC samplers have gained widespread popularity in the machine learning commu-
nity (Chen et al., 2014; Welling & Teh, 2011; Li et al., 2016; Xu et al., 2018). Among these,
CSGLD (Deng et al., 2020) leverages the Wang–Landau algorithm (Wang & Landau, 2001) to com-
prehensively explore the energy landscape. Gibbs-With-Gradients (GWG)(Grathwohl et al., 2021)
extends this approach to the discrete setting, while discrete Langevin proposal (DLP)(Zhang et al.,
2022) achieves global updates. Although these algorithms can in principle be used to sample the
output distribution, efficiently sampling it requires an unbiased proposal distribution. As a result,
these samplers may struggle to adequately explore the full range of possible output values. Fur-
thermore, since the underlying distribution to be sampled is unknown, iterative techniques become
necessary. The Wang–Landau algorithm capitalizes on the sampling history to efficiently sample the
potential output values. The Gradient Wang–Landau algorithm (GWL) (Liu et al., 2023) combines
the Wang–Landau algorithm with gradient proposals, resulting in improved efficiency.

Open-world Model Evaluation requires model to perform well in in-distribution test sets (Dosovit-
skiy et al., 2021; Tolstikhin et al., 2021; Steiner et al., 2021; Chen et al., 2021; Zhuang et al., 2022;
He et al., 2015; Simonyan & Zisserman, 2014; Szegedy et al., 2015; Huang et al., 2017; Zagoruyko
& Komodakis, 2016), OOD detection (Liu et al., 2020a; Hendrycks & Gimpel, 2016; Hendrycks
et al., 2019; Hsu et al., 2020; Lee et al., 2017; 2018; Liang et al., 2018; Mohseni et al., 2020; Ren
et al., 2019), generalization (Cao et al., 2022; Sun & Li, 2022), and adversarial attacks (Szegedy
et al., 2013; Rozsa et al., 2016; Miyato et al., 2018; Kurakin et al., 2016; Xie et al., 2019; Madry
et al., 2017). Understanding performance of the model needs to consider the entire input space that
includes all these types of samples.

7 CONCLUSION

In this paper, we introduce OMNIINPUT, a new model-centric evaluation framework built upon the
output distribution of the model. As future work, it is necessary to develop efficient samplers and
scale to larger inputs and outputs. While the ML community has developed many new samplers,
sampling the output distribution (and from larger input) is far from receiving enough attention in
the community. Our work demonstrated the importance of sampling from output distribution by
showing how it enables the quantification of model performance, hence the need for more efficient
samplers. Scaling to multi-dimensional output is possible and has already been developed previ-
ously. Once a scalable samplers are developed, our method will be automatically scalable to larger
datasets, because the output distribution is training-set independent.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Farzin Aghdasi. Digitization and analysis of mammographic images for early detection of breast
cancer. PhD thesis, University of British Columbia, 1994.

Kevin Bowyer and P Jonathon Phillips. Empirical evaluation techniques in computer vision. IEEE
Computer Society Press, 1998.

Kaidi Cao, Maria Brbic, and Jure Leskovec. Open-world semi-supervised learning. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=O-r8LOR-CCA.

Fasil Cheema and Ruth Urner. Precision recall cover: A method for assessing generative models.
In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent (eds.), Proceedings of The 26th
International Conference on Artificial Intelligence and Statistics, volume 206 of Proceedings
of Machine Learning Research, pp. 6571–6594. PMLR, 25–27 Apr 2023. URL https://
proceedings.mlr.press/v206/cheema23a.html.

Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient hamiltonian monte carlo. In
International conference on machine learning, pp. 1683–1691. PMLR, 2014.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
without pretraining or strong data augmentations. arXiv preprint arXiv:2106.01548, 2021.

Kyujin Cho, Peter Meer, and Javier Cabrera. Performance assessment through bootstrap. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(11):1185–1198, 1997.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature, 2018.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending mnist
to handwritten letters. 2017 International Joint Conference on Neural Networks (IJCNN), 2017.
doi: 10.1109/ijcnn.2017.7966217.

Patrick Courtney, Neil Thacker, and Adrian F Clark. Algorithmic modelling for performance evalu-
ation. Machine Vision and Applications, 9(5):219–228, 1997.
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