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Abstract

Conversation entailment, the task of determin-001
ing if a hypothesis can be inferred from a002
multi-turn dialogue, presents challenges due003
to the complex nature of conversational dynam-004
ics. Transformer-based models like BERT ex-005
cel in capturing language patterns and have006
shown strong performance in entailment tasks.007
However, as highlighted by Storks and Chai008
(2021), these models often lack coherence in009
intermediate reasoning, relying on spurious cor-010
relations that undermine interpretability and011
trust. To address this, we proposed augmenting012
transformers with instance-specific knowledge013
graphs to enhance reasoning coherence and ac-014
curacy. While our approach demonstrated im-015
provements in accuracy and coherence metrics,016
the complexity and computational overhead in-017
volved suggest that the gains may not justify018
the additional effort for most applications.019

Code for our project can be found in our020
GitHub repository. 1.021

1 Introduction022

Understanding and predicting entailment in con-023

versations is a difficult but crucial task in natural024

language processing. Conversational entailment in-025

volves determining whether a hypothesis can logi-026

cally be inferred from a multi-turn dialogue. Unlike027

conventional textual entailment, which deals with028

relatively static and structured texts, conversation029

entailment introduces additional complexities, such030

as dialogue turns, implicit references, and long-031

distance dependencies between statements. This032

makes it a uniquely challenging problem for cur-033

rent natural language processing models.034

Transformer-based models, such as BERT, have035

shown significant promise in handling natural lan-036

guage processing tasks, including entailment. Their037
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success largely comes from pretraining on large 038

datasets, allowing them to learn representations of 039

language. However, these models often fall short 040

when applied to conversational entailment because 041

they focus on surface-level correlations within the 042

data, sometimes leading to inaccurate or logically 043

inconsistent predictions. As shown by previous re- 044

search, this can reduce the trust and interpretability 045

of these models, especially in uses where logical 046

consistence is important. 047

The main issue lies in the intermediate reason- 048

ing process of transformer-based models. While 049

they can achieve high accuracy metrics, the way 050

they reach their conclusions is a black box and 051

their logical reasoning could be incorrect which 052

can lead to inconsistent results. This lack of coher- 053

ence not only affects the robustness of these models 054

but also reduces their usability in real-world sce- 055

narios. To address these limitations, we propose 056

using instance-specific knowledge graphs with a 057

transformer-based model. By explicitly modeling 058

the relationships and entities within a dialogue, 059

knowledge graphs provide structured, contextual 060

information that can enhance the model’s reasoning 061

process. 062

1.1 Dialogue Example for Coherent Text 063

Classification 064

Dialogue: 065

• A1: "I finally submitted my application for 066

the job." 067

• B1: "That’s great! How do you feel about it?" 068

• A2: "Honestly, I’m not sure. I keep wonder- 069

ing if I should have double-checked every- 070

thing one more time." 071

Hypothesis: 072

Speaker A feels unsure about their application sub- 073

mission. 074
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In this example, the hypothesis cannot be directly075

inferred from any single segment in the dialogue.076

The hypothesis requires an understanding of the077

overall context:078

Evaluation:

Segment Hypothesis Support

"I finally submitted
my application for the
job."

X

"That’s great! How do
you feel about it?"

X

"Honestly, I’m not
sure. I keep wondering
if I should have double-
checked everything
one more time."

X

Full dialogue (A1, B1,
A2 combined)

✓

079

While the hypothesis aligns with the final seg-080

ment, the context from all three segments are nec-081

essary for a coherent inference. A model relying082

solely on statistical patterns might overlook the con-083

nections between these statements or give unneces-084

sary importance to isolated phrases. By introduc-085

ing a knowledge graph that captures relationships086

(e.g., "Speaker A" → "submitted application" and087

"Speaker A" → "feels unsure"), the model gains088

access to a structured representation that supports089

logical reasoning.090

2 Related Work091

Our work builds upon several previous develop-092

ments in natural language processing, particularly093

conversational entailment and graph-based learn-094

ing. Such advancements in NLP tasks form the095

foundation of our methodology.096

2.1 Conversational Entailment097

Previous research in conversational entailment has098

addressed challenges in reasoning over dialogue.099

Zhang and Chai (Zhang and Chai, 2010) empha-100

sized how traditional textual entailment frame-101

works are inadequate when applied to dialogue,102

which can contain elements such as turn-taking,103

lingustic phenomena of utterances, and implicature.104

In order to handle these elements, they developed105

a modeling framework using two levels of seman-106

tic representation: a basic representation based on107

syntactic parsing of utterances, and an augmented 108

representation that incorporates conversational fea- 109

tures, such as dialogue acts, to capture a more in- 110

depth context. Additionally, Zhang and Chai ex- 111

perimented with long-distance relationship (LDR) 112

modeling, which bridges semantic gaps between 113

constituents through two approaches: implicit mod- 114

eling, which looks at the distance between terms, 115

and explicit modeling, which represents semantic 116

paths as strings to capture more nuanced relation- 117

ships. Combining conversation structures with ex- 118

plicit LDR modeling provided the highest accuracy, 119

showing that both structural and relational model- 120

ing play vital roles in conversational entailment. 121

Building on this foundation, Storks and Chai 122

(Storks and Chai, 2021) proposed a broader eval- 123

uation of model performance through coherence- 124

based metrics, which also evaluates the internal 125

consistency of model predictions rather than just 126

the accuracy. Their coherence framework priori- 127

tizes alignment with human reasoning, identifying 128

inconsistencies in intermediate model decisions. 129

This coherence-based approach contributes to de- 130

veloping more interpretable, robust systems capa- 131

ble of aligning with human logic in entailment. 132

Together, these works highlight the importance of 133

structure, coherence, and relationship modeling to 134

achieve reliable performance in conversation un- 135

derstanding tasks. 136

2.2 Knowledge Graphs 137

The importance of knowledge graphs in organizing 138

and representing data has also been explored in the 139

past. Peng et al. (Peng et al., 2023) details how 140

knowledge graphs have significantly impacted AI 141

tasks such as recommendation systems, question 142

answering, and information retrieval by allowing 143

complex information to be efficiently modeled and 144

accessed. Even though there are still challenges 145

regarding knowledge graph construction and ap- 146

plication, the potential for knowledge graphs to 147

enhance logical consistency in dialogue-based situ- 148

ations presents opportunities for improving conver- 149

sational entailment. 150

2.3 Graph-based Learning 151

Graph-based learning has been explored as an inno- 152

vative area for improving machine learning models 153

in situations involving structured data. Algorithms 154

and frameworks such as Node2Vec and GraphGPT 155

have introduced novel approaches for incorporating 156

graph representations in AI tasks. 157
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2.3.1 Node2Vec158

Node2Vec is a method of node embedding that159

transforms graphs into numerical representations160

(Grover and Leskovec, 2016). It introduces a flexi-161

ble framework for learning feature representations162

of nodes in graphs. In contrast to traditional em-163

bedding methods, which rely on rigid definitions164

of node neighborhoods, Node2Vec employs biased165

random walks to sample neighborhoods dynami-166

cally. These walks utilize both breadth-first sam-167

pling (BFS), which emphasizes local structural168

equivalence, and depth-first sampling (DFS), which169

captures global community structures. This flex-170

ibility allows Node2Vec to generate embeddings171

that reflect both homophily, where nodes that be-172

long to similar network clusters are embedded173

closely together, and structural equivalence, where174

nodes that have similar structural roles in networks175

are embedded closely together. By optimizing a176

neighborhood-preserving objective using stochas-177

tic gradient descent, Node2Vec achieves efficient178

performance in tasks such as multi-label node clas-179

sification and link prediction. Its effectiveness has180

been demonstrated on large real-world networks,181

and it outperforms other approaches such as Deep-182

Walk, LINE, and spectral clustering.183

2.3.2 GraphGPT184

Tang et al. (Tang et al., 2024) provides GraphGPT,185

a framework that aligns large language models186

with graph-structured data through an instruction-187

tuning approach. It addresses the challenges of in-188

corporating graph structural information with tex-189

tual data by introducing a text-graph grounding190

paradigm, dual-stage instruction tuning, and chain-191

of-thought distillation. The text-graph grounding192

paradigm aligns graph structures with the natural193

language space. Semantic understanding of textual194

information is connected with structural relation-195

ships within the graph, ensuring compatibility with196

LLMs.197

The second part of GraphGPT consists of dual-198

stage graph instruction tuning. This instruction tun-199

ing aligns the language model’s reasoning capabili-200

ties with the nuances of graph learning tasks, allow-201

ing for more accurate and appropriate responses.202

In the first stage, self-supervised instruction tun-203

ing, the language model’s reasoning is improved204

by including structural knowledge specific to the205

graph domain. In order to enact this process, un-206

labeled graph structures are used to generate self-207

supervised signals that are used as instructions for208

model tuning. The second stage consists of task- 209

specific instruction tuning, which tailors the lan- 210

guage model’s reasoning behavior for specific tasks. 211

In this stage, specific text information is included 212

in the instruction design in order to further assist 213

the language model. 214

Following the instruction tuning, the step-by- 215

step reasoning abilities of GraphGPT are improved 216

through chain-of-thought distillation. Using knowl- 217

edge from the comprehensive language model GPT- 218

3.5, intermediate thought information is incorpo- 219

rated into instructions used for the task-specific in- 220

struction tuning portion. This improves coherence 221

and consistency, allowing for better performance 222

in situations involving more diverse graph data. 223

2.4 Named Entity Recognition 224

Named Entity Recognition (NER) is a process in 225

natural language processing that involves identify- 226

ing and categorizing entities such as people and 227

organizations within unstructured text (Keraghel 228

et al., 2024). Its effectiveness has been widely ex- 229

plored in the past, and there currently exist several 230

libraries supporting it. SpaCy, which we use in our 231

implementation, is one such library that offers tools 232

and pre-trained models for NER. The models are 233

based on both convolutional neural networks and 234

transformer-based architectures such as BERT. The 235

usage of SpaCy within natural language processing 236

tasks allows for the structuring of textual data and 237

the improved accuracy of downstream processing. 238

3 Motivation 239

Conversational entailment requires an in-depth un- 240

derstanding of relationships and speakers within 241

multi-turn dialogues, making it a difficult challenge 242

for natural language processing models. While 243

transformer-based models such as BERT have 244

demonstrated strong abilities in handling natural 245

language, they often struggle to capture the logi- 246

cal coherence necessary for entailment reasoning. 247

This limitation is rooted in their reliance on im- 248

plicit statistical patterns learned from large-scale 249

datasets, which can lead to predictions that lack 250

interpretability. 251

A possible solution to this problem uses the inte- 252

gration of knowledge graphs. Knowledge graphs 253

offer a structured representation of entities and their 254

relationships, making them a strong complement 255

to transformer-based models. Unlike language 256

models that rely solely on token-level patterns, 257
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knowledge graphs explicitly encode semantic rela-258

tionships and contextual information. This struc-259

tured approach enables the model to reason over260

long-distance dependencies and relationships in di-261

alogues, which are often missed by transformers262

alone.263

By using instance-specific knowledge graphs,264

we can tailor the model’s understanding to the spe-265

cific context of each dialogue. This explicit repre-266

sentation allows the model to ground its reasoning267

in the actual content of the dialogue, rather than268

relying on heuristic shortcuts. The result is a sys-269

tem that is not only more accurate but also more270

interpretable and aligned with human logic. There-271

fore, knowledge graphs provide a way to bridge272

the gap between statistical language modeling and273

structured reasoning which allows us to develop274

models that are both accurate and coherent.275

4 Methodology276

The methodology for our project is centered277

around enhancing the performance of transformer-278

based models for the task of conversational entail-279

ment. While transformer models like BERT have280

achieved significant advancements in this area, they281

often fall short in maintaining coherence and logi-282

cal consistently in their predictions. We hypothe-283

size that this limitation arises due to their reliance284

on statistical patterns in large-scale data, rather285

than explicit modeling of relationships and entities286

within conversations.287

To address this challenge, our methodology in-288

troduces a structured pipeline that integrates knowl-289

edge graphs into the learning process. Knowledge290

graphs are very powerful tools for representing291

entities and their relationships in a structured for-292

mat, capturing information that is often implicit in293

text, and spans across different turns in dialogue.294

By incorporating these graphs, we aim to provide295

the model with additional contextual information,296

allowing it to reason more effectively about the di-297

alogue and improve both accuracy and coherence298

in its predictions.299

The proposed pipeline can be delineated by these300

following key stages:301

1. Entity and Relationship Extraction: Ex-302

tracting key entities (e.g., people, organiza-303

tions, or concepts) and relationships from304

dialogues using Named Entity Recognition305

(NER) and dependency parsing techniques.306

This step ensures that the knowledge graph307

is grounded in the specific context of each 308

conversation. 309

2. Instance-Specific Knowledge Graph Con- 310

struction: Querying a global knowledge 311

graph (e.g., DBpedia) using the extracted enti- 312

ties to retrieve subgraphs that represent rele- 313

vant information. These subgraphs form the 314

foundation of the instance-specific knowledge 315

graph. 316

3. Node Embedding Generation: Transform- 317

ing the knowledge graph into numerical rep- 318

resentations (embeddings) using graph neural 319

networks (GNNs) or node embedding tech- 320

niques like Node2Vec. These embeddings 321

capture the structural and relational informa- 322

tion of the graph. 323

4. Augmenting Transformer Input: Combin- 324

ing the node embeddings from the knowledge 325

graph with token embeddings from a trans- 326

former model (BERT) to create an enriched 327

input representation. This integration allows 328

the model to leverage both the linguistic and 329

relational information. 330

5. Model Training and Evaluation: Fine- 331

tuning the augmented transformer model on 332

a conversational entailment dataset, followed 333

by evaluating its performance using metrics 334

such as accuracy and coherence. 335

We intend that the integration of instance- 336

specific knowledge graphs would address the 337

knowledge gaps in current transformer models. We 338

believe that in using this approach, the predicted 339

results would not only be more accurate, but also 340

logically consistent and interpretable, aligning with 341

human reasoning. 342

In the following subsections, we dive deeper into 343

each stage of the methodology, providing detailed 344

explanations of the techniques, tools, and processes 345

used to implement this pipeline. 346

4.1 Entity and Relationship Extraction 347

Entity and relationship extraction forms a criti- 348

cal foundation for our methodology, providing 349

the structured data needed to construct instance- 350

specific knowledge graphs. The aim of this stage is 351

to identify key entities, such as individuals, organi- 352

zations, and locations, as well as their relationships 353
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Figure 1: Example diagram of our approach. Named
entity recognition and relationship extraction of dialog
are used to query a global knowledge graph to construct
a instance-specific knowledge graph. Node embeddings
are generated from the graph using GNNs and then con-
catenated with the dialogue’s model token embeddings.
These augmented embeddings are passed through to the
LLM to generate the hypothesis entailment prediction.

within the dialogue. These extracted elements en-354

able the knowledge graph to represent the interac-355

tions and contextual dependencies present in the356

conversation.357

We leverage several Natural Language Process-358

ing techniques and libraries to perform this step359

effectively. The key tools used are as follows:360

361

362

• Named Entity Recognition (NER): The363

purpose of this step is to preliminarily identify364

entities in the text and categorize them365

into predefined types such as PERSON, ORG,366

and GPE. We used SpaCy, a state-of-the-art367

NLP library, for NER. Specifically, we used368

SpaCy’s pre-trained model en_core_web_lg369

model to analyze each piece of dialogue in370

separation and label the named entities for371

every turn.372

373

In determining the appropriate model374

for NER, we had numerous options, as this375

is a field undergoing constant development.376

Our objective was to balance the speed of the377

model with the quality of entity recognition.378

SpaCy offered four model sizes, ranging379

from small to large, and we observed that380

the smaller models performed poorly in381

terms of quality, which is why we opted for 382

the large model. Beyond SpaCy, we also 383

experimented with larger transformer-based 384

NER models, which performed exceptionally 385

well and consistently on this task. However, 386

due to the significantly higher latency and 387

computational resources required to run and 388

load a transformer model, we decided not to 389

use it in our final implementation. 390

• Dependency Parsing: The purpose of this 391

is to identify grammatical relationships be- 392

tween words in a sentence to extract mean- 393

ingful relationships between entities. We per- 394

formed dependency parsing using SpaCy’s 395

provided dependency tree. It provides infor- 396

mation about syntactic dependencies, such as 397

subject (nsubj), object (dobj), and attributes 398

(attr). 399

• Coreference Resolution: The purpose of 400

this process is to resolve references to the 401

same entity across different sentences within 402

the dialogue (e.g., pronouns such as "he," 403

"she," or "it"). This approach significantly 404

enhances the quality of entity and relation- 405

ship extraction, resulting in more useful and 406

effective instance-specific knowledge graphs. 407

For coreference resolution, we use SpaCy’s 408

coreferee library. 409

The tools and techniques mentioned above are 410

systematically integrated into a unified pipeline to 411

extract entities and relationships efficiently from 412

dialogue data. Below, we outline the sequential 413

process and its implementation details: 414

415

First, the dialogue text is preprocessed to stan- 416

dardize references using coreference resolution. 417

This step ensures that entities mentioned across 418

multiple turns or sentences are consistently recog- 419

nized and linked. For example, in the dialogue 420

snippet, "John Doe submitted his application. He 421

was nervous," the pronoun "He" is resolved to 422

"John Doe," producing the standardized version 423

"John Doe submitted his application. John Doe 424

was nervous." Unlike the NER model, we opted 425

to use the transformer-based en_core_web_trf 426

model, since coreference resolution is not a 427

bottleneck for the overall NER process. 428

429

Next, we perform Named Entity Recognition 430

(NER) on the coreference-resolved dialogue text. 431
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Each turn of dialogue is processed individually,432

and entities such as people, organizations, and433

locations are identified using SpaCy’s pre-trained434

en_core_web_lg. For example, in the sentence435

"John Doe is a software engineer at XYZ Corpora-436

tion," NER could identify two entities: "John Doe"437

as a PERSON and "XYZ Corporation" as an ORG.438

439

Following NER, we use dependency parsing440

to identify relationships between the extracted441

entities. Dependency parsing analyzes the442

grammatical structure of sentences to uncover443

syntactic relationships, such as subject-object pairs444

and attributes. For example, in the sentence "John445

Doe is a software engineer," dependency parsing446

identifies "John Doe" as the subject (nsubj) and447

"software engineer" as the attribute (attr). By448

focusing on these syntactic dependencies, we449

extract meaningful relationships such as (’John450

Doe’, ’software engineer’) and (’XYZ451

Corporation’, ’employer’).452

453

Finally, the outputs from these stages are con-454

solidated into a structured format. The entities455

and relationships are stored as lists, which serve as456

inputs for constructing the instance-specific knowl-457

edge graph in the subsequent step. For instance,458

given the sentence "John Doe is a software engi-459

neer at XYZ Corporation. He graduated from ABC460

University," the pipeline produces the following461

results:462

• Entities: [’John Doe’, ’XYZ463

Corporation’, ’ABC University’]464

• Relationships: [(’John Doe’, ’software465

engineer’), (’John Doe’, ’XYZ466

Corporation’), (’John Doe’, ’ABC467

University’)]468

4.2 Instance-Specific Knowledge Graph469

Construction470

After extracting entities and relationships from the471

dialogue, the next step is constructing an instance-472

specific knowledge graph (KG). This KG provides473

a structured representation of the dialogue, embed-474

ding contextual and relational information essential475

for enhancing the transformer model’s reasoning476

capabilities. The goal of this step is to integrate477

both the extracted relationships from the dialogue478

and external knowledge from global KGs to create479

a robust and context-aware graph structure tailored480

to the specific dialogue instance.481

This graph enables the model to capture long- 482

distance dependencies, infer implicit relationships, 483

and incorporate external knowledge to improve co- 484

herence and accuracy in entailment predictions. 485

Retrieving External Knowledge: To enrich the 486

extracted entities, we queried external knowledge 487

bases such as DBpedia using SPARQL, a query 488

language for semantic data. Each query returns 489

triples (subject, predicate, object) describing 490

relationships involving the entities. For example, 491

querying DBpedia for the entity "John Doe" might 492

return the following triples: 493

• (John Doe, affiliatedWith, XYZ 494

Corporation) 495

• (John Doe, publishedBook, Software 496

Engineering 101) 497

The retrieved triples are then filtered to retain only 498

the most relevant and contextually appropriate re- 499

sults. This filtering process ensures that the KG 500

remains focused on relationships that align with 501

the dialogue context. 502

Combining Extracted and External Knowledge: 503

After retrieving relevant external triples, the next 504

step is to combine them with the relationships ex- 505

tracted directly from the dialogue. Relationships 506

from the dialogue are prioritized to preserve con- 507

textual relevance, while global triples are used as 508

supplementary information to enrich the graph. For 509

instance, given the dialogue: 510

"John Doe is a software engineer at XYZ 511

Corporation. He has a degree in Com- 512

puter Science from ABC University." 513

The extracted entities are: 514

• "John Doe," "XYZ Corporation," "Computer 515

Science," "ABC University." 516

And the extracted relationships include: 517

• (John Doe, engineer) 518

• (John Doe, degree) 519

• (XYZ Corporation, engineer) 520

• (ABC University, degree) 521

Querying DBpedia for additional information about 522

these entities may yield triples such as: 523

• (John Doe, affiliatedWith, XYZ Corporation) 524
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• (ABC University, locatedIn, Ann Arbor)525

• (Computer Science, branchOf, STEM Fields)526

These external triples provide additional contextual527

knowledge, enhancing the graph’s representation.528

Graph Representation: The instance-specific529

KG is constructed programmatically using Net-530

workX. In this representation:531

• Nodes correspond to entities (e.g., "John532

Doe," "XYZ Corporation," "Computer Sci-533

ence," "ABC University").534

• Edges represent relationships (e.g., "John535

Doe" is an "engineer," "John Doe" has a "de-536

gree," "ABC University" offers "Computer Sci-537

ence").538

For example, the graph constructed from the above539

dialogue would include nodes for each entity and540

edges for relationships derived from both the dia-541

logue and external knowledge.542

Challenges in KG Construction: One key chal-543

lenge in constructing the KG is handling ambigu-544

ities in entity names. For instance, entities with545

the same name but different contexts (e.g., "John546

Smith" from different organizations) could intro-547

duce noise into the graph. To resolve this, addi-548

tional attributes such as associated organizations549

or locations are used to disambiguate entities. Re-550

lationships extracted from the dialogue also take551

precedence during integration to ensure contextual552

relevance.553

Final Integration: Once the KG is constructed,554

it provides a unified representation that integrates555

dialogue-specific relationships with external knowl-556

edge. The graph is structured as a directed graph,557

where edges capture the flow of relationships be-558

tween nodes. This structured representation forms559

the foundation for the subsequent step of generating560

node embeddings, enabling the model to leverage561

this enriched context.562

4.3 Node Embedding Generation563

Once the KG is constructed, the next step involves564

generating node embeddings. Node embeddings565

are critical because they allow the model to cap-566

ture the nuanced connections and dependencies567

between entities in the graph. By embedding nodes568

into a high-dimensional space, the structural infor-569

mation of the graph (e.g., proximity, relationships,570

and importance of nodes) is encoded in a form 571

that our machine learning model can leverage for 572

reasoning and inference tasks. 573

Node Embedding Algorithm: To generate em- 574

beddings, we utilize the Node2Vec algorithm. It 575

captures the graph’s structural properties by sim- 576

ulating random "walks" and learning embeddings 577

based on co-occurrence patterns in these walks. 578

The key steps include: 579

1. Random Walk Simulation: For each node, 580

Node2Vec generates multiple random walks 581

of a predefined length. These walks explore 582

the graph structure, capturing both local and 583

global relationships. 584

2. Optimization: The walks are treated as se- 585

quences (similar to sentences in natural lan- 586

guage), and a Skip-Gram model is applied to 587

optimize embeddings such that nodes appear- 588

ing in similar walks have similar embeddings. 589

3. Hyperparameter Configuration: The follow- 590

ing hyperparameters are used in our imple- 591

mentation: 592

• Dimensions: Embeddings are generated 593

in a 768-dimensional space to align with 594

the transformer model’s embedding size. 595

• Walk Length: Each random walk con- 596

sists of 30 steps, which we found to 597

be the best at sufficiently exploring the 598

graph structure. 599

• Number of Walks: Each node is ex- 600

plored through 200 random walks to cap- 601

ture diverse contexts. 602

• Window Size: A context window size 603

of 10 is used during the Skip-Gram opti- 604

mization process. 605

Output of Node Embeddings: The output of 606

this step is a dictionary, mapping each entity node 607

to its corresponding embedding vector. Each vector 608

is a 768-dimensional numerical representation that 609

captures both the local and global graph structure 610

around the node. For instance: 611

• Node: "John Doe" → Embedding: [0.32, 612

-0.54, 0.78, ...] 613

• Node: "XYZ Corporation" → Embedding: 614

[0.12, 0.34, -0.67, ...] 615
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Challenges in Node Embedding Generation:616

One challenge in this step is ensuring that embed-617

dings capture the relevant context without introduc-618

ing noise from unrelated nodes or relationships. To619

address this:620

• Random walks are parameterized to balance621

exploration (capturing global context) and ex-622

ploitation (focusing on local neighborhoods).623

• Only nodes corresponding to entities extracted624

from the dialogue are retained in the final em-625

bedding dictionary, ensuring relevance to the626

entailment task.627

Summary: These node embeddings serve as the628

bridge between the knowledge graph and the trans-629

former model. By encoding the structural and rela-630

tional information of the KG into a numerical for-631

mat, they enable the downstream model to leverage632

this enriched context for more accurate entailment633

predictions. The next section describes how these634

embeddings are integrated with the transformer635

model’s token embeddings to form an augmented636

input representation.637

4.4 Augmenting Transformer Inputs638

After generating node embeddings from the KG,639

the next step involves integrating these embeddings640

with the transformer model’s token embeddings.641

Transformer models like BERT are highly effective642

at capturing textual patterns and semantics but lack643

an inherent understanding of structured relation-644

ships and graph-based dependencies. We will show645

how we combine an inherently sequential model646

with graphical node embeddings from the previous647

step to provide an additional layer of context for648

the model.649

Token Embedding Generation: As is common650

for regular text tokens, dialogue text is tokenized651

in our model using the transformer model’s tok-652

enizer (BERT’s WordPiece tokenizer). Each token653

is mapped to a unique ID and subsequently passed654

through the embedding layer of the transformer,655

generating a 768-dimensional token embedding for656

each token. These embeddings capture the seman-657

tic context of the dialogue text.658

For instance, in the sentence "John Doe is a659

software engineer at XYZ Corporation," the tokens660

"John," "Doe," "is," "a," "software," "engineer,"661

and "XYZ Corporation" are converted into their662

respective token embeddings.663

Node Embedding Alignment: To integrate node 664

embeddings, we align the tokens with their corre- 665

sponding nodes in the KG. Each entity extracted 666

from the dialogue is matched to its corresponding 667

tokens in the tokenized text. For example: 668

• Entity: "John Doe" → Tokens: "John," "Doe" 669

• Entity: "XYZ Corporation" → Tokens: 670

"XYZ," "Corporation" 671

If a token corresponds to a node in the KG, its 672

embedding is augmented with the node embedding 673

generated in the previous step. 674

Augmentation Process: The augmentation pro- 675

cess involves concatenating the token embeddings 676

and their corresponding node embeddings. This 677

step ensures that each token in the input sequence 678

is enriched with additional context from the KG. 679

The concatenation is performed as follows (with e 680

representing the vector embedding): 681

eaug = Concatenate(etoken, enode) 682

The resulting augmented embedding has a 683

dimensionality of 1536 (768 from the token 684

embedding and 768 from the node embedding). 685

686

If a token does not correspond to any node in 687

the KG, its embedding is concatenated with a zero 688

vector of size 768 to maintain consistency. 689

Example: For the sentence "John Doe is a soft- 690

ware engineer at XYZ Corporation," consider the 691

token "John Doe" and its corresponding node em- 692

bedding from the KG. The token embedding for 693

"John Doe" might be: 694

etoken = [0.32,−0.45, 0.67, . . .] 695

(768 dimensions) (1) 696

The node embedding for "John Doe" could be: 697

enode = [0.12, 0.56,−0.89, . . .] 698

(768 dimensions) (2) 699

The concatenated embedding becomes: 700

eaug = [0.32,−0.45, 0.67, . . . , 701

0.12, 0.56,−0.89, . . .] (1536 dimensions) (3) 702

A linear layer then reduces this augmented em- 703

bedding to 768 dimensions. 704
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Challenges:705

• Token-Node Alignment: We had to do extra706

processing to ensure accurate alignment be-707

tween tokens and nodes, especially for multi-708

word entities.709

• High Dimensionality: Concatenating embed-710

dings increases the dimensionality, which ne-711

cessitated a reduction step to match the trans-712

former model’s input requirements.713

• Handling Missing Nodes: Most of the time,714

tokens do not correspond to nodes in the KG.715

In these instances, we used zero-padding for716

tokens to represent their non-existent node717

embedding.718

Summary: By augmenting the transformer’s in-719

put layer, we ensure that the model has access to720

both semantic and relational information during721

training and inference, effectively bridging the gap722

between unstructured dialogue data and structured723

knowledge graphs.724

4.5 Training Pipeline725

The goal of our training pipeline is to fine-tune a726

transformer-based model on the conversational en-727

tailment task, with augmented inputs that include728

both token embeddings and graph-based node em-729

beddings.730

We used the Conversational Entailment dataset731

from the SLED Lab. This dataset includes struc-732

tured conversation data, where each entry com-733

prises of dialogue text, a type classification (fact, in-734

tent, desire, or belief), a hypothesis sentence based735

on the dialogue, and an entailment that describes if736

the hypothesis can be inferred from the dialogue.737

Data Preprocessing: The input dialogue data is738

processed to prepare it for training:739

• Tokenization: Dialogue text is tokenized us-740

ing the transformer model’s tokenizer (e.g.,741

BERT WordPiece tokenizer). This step con-742

verts the dialogue and hypothesis into a se-743

quence of tokens, which are then numerical-744

ized into unique token IDs.745

• Feature Augmentation: The tokenized dia-746

logue is aligned with the node embeddings747

generated from the instance-specific knowl-748

edge graph. Token embeddings and node em-749

beddings are concatenated to form augmented750

embeddings, as described in the previous sub- 751

section. 752

• Padding and Masking: To ensure uniform 753

input length, sequences are padded to a fixed 754

length (e.g., 128 tokens). An attention mask is 755

generated to differentiate between real tokens 756

and padding tokens, allowing the model to 757

ignore padding during training. 758

Model Initialization: The transformer model 759

(e.g., BERT) is initialized with pre-trained weights. 760

A custom embedding layer is added to handle the 761

augmented inputs, which consist of both token and 762

node embeddings. This layer includes a fully con- 763

nected linear layer to reduce the dimensionality 764

of the augmented embeddings back to 768 dimen- 765

sions, matching the transformer’s input require- 766

ments. 767

Training Setup: The training process involves 768

optimizing the model’s parameters using a super- 769

vised learning approach. Key components include: 770

• Loss Function: Cross-entropy loss is used to 771

measure the difference between the predicted 772

probabilities and the ground-truth labels. We 773

used this loss function since it is commonly 774

used for binary or multi-class classification 775

tasks. 776

• Optimizer: AdamW (Adaptive Moment Es- 777

timation with Weight Decay) is used as the 778

optimizer. This model is very popular, espe- 779

cially for fine-tuning transformer models, as it 780

has adaptive learning rates and regularization. 781

• Learning Rate Scheduler: A linear learn- 782

ing rate scheduler with warm-up steps is used 783

to gradually increase the learning rate at the 784

beginning of training, to prevent gradient in- 785

stability and improves convergence. An over- 786

all faster learning rate was utilized in our 787

BERT+KG than within the baseline. This 788

came from both experimental results and train- 789

ing the linear layer to augment embeddings. 790

• Batching: Training data is divided into mini- 791

batches, allowing the model to process mul- 792

tiple examples simultaneously. We found a 793

batch size of 32 to be a good balance between 794

computational efficiency and memory con- 795

straints (considering limited computational re- 796

sources). 797
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Cross-Validation: To reduce over fitting, we798

used an 8-fold cross-validation approach. The799

dataset is split into 8 folds, with 7 folds used for800

training and 1 fold used for validation in each itera-801

tion. This process is repeated 8 times, rotating the802

validation fold each time, ensuring that all exam-803

ples are used for both training and validation.804

Model Training: The model is trained for a805

fixed number of epochs (8) on each fold. Dur-806

ing training, the model processes each mini-batch,807

computing the loss and updating its parameters808

through backpropagation. We also found gradi-809

ent clipping to be useful in preventing exploding810

gradients. Training progress is monitored, and hy-811

perparameters are adjusted using metrics such as812

loss and accuracy on the validation set.813

Evaluation: After each training epoch, the814

model is evaluated on the validation set. Validation815

accuracy and loss are recorded and used to assess816

the model’s performance and identify if our model817

is overfitting. Metrics such as precision, recall, and818

F1-score are computed to enumerate the model’s819

performance. Additionally, consistency and coher-820

ence metrics are evaluated to measure the logical821

alignment of the model’s predictions with human822

reasoning.823

Final Model Selection: Once cross-validation824

is complete, the model with the best validation825

performance is selected for further evaluation on826

the test set.827

Testing on Unseen Data: The selected model is828

tested on the held-out test set to evaluate its gener-829

alization capabilities. Metrics are computed on this830

unseen data to provide a comprehensive assessment831

of the model’s performance.832

Challenges and Considerations: We encoun-833

tered several challenges while constructing our834

training pipeline.835

• Computational Overhead: Augmented in-836

puts increase the computational requirements,837

necessitating efficient batching and optimiza-838

tion techniques.839

• Alignment Errors: Ensuring accurate align-840

ment between tokens and nodes requires ro-841

bust preprocessing and validation.842

• Hyperparameter Tuning: Parameters such843

as learning rate, batch size, and the number844

of epochs are tuned to achieve optimal perfor- 845

mance. 846

4.6 Coherence Checks 847

To evaluate the logical consistency and inter- 848

pretability of the model’s predictions, we con- 849

ducted coherence checks as a supplementary eval- 850

uation process. Coherence, in the context of con- 851

versational entailment, refers to the model’s ability 852

to maintain consistent reasoning across subparts 853

of a dialogue and align its intermediate decisions 854

with human-like logical steps. This step ensures 855

that the model is not only accurate but also reliable 856

and explainable. 857

4.6.1 Motivation for Coherence Evaluation 858

While traditional metrics such as accuracy and 859

F1-score provide a measure of predictive perfor- 860

mance, they do not capture the logical validity of 861

the model’s intermediate reasoning. For instance, a 862

model may arrive at a correct prediction by relying 863

on spurious correlations or shortcuts rather than rea- 864

soning logically through the dialogue. Coherence 865

checks address this limitation by checking: 866

• Consistency of Subspan Predictions: The 867

model should make consistent entailment de- 868

cisions for individual subspans of the dialogue 869

that logically align with the overall entailment 870

decision. 871

• Alignment with Human Reasoning: The 872

model’s predictions should follow logical rea- 873

soning paths that are interpretable and under- 874

standable to humans. 875

• Mitigation of Spurious Patterns: Coherence 876

checks help identify and reduce reliance on 877

patterns or correlations that do not contribute 878

to meaningful reasoning. 879

4.6.2 Subspan-Level Entailment Evaluation 880

To perform coherence checks, the dialogue was 881

split into subspans, each representing a contiguous 882

portion of the conversation. For example, given a 883

dialogue with three turns: 884

• Full dialogue: "Speaker A: I submitted my 885

application. Speaker B: That’s great! How do 886

you feel? Speaker A: I’m not sure, maybe I 887

should have double-checked." 888

• Subspan 1: "Speaker A: I submitted my appli- 889

cation." 890
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• Subspan 2: "Speaker A: I submitted my appli-891

cation. Speaker B: That’s great! How do you892

feel?"893

The model was tasked with predicting entailment894

for the hypothesis based on each subspan.895

4.6.3 Coherence Metrics896

We employed multiple coherence metrics to evalu-897

ate logical consistency:898

• Span Accuracy: The proportion of sub-899

spans where the model’s entailment prediction900

aligns with the overall prediction for the full901

dialogue.902

• Strict Coherence: Measures whether the903

model consistently predicts entailment across904

all subspans that logically lead to the hypothe-905

sis.906

• Lenient Coherence: Measures whether the907

model makes at least one consistent entail-908

ment prediction for subspans that support the909

hypothesis.910

• Consistency Score: A binary metric indicat-911

ing whether any intermediate subspan predic-912

tions contradict the overall entailment deci-913

sion.914

4.6.4 Implementation915

The coherence evaluation was implemented by seg-916

menting each dialogue-hypothesis pair into sub-917

spans of increasing length. The model’s predictions918

for each subspan were recorded alongside its pre-919

diction for the full dialogue. Logical consistency920

was assessed by comparing the predictions for the921

subspans with the prediction for the full dialogue.922

Finally, coherence scores were aggregated across923

the dataset to provide an overall assessment.924

4.6.5 Role in the Overall Framework925

Coherence checks play a vital role in ensuring the926

reliability and interpretability of the model’s pre-927

dictions. By identifying and addressing inconsis-928

tencies in reasoning, coherence checks enhance929

the robustness of the model and align its behavior930

with human logical reasoning. This evaluation step931

also provides actionable insights for further refine-932

ment of the model, such as improving alignment933

between token and node embeddings or augment-934

ing the training data with additional examples that935

emphasize logical reasoning.936

4.7 Summary 937

The methodology implemented in this project 938

represents a comprehensive approach to enhanc- 939

ing conversational entailment through the integra- 940

tion of instance-specific knowledge graphs and 941

transformer-based models. Each component of the 942

pipeline, from entity and relationship extraction to 943

evaluating coherence, was carefully designed to 944

address specific challenges in conversational rea- 945

soning, enabling the model to make more accurate 946

and interpretable predictions. 947

5 Results & Analysis 948

Model Acc. L. Coher. S. Coher.
BERT 0.57558 0.33256 0.24419

BERT+KG 0.61628 0.41379 0.34302

Table 1: Accuracy (Acc.), lenient coherence (L. Coher.),
and strict coherence (S. Coher.) for baseline BERT and
new BERT with graph encodings from instance-specific
knowledge graphs (BERT-KG).

Table 1 displays the resulting accuracies and co- 949

herences of the baseline BERT model and the new 950

BERT enhanced with graphical encodings from an 951

instance-specific knowledge graph (BERT+KG). 952

Overall results display consistent improvement of 953

BERT+KG accuracy and coherence over the base- 954

line BERT, with a larger leap in coherence ( 8% 955

increase in lenient coherence and 10% increase 956

in strict coherence) than seen in accuracy ( 4% 957

increase in accuracy). We find the results to be 958

promising, seemingly confirming the hypothesis 959

of knowledge graph enhancement creating a better 960

model for conversational entailment. However, it 961

cannot be understated that this improvement does 962

come with the steep additional cost involved from 963

computing node embedding for each instance of 964

dialog. 965

5.1 Addressing Major Challenges 966

Not mentioned previously is the large problem of 967

the additional computational complexity involved 968

with creating node embeddings. This process in- 969

volves calling a coreference resolution model, a 970

named entity recognition model, an external knowl- 971

edge database for each entity, and performing ran- 972

dom walks to finally calculate the node embed- 973

dings. Running all of this once, over the full dataset 974

of all examples takes upwards of four hours on 975

a A100 GPU. It quickly became apparent that it 976
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would be unrealistic to generate node embeddings977

for each dialog every time it is needed within the978

model. Instead, we chose to freeze the node em-979

bedding aspect of the model, and then store node980

embeddings of each dialog in a saved dictionary981

to save repeated computation cost. This, however,982

results in the downside of having frozen hyperpa-983

rameters of the dimension of the node embedding,984

the number of references from the global knowl-985

edge graph, and frozen parameters of the random986

walk. This left the only trainable parameters to987

be that of the underlying BERT model and the lin-988

ear layer for embedding augmentation, but a much989

faster training/testing process.990

5.2 Analysis991

While we did see general improvement in accuracy992

and coherence, they were not to the large degree993

we may have hoped for, such as elevating BERT994

to the level achieved by RoBERTA/DeBERTA as995

reported by Storks et al. (Storks and Chai, 2021).996

To understand why knowledge graph enhancement997

only resulted in lesser improvements of the BERT998

model, we performed a more in depth analysis of999

the results.1000

Our first investigation was into what percentage1001

of data was actually being augmented by graph1002

embeddings. Under our model, there is potential1003

that a dialog would not create an instance specific1004

knowledge graph, in which case there would be1005

no graph embeddings to augment the token em-1006

beddings with. The first potential scenario is if no1007

named entities were found from within the dialog.1008

In this case, there are nothing to query to the global1009

knowledge bank and so an empty instance specific1010

knowledge graph. The second scenario would be1011

if named entities were found by NER, but these1012

named entities had no relationships to each other1013

and the entities did not appear within the global1014

knowledge bank. In this instance, the knowledge1015

graph is not a graph, but a set of completely dis-1016

junct nodes from which node embeddings cannot1017

be created.1018

We found that a large proportion of dialogs1019

within the dataset fell under one of these two cat-1020

egories. In fact, only 37% and 46% of instances1021

from the training and test set respectively had node1022

embeddings generated. This sharply reduced the1023

potential improvement of our model to only be1024

under these minority of scenarios where node em-1025

beddings are relevant.1026

Our second investigation was into the potential1027

impact of the node embeddings in the augmented 1028

embeddings. We noticed that due to the length 1029

of node embeddings (768) created from a limited 1030

sized graph, that most values within node embed- 1031

dings were very small. Smaller values comparative 1032

to the token embeddings could result in less of an 1033

impact for the nodes when the tokens are combined. 1034

As such, some of these node embeddings with min- 1035

imal values have potential to be "forgotten" during 1036

the augmentation process. 1037

6 Conclusion and Future Work 1038

Overall, our approach of enhancing BERT with 1039

node embeddings from instance-specific knowl- 1040

edge graphs for the purpose of conversational en- 1041

tailment produced some meaningful improvements 1042

in both accuracy and coherence metrics. However, 1043

the overhead computation cost of calculating the 1044

node embeddings was exponential in comparison 1045

to the base BERT model. This extra complex- 1046

ity suggest that the gains of our additional effort 1047

may likely do not justify the additional cost of uti- 1048

lizing knowledge graphs for most applications of 1049

conversational entailment. This is especially true 1050

given the fact that more complex models such as 1051

RoBERTA are able to achieve even better perfor- 1052

mance in a far lesser amount of time. 1053

That being said, the performance boost seen is 1054

significant enough that it could warrant extra in- 1055

vestigation for cases under which the increased 1056

coherence is worth the additional cost. Under such, 1057

future work may include tuning of hyperparameters 1058

that we set during the creation of node embeddings. 1059

This includes factors such as the dimension of node 1060

embeddings, which we believe adjusting could in- 1061

crease the relevance of node embeddings within the 1062

augmentation process. Also, future work into im- 1063

provement of named entity recognition/relationship 1064

extraction and an increase to the limit of references 1065

from the global knowledge graph would likely cre- 1066

ate more useful instance-specific knowledge graph 1067

and therefore improved node embeddings. 1068

7 Work Division 1069

All 4 team members were involved equally in each 1070

step of the implementation process, with individu- 1071

als leading different aspects of the project. Team 1072

Member 1 lead the entity and relationship extrac- 1073

tion from dialogue data using NER and relationship 1074

extraction tools. Team Member 2 lead the con- 1075

struction of instance-specific knowledge graphs for 1076
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each dialogue. Team Member 3 lead the process1077

of generating node embeddings for entities in the1078

instance-specific knowledge graphs. Finally, Team1079

Member 4 lead the integration of node embeddings1080

with BERT and model training and tuning. All1081

team members contributed towards the creation of1082

the paper and presentation.1083

8 Code Repository1084

https://github.com/jack2kiwi/1085

NLP-595-Conversational_Entailment_1086

Instance_Specific_KG1087
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A Appendix1116

Model Batch LR Epochs
BERT 32 7.5e-6 8

BERT+KG 32 1e-5 8

Table 2: Training hyperparameters (batch size (batch),
learning rate (lr), epochs) for baseline BERT model and
new BERT+KG model
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