Improving Conversational Entailment with Instance-Specific Knowledge
Graphs

Anonymous ACL submission

Abstract

Conversation entailment, the task of determin-
ing if a hypothesis can be inferred from a
multi-turn dialogue, presents challenges due
to the complex nature of conversational dynam-
ics. Transformer-based models like BERT ex-
cel in capturing language patterns and have
shown strong performance in entailment tasks.
However, as highlighted by Storks and Chai
(2021), these models often lack coherence in
intermediate reasoning, relying on spurious cor-
relations that undermine interpretability and
trust. To address this, we proposed augmenting
transformers with instance-specific knowledge
graphs to enhance reasoning coherence and ac-
curacy. While our approach demonstrated im-
provements in accuracy and coherence metrics,
the complexity and computational overhead in-
volved suggest that the gains may not justify
the additional effort for most applications.

Code for our project can be found in our
GitHub repository. '

1 Introduction

Understanding and predicting entailment in con-
versations is a difficult but crucial task in natural
language processing. Conversational entailment in-
volves determining whether a hypothesis can logi-
cally be inferred from a multi-turn dialogue. Unlike
conventional textual entailment, which deals with
relatively static and structured texts, conversation
entailment introduces additional complexities, such
as dialogue turns, implicit references, and long-
distance dependencies between statements. This
makes it a uniquely challenging problem for cur-
rent natural language processing models.
Transformer-based models, such as BERT, have
shown significant promise in handling natural lan-
guage processing tasks, including entailment. Their

lhttps://github.com/jackzkiwi/
NLP-595-Conversational _Entailment_Instance_
Specific_KG

success largely comes from pretraining on large
datasets, allowing them to learn representations of
language. However, these models often fall short
when applied to conversational entailment because
they focus on surface-level correlations within the
data, sometimes leading to inaccurate or logically
inconsistent predictions. As shown by previous re-
search, this can reduce the trust and interpretability
of these models, especially in uses where logical
consistence is important.

The main issue lies in the intermediate reason-
ing process of transformer-based models. While
they can achieve high accuracy metrics, the way
they reach their conclusions is a black box and
their logical reasoning could be incorrect which
can lead to inconsistent results. This lack of coher-
ence not only affects the robustness of these models
but also reduces their usability in real-world sce-
narios. To address these limitations, we propose
using instance-specific knowledge graphs with a
transformer-based model. By explicitly modeling
the relationships and entities within a dialogue,
knowledge graphs provide structured, contextual
information that can enhance the model’s reasoning
process.

1.1 Dialogue Example for Coherent Text
Classification
Dialogue:

* Al: "I finally submitted my application for
the job."

* B1: "That’s great! How do you feel about it?"

* A2: "Honestly, I'm not sure. I keep wonder-
ing if I should have double-checked every-
thing one more time."

Hypothesis:
Speaker A feels unsure about their application sub-
mission.

https://github.com/jack2kiwi/NLP-595-Conversational_Entailment_Instance_Specific_KG
https://github.com/jack2kiwi/NLP-595-Conversational_Entailment_Instance_Specific_KG
https://github.com/jack2kiwi/NLP-595-Conversational_Entailment_Instance_Specific_KG

In this example, the hypothesis cannot be directly
inferred from any single segment in the dialogue.
The hypothesis requires an understanding of the
overall context:

Evaluation:

Segment Hypothesis Support

"I finally submitted X
my application for the
job."

"That’s great! How do X
you feel about it?"

"Honestly, I'm not X
sure. I keep wondering
if I should have double-
checked everything
one more time."

Full dialogue (A1, B1, ve
A2 combined)

While the hypothesis aligns with the final seg-
ment, the context from all three segments are nec-
essary for a coherent inference. A model relying
solely on statistical patterns might overlook the con-
nections between these statements or give unneces-
sary importance to isolated phrases. By introduc-
ing a knowledge graph that captures relationships
(e.g., "Speaker A" — "submitted application" and
"Speaker A" — "feels unsure"), the model gains
access to a structured representation that supports
logical reasoning.

2 Related Work

Our work builds upon several previous develop-
ments in natural language processing, particularly
conversational entailment and graph-based learn-
ing. Such advancements in NLP tasks form the
foundation of our methodology.

2.1 Conversational Entailment

Previous research in conversational entailment has
addressed challenges in reasoning over dialogue.
Zhang and Chai (Zhang and Chai, 2010) empha-
sized how traditional textual entailment frame-
works are inadequate when applied to dialogue,
which can contain elements such as turn-taking,
lingustic phenomena of utterances, and implicature.
In order to handle these elements, they developed
a modeling framework using two levels of seman-
tic representation: a basic representation based on

syntactic parsing of utterances, and an augmented
representation that incorporates conversational fea-
tures, such as dialogue acts, to capture a more in-
depth context. Additionally, Zhang and Chai ex-
perimented with long-distance relationship (LDR)
modeling, which bridges semantic gaps between
constituents through two approaches: implicit mod-
eling, which looks at the distance between terms,
and explicit modeling, which represents semantic
paths as strings to capture more nuanced relation-
ships. Combining conversation structures with ex-
plicit LDR modeling provided the highest accuracy,
showing that both structural and relational model-
ing play vital roles in conversational entailment.

Building on this foundation, Storks and Chai
(Storks and Chai, 2021) proposed a broader eval-
uation of model performance through coherence-
based metrics, which also evaluates the internal
consistency of model predictions rather than just
the accuracy. Their coherence framework priori-
tizes alignment with human reasoning, identifying
inconsistencies in intermediate model decisions.
This coherence-based approach contributes to de-
veloping more interpretable, robust systems capa-
ble of aligning with human logic in entailment.
Together, these works highlight the importance of
structure, coherence, and relationship modeling to
achieve reliable performance in conversation un-
derstanding tasks.

2.2 Knowledge Graphs

The importance of knowledge graphs in organizing
and representing data has also been explored in the
past. Peng et al. (Peng et al., 2023) details how
knowledge graphs have significantly impacted Al
tasks such as recommendation systems, question
answering, and information retrieval by allowing
complex information to be efficiently modeled and
accessed. Even though there are still challenges
regarding knowledge graph construction and ap-
plication, the potential for knowledge graphs to
enhance logical consistency in dialogue-based situ-
ations presents opportunities for improving conver-
sational entailment.

2.3 Graph-based Learning

Graph-based learning has been explored as an inno-
vative area for improving machine learning models
in situations involving structured data. Algorithms
and frameworks such as Node2Vec and GraphGPT
have introduced novel approaches for incorporating
graph representations in Al tasks.

2.3.1 Node2Vec

Node2Vec is a method of node embedding that
transforms graphs into numerical representations
(Grover and Leskovec, 2016). It introduces a flexi-
ble framework for learning feature representations
of nodes in graphs. In contrast to traditional em-
bedding methods, which rely on rigid definitions
of node neighborhoods, Node2Vec employs biased
random walks to sample neighborhoods dynami-
cally. These walks utilize both breadth-first sam-
pling (BFS), which emphasizes local structural
equivalence, and depth-first sampling (DFS), which
captures global community structures. This flex-
ibility allows Node2Vec to generate embeddings
that reflect both homophily, where nodes that be-
long to similar network clusters are embedded
closely together, and structural equivalence, where
nodes that have similar structural roles in networks
are embedded closely together. By optimizing a
neighborhood-preserving objective using stochas-
tic gradient descent, Node2Vec achieves efficient
performance in tasks such as multi-label node clas-
sification and link prediction. Its effectiveness has
been demonstrated on large real-world networks,
and it outperforms other approaches such as Deep-
Walk, LINE, and spectral clustering.

2.3.2 GraphGPT

Tang et al. (Tang et al., 2024) provides GraphGPT,
a framework that aligns large language models
with graph-structured data through an instruction-
tuning approach. It addresses the challenges of in-
corporating graph structural information with tex-
tual data by introducing a text-graph grounding
paradigm, dual-stage instruction tuning, and chain-
of-thought distillation. The text-graph grounding
paradigm aligns graph structures with the natural
language space. Semantic understanding of textual
information is connected with structural relation-
ships within the graph, ensuring compatibility with
LLM:s.

The second part of GraphGPT consists of dual-
stage graph instruction tuning. This instruction tun-
ing aligns the language model’s reasoning capabili-
ties with the nuances of graph learning tasks, allow-
ing for more accurate and appropriate responses.
In the first stage, self-supervised instruction tun-
ing, the language model’s reasoning is improved
by including structural knowledge specific to the
graph domain. In order to enact this process, un-
labeled graph structures are used to generate self-
supervised signals that are used as instructions for

model tuning. The second stage consists of task-
specific instruction tuning, which tailors the lan-
guage model’s reasoning behavior for specific tasks.
In this stage, specific text information is included
in the instruction design in order to further assist
the language model.

Following the instruction tuning, the step-by-
step reasoning abilities of GraphGPT are improved
through chain-of-thought distillation. Using knowl-
edge from the comprehensive language model GPT-
3.5, intermediate thought information is incorpo-
rated into instructions used for the task-specific in-
struction tuning portion. This improves coherence
and consistency, allowing for better performance
in situations involving more diverse graph data.

2.4 Named Entity Recognition

Named Entity Recognition (NER) is a process in
natural language processing that involves identify-
ing and categorizing entities such as people and
organizations within unstructured text (Keraghel
et al., 2024). Its effectiveness has been widely ex-
plored in the past, and there currently exist several
libraries supporting it. SpaCy, which we use in our
implementation, is one such library that offers tools
and pre-trained models for NER. The models are
based on both convolutional neural networks and
transformer-based architectures such as BERT. The
usage of SpaCy within natural language processing
tasks allows for the structuring of textual data and
the improved accuracy of downstream processing.

3 Motivation

Conversational entailment requires an in-depth un-
derstanding of relationships and speakers within
multi-turn dialogues, making it a difficult challenge
for natural language processing models. While
transformer-based models such as BERT have
demonstrated strong abilities in handling natural
language, they often struggle to capture the logi-
cal coherence necessary for entailment reasoning.
This limitation is rooted in their reliance on im-
plicit statistical patterns learned from large-scale
datasets, which can lead to predictions that lack
interpretability.

A possible solution to this problem uses the inte-
gration of knowledge graphs. Knowledge graphs
offer a structured representation of entities and their
relationships, making them a strong complement
to transformer-based models. Unlike language
models that rely solely on token-level patterns,

knowledge graphs explicitly encode semantic rela-
tionships and contextual information. This struc-
tured approach enables the model to reason over
long-distance dependencies and relationships in di-
alogues, which are often missed by transformers
alone.

By using instance-specific knowledge graphs,
we can tailor the model’s understanding to the spe-
cific context of each dialogue. This explicit repre-
sentation allows the model to ground its reasoning
in the actual content of the dialogue, rather than
relying on heuristic shortcuts. The result is a sys-
tem that is not only more accurate but also more
interpretable and aligned with human logic. There-
fore, knowledge graphs provide a way to bridge
the gap between statistical language modeling and
structured reasoning which allows us to develop
models that are both accurate and coherent.

4 Methodology

The methodology for our project is centered
around enhancing the performance of transformer-
based models for the task of conversational entail-
ment. While transformer models like BERT have
achieved significant advancements in this area, they
often fall short in maintaining coherence and logi-
cal consistently in their predictions. We hypothe-
size that this limitation arises due to their reliance
on statistical patterns in large-scale data, rather
than explicit modeling of relationships and entities
within conversations.

To address this challenge, our methodology in-
troduces a structured pipeline that integrates knowl-
edge graphs into the learning process. Knowledge
graphs are very powerful tools for representing
entities and their relationships in a structured for-
mat, capturing information that is often implicit in
text, and spans across different turns in dialogue.
By incorporating these graphs, we aim to provide
the model with additional contextual information,
allowing it to reason more effectively about the di-
alogue and improve both accuracy and coherence
in its predictions.

The proposed pipeline can be delineated by these
following key stages:

1. Entity and Relationship Extraction: Ex-
tracting key entities (e.g., people, organiza-
tions, or concepts) and relationships from
dialogues using Named Entity Recognition
(NER) and dependency parsing techniques.
This step ensures that the knowledge graph

is grounded in the specific context of each
conversation.

2. Instance-Specific Knowledge Graph Con-
struction: Querying a global knowledge
graph (e.g., DBpedia) using the extracted enti-
ties to retrieve subgraphs that represent rele-
vant information. These subgraphs form the
foundation of the instance-specific knowledge
graph.

3. Node Embedding Generation: Transform-
ing the knowledge graph into numerical rep-
resentations (embeddings) using graph neural
networks (GNNs) or node embedding tech-
niques like Node2Vec. These embeddings
capture the structural and relational informa-
tion of the graph.

4. Augmenting Transformer Input: Combin-
ing the node embeddings from the knowledge
graph with token embeddings from a trans-
former model (BERT) to create an enriched
input representation. This integration allows
the model to leverage both the linguistic and
relational information.

5. Model Training and Evaluation: Fine-
tuning the augmented transformer model on
a conversational entailment dataset, followed
by evaluating its performance using metrics
such as accuracy and coherence.

We intend that the integration of instance-
specific knowledge graphs would address the
knowledge gaps in current transformer models. We
believe that in using this approach, the predicted
results would not only be more accurate, but also
logically consistent and interpretable, aligning with
human reasoning.

In the following subsections, we dive deeper into
each stage of the methodology, providing detailed
explanations of the techniques, tools, and processes
used to implement this pipeline.

4.1 Entity and Relationship Extraction

Entity and relationship extraction forms a criti-
cal foundation for our methodology, providing
the structured data needed to construct instance-
specific knowledge graphs. The aim of this stage is
to identify key entities, such as individuals, organi-
zations, and locations, as well as their relationships

Global
Knowledge Graph

PY (]
[)
[]
e .0 Instance Specific
Knowledge Graph
°
L4 Node Embedding
] R :
°
o 0
Token Embedding Augmented Embedding
nnnnnnnnnnnnnnnnnnnnn gtayer "
- —— @ T

LLM

l

Hypothesis Entailment

Figure 1: Example diagram of our approach. Named
entity recognition and relationship extraction of dialog
are used to query a global knowledge graph to construct
a instance-specific knowledge graph. Node embeddings
are generated from the graph using GNNs and then con-
catenated with the dialogue’s model token embeddings.
These augmented embeddings are passed through to the
LLM to generate the hypothesis entailment prediction.

within the dialogue. These extracted elements en-
able the knowledge graph to represent the interac-
tions and contextual dependencies present in the
conversation.

We leverage several Natural Language Process-
ing techniques and libraries to perform this step
effectively. The key tools used are as follows:

* Named Entity Recognition (NER): The
purpose of this step is to preliminarily identify
entities in the text and categorize them
into predefined types such as PERSON, ORG,
and GPE. We used SpaCly, a state-of-the-art
NLP library, for NER. Specifically, we used
SpaCy’s pre-trained model en_core_web_1g
model to analyze each piece of dialogue in
separation and label the named entities for
every turn.

In determining the appropriate model
for NER, we had numerous options, as this
is a field undergoing constant development.
Our objective was to balance the speed of the
model with the quality of entity recognition.
SpaCy offered four model sizes, ranging
from small to large, and we observed that
the smaller models performed poorly in

terms of quality, which is why we opted for
the large model. Beyond SpaCy, we also
experimented with larger transformer-based
NER models, which performed exceptionally
well and consistently on this task. However,
due to the significantly higher latency and
computational resources required to run and
load a transformer model, we decided not to
use it in our final implementation.

* Dependency Parsing: The purpose of this
is to identify grammatical relationships be-
tween words in a sentence to extract mean-
ingful relationships between entities. We per-
formed dependency parsing using SpaCy’s
provided dependency tree. It provides infor-
mation about syntactic dependencies, such as
subject (nsubj), object (dobj), and attributes
(attr).

* Coreference Resolution: The purpose of
this process is to resolve references to the
same entity across different sentences within
the dialogue (e.g., pronouns such as "he,"
"she," or "it"). This approach significantly
enhances the quality of entity and relation-
ship extraction, resulting in more useful and
effective instance-specific knowledge graphs.
For coreference resolution, we use SpaCy’s
coreferee library.

The tools and techniques mentioned above are
systematically integrated into a unified pipeline to
extract entities and relationships efficiently from
dialogue data. Below, we outline the sequential
process and its implementation details:

First, the dialogue text is preprocessed to stan-
dardize references using coreference resolution.
This step ensures that entities mentioned across
multiple turns or sentences are consistently recog-
nized and linked. For example, in the dialogue
snippet, "John Doe submitted his application. He
was nervous,” the pronoun "He" is resolved to
"John Doe," producing the standardized version
"John Doe submitted his application. John Doe
was nervous." Unlike the NER model, we opted
to use the transformer-based en_core_web_trf
model, since coreference resolution is not a
bottleneck for the overall NER process.

Next, we perform Named Entity Recognition
(NER) on the coreference-resolved dialogue text.

Each turn of dialogue is processed individually,
and entities such as people, organizations, and
locations are identified using SpaCy’s pre-trained
en_core_web_lg. For example, in the sentence
"John Doe is a software engineer at XYZ Corpora-
tion,” NER could identify two entities: "John Doe"
as a PERSON and "XYZ Corporation" as an ORG.

Following NER, we use dependency parsing
to identify relationships between the extracted
entities. Dependency parsing analyzes the
grammatical structure of sentences to uncover
syntactic relationships, such as subject-object pairs
and attributes. For example, in the sentence "John
Doe is a software engineer,” dependency parsing
identifies "John Doe" as the subject (nsubj) and
"software engineer" as the attribute (attr). By
focusing on these syntactic dependencies, we
extract meaningful relationships such as (’John
Doe’, ’software engineer’) and (’XYZ
Corporation’, ’employer’).

Finally, the outputs from these stages are con-
solidated into a structured format. The entities
and relationships are stored as lists, which serve as
inputs for constructing the instance-specific knowl-
edge graph in the subsequent step. For instance,
given the sentence "John Doe is a software engi-
neer at XYZ Corporation. He graduated from ABC
University," the pipeline produces the following
results:

* Entities: [’ John Doe’, "XYZ
Corporation’, ’ABC University’]

¢ Relationships: [(’John Doe’, ’software
engineer’), (’John Doe’, "XYZ
Corporation’), (’John Doe’, ’ABC

University’)]

4.2 Instance-Specific Knowledge Graph
Construction

After extracting entities and relationships from the
dialogue, the next step is constructing an instance-
specific knowledge graph (KG). This KG provides
a structured representation of the dialogue, embed-
ding contextual and relational information essential
for enhancing the transformer model’s reasoning
capabilities. The goal of this step is to integrate
both the extracted relationships from the dialogue
and external knowledge from global KGs to create
a robust and context-aware graph structure tailored
to the specific dialogue instance.

This graph enables the model to capture long-
distance dependencies, infer implicit relationships,
and incorporate external knowledge to improve co-
herence and accuracy in entailment predictions.

Retrieving External Knowledge: To enrich the
extracted entities, we queried external knowledge
bases such as DBpedia using SPARQL, a query
language for semantic data. Each query returns
triples (subject, predicate, object) describing
relationships involving the entities. For example,
querying DBpedia for the entity "John Doe" might
return the following triples:

e (John Doe, affiliatedWith, XYZ
Corporation)
* (John Doe, publishedBook, Software

Engineering 101)

The retrieved triples are then filtered to retain only
the most relevant and contextually appropriate re-
sults. This filtering process ensures that the KG
remains focused on relationships that align with
the dialogue context.

Combining Extracted and External Knowledge:
After retrieving relevant external triples, the next
step is to combine them with the relationships ex-
tracted directly from the dialogue. Relationships
from the dialogue are prioritized to preserve con-
textual relevance, while global triples are used as
supplementary information to enrich the graph. For
instance, given the dialogue:

"John Doe is a software engineer at XYZ
Corporation. He has a degree in Com-
puter Science from ABC University."

The extracted entities are:

» "John Doe,"” "XYZ Corporation,” "Computer
Science," "ABC University."

And the extracted relationships include:
* (John Doe, engineer)
* (John Doe, degree)
* (XYZ Corporation, engineer)
* (ABC University, degree)

Querying DBpedia for additional information about
these entities may yield triples such as:

* (John Doe, affiliatedWith, XYZ Corporation)

* (ABC University, locatedIn, Ann Arbor)
* (Computer Science, branchOf, STEM Fields)

These external triples provide additional contextual
knowledge, enhancing the graph’s representation.

Graph Representation: The instance-specific
KG is constructed programmatically using Net-
workX. In this representation:

* Nodes correspond to entities (e.g., "John
Doe," "XYZ Corporation,” "Computer Sci-
ence,” "ABC University").

* Edges represent relationships (e.g., "John
Doe" is an "engineer,” "John Doe" has a "de-
gree," "ABC University" offers "Computer Sci-
ence").

For example, the graph constructed from the above
dialogue would include nodes for each entity and
edges for relationships derived from both the dia-
logue and external knowledge.

Challenges in KG Construction: One key chal-
lenge in constructing the KG is handling ambigu-
ities in entity names. For instance, entities with
the same name but different contexts (e.g., "John
Smith" from different organizations) could intro-
duce noise into the graph. To resolve this, addi-
tional attributes such as associated organizations
or locations are used to disambiguate entities. Re-
lationships extracted from the dialogue also take
precedence during integration to ensure contextual
relevance.

Final Integration: Once the KG is constructed,
it provides a unified representation that integrates
dialogue-specific relationships with external knowl-
edge. The graph is structured as a directed graph,
where edges capture the flow of relationships be-
tween nodes. This structured representation forms
the foundation for the subsequent step of generating
node embeddings, enabling the model to leverage
this enriched context.

4.3 Node Embedding Generation

Once the KG is constructed, the next step involves
generating node embeddings. Node embeddings
are critical because they allow the model to cap-
ture the nuanced connections and dependencies
between entities in the graph. By embedding nodes
into a high-dimensional space, the structural infor-
mation of the graph (e.g., proximity, relationships,

and importance of nodes) is encoded in a form
that our machine learning model can leverage for
reasoning and inference tasks.

Node Embedding Algorithm: To generate em-
beddings, we utilize the Node2Vec algorithm. It
captures the graph’s structural properties by sim-
ulating random "walks" and learning embeddings
based on co-occurrence patterns in these walks.
The key steps include:

1. Random Walk Simulation: For each node,
Node2Vec generates multiple random walks
of a predefined length. These walks explore
the graph structure, capturing both local and
global relationships.

2. Optimization: The walks are treated as se-
quences (similar to sentences in natural lan-
guage), and a Skip-Gram model is applied to
optimize embeddings such that nodes appear-
ing in similar walks have similar embeddings.

3. Hyperparameter Configuration: The follow-
ing hyperparameters are used in our imple-
mentation:

* Dimensions: Embeddings are generated
in a 768-dimensional space to align with
the transformer model’s embedding size.

* Walk Length: Each random walk con-
sists of 30 steps, which we found to
be the best at sufficiently exploring the
graph structure.

* Number of Walks: Each node is ex-
plored through 200 random walks to cap-
ture diverse contexts.

* Window Size: A context window size
of 10 is used during the Skip-Gram opti-
mization process.

Output of Node Embeddings: The output of
this step is a dictionary, mapping each entity node
to its corresponding embedding vector. Each vector
is a 768-dimensional numerical representation that
captures both the local and global graph structure
around the node. For instance:

* Node: "John Doe” — Embedding: [0.32,
-0.54, 0.78, ...]

* Node: "XYZ Corporation" — Embedding:
[0.12, 0.34, -0.67, ...]

Challenges in Node Embedding Generation:
One challenge in this step is ensuring that embed-
dings capture the relevant context without introduc-
ing noise from unrelated nodes or relationships. To
address this:

* Random walks are parameterized to balance
exploration (capturing global context) and ex-
ploitation (focusing on local neighborhoods).

* Only nodes corresponding to entities extracted
from the dialogue are retained in the final em-
bedding dictionary, ensuring relevance to the
entailment task.

Summary: These node embeddings serve as the
bridge between the knowledge graph and the trans-
former model. By encoding the structural and rela-
tional information of the KG into a numerical for-
mat, they enable the downstream model to leverage
this enriched context for more accurate entailment
predictions. The next section describes how these
embeddings are integrated with the transformer
model’s token embeddings to form an augmented
input representation.

4.4 Augmenting Transformer Inputs

After generating node embeddings from the KG,
the next step involves integrating these embeddings
with the transformer model’s token embeddings.
Transformer models like BERT are highly effective
at capturing textual patterns and semantics but lack
an inherent understanding of structured relation-
ships and graph-based dependencies. We will show
how we combine an inherently sequential model
with graphical node embeddings from the previous
step to provide an additional layer of context for
the model.

Token Embedding Generation: As is common
for regular text tokens, dialogue text is tokenized
in our model using the transformer model’s tok-
enizer (BERT’s WordPiece tokenizer). Each token
is mapped to a unique ID and subsequently passed
through the embedding layer of the transformer,
generating a 768-dimensional token embedding for
each token. These embeddings capture the seman-
tic context of the dialogue text.

For instance, in the sentence "John Doe is a
software engineer at XYZ Corporation," the tokens
"John," "Doe,"” "is," "a," "software,” "engineer,"
and "XYZ Corporation” are converted into their
respective token embeddings.

Node Embedding Alignment: To integrate node
embeddings, we align the tokens with their corre-
sponding nodes in the KG. Each entity extracted
from the dialogue is matched to its corresponding
tokens in the tokenized text. For example:

* Entity: "John Doe" — Tokens: "John," "Doe"

e Entity: "XYZ Corporation" — Tokens:
"XYZ," "Corporation”

If a token corresponds to a node in the KG, its
embedding is augmented with the node embedding
generated in the previous step.

Augmentation Process: The augmentation pro-
cess involves concatenating the token embeddings
and their corresponding node embeddings. This
step ensures that each token in the input sequence
is enriched with additional context from the KG.
The concatenation is performed as follows (with e
representing the vector embedding):

€aug = Concatenate(€oken; €node)

The resulting augmented embedding has a
dimensionality of 1536 (768 from the token
embedding and 768 from the node embedding).

If a token does not correspond to any node in
the KG, its embedding is concatenated with a zero
vector of size 768 to maintain consistency.

Example: For the sentence "John Doe is a soft-
ware engineer at XYZ Corporation,” consider the
token "John Doe" and its corresponding node em-
bedding from the KG. The token embedding for
"John Doe" might be:

Ctoken = [0.32, —0.45,0.67, . .]
(768 dimensions) (1)

The node embedding for "John Doe" could be:

enode = [0.12,0.56, —0.89, ...]
(768 dimensions) (2)

The concatenated embedding becomes:

€aug = [0.32,—0.45,0.67,...,
0.12,0.56,—0.89,...] (1536 dimensions) (3)

A linear layer then reduces this augmented em-
bedding to 768 dimensions.

Challenges:

* Token-Node Alignment: We had to do extra
processing to ensure accurate alignment be-
tween tokens and nodes, especially for multi-
word entities.

* High Dimensionality: Concatenating embed-
dings increases the dimensionality, which ne-
cessitated a reduction step to match the trans-
former model’s input requirements.

¢ Handling Missing Nodes: Most of the time,
tokens do not correspond to nodes in the KG.
In these instances, we used zero-padding for
tokens to represent their non-existent node
embedding.

Summary: By augmenting the transformer’s in-
put layer, we ensure that the model has access to
both semantic and relational information during
training and inference, effectively bridging the gap
between unstructured dialogue data and structured
knowledge graphs.

4.5 Training Pipeline

The goal of our training pipeline is to fine-tune a
transformer-based model on the conversational en-
tailment task, with augmented inputs that include
both token embeddings and graph-based node em-
beddings.

We used the Conversational Entailment dataset
from the SLED Lab. This dataset includes struc-
tured conversation data, where each entry com-
prises of dialogue text, a type classification (fact, in-
tent, desire, or belief), a hypothesis sentence based
on the dialogue, and an entailment that describes if
the hypothesis can be inferred from the dialogue.

Data Preprocessing: The input dialogue data is
processed to prepare it for training:

» Tokenization: Dialogue text is tokenized us-
ing the transformer model’s tokenizer (e.g.,
BERT WordPiece tokenizer). This step con-
verts the dialogue and hypothesis into a se-
quence of tokens, which are then numerical-
ized into unique token IDs.

* Feature Augmentation: The tokenized dia-
logue is aligned with the node embeddings
generated from the instance-specific knowl-
edge graph. Token embeddings and node em-
beddings are concatenated to form augmented

embeddings, as described in the previous sub-
section.

* Padding and Masking: To ensure uniform
input length, sequences are padded to a fixed
length (e.g., 128 tokens). An attention mask is
generated to differentiate between real tokens
and padding tokens, allowing the model to
ignore padding during training.

Model Initialization: The transformer model
(e.g., BERT) is initialized with pre-trained weights.
A custom embedding layer is added to handle the
augmented inputs, which consist of both token and
node embeddings. This layer includes a fully con-
nected linear layer to reduce the dimensionality
of the augmented embeddings back to 768 dimen-
sions, matching the transformer’s input require-
ments.

Training Setup: The training process involves
optimizing the model’s parameters using a super-
vised learning approach. Key components include:

* Loss Function: Cross-entropy loss is used to
measure the difference between the predicted
probabilities and the ground-truth labels. We
used this loss function since it is commonly
used for binary or multi-class classification
tasks.

* Optimizer: AdamW (Adaptive Moment Es-
timation with Weight Decay) is used as the
optimizer. This model is very popular, espe-
cially for fine-tuning transformer models, as it
has adaptive learning rates and regularization.

* Learning Rate Scheduler: A linear learn-
ing rate scheduler with warm-up steps is used
to gradually increase the learning rate at the
beginning of training, to prevent gradient in-
stability and improves convergence. An over-
all faster learning rate was utilized in our
BERT+KG than within the baseline. This
came from both experimental results and train-
ing the linear layer to augment embeddings.

* Batching: Training data is divided into mini-
batches, allowing the model to process mul-
tiple examples simultaneously. We found a
batch size of 32 to be a good balance between
computational efficiency and memory con-
straints (considering limited computational re-
sources).

Cross-Validation: ~ To reduce over fitting, we
used an 8-fold cross-validation approach. The
dataset is split into 8 folds, with 7 folds used for
training and 1 fold used for validation in each itera-
tion. This process is repeated 8 times, rotating the
validation fold each time, ensuring that all exam-
ples are used for both training and validation.

Model Training: The model is trained for a
fixed number of epochs (8) on each fold. Dur-
ing training, the model processes each mini-batch,
computing the loss and updating its parameters
through backpropagation. We also found gradi-
ent clipping to be useful in preventing exploding
gradients. Training progress is monitored, and hy-
perparameters are adjusted using metrics such as
loss and accuracy on the validation set.

Evaluation: After each training epoch, the
model is evaluated on the validation set. Validation
accuracy and loss are recorded and used to assess
the model’s performance and identify if our model
is overfitting. Metrics such as precision, recall, and
F1-score are computed to enumerate the model’s
performance. Additionally, consistency and coher-
ence metrics are evaluated to measure the logical
alignment of the model’s predictions with human
reasoning.

Final Model Selection: Once cross-validation
is complete, the model with the best validation
performance is selected for further evaluation on
the test set.

Testing on Unseen Data: The selected model is
tested on the held-out test set to evaluate its gener-
alization capabilities. Metrics are computed on this
unseen data to provide a comprehensive assessment
of the model’s performance.

Challenges and Considerations: We encoun-
tered several challenges while constructing our
training pipeline.

* Computational Overhead: Augmented in-
puts increase the computational requirements,
necessitating efficient batching and optimiza-
tion techniques.

* Alignment Errors: Ensuring accurate align-
ment between tokens and nodes requires ro-
bust preprocessing and validation.

¢ Hyperparameter Tuning: Parameters such
as learning rate, batch size, and the number

10

of epochs are tuned to achieve optimal perfor-
mance.

4.6 Coherence Checks

To evaluate the logical consistency and inter-
pretability of the model’s predictions, we con-
ducted coherence checks as a supplementary eval-
uation process. Coherence, in the context of con-
versational entailment, refers to the model’s ability
to maintain consistent reasoning across subparts
of a dialogue and align its intermediate decisions
with human-like logical steps. This step ensures
that the model is not only accurate but also reliable
and explainable.

4.6.1 Motivation for Coherence Evaluation

While traditional metrics such as accuracy and
F1-score provide a measure of predictive perfor-
mance, they do not capture the logical validity of
the model’s intermediate reasoning. For instance, a
model may arrive at a correct prediction by relying
on spurious correlations or shortcuts rather than rea-
soning logically through the dialogue. Coherence
checks address this limitation by checking:

* Consistency of Subspan Predictions: The
model should make consistent entailment de-
cisions for individual subspans of the dialogue
that logically align with the overall entailment
decision.

Alignment with Human Reasoning: The
model’s predictions should follow logical rea-
soning paths that are interpretable and under-
standable to humans.

Mitigation of Spurious Patterns: Coherence
checks help identify and reduce reliance on
patterns or correlations that do not contribute
to meaningful reasoning.

4.6.2 Subspan-Level Entailment Evaluation

To perform coherence checks, the dialogue was
split into subspans, each representing a contiguous
portion of the conversation. For example, given a
dialogue with three turns:

* Full dialogue: "Speaker A: I submitted my
application. Speaker B: That’s great! How do
you feel? Speaker A: I’'m not sure, maybe |
should have double-checked."

* Subspan 1: "Speaker A: I submitted my appli-
cation.”

* Subspan 2: "Speaker A: I submitted my appli-
cation. Speaker B: That’s great! How do you
feel?"

The model was tasked with predicting entailment
for the hypothesis based on each subspan.

4.6.3 Coherence Metrics

We employed multiple coherence metrics to evalu-
ate logical consistency:

* Span Accuracy: The proportion of sub-
spans where the model’s entailment prediction
aligns with the overall prediction for the full
dialogue.

* Strict Coherence: Measures whether the
model consistently predicts entailment across
all subspans that logically lead to the hypothe-
sis.

¢ Lenient Coherence: Measures whether the
model makes at least one consistent entail-
ment prediction for subspans that support the
hypothesis.

* Consistency Score: A binary metric indicat-
ing whether any intermediate subspan predic-
tions contradict the overall entailment deci-
sion.

4.6.4 Implementation

The coherence evaluation was implemented by seg-
menting each dialogue-hypothesis pair into sub-
spans of increasing length. The model’s predictions
for each subspan were recorded alongside its pre-
diction for the full dialogue. Logical consistency
was assessed by comparing the predictions for the
subspans with the prediction for the full dialogue.
Finally, coherence scores were aggregated across
the dataset to provide an overall assessment.

4.6.5 Role in the Overall Framework

Coherence checks play a vital role in ensuring the
reliability and interpretability of the model’s pre-
dictions. By identifying and addressing inconsis-
tencies in reasoning, coherence checks enhance
the robustness of the model and align its behavior
with human logical reasoning. This evaluation step
also provides actionable insights for further refine-
ment of the model, such as improving alignment
between token and node embeddings or augment-
ing the training data with additional examples that
emphasize logical reasoning.

11

4.7 Summary

The methodology implemented in this project
represents a comprehensive approach to enhanc-
ing conversational entailment through the integra-
tion of instance-specific knowledge graphs and
transformer-based models. Each component of the
pipeline, from entity and relationship extraction to
evaluating coherence, was carefully designed to
address specific challenges in conversational rea-
soning, enabling the model to make more accurate
and interpretable predictions.

S Results & Analysis

’ Model ‘ Acc. L. Coher. S. Coher.
BERT 0.57558 0.33256 0.24419
BERT+KG | 0.61628 0.41379 0.34302

Table 1: Accuracy (Acc.), lenient coherence (L. Coher.),
and strict coherence (S. Coher.) for baseline BERT and
new BERT with graph encodings from instance-specific
knowledge graphs (BERT-KG).

Table 1 displays the resulting accuracies and co-
herences of the baseline BERT model and the new
BERT enhanced with graphical encodings from an
instance-specific knowledge graph (BERT+KG).
Overall results display consistent improvement of
BERT+KG accuracy and coherence over the base-
line BERT, with a larger leap in coherence (8%
increase in lenient coherence and 10% increase
in strict coherence) than seen in accuracy (4%
increase in accuracy). We find the results to be
promising, seemingly confirming the hypothesis
of knowledge graph enhancement creating a better
model for conversational entailment. However, it
cannot be understated that this improvement does
come with the steep additional cost involved from
computing node embedding for each instance of
dialog.

5.1 Addressing Major Challenges

Not mentioned previously is the large problem of
the additional computational complexity involved
with creating node embeddings. This process in-
volves calling a coreference resolution model, a
named entity recognition model, an external knowl-
edge database for each entity, and performing ran-
dom walks to finally calculate the node embed-
dings. Running all of this once, over the full dataset
of all examples takes upwards of four hours on
a A100 GPU. It quickly became apparent that it

would be unrealistic to generate node embeddings
for each dialog every time it is needed within the
model. Instead, we chose to freeze the node em-
bedding aspect of the model, and then store node
embeddings of each dialog in a saved dictionary
to save repeated computation cost. This, however,
results in the downside of having frozen hyperpa-
rameters of the dimension of the node embedding,
the number of references from the global knowl-
edge graph, and frozen parameters of the random
walk. This left the only trainable parameters to
be that of the underlying BERT model and the lin-
ear layer for embedding augmentation, but a much
faster training/testing process.

5.2 Analysis

While we did see general improvement in accuracy
and coherence, they were not to the large degree
we may have hoped for, such as elevating BERT
to the level achieved by ROBERTA/DeBERTA as
reported by Storks et al. (Storks and Chai, 2021).
To understand why knowledge graph enhancement
only resulted in lesser improvements of the BERT
model, we performed a more in depth analysis of
the results.

Our first investigation was into what percentage
of data was actually being augmented by graph
embeddings. Under our model, there is potential
that a dialog would not create an instance specific
knowledge graph, in which case there would be
no graph embeddings to augment the token em-
beddings with. The first potential scenario is if no
named entities were found from within the dialog.
In this case, there are nothing to query to the global
knowledge bank and so an empty instance specific
knowledge graph. The second scenario would be
if named entities were found by NER, but these
named entities had no relationships to each other
and the entities did not appear within the global
knowledge bank. In this instance, the knowledge
graph is not a graph, but a set of completely dis-
junct nodes from which node embeddings cannot
be created.

We found that a large proportion of dialogs
within the dataset fell under one of these two cat-
egories. In fact, only 37% and 46% of instances
from the training and test set respectively had node
embeddings generated. This sharply reduced the
potential improvement of our model to only be
under these minority of scenarios where node em-
beddings are relevant.

Our second investigation was into the potential

12

impact of the node embeddings in the augmented
embeddings. We noticed that due to the length
of node embeddings (768) created from a limited
sized graph, that most values within node embed-
dings were very small. Smaller values comparative
to the token embeddings could result in less of an
impact for the nodes when the tokens are combined.
As such, some of these node embeddings with min-
imal values have potential to be "forgotten" during
the augmentation process.

6 Conclusion and Future Work

Overall, our approach of enhancing BERT with
node embeddings from instance-specific knowl-
edge graphs for the purpose of conversational en-
tailment produced some meaningful improvements
in both accuracy and coherence metrics. However,
the overhead computation cost of calculating the
node embeddings was exponential in comparison
to the base BERT model. This extra complex-
ity suggest that the gains of our additional effort
may likely do not justify the additional cost of uti-
lizing knowledge graphs for most applications of
conversational entailment. This is especially true
given the fact that more complex models such as
RoBERTA are able to achieve even better perfor-
mance in a far lesser amount of time.

That being said, the performance boost seen is
significant enough that it could warrant extra in-
vestigation for cases under which the increased
coherence is worth the additional cost. Under such,
future work may include tuning of hyperparameters
that we set during the creation of node embeddings.
This includes factors such as the dimension of node
embeddings, which we believe adjusting could in-
crease the relevance of node embeddings within the
augmentation process. Also, future work into im-
provement of named entity recognition/relationship
extraction and an increase to the limit of references
from the global knowledge graph would likely cre-
ate more useful instance-specific knowledge graph
and therefore improved node embeddings.

7 Work Division

All 4 team members were involved equally in each
step of the implementation process, with individu-
als leading different aspects of the project. Team
Member 1 lead the entity and relationship extrac-
tion from dialogue data using NER and relationship
extraction tools. Team Member 2 lead the con-
struction of instance-specific knowledge graphs for

each dialogue. Team Member 3 lead the process
of generating node embeddings for entities in the
instance-specific knowledge graphs. Finally, Team
Member 4 lead the integration of node embeddings
with BERT and model training and tuning. All
team members contributed towards the creation of
the paper and presentation.

8 Code Repository

https://github.com/jack2kiwi/
NLP-595-Conversational _Entailment_
Instance_Specific_KG

References

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable feature learning for networks. Preprint,
arXiv:1607.00653.

Imed Keraghel, Stanislas Morbieu, and Mohamed Nadif.
2024. Recent advances in named entity recogni-
tion: A comprehensive survey and comparative study.
Preprint, arXiv:2401.10825.

Ciyuan Peng, Feng Xia, Mehdi Naseriparsa,
and Francesco Osborne. 2023. Knowledge
graphs: Opportunities and challenges. Preprint,
arXiv:2303.13948.

Shane Storks and Joyce Chai. 2021. Beyond the tip of
the iceberg: Assessing coherence of text classifiers.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 3169-3177, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su,
Suqi Cheng, Dawei Yin, and Chao Huang. 2024.
Graphgpt: Graph instruction tuning for large lan-
guage models. Preprint, arXiv:2310.13023.

Chen Zhang and Joyce Chai. 2010. Towards conver-
sation entailment: An empirical investigation. In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 756—
766, Cambridge, MA. Association for Computational
Linguistics.

A Appendix

’ Model ‘Batch LR Epochs

BERT 32 7.5e-6 8
BERT+KG 32 le-5 8

Table 2: Training hyperparameters (batch size (batch),
learning rate (Ir), epochs) for baseline BERT model and
new BERT+KG model

13

https://github.com/jack2kiwi/NLP-595-Conversational_Entailment_Instance_Specific_KG
https://github.com/jack2kiwi/NLP-595-Conversational_Entailment_Instance_Specific_KG
https://github.com/jack2kiwi/NLP-595-Conversational_Entailment_Instance_Specific_KG
https://github.com/jack2kiwi/NLP-595-Conversational_Entailment_Instance_Specific_KG
https://github.com/jack2kiwi/NLP-595-Conversational_Entailment_Instance_Specific_KG
https://arxiv.org/abs/1607.00653
https://arxiv.org/abs/1607.00653
https://arxiv.org/abs/1607.00653
https://arxiv.org/abs/2401.10825
https://arxiv.org/abs/2401.10825
https://arxiv.org/abs/2401.10825
https://arxiv.org/abs/2303.13948
https://arxiv.org/abs/2303.13948
https://arxiv.org/abs/2303.13948
https://doi.org/10.18653/v1/2021.findings-emnlp.272
https://doi.org/10.18653/v1/2021.findings-emnlp.272
https://doi.org/10.18653/v1/2021.findings-emnlp.272
https://arxiv.org/abs/2310.13023
https://arxiv.org/abs/2310.13023
https://arxiv.org/abs/2310.13023
https://aclanthology.org/D10-1074
https://aclanthology.org/D10-1074
https://aclanthology.org/D10-1074

	Introduction
	Dialogue Example for Coherent Text Classification

	Related Work
	Conversational Entailment
	Knowledge Graphs
	Graph-based Learning
	Node2Vec
	GraphGPT

	Named Entity Recognition

	Motivation
	Methodology
	Entity and Relationship Extraction
	Instance-Specific Knowledge Graph Construction
	Node Embedding Generation
	Augmenting Transformer Inputs
	Training Pipeline
	Coherence Checks
	Motivation for Coherence Evaluation
	Subspan-Level Entailment Evaluation
	Coherence Metrics
	Implementation
	Role in the Overall Framework

	Summary

	Results & Analysis
	Addressing Major Challenges
	Analysis

	Conclusion and Future Work
	Work Division
	Code Repository
	Appendix

