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Abstract
The paper uses a frame-theoretic setting to study
the injectivity of a ReLU-layer on the closed ball
of Rn and its non-negative part. In particular,
the interplay between the radius of the ball and
the bias vector is emphasized. Together with a
perspective from convex geometry, this leads to
a computationally feasible method of verifying
the injectivity of a ReLU-layer under reasonable
restrictions in terms of an upper bound of the
bias vector. Explicit reconstruction formulas are
provided, inspired by the duality concept from
frame theory. All this gives rise to the possibility
of quantifying the invertibility of a ReLU-layer
and a concrete reconstruction algorithm for any
input vector on the ball.

1. Introduction
The Rectified Linear Unit ReLU(s) = max(0, s), s ∈ R
has become indispensable in modern neural network archi-
tecture. It is applied component-wise on the output of an
affine linear function Ax− b, comprising of the multiplica-
tion by a weight matrix A and the shift by a bias vector b.
The combined mapping is called a ReLU-layer. This has
proven to be a simple, yet effective non-linear mapping to
handle fundamental problems in the training of deep neural
networks well (Glorot et al., 2011; Krizhevsky et al., 2012;
Goodfellow et al., 2016; Nair & Hinton, 2010). Despite its
simplicity, yet, the ReLU function still hides some mysteries
and is an active topic of research (Dittmer et al., 2020).

Recently, invertible network architectures have been getting
a lot of attention due to their increased interpretability and
the possibility of reversing the forward process analytically,
which is especially interesting in a generative setting. This
found many applications in the context of normalizing flows,
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offering exact and efficient likelihood estimations (Dinh
et al., 2017; Donahue et al., 2017). Mathematically speak-
ing, the forward process in such an invertible architecture
must be injective, guaranteeing the existence of a left-inverse
that allows perfect reconstruction of any input. A ReLU-
layer is a mapping that is designed to provide sparse output.
Hence, its injectivity is an interesting property that has been
tackled from a theoretical point of view only little in the
literature. Bruna et al. characterized a ReLU-layer to be
injective in terms of an admissibility condition for index sets
and proved a bi-Lipschitz stability condition for an injective
ReLU-layer, see Proposition 2.2 in (Bruna et al., 2014). Just
recently, Puthawala et al. formulated a condition in terms of
spanning sets that is equivalent to the one in (Bruna et al.,
2014) (with a slight modification) and describes the injec-
tivity of ReLU-networks consisting of many ReLU-layers
see Theorem 2 in (Puthawala et al., 2022). Both conditions,
however, are not applicable to verify the injectivity of a
ReLU-layer for a given weight matrix in practice. The pre-
sented work provides exactly that. We found the convex
geometry of the weight matrix to play an essential role in
the injectivity analysis for the associated ReLU-layer, using
a concept that Behrmann et al. introduced in Theorem 4 of
(Behrmann et al., 2018). The geometrical perspective helps
profoundly to strengthen the intuition on the effect of the
ReLU function. It allows to formulate a computationally
feasible method to give a sufficient condition for injectivity.
This shall contribute to the enhancement of the interpretabil-
ity of neural networks in terms of a way to quantify the
invertibility of a ReLU-layer with corresponding exact re-
construction formulas. Aiming to set a rigorous foundation
for future work on this topic, we formulate all results in an
abstract mathematical manner, using the language of frame
theory which we find to be especially well-suited.

In Section 2 we interpret a ReLU-layer by means of frame
theory and motivate the restriction to the ball. Section 3 is
dedicated to the injectivity of a ReLU-layer theoretically. In
Section 4 we introduce a method to obtain an upper bound
for all biases, such that the corresponding ReLU-layer is
injective on the ball and its non-negative part. Explicit re-
construction formulas are stated. Finally, Section 5 demon-
strates how the method can be used to analyze the injectivity
behavior of a ReLU-layer in numerical experiments.
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2. Mathematical Context
2.1. Neural Networks meet Frame Theory

The goal of this section is to link abstract frame theory
with deep learning. We want to particularly emphasize
that frames are a well-suited concept for the mathematical
analysis of neural networks, not only in terms of notation
but also due to its long usage in signal processing which
is tied closely to deep learning. In this sense, we build our
work upon notation and tools from frame theory for Rn, c.f.
(Balazs, 2008; Casazza & Kutyniok, 2012). We shall write

X = (xi)i∈I ⊆ Rn with |I| = m ≥ n

to refer to a collection of m vectors x1, . . . , xm in Rn. De-
noting the usual inner product on Rn as ⟨·, ·⟩ we say that X
constitutes a frame for Rn with frame elements xi, if there
are constants 0 < A ≤ B <∞, such that

A · ∥x∥2 ≤
∑
i∈I

|⟨x, xi⟩|2 ≤ B · ∥x∥2 (1)

holds for all x ∈ Rn. The constants A,B are called lower
and upper frame bounds for X . In Rn, a frame is equivalent
to a spanning set. The bounds A,B become important, if
one is interested in the numerical properties of the operators
associated with a frame: the analysis operator

C : Rn → Rm

x 7→ (⟨x, xi⟩)i∈I ,

its adjoint, the synthesis operator

D : Rm → Rn

(ci)i∈I 7→
∑
i∈I

ci · xi,

and the concatenation of analysis, followed by synthesis,
the frame operator

S : Rn → Rn

x 7→
∑
i∈I

⟨x, xi⟩ · xi.

If X is a frame, then C is injective, D surjective, and S
bijective. In Rn all the above operators are realized via
left-multiplication of x with a corresponding matrix. In this
sense, the analysis operator C can be identified with the
m× n matrix

C =

−x1−
...

−xm−

 .

For the synthesis operator, we have that D = C⊤. Recall
that in matrix terminology, injectivity, and surjectivity re-
late to the corresponding matrix having full rank. Hence,

if the weight matrix of a layer in a neural network has full
rank, then it can be interpreted as the analysis operator of
the frame consisting of its row vectors if m ≥ n and as
the synthesis operator of the frame consisting of its column
vectors if m ≤ n. At the initialization of a neural network,
the weight matrices are commonly set to be Gaussian i.i.d.
matrices known to have full rank with probability 1 (Mehta,
2004). Hence, one can be (almost) sure to start the train-
ing with the rows, resp. columns of the weight matrices to
constitute frames. Here, we concentrate on the case where
m ≥ n and refer to such a layer as redundant.
The matrix associated with the frame operator is S = DC.
It can be used to construct the canonical dual frame for X ,
given by X̃ =

(
S−1xi

)
i∈I

. Denoting D̃ as the associated
synthesis operator leads to the canonical frame decomposi-
tion of x ∈ Rn by X ,

x = S−1S =
∑
i∈I

⟨x, xi⟩ · S−1xi = D̃Cx. (2)

In this way, (2) is equivalent to D̃ being a left-inverse of
C, allowing perfect reconstruction of x from Cx. To recon-
struct an input vector from the output of a ReLU-layer, we
will construct a left-inverse for it exactly in the spirit of (2).
Finally, one can find the minimal upper and the maximal
lower frame bound in (1) via the largest and smallest eigen-
value of S respectively. The ratio B

A of these bounds corre-
sponds to the condition number of the linear mapping given
by the analysis operator, hence the weight matrix of the
network layer, indicating its numerical stability.

2.2. ReLU-layers as Non-linear Analysis Operators

In a frame-theoretic context, we define the ReLU-layer asso-
ciated with a collection of vectors X = (xi)i∈I ⊆ Rn and
a bias vector α ∈ Rm as the non-linear mapping

Cα : Rn → Rm

x 7→ (ReLU(⟨x, xi⟩ − αi))i∈I .
(3)

The notation Cα is chosen to reflect the link to the frame
analysis operator C. Of course, this is equivalent to how a
ReLU-layer is commonly denoted, ReLU(Cx− α) where
ReLU applies component-wise. For fixed x, the effect
of the shift by the bias α and the ReLU function on the
frame analysis can be interpreted as all frame elements with
⟨x, xi⟩ < αi are set to be the zero-vector. According to this
observation, we introduce the notation

Iαx := {i ∈ I : ⟨x, xi⟩ ≥ αi}, (4)

determining the index set associated with those frame el-
ements which are not affected by the ReLU function for
x. This perspective requires referring to sub-collections
of frames very often. We write XL = (xi)i∈L for the
sub-collection of X with respect to the index set L ⊆ I .
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Analogously, we add L as a subscript to the operators as-
sociated with XL, e.g. CL is the analysis operator of XL.
Clearly, the case where L = Iαx plays a central role.

2.3. Input Data on the Closed Ball

One of the core ideas in this paper is the restriction of Cα

to the closed ball of radius r > 0 in Rn, denoted by

Br = {x ∈ Rn : ∥x∥ ≤ r}.

We write B = B1. Indeed, this is a very reasonable assump-
tion when thinking of standard data normalization practices
for neural networks (LeCun et al., 2012; Huang et al., 2023).
It turns out that this restriction allows for a much richer
analysis of the injectivity of Cα than on all of Rn, in partic-
ular, involving the radius r. Furthermore, as the output of a
ReLU-layer has only non-negative entries, hence lies within
Rn

+, the input domain of any ReLU-layer that applies to the
output of a previous ReLU-layer on the ball lies within the
non-negative part of Br, denoted by

B+
r = Br ∩ Rn

+. (5)

Similarly, we write B+ = B ∩ Rn
+. The boundary of the

unit ball, or equivalently, the (n− 1)-sphere is denoted by

S = ∂B = {x ∈ Rn : ∥x∥ = 1}.

3. Injectivity of Cα on Br

The ReLU-layer mapping Cα is - by design - non-linear,
such that a condition for its injectivity will generally depend
on the input. Fixing x, one notices that if the sub-collection
XIα

x
is a frame, then the analysis operator CIα

x
is injective,

which we will use to study the injectivity of Cα. For α ≡ 0,
Puthawala et al. refer to this property as “x having a directed
spanning set” see Definition 1 in (Puthawala et al., 2022). In
the following, we formulate this for general α and K = Br

in the context of frame theory.
Definition 3.1 (α-rectifying on Br). A collection X =
(xi)i∈I ⊆ Rn is called α-rectifying for α ∈ Rm on Br if
for all x ∈ Br the sub-collection XIα

x
= (xi)i∈Iα

x
is a frame

for Rn.

An analogous definition can be formulated for B+
r . Unless

explicitly stated, we always refer to Br when writing that X
is α-rectifying, since it covers the case B+

r .

In Lemma 2 of the same paper (Puthawala et al., 2022)
the authors show that α-rectifying on Rn characterizes the
injectivity of Cα. We revisit this characterization for Br and
B+
r . Again, the frame-theoretic formulation simplifies the

statement significantly.
Theorem 3.2 (Injectivity of ReLU-layers on Br). Consider
X = (xi)i∈I ⊆ Rn, α ∈ Rm. If X is α-rectifying on Br

(resp. B+
r ), then Cα is injective on Br (resp. B+

r ).

A proof can be found in the appendix. Hence, we can shift
the question of injectivity of Cα to the verification of the
α-rectifying property for a given collection of vectors X .

Stability. Following the lines of (Bruna et al., 2014) and
again, switching from Rn to Br, one can show that the injec-
tivity of Cα on Br implies frame-like inequalities analogous
to (1), i.e. there are constants 0 < A0 ≤ B0 <∞ such that

A0 · ∥x∥2 ≤
∑
i∈I

|ReLU (⟨x, xi⟩ − αi)|2 ≤ B0 · ∥x∥2 (6)

for all x ∈ Br. Here, A0 can be chosen as the smallest
eigenvalue and B0 as the largest eigenvalue of all frame
operators associated with the frames XIα

x
with x ∈ Br.

Inclusiveness. It is clear that if X is α-rectifying, then X
is α′-rectifying for all α′ ≤ α. Therefore, we call

α an upper bias for Cα if X is α-rectifying.

This perfectly reflects the role of the bias vector in a neural
network: the larger the bias values, the more neurons are
activated by the ReLU function, hence the “more injective”
the ReLU-layer becomes in the sense that it is injective for a
larger set of bias vectors. Therefore, it is of natural interest
to find the largest possible upper bias for a given weight
matrix. A unique maximal upper bias, however, does not
exist in general.

Restriction to S. It is important to notice that we may
restrict the α-rectifying property to unit norm vectors since
the norms directly scale the upper bias values αi and can be
re-introduced at any time. In this sense, X is α-rectifying
if and only if X =

(
xi · ∥xi∥−1

)
i∈I

is α-rectifying, where
αi = αi · ∥xi∥. Therefore, in the following we will always
assume X ⊆ S, i.e. ∥xi∥ = 1 for all i ∈ I . Note that this
corresponds to standard weight normalization (Salimans &
Kingma, 2016).

Bias-radius interplay. Often when studying ReLU-layers
theoretically, the bias is implicitly incorporated into the
linear part of the operator. However, in our work, we delib-
erately keep it as a shift as the interplay of bias and input
domain is of central interest. We mentioned that an upper
bias α favors injectivity when it is large. On the other hand,
a large input data domain, i.e. a ball with large radius r
offers more flexibility for normalization. However, there
is a general trade-off: the larger the radius is chosen, the
smaller α will get, in general, and vice versa. We have the
following trivial fact:

Any frame is α-rectifying on Br for α ≡ −r,

i.e. αi = −r for all i ∈ I . Hence, any redundant ReLU-
layer is injective on the closed ball with any radius if the bias
vector is sufficiently small. For a basis, (i.e. m = n) the
above fact becomes also necessary, immediately implying
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that a basis can never be α-rectifying on Rn for any α.
However, the standard basis for Rn is α-rectifying on B+

for α ≡ 0. This shows that taking into account the input
domain is a crucial step to take when studying injectivity
since it naturally adapts to situations where a frame is not
α-rectifying on Rn but might be on Br, resp. B+

r . The
question that we are now interested in is, how to find a
“good” upper bias for Br and B+

r ?

The Mercedes-Benz frame in R2 (Casazza & Kutyniok,
2012), given by

Xmb =

((
0
1

)
,

(
−

√
3/2

−1/2

)
,

(√
3/2
−1/2

))
(see Figure 1) is a particularly good example, where the
optimal upper bias for B can be found by looking at the
geometry of the frame. Its elements determine the vertices
of an equilateral triangle so that we can reduce the problem
to one pair of elements by symmetry. The worst case is
found by ⟨xi, xj⟩ = − 1

2 . Hence, Xmb is α-rectifying on B
for α ≡ − 1

2 . This idea can be generalized to polytopes in
arbitrary dimensions. In R3, we obtain that the Tetrahedron
frame, given by

Xtet =
1√
3
·

1
1
1

 ,

 1
−1
−1

 ,

−11
−1

 ,

−1−1
1

 .

(see Figure 1) is α-rectifying on B for α ≡ − 1√
3

. In a more
general setting, where the frame elements are not aligned
in a regular manner, we can at least reduce the problem to
consider every face individually.

4. Convex Polytopes and Bias Estimations
In a nutshell, we estimate a “good” upper bias vector α for
a given set of vectors X , hence, the ReLU-layer mapping
Cα is injective on Br. It turns out that the combinatorial
structure of the convex polytope associated with the ele-
ments of X can be related to the α-rectifying property of
X . To prepare the estimation procedure, we shall introduce
all building blocks for the estimation procedure for Br in
Section 4.1 and then deduce a version for B+

r in Section 4.2.

For all standard results on convex polytopes, we refer to
(Ziegler, 2012). Here, we are specifically interested in con-
vex polytopes that arise as the set of all convex linear com-
binations of a collection of vectors X = (xi)i∈I ⊆ S,

PX = {x ∈ Rn : x =
∑
i∈I

ci · xi, ci ≥ 0,
∑
i∈I

ci = 1}. (7)

A face of PX is any intersection of PX with an affine half-
space (in any dimension) such that none of the interior
points of PX (w.r.t. the induced topology on PX ) lie on

its boundary. While vertices and edges are the 0- and 1-
dimensional faces of PX , the (n− 1)-dimensional faces are
called facets. For every face and, in particular, every facet
F , there are a ∈ Rn \ {0} and b ∈ R such that

F = {x ∈ PX : ⟨a, x⟩ = b}, (8)

i.e. any facet lies on an affine subspace of codimension 1 of
Rn. Furthermore, any x ∈ F can be written as the convex
linear combination,

x =
∑
i∈IF

ci · xi, ci ≥ 0,
∑
i∈IF

ci = 1.

We shall write the index set of vertices, associated with F
as

IF = {i ∈ I : xi ∈ F}. (9)

The following lemma reveals the core idea of our approach.

Lemma 4.1. Let F be a facet. If 0 /∈ F , then XIF is a
frame.

In other words, as long as the facet does not go through the
origin, the associated vertices form a frame. A proof can be
found in the appendix.

We call X omnidirectional if 0 lies in the interior of PX

(w.r.t. the topology in Rn), see Definition 1 in (Behrmann
et al., 2018). Equivalently, there cannot be a hyperplane so
that the elements in X are all accumulated on only one side
of it.

For the proposed bias estimation on Br, omnidirectionality
is an essential property as it allows to cover every x ∈ Br

the same way. For B+
r we formulate an analogous condition

in Section 4.2. Moreover, if X is omnidirectional, then
0 cannot lie on any facet of PX and Lemma 4.1 applies.
Numerically, it is verified via a simple convex optimization
program (Behrmann et al., 2018).

Assuming a certain ordering of the facets, we write Fj

referring to the j-th facets of PX . Analogous to the idea of
obtaining the optimal upper biases for the Mercedes-Benz
and the Tetrahedron frame, we will use the frames XIFj

for
all j to estimate a bias. Letting the cone of Fj be denoted as

cone(Fj) = {tx : x ∈ Fj , t ≥ 0},

then omnidirectionality and X ⊆ S provide the following
properties.

Lemma 4.2. If X ⊆ S is omnidirectional, then the follow-
ing holds.

(i)
⋃

j IFj
= I ,

(ii)
⋃

j cone(Fj) = Rn

(iii) XIFj
is a frame for every j.
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Figure 1. Frame vectors X (blue) and their convex hulls forming convex regular polytopes PX . From left to right: Mercedes-Benz,
Square, and Pentagon frame in R2, Tetrahedron and Icosahedron frame in R3. The unit ball B is outlined in gray.

These three properties build the backbone of our approach.
By (i), every frame element is a vertex of PX . Due to (ii),
we can partition Br into facet-specific conical subsets where
we can estimate a bias locally. And most importantly, by
(iii), every sub-collection associated to a facet induces a
frame. Properties (i) and (ii) are easy to see and (iii) is a
direct consequence of Lemma 4.1.

Remark 4.3. For a facet F , the vectors XIF will be redun-
dant (m > n) only in rare cases. If the frame elements lie
in general position on S, then every XIF is a basis (m = n)
with probability 1 (Buchta & Müller, 1984).

Before we introduce the upper bias estimation procedures
for Br and B+

r , we provide an explanation of why the partic-
ular grouping of the frame elements into vertices of facets
is indeed suitable for the purpose of finding large upper bias
values for the α-rectifying property.

If X is omnidirectional and F a facet of PX , then consistent
with (8) there are a ∈ Rn \ {0} and 0 ̸= b ∈ R such that

⟨a, xk⟩ = b, for k ∈ IF ,

⟨a, xℓ⟩ < b, for ℓ /∈ IF .

In this sense, the construction of XIF is a natural way of
selecting spanning sub-collections of X with the highest
coherence possible, making this particularly useful for our
purpose.

4.1. Polytope Bias Estimation for Br

We now introduce the Polytope Bias Estimation (PBE) for
Br with r > 0. The procedure estimates an upper bias,
denoted as αB, such that X is αB-rectifying on B. This
implies that X is (r−1 · αB)-rectifying on Br.

The core idea is to partition B (and S) into conical pieces,

FB
j := cone(Fj) ∩ B (10)

F S
j := cone(Fj) ∩ S. (11)

If X is omnidirectional, by Lemma 4.2, we have

B =
⋃
j

FB
j and S =

⋃
j

F S
j . (12)

To find αB
i , we identify the minimal analysis coefficient

⟨y, xi⟩ that can occur for y on each FB
j containing xi, i.e.

αB
i := min

y∈F B
j

j:xi∈Fj

⟨y, xi⟩. (13)

We do not tackle this optimization problem directly but
solve two related problems instead. On the one hand, we
consider the minimal auto-correlation values on each facet,

αX
i := min

ℓ∈IFj

j:xi∈Fj

⟨xℓ, xi⟩, (14)

that are easy to compute. On the other hand, we solve

αS
i := min

y∈F S
j

j:xi∈Fj

⟨y, xi⟩ (15)

via convex linear programs. Note that the sets, on which
all three optimization problems happen are subsets of each
other, FB

j ⊃ F S
j ⊃ XIFj

, so that we immediately observe
that αB

i ≤ αS
i ≤ αX

i . With this, we solve (13).
Theorem 4.4. (PBE for B) If X ⊆ S is omnidirectional,
then X is αB-rectifying on B and αB

i , given in (13) can be
computed as

αB
i =

{
0 if αX

i ≥ 0

αS
i otherwise.

(16)

If αX
i < 0, then αS

i given in (15) is the minimum over
j : xi ∈ Fj of the solutions of the convex linear programs

min
(
x⊤
i DIFj

)
d

subject to d ≥ 0 (17)
∥DIFj

d∥2 ≤ 1,

where DIFj
is the synthesis operator of XIFj

.
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Figure 2. Geometrical intuition of the PBE for the Icosahedron
frame on B. Consider xi. Left: The (blue) filled facets are used
to compute αB

i . The (gray) darker piece (dashed border) indicates
F B
j . Right: Rotated perspective of the left image. The affine half-

space Ωi = {x ∈ Rn : ⟨x, xi⟩ ≥ αX
i , i ∈ IFj}, indicated by

the left-most area with decreasing opacity (orange) contains all
vectors such that all vertices of the adjacent facets are active. Since
αX
i ≥ 0, the brighter (yellow) half-space represents the solution

αB
i = 0.

A proof can be found in the appendix. The general case
follows from Br = {x ∈ Rn : x = r · y, y ∈ B} for r > 0.

Hence, the minimal argument of (13) lies on S or at zero,
depending on the sign of the minimal correlation of a facet,
given by αX

i . So, a strategy to obtain αB is to start con-
sidering the easy-to-compute αX

i by finding the smallest
auto-correlation value with xi among all facets that are ad-
jacent to xi. Then, only if αX

i < 0, the convex optimization
(17) has to be solved. See Algorithm 1 for a pseudo-code of
the procedure.

Example 1. (a) For the Tetrahedron frame Xtet, we have
αX ≡ − 1

3 , therefore αB = αS ≡ − 1√
3
.

(b) For the Icosahedron frame, given by

Xico =
1√

1 + φ2
·

 0
±1
±φ

 ,

±1±φ
0

 ,

±φ0
±1

 ,

(see Figure 1), where φ = 1+
√
5

2 is the golden ratio, we
have αX ≡ φ

1+φ2 ≈ 0.45, therefore αB ≡ 0. Figure 2
shows the idea of the PBE for this example geometrically.

Note that 0 ≥ αB
i is reasonable to guarantee the α-rectifying

property on Br since for any upper bias α and x = 0, it has
to hold that ⟨0, xi⟩ = 0 ≥ αi for all i in some IFj .

4.2. Polytope Bias Estimation for B+
r

In neural networks, often ReLU-layers succeed each other.
In this context, we show that B+

r is conceptually the right
input domain for a PBE for ReLU-layers that are applied to
the output of a previous one. In fact, this requires knowing
where the image of Br under Cα lies.

Figure 3. Non-regular polytopes. Left: The estimated bias values
αB
i are computed from the largest adjacent facet of xi. Hence,

the less regular the normalized frame elements are distributed
on the sphere, the smaller αB becomes. Right: The frame is
non-negatively omnidirectional since

⋃
j∈J+ Fj ⊇ Rn

+, but not
omnidirectional.

Lemma 4.5. Let X be α-rectifying and B0 denote the
largest optimal upper frame bound among XIα

x
with x ∈ Br.

Then
Cα (Br) ⊆ B+

r
√
B0

. (18)

It is easy to show that (18) is a direct consequence of the
upper inequality in (6) and clearly, holds for x ∈ B+

r as
well. Note that we may also estimate the radius of the ball
as r
√
B, where B is any upper frame bound of X .

We approach the PBE for B+
r by restricting the computations

of the PBE introduced in Theorem 4.4 to only those facets,
that actively contribute to the estimation. In this sense, we
only consider those frame elements whose associated facets
have a non-trivial intersection with Rn

+. We denote the
corresponding index sets as

J+ = {j : Fj ∩ Rn
+ ̸= ∅}, I+ =

⋃
j∈J+

IFj
.

According to this, instead of omnidirectionality, we only
have to require

Rn
+ ⊆

⋃
j∈J+

cone(Fj), and (19)

0 /∈ Fj for all j ∈ J+, (20)

which we shall refer to as non-negative omnidirectionality.
See Figure 3 (right) for an illustration. This is tailored to
provide the properties in Lemma 4.2 for B+

r : by (19), we
have analogously to (12),

B+ ⊆
⋃

j∈J+

FB
j (21)

and condition (20) is sufficient for XIFj
being a frame for

every j ∈ J+ by Lemma 4.1. With this, we have all require-
ments to deduce the PBE for B+

r .
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Algorithm 1 PBE for Br

Get IFj
via computing VX

for j = 1, . . . , J do
βj = mink<ℓ∈IFj

⟨xk, xℓ⟩
end for
for i = 1, . . . ,m do
α∗
i = min

j s.t. i∈IFj

βj

if α∗
i ≥ 0 then

αB
i ← 0

else
y∗ ← solution of (17)
αB
i ← y∗ · r−1

end if
end for

Theorem 4.6 (PBE for B+). If X ⊆ S is non-negatively
omnidirectional, then X is αB+

-rectifying on B+ with

αB+

i =

{
αB
i for i ∈ I+

si else,
(22)

where si ∈ R is arbitrary.

A proof can be founded in the appendix. This reduces the
computational cost and improves the upper bias estimation
as potentially large bias values in I \ I+ can be omitted.
Remark 4.7. Clearly, conditions (19) and (20) are weaker
than omnidirectionality, yet, harder to check numerically.
Similarly, Fj ∩ Rn

+ ̸= ∅ is not straightforward to verify.
Indeed, it holds true for all adjacent facets of xi ∈ Rn

+,
however, there might be facets meeting the condition but
with no vertices in Rn

+. The interested reader will find a
continued discussion in the appendix. Finding an efficient
implementation of this, however, is left as an open problem.

4.3. Remarks on the Optimality of the PBE

In general, we cannot expect the proposed PBE to yield
upper biases that are maximal. Estimating the error of the
estimation to a maximal upper bias (if exists), however, is
difficult since this would require knowing the combinatorial
structure (i.e. the vertex-facet index sets) of a general poly-
tope, which has been a topic of active research for several
decades. In the special cases when the polytopes are regu-
lar and simplicial (every facet has exactly n vertices), e.g.
Mercedes-Benz, Tetrahedron and Icosahedron frame, we
expect that the estimated upper bias is indeed maximal. It
is easy to verify that the PBE is also stable to perturbations
as long as the combinatorial structure is preserved. Hence,
one could expect that the estimation will be more accurate
the more evenly distributed the frame elements are on the
sphere. See Figure 3 (left) for an illustration.

Algorithm 2 Reconstruction via Facets
Get IFj

via computing VX

for j = 1, . . . , J do

S−1
IFj
←

(
(CIFj

)⊤CIFj

)−1

X ← XIFj

D̃IFj
←

 | | |
S−1
IFj

x1 S−1
IFj

x2 · · · S−1
IFj

x|IFj
|

| | |


end for
z = Cαx
z ← z + α
while j = 1, . . . , J do

if IFj
∈ Iαx then

D̃IFj
z|IFj

= x

end if
end while

4.4. Local Reconstruction via Facets

Unless Iαx ̸= I for all x ∈ Br, there cannot be only one
global left-inverse for Cα. We propose to systematically
construct a collection of left-inverses, each associated with
one facet of PX . Recall that the frame operator of XIFj

is
denoted by SIFj

and that its canonical dual frame is given

by X̃IFj
=

(
S−1
IFj

xi

)
i∈IFj

.

Theorem 4.8. Let X ∈ S be α-rectifying on B and omnidi-
rectional. For every x ∈ B there is j such that

D̃IFj
Cαx = x, (23)

where

D̃IFj
: Rm → Rn

(ci)i∈I 7→
∑
i∈IFj

(ci + αi) · S−1
IFj

xi.
(24)

In other words, D̃IFj
is a left-inverse of Cα for all x ∈ FB

j .

By (12), every x ∈ B lies in some FB
j , hence indeed for

any x ∈ B there is a left-inverse. It is easy to see that (23)
reduces to the usual canonical frame decomposition (2) of
x by XIFj

.
Remark 4.9. In general, there are infinitely many duals
for X (Christensen, 2003). The canonical dual mentioned
above relates to the pseudo-inverse of the associated analysis
operator, hence induces the optimal inverse by means of
ridge regression.

4.5. Implementation

We discuss the implementation aspects of the PBE
for B and the reconstruction formulas. Our imple-
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mentations of the algorithms are publicly available un-
der https://github.com/danedane-haider/Alpha-rectifying-
frames.

4.5.1. PBE

The vertex-facet index sets IFj
are encoded in what is called

the vertex-facet incidence matrix VX . Assuming that PX

has J facets, then VX is the J ×m matrix with entries

VX [j, i] =

{
1 if i ∈ IFj

0 else,

indicating which vertices correspond to which facets. To
compute the vertex-facets incidences, we use the routine
VERTICES IN FACETS from the open-source software
Polymake (Gawrilow & Joswig, 2000). This routine requires
the vertices in homogeneous coordinates, i.e.

Chom =

 1− x1−
...

1− xm−

 .

Already noted in (Puthawala et al., 2022), checking the α-
rectifying property is probably NP-hard. The computation
of VX relies on convex-hull algorithms, which are also not
expected to run in polynomial time for general polytopes.
However, for points in general position on S (i.e. no hy-
perplane in Rn contains more than n of the points), the
“reverse-search” algorithm is expected to finish in linear
time in the number of vertices m for fixed dimension n
(Assarf et al., 2016). This condition is precisely fulfilled
when assuming random initialization and normalized frame
elements. Polymake uses this algorithm via the command
prefer "lrs";.

Algorithm 1 gives step-by-step instructions to compute αB

for any omnidirectional frame X ⊆ S.

4.5.2. RECONSTRUCTION

In practice, one can read off Iαx from z = Cαx and find
a facet Fj such that IFj ⊆ Iαx using the vertex-facet inci-
dences. Note that Fj might not be unique with this property.

Algorithm 2 describes how the systematic construction of
the left-inverses D̃IFj

can be done, assuming that X is α-
rectifying and omnidirectional.

5. Numerical Experiments
A series of experiments revealed that the injectivity behavior
of a ReLU-layer is very sensitive to many hyperparameters
and circumstances, such as the size of the layer, the depth
of the network, the position of the layer within the network,
initialization and normalization procedures, the optimizer

Figure 4. Averaged quantities (across 10 iterations) related to a
ReLU-layer over 100 epochs of training with different redundan-
cies m = |I|. Top: Cross entropy loss on the validation set. Mid:
Mean of the trained biases, β̂ (dashed), and mean of the estimated
upper biases on Br , α̂B (solid). Bottom: Proportion of learned bias
values that are smaller than the estimations, i.e. #(βi ≤ αB

i )/m,
indicating the injectivity trend.

and the data itself. Here, we present a numerical experi-
ment, where we want to focus merely on the size of the
ReLU-layer, i.e. its redundancy. Therefore, the experi-
mental setting is designed to be as simple and reduced as
possible. Considering more realistic network models re-
quires a much broader study, which goes beyond the scope
of this contribution.

5.1. Experimental Setting

We train a neural network with one ReLU-layer and a
soft-max output layer on the Iris data set (Fisher, 1936).
For the ReLU-layer, we consider four redundancy settings
m = |I| = 10, 20, 60, 100. The corresponding networks
are mappings from R4 → Rm → R3. After normalization
to zero mean and a variance of one, all data samples lie
within the ball of radius r = 3.1. We use the upper biases
from the PBE for B (Theorem 4.4) with appropriate scal-
ing to monitor the injectivity behavior of the ReLU-layers
during training, see Figure 4. Here, optimization of a cross-
entropy loss is done using stochastic gradient descent at a
learning rate of 0.5 for 100 epochs.
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5.2. Discussion

The top plot shows that in our setting, high redundancy
in the ReLU-layer yields the smallest validation loss. Ex-
pectedly, high redundancy also increases the chance of the
polytope PX having many non-negatively correlated facets,
i.e. αX

i ≥ 0. Hence, more bias estimations are 0 accord-
ing to (16). The mid-plot shows this nicely (solid lines).
Note that all learned biases β decrease in mean (dashed
lines). The lower the redundancy, the stronger this decrease
is. Since the bias estimations αB

i remain almost unchanged
in mean, we may conclude that lacking injectivity of low
redundancy ReLU-layers (i.e. too many output values are
zero) is compensated during training via the bias. The bot-
tom plot shows another measure of the injectivity trend: the
proportion of learned bias values smaller than the estima-
tions, i.e. #(βi ≤ αB

i )/m. An increase in this quantity
indicates that a ReLU-layer is becoming “more injective”
during training. In concordance with the previous observa-
tions, layers with low redundancy show a stronger increase
here as well. This could be interpreted as high redundancy
favors injectivity from the start.

In this sense, the PBE can help us to better understand the
role of injectivity in neural networks. In the example, we
are able to see the effect of different sizes of a ReLU-layer
in regard to injectivity and validation loss and, in particular,
what happens when the layer is chosen too small. It remains
an open question if these results are representative for other
settings and which are the responsible components causing
this behavior. Future numerical investigation is necessary
for a better understanding.

6. Conclusion
We presented a frame-theoretic setting to study the injectiv-
ity of a ReLU-layer on the closed ball with radius r > 0 in
Rn and on its non-negative part. Moreover, we introduced a
systematic approach of verifying it in practice, called poly-
tope bias estimation (PBE). This method exploits the convex
geometry of the weight matrix associated with a ReLU-layer
and estimates a bias vector such that the layer is injective on
the ball for all biases smaller or equal to the estimation. This
allows us to give sufficient and quantified conditions for the
invertibility of a ReLU-layer. Corresponding reconstruction
formulas are provided. Via a straightforward implementa-
tion, the PBE allows to study the injectivity behavior of a
redundant ReLU-layer and perform perfect reconstruction
of the layer input where applicable. So far, our work con-
tributes to a better understanding of the behavior of neural
network layers by means of observations without interac-
tion with the actual optimization procedure. As a possible
application, the estimated upper biases from the PBE could
be used to design a regularization procedure where the bias
is guided toward injectivity during training.
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A. Proofs
A.1. Theorem 3.2

Proof. Assume Cαx = Cαy, for x, y ∈ Br. Clearly,

⟨x, xi⟩ > αi ⇔ ⟨y, xi⟩ > αi, (25)

so that we derive
⟨x, xi⟩ = ⟨y, xi⟩, for all i ∈ Iαx ∩ Iαy . (26)

Since Br is convex, for λ ∈ (0, 1) it holds that xλ := (1− λ)x+ λy ∈ Br. For i ∈ Iαxλ
, we compute

⟨xλ, xi⟩ = (1− λ)⟨x, xi⟩+ λ⟨y, xi⟩.

Since ⟨xλ, xi⟩ ≥ αi, at least one of the two, ⟨x, xi⟩ or ⟨y, xi⟩, must be bigger or equals αi. Without loss of generality, let
us suppose that ⟨x, xi⟩ ≥ αi. If we have ⟨x, xi⟩ > αi, then (25) leads to ⟨y, xi⟩ > αi. If ⟨x, xi⟩ = αi, then ⟨xλ, xi⟩ ≥ αi

implies ⟨y, xi⟩ = αi. Thus, we have verified that Iαxλ
⊆ Iαx ∩ Iαy . Since xλ ∈ Br, the α-rectifying property yields that XIα

xλ

is a frame. Hence, XIα
x ∩Iα

y
is a frame. According to (26), we deduce x = y. Therefore, Cα is injective on Br.

Since B+
r is a convex set as well, the statement for B+

r can be proven analogously.

A.2. Lemma 4.1

We recall that a collection of points p1, . . . , pm in Rn are called affinely independent if
∑m

i=1 λipi = 0 and
∑m

i=1 λi = 0
imply that λ1 = ... = λm = 0.

Proof. It is a known fact that any facet of a polytope in Rn contains at least n affinely independent vertices (Ziegler, 2012).
Let F be a facet and w.l.o.g. x1, ..., xn ∈ XIF be affinely independent. If 0 /∈ F , by (8) there is a ∈ Rn \ {0} and b ∈ R
with b ̸= 0 such that

⟨a, xi⟩ = b, i = 1, ..., n. (27)

Assuming
∑n

i=1 λixi = 0 and using (27), from

0 = ⟨a,
n∑

i=1

λixi⟩ =
n∑

i=1

λi⟨a, xi⟩ =
n∑

i=1

λib, (28)

it follows that
∑n

i=1 λi = 0. Since x1, ..., xn are affinely independent, λ1 = ... = λn = 0. Therefore, x1, ..., xn are linearly
independent, hence XIF is a frame for Rn.

A.3. Theorem 4.4

Proof. We first show that if αX
i ≥ 0, then αS

i = αX
i .

By omnidirectionality,
⋃

j F
S
j = S. Hence, for every y ∈ S there is xy in some facet Fj such that y =

xy

∥xy∥ ∈ F S
j . We use

that xy can be written as a convex combination of elements of XIFj
, i.e. xy =

∑
ℓ∈IFj

cℓxℓ with cℓ ≥ 0 for all ℓ ∈ IFj
and∑

ℓ∈IFj
cℓ = 1. Hence,

y =
xy

∥xy∥
=

∑
ℓ∈IFj

cℓ
∥xy∥

xℓ =
∑
ℓ∈IFj

dℓxℓ. (29)

Let αX
i ≥ 0, i.e. ⟨xℓ, xi⟩ ≥ 0 for all ℓ ∈ IFj

and j : xi ∈ Fj . Using (29) with dℓ = cℓ
∥xy∥ ≥ 0 and

∑
ℓ∈IFj

dℓ ≥ 1, we

obtain ⟨y, xi⟩ ≥ minℓ∈IFj
⟨xℓ, xi⟩. Thus, we derive

αS
i = min

y∈F S
j

j:xi∈Fj

⟨y, xi⟩ ≥ min
ℓ∈IFj

j:xi∈Fj

⟨xℓ, xi⟩ = αX
i . (30)

Recalling that αX
i ≥ αS

i for all i ∈ I yields the claim.
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Next we show (16), using that FB
j = {y ∈ B : y = x

t ,∃x ∈ F S
j ,∃t ∈ [1,∞)} and ⟨x, xi⟩ ≥ αS

i for all x ∈ F S
j with

xi ∈ Fj .

Let αX
i ≥ 0, then αS

i ≥ 0 by (30). Hence ⟨x, xi⟩ ≥ 0 for all x ∈ F S
j . We deduce,

αB
i = min

y∈F B
j

j:xi∈Fj

⟨y, xi⟩ = min
x∈F S

j ,t≥1

j:xi∈Fj

⟨x
t
, xi⟩ = 0.

Now let αX
i < 0. For x ∈ F S

j with xi ∈ Fj , we distinguish two cases. If ⟨x, xi⟩ ≥ 0, then ⟨xt , xi⟩ ≥ 0. If ⟨x, xi⟩ < 0,
then ⟨xt , xi⟩ ≥ ⟨x, xi⟩ ≥ αS

i . Since αS
i ≤ αX

i < 0, we deduce αB
i ≥ αS

i . Recalling that αB
i ≤ αS

i for all i ∈ I we obtain
αB
i = αS

i .

To see that X is αB-rectifying on B, take an arbitrary z ∈ B. By (12), there is j such that z ∈ FB
j . Hence, ⟨z, xi⟩ ≥ αB

i

holds for any i ∈ IFj
. In other words, IFj

⊆ Iα
B

z . Since XIFj
is a frame by (iii) in Lemma 4.2, XIαB

z
is also a frame,

showing the claim.

Finally, recalling that DIFj
is the synthesis operator of XIFj

we may rewrite Equation (29) for y ∈ F S
j as y =∑

ℓ∈IFj
dℓxℓ = DIFj

d. Then miny∈F S
j
⟨y, xi⟩ for i ∈ IFj can be formulated as the linear program

min
(
x⊤
i DIFj

)
d

subject to d ≥ 0

∥DIFj
d∥2 = 1.

If αX
i < 0, then the above minimum is negative since αS

i ≤ αX
i < 0. Hence, we can replace ∥DIFj

d∥2 = 1 by
∥DIFj

d∥2 ≤ 1 making the problem convex.

A.4. Theorem 4.6

Proof. Let z ∈ B+. By (21), there is j ∈ J+ such that z ∈ FB
j . Since Fj ∩ Rn

+ ̸= ∅ we have in particular that IFj
⊆ I+.

Hence, analog to the proof of Theorem 4.4, ⟨z, xi⟩ ≥ αB
i holds for any i ∈ IFj . With αB+

defined as in (22) we have that

IFj
⊆ Iα

B

z ⊆ Iα
B+

z . Since XIFj
is a frame by Lemma 4.1, X

IαB+
z

is also a frame.

B. Remarks
B.1. Remark 4.7

For fixed j, one may verify Fj ∩ Rn
+ ̸= ∅ via the feasibility of the convex optimization problem

min ∥DIFj
c∥2

subject to c ≥ 0 (31)∑
i

ci = 1.

Indeed, if (31) has a solution, then there is c ∈ Rn
+ that can be written as a convex linear combination of the vertices of Fj ,

hence, Fj ∩ Rn
+ ̸= ∅. We suggest the following strategy: Label all facets with vertices in Rn

+ and continue solving (31)
for all adjacent facets. If there is no vertex in Rn

+ at all, solve (31) for the facets that contain vertices xk with only small
negative components.
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