
Continuous Soft Actor-Critic: An Off-Policy Learning
Method Robust to Time Discretization

Huimin Han
Zhongtai Securities Institute for Financial Studies

Shandong University
Jinan, 250100 P. R. China

hanhuiminhhm@mail.sdu.edu.cn

Shaolin Ji ∗

Zhongtai Securities Institute for Financial Studies
Shandong University

Jinan, 250100 P. R. China
jsl@sdu.edu.cn

Abstract

Many Deep Reinforcement Learning (DRL) algorithms are sensitive to time dis-
cretization, which reduces their performance in real-world scenarios. We propose
Continuous Soft Actor-Critic, an off-policy actor-critic DRL algorithm in continu-
ous time and space. It is robust to environment time discretization. We also extend
the framework to multi-agent scenarios. This Multi-Agent Reinforcement Learning
(MARL) algorithm is suitable for both competitive and cooperative settings. Policy
evaluation employs stochastic control theory, with loss functions derived from
martingale orthogonality conditions. We establish scaling principles for hyper-
parameters of the algorithm as the environment time discretization δt changes
(δt → 0). We provide theoretical proofs for the relevant theorems. To validate
the algorithm’s effectiveness, we conduct comparative experiments between the
proposed algorithm and other mainstream methods across multiple tasks in Virtual
Multi-Agent System (VMAS). Experimental results demonstrate that the proposed
algorithm achieves robust performance across various environments with different
time discretization parameter settings, outperforming other methods.

1 Introduction

Recently, reinforcement learning algorithms such as Proximal Policy Optimization (PPO, Schulman
et al. [2017]), Soft Actor-Critic (SAC, Haarnoja et al. [2018a]), and Deep Deterministic Policy Gradi-
ent (DDPG, Lillicrap et al. [2016]) have demonstrated remarkable success in domains such as large
language models, robotics, autonomous driving, and so on. However, there remains little research on
the continuous-time learning algorithms for stochastic environments and multi-agent reinforcement
learning. And the achievements of deep reinforcement learning studies under the discrete-time
frameworks may lack robustness to time discretization. Experimental studies by Henderson et al.
[2018] and Tallec et al. [2019] verify that many DRL algorithms developed under discrete-time
frameworks lack robustness to the hyperparameters, particularly the time step. Furthermore, Tallec
et al. [2019] formally prove that Q-learning does not exist in continuous time, though their analysis
is conducted under deterministic environment. These findings raise the following question:

∗Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

• Do algorithms such as DQN (Mnih et al. [2015]) and SAC collapse when the time discretiza-
tion step δt→ 0 in stochastic environments?

• Can we propose a robust algorithm for time discretization under stochastic environments?

• How should we adjust the hyperparameters of the algorithm when the time step δt changes?

1.1 Original contributions

Aiming to answer the aforementioned questions, we establish a theoretical framework for stochastic
continuous reinforcement learning utilizing stochastic control theory. The contributions of this
research are listed as follows:

(i) This paper presents a comprehensive analysis of continuous-time reinforcement learning algorithms
in stochastic environments. We investigate the optimality of value function approximation, the impact
of time discretization, hyperparameter settings, and algorithm implementation. To the best of our
knowledge, this work also pioneers the first finite multi-agent actor-critic algorithm designed for
continuous-time settings, offering the analysis of finite multi-agent systems in stochastic continuous-
time environments.

(ii) In deterministic environments such as Tallec et al. [2019] and Doya [2000], alterations to the time
discretization parameter (δt) introduce fundamental inconsistencies. In stochastic environments, both
the configuration of value function approximation and time discretization changes introduce signifi-
cant challenges. The mean squared temporal difference error (MSTDE) used in policy evaluation
(PE) cannot be applied to stochastic continuous setting. This invalidates popular RL algorithms such
as DQN and SAC fail to approximate true value functions in such environments. To address this, we
use a novel PE method grounded in martingale theory.

(iii) We derive the hyperparameter scaling laws for our proposed algorithm under stochastic continu-
ous settings as the time step δt changes. This is different from those proposed by Tallec et al. [2019]
under the ordinary differential equation framework.

(iv) The MARL algorithm developed in this research is designed for finite-agent systems and
adapts to both competitive and cooperative scenarios. We provide experimental implementation of
the algorithm in stochastic continuous-time settings. The implementation leverages BenchMARL
(Bettini et al. [2024]) to compare with MARL baselines, including MASAC, MAPPO (Yu et al.
[2022]), MADDPG (Lowe et al. [2017]), IQL (Tan [1993]), and QMIX (Rashid et al. [2020])
across various environments. Empirical evidence demonstrates that performance of algorithms such
as IQL significantly degrades as the time step δt decreases, aligning with theoretical predictions.
Experimental results preliminarily indicate that our proposed Continuous (Multi-Agent) Soft Actor-
Critic (abbreviated as CSAC and CMASAC) outperforms other methods when δt is small, confirming
its robustness to time discretization.

1.2 Related work

Continuous-time reinforcement learning Baird [1994] and Doya [2000] studied algorithms in the
limit of discrete time step δt approaching zero, from discrete-time and continuous-time perspectives,
respectively. Tallec et al. [2019] formally proved that Q-learning cannot exist in continuous-time
deterministic environments. Consequently, methods based on Q-learning such as DQN and DDPG
also fail in continuous-time settings. Tallec et al. [2019] further provided experimental evidence that
DQN and DDPG lack robustness to variations in time discretization. Doya [2000] and Tallec et al.
[2019] provide studies of algorithms with continuous-time limits under deterministic environments.
From a stochastic perspective, Jia and Zhou [2022a] and Jia and Zhou [2022b] investigate the
Policy Evaluation problem under the framework of stochastic optimal control theory. However, their
work focuses on the conceptual aspects of on-policy frameworks. There has been no substantial
exploration of practical off-policy algorithms, impacts of time discretization scales, hyperparameter
tuning, or implementation considerations. Through our design, we ensure the feasibility of gradient
backpropagation during policy updates and propose a practical off-policy algorithm robust to time
discretization.

Soft Actor-Critic Haarnoja et al. [2018a] and Haarnoja et al. [2018b] developed an off-policy
actor-critic DRL algorithm based on the maximum entropy framework. This approach has become

2

a well-performing RL algorithm on a range of continuous control tasks. In this research, we also
consider continuous states and actions, with the actor aiming to maximize the Shannon entropy.

Multi-agent reinforcement learning Multi-agent reinforcement learning has achieved practical
successes in autonomous driving (Mirowski et al. [2017]), AlphaGo (Silver et al. [2016]), and
StarCraft (Vinyals et al. [2019]), but with few results in continuous-time settings. Wang and Zhou
[2020] establish a continuous framework for entropy-regularized RL. For large-scale agent systems,
mean-field game approaches such as those proposed by Guo et al. [2022], Guo et al. [2024] have
been explored. For finite agent systems, algorithms such as Yu et al. [2022], Lowe et al. [2017] are
compared in this work.

2 Preliminaries

We first briefly introduce frameworks for continuous-time reinforcement learning problems and
analyze their properties within these frameworks. Time discretization occurs when implementing
these algorithms.

2.1 Framework

Let (Ω,F ,P; {Ft}t≥0) be a filtered probability space, in which denote a standard n-dimensional
Brownian motion W = {Wt, t ≥ 0}. {FWt }t≥0 denote the natural filtration generated by W , and
P(U) denote the set of probability measures taking values on the action space U . 2 We denote Zt
by random variable that is uniformly distributed on [0, 1], independent of W , and Zt, 0 ≤ t ≤ s are
mutually independent, then Fs = FWs ∨ σ(Zt, 0 ≤ t ≤ s). The admissible control uπ = {uπt , 0 ≤
t ≤ T} is {Ft}t≥0-progressively measurable process representing the actions generated by agent’s
policy π(·|t, x) ∈ P(U). The agent aims to control the stochastic dynamical system:{

dXπ(t) =b (t,Xπ(t), uπ(t)) dt+ σ̄ (t,Xπ(t), uπ(t)) dW (t),

Xπ(0) =x0 ∈ Rn, t ≥ 0
(1)

to maximize the entropy-regularized expected cumulative reward:

J(0, x0;π) = EP

[∫ T

0

e−βt [r(t,Xπ
t , u

π
t)− λ lnπ(uπt |t,Xπ

t)] dt+ e−βTh(Xπ
T)|F0

]
. (2)

The optimal value function V (t, x) for state x at time t is defined by

V (t, x) = sup
π∈P(U)

J(t, x;π).

2.2 Multi-agent framework

We denote U and V by the action spaces of two agents respectively, uπ(t), vπ(t) representing actions
generated by policy πu, πv respectively. Analogous to the single-agent setting, the corresponding
system dynamics and value functions for agents with their policies π = (πu, πv), can be formulated
as: {

dXπ(t) =b (t,Xπ(t), uπ(t), vπ(t)) dt+ σ̄ (t,Xπ(t), uπ(t), vπ(t)) dW (t),

Xπ(0) =x0 ∈ Rn, t ≥ 0
(3)

2In this paper, policies are modeled as parametric distributions (Gaussian policies). To align with conventional
notation (e.g., Sutton and Barto [2018]), we do not strictly differentiate between density functions, probability
measures, and policies, instead uniformly representing them by the notation π ∈ P(U).

3

and
V1(t, x) = sup

πv∈P(V)

J1 (t, x; π̄
u, πv) =

sup
πv∈P(V)

EP

[∫ T

t

e−β(s−t)
[
r1

(
s,Xπ

s , u
π̄
s , v

π
s

)
− λ1 lnπv(vπ|s,Xπ

s)
]
ds+ e−β(T−t)h1(X

π
T)|Ft

]
,

V2(t, x) = sup
πu∈P(U)

J2 (t, x;π
u, π̄v) =

sup
πu∈P(U)

EP

[∫ T

t

e−β(s−t)
[
r2

(
s,Xπ

s , u
π
s , v

π̄
s

)
− λ2 lnπu(uπ|s,Xπ

s)
]
ds+ e−β(T−t)h2(X

π
T)|Ft

]
,

(4)
where (t, x) ∈ [0, T]× Rn, (π̄u, π̄v) are fixed policies, and the optimal policies π∗ satisfy:

π∗u = argmax
πu∈P(U)

J2 (t, x;π
u, π∗v) , π∗v = argmax

πv∈P(V)

J1 (t, x;π
∗u, πv) . (5)

We assume that problems (1)-(2) and (3)-(4) remain well-posed throughout the analysis. 3 For
simplicity, this paper focuses on a two-agent scenario. We emphasize that all results can be naturally
extended to finite multi-agent systems.

3 Main results

3.1 Policy evaluation

Mean squared temporal difference error In discrete-time settings, algorithms like DQN, DDPG,
and SAC apply Bellman’s principle of optimality to estimate state-action value function Q(x, u),
defining their loss functions with mean-square TD error. As for continuous settings, Doya [2000]
also adopts this method for state value function J(x). However, Jia and Zhou [2022a] argue that in
stochastic environments, this method cannot guarantee convergence to the value function. We outline
a brief description about this issue below.

Let us recall Doya’s TD Algorithm. The deterministic system satisfies:

J(t, xt) =

∫ t′

t

r(s, xs)ds+ J(t′, xt′), t ∈ [0, T], (6)

where r can encapsulates terms such as reward, discount, and regularization. Using parameterized
functions Jθ, Doya aims at minimizing the mean-square TD error:

J̇t =
d

dt
J(t, xt),MSTDE(θ) =

1

2

∫ T

0

[J̇t(t, xt) + r(t, xt)]
2dt =

1

2

∫ T

0

(
J̇θt + r(t, xt)

)2

dt. (7)

For stochastic system (1), (3), for any fixed (t, x) ∈ [0, T]× Rn, define process:

Ms := J(s,Xs) +

∫ s

t

r(s′, Xs′) ds
′, s ∈ [t, T]. (8)

{Ms, t ≤ s ≤ T} is a square-integrable martingale. Regarding uniform discrete time intervals δt,
when δt→ 0, the discrete-time MSTDE becomes

MSTDE :=
1

2
E

[
K−1∑
i=0

(
J(ti+1, Xti+1

)− J(ti, Xti)

ti+1 − ti
+ r(ti, Xti)

)2

· δt

]

=
1

2δt
E

[
K−1∑
i=0

∣∣∣∣J(ti+1, Xti+1
)− J(ti, Xti) +

∫ ti+1

ti

rsds+O((δt)2)
∣∣∣∣2
]
≈ 1

2δt
⟨M⟩T ̸= 0

(9)

where ⟨M⟩T denotes the quadratic variation of the martingale M . From equation (9), it can be ob-
served that the MSTDE corresponding to the true value function J is not zero. Therefore, minimizing
MSTDE to learn parameterized function Jθ cannot guarantee convergence to value function J in
continuous-time and space environments. The martingale property of the value function motivates a
novel approach to policy evaluation.

3This point is guaranteed by Assumption 2 and Definition 1 provided in the Appendix B.

4

Martingale orthogonality condition To ensure that the learning process eventually converges to
the value function, we impose constraints on the parameterized function Jθ to preserve the martingale
property. Jia and Zhou [2022a] propose the following proposition.

Proposition 1. A process M ∈ L2
F ([0, T]) is a martingale if and only if

E

[∫ T

0

ξtdMt

]
= 0, for any ξt ∈ L2

F ([0, T],M). (10)

We assume all value functions J and their approximators Jθ discussed in this work satisfy the
following assumptions.

Assumption 1. For all θ ∈ Θ, J, Jθ ∈ C1,2([0, T) × Rn) ∩ C([0, T] × Rn) and satisfies the
polynomial growth condition in x. Moreover, Jθ(t, x) is a smooth function in θ. ∂Jθ

∂θ ,
∂2Jθ

∂θ2 ∈
C1,2([0, T)× Rn) ∩ C([0, T]× Rn) satisfying the polynomial growth condition in x.

Theorem 1. A function is the value function associated with the policy π if it satisfies terminal
condition J(T, x;π) = h(x), and for any given (t, x) ∈ [0, T]×Rn and admissible policy π̃ ∈ P(U),
define

Ms := e−βsJ(s,X π̃
s ;π) +

∫ s

t

e−βs
′ [(

r(s′, X π̃
s′ , u

π̃
s′)− λ lnπ(uπ̃|s′, X π̃

s′)
)]
ds′ (11)

is an (Fs,P)-martingale on [t, T].

According to Proposition 1 and Theorem 1, the approximating function Jθ is the value function
associated with policy π when the martingale orthogonality condition:

EP

∫ T

0

ξt
[
dJθ(t,X π̃

t ;π) + r(t,X π̃
t , u

π̃
t)dt− λ lnπ(uπ̃|t,X π̃

t)dt− βJθ(t,X π̃
t ;π)dt

]
= 0 (12)

for any ξt ∈ L2
F [0, T] holds.

In this work, we propose an off-policy algorithm to learn the value function by imposing the constraint:

EP

∫ T

0

ξt
[
dJθ(t,X π̃

t ;π
ϕ) + r(t,X π̃

t , u
π̃
t)dt− λ lnπϕ(uπ̃t |t,X π̃

t)dt− βJθ(t,X π̃
t ;π

ϕ)dt
]
= 0.

(13)
Here, π̃ denotes the behavior policy, πϕ denotes the approximated policy parameterized by neural
network. This implies that we can learn the value function J of a given target policy π based on data
generated by a different admissible policy π̃. We emphasize that the state transitions (1) and rewards
r are inherent properties of the environment, determined only by the current state and action, and
independent of the policy π. Similar to the framework in Haarnoja et al. [2018a], where policies
are modeled as Gaussian distributions with entropy regularization, all policies cover the same action
space, and reparameterized sampling is employed in the policy gradient step, making importance
sampling weights unnecessary. 4

Martingale orthogonality condition for multi-agent systems For multi-agent systems, the mar-
tingale orthogonality conditions also hold. By generalizing Theorem 1, where we denote the policy
of agent 2 as π̄u, the following theorem guarantees the policy evaluation for agent 1.

Theorem 2. A function J1(·, ·; π̄u, πv) is the value function associated with the policy π = (π̄u, πv)
if it satisfies the terminal condition J1(T, x; π̄u, πv) = h1(x), and for any fixed (t, x) ∈ [0, T]× Rn
and admissible policies (π̄u, π̃v), define

M1
s :=e−βsJ1(s,X

π̃
s) +

∫ s

t

[
e−βs

′
(∫

U

r1(s
′, X π̃

s′ , u
π̄
s′ , v

π̃
s′)π̄

u(uπ̄|s′, X π̃
s′)du

−λ1 lnπv(vπ̃|s′, X π̃
s′)

)]
ds′

(14)

is an (Fs,P)-martingale on [t, T].

4Proof of Theorem 1 and a more detailed discussion can be found in the Appendix B.1 and Appendix C.

5

By integrating Theorem 2 with the single-agent analysis presented earlier, we derive a critic network
update rule for multi-agent reinforcement learning analogous to (13):

EP

∫ T

0

ξ1t

[
dJθ11 (t,X π̃

t ; π̄
u, πvϕ) + r1(t,X

π̃
t , ū

π
t , v

π̃
t)dt− λ1 lnπvϕ(vπ̃|t,X π̃

t)dt

−βJθ11 (t,X π̃
t ; π̄

u, πvϕ)dt
]
= 0.

(15)

The evaluation of J2 also obeys the above theorem and condition.

3.2 Policy gradient

The following theorems are proposed to characterize policy gradients in both single-agent and multi-
agent reinforcement learning. The related proofs are provided in the Appendix B. These theorems
extend the policy gradient theorem in Jia and Zhou [2022b] to broader settings.
Theorem 3. Consider an admissible parameterized policy πϕ within the dynamical system (1),
for any (t, x) ∈ [0, T] × Rn, its policy gradient g(t, x;ϕ) = ∂

∂ϕJ
(
t, x;πϕ

)
admits the following

representation:

g(t, x;ϕ) = EP

[∫ T

t

e−β(s−t)
{
∂

∂ϕ
lnπϕ(us|s,Xπ

s)
(
dJ

(
s,Xπ

s ;π
ϕ
)
+ [r (s,Xπ

s , us)

+λ lnπϕ (us|s,Xπ
s)− βJ

(
s,Xπ

s ;π
ϕ
)]
ds
)
− λ ∂

∂ϕ
lnπϕ (us|s,Xπ

s) ds

}
| Xπ

t = x

]
.

(16)

Theorem 4. Consider an admissible parameterized policy πϕ = (π̄uϕ2
, πvϕ1

) within the dynamical

system (3), for any (t, x) ∈ [0, T]×Rn, its policy gradient g1(t, x; ϕ̄2, ϕ1) :=
∂J1(t,x;π̄

u
ϕ2
,πv

ϕ1
)

∂ϕ1
admits

the following representation:

g1(t, x; ϕ̄2, ϕ1)

=EP

[∫ T

t

e−β(s−t)
{

∂

∂ϕ1
lnπvϕ1

(vs|s,Xπ
s)

(
dJ1

(
s,Xπ

s ; ϕ̄2, ϕ1
)
+ [r (s,Xπ

s , us, vs)

−λ1 lnπv (vs|s,Xπ
s)− βJ

(
s,Xπ

s ; ϕ̄2, ϕ1
)]
ds
)

−λ1
∂

∂ϕ
lnπv (vs|s,Xπ

s) ds

}
| Xπ

t = x

]
, ∀(t, x) ∈ [0, T]× Rd.

(17)

The policy gradient of another agent g2(t, x;ϕ2, ϕ̄1) :=
∂J1(t,x;π

u
ϕ2
,π̄v

ϕ1
)

∂ϕ2
has same representation.

3.3 Continuous Soft Actor-Critic

Continuous Soft Actor-Critic The entropy term in (2) enhances the exploration capability of policy
π. Hyperparameters (e.g., temperature λ) and soft update techniques follow the implementation of
Haarnoja et al. [2018b]. To stabilize training, we employ a separate function approximator for the soft
value J(t, xt), which minimizes the martingale orthogonality conditions through gradient descent.
We integrate key techniques for automatic adaptation of temperature parameters λ via dual gradient
descent, as proposed by Haarnoja et al. [2018b]. We choose ξt =

∂Jθ(t,Xt)
∂θ and we optimize the

temperature parameter λ via:

λ∗t = argmin
λt

EP[−λt lnπ(u|t, x)− λtH̄], (18)

where the target entropy H̄ is typically task-specific. In practice, we solve (18) using stochastic
gradient descent. Algorithm 1 outlines the entire procedure.

Continuous Multi-Agent Soft Actor-Critic The algorithmic workflow of the multi-agent system
aligns with the single-agent case, where the function approximator J , reward r, and entropy term are
replaced by their multi-agent counterparts. We adopt the Centralized Training with Decentralized
Execution (CTDE) framework. Coordination between the two agents is achieved through alternating
updates. The complete procedure is detailed in Algorithm 2 in Appendix A.

6

Algorithm 1 Continuous Soft Actor-Critic Algorithm

Inputs: time step δt, number of epochs N , number of mesh grids K, number of gradient step L,
batch size I , initial learning rates αθ, αϕ, initial θ, ϕ, θtarget, discount factor β, and temperature
parameter λ. Jθ(·, ·) defining functional form of the value function, πϕ(· | ·) defining functional
form of the policy, D defining buffer of transitions, optJ ,optπ defining optimizer.
Interactive program: an environment simulator (x′, r) = Environment δt(t, x, u) that takes
current time-state pair (t, x) and action u as inputs and generates state x′ at time t+ δt and the
instantaneous reward r at time t.
Learning procedure:
for j = 1 to N do

Initialize k = 0. Observe the initial state x0 and store xtk ← x0.
while k < K do

Generate action utk ∼ πϕ (· | tk, xtk).
Apply utk to the environment simulator (x, r) = Environmentδt (tk, xtk , utk), and observe

the output new state x and reward r.
Store xtk+1

← x and rtk ← r in D, D=D ∪ (xtk , utk , rtk , xtk+1
, dtk+1

), d is the episode
termination signal. Update k ← k + 1.

end while
for l = 1 to L do

Sampled a batch of I transitions (xti , xti+1
, uti , rti) from D and a batch of uϕti from πϕ.

Compute

δM =Jθtarget
(
ti+1, xti+1

)
− Jθ (ti, xti) + rtiδt− λ ln (πϕ (uti | ti, xti)) δt

− βJθ (ti, xti) δt,

∆θ =
1

I

I−1∑
i=0

∂θJ
θ(ti, xti)δM

δt
,

∆ϕ =
1

I

I−1∑
i=0

[
∂ϕ lnπϕ

(
uϕti | ti, xti

)]
δM − λ∂ϕ ln

(
πϕ

(
uϕti | ti, xti

))
δt

δt
.

(19)

Update θ (policy evaluation) with optJ , learning rate αθδt, and ∆θ.
Update ϕ (policy gradient) with optπ , learning rate αϕδt and ∆ϕ.
Adjust temperature λ. Update θtarget ← τθ + (1− τ)θtarget.

end for
end for

3.4 Hyperparameter scaling

The optimality of value functions in our continuous-time algorithm is well established. Here,
we analyze the impact of time step δt on parameter updates. Time-dependent scaling laws for
returns, discount factors, learning rates, and temperatures are derived from discrete-time formulations
(δt = 1).

Learning rate scaling As proven in Tallec et al. [2019], the state-action value function Q(x, u)
and state value function V (x) after time discrete satisfy: Qπδt(x, u) = V πδt(x) +O(δt). In learning
framework, the advantage function satisfy: Aψδt(x, u) = Qδt(x, u) − V θδt(x) = O(δt). Conse-
quently, Q-learning or A-learning gradients scale as O(δt), causing vanishing gradients during
backpropagation. Empirical validation is provided in Table 6, which displays MADDPG gradients
across four update steps. To address this, Tallec et al. [2019] redefine the advantage function as
Aψδt(x, u) =

Qδt(x,u)−V θ
δt(x)

δt = O(1) and scaling the learning rate.

Extending this insight to stochastic continuous environments, the martingale difference term also sat-
isfies δMθ

t = O(δt). To stabilize gradient magnitudes, we normalize it as δMθ
t /δt, while preserving

the martingale structure of Jθ. Table 7 validates this normalization strategy by comparing gradients
under scaled versus unscaled configurations across three update steps in the proposed algorithm.

7

(a) Navigation. (b) Sampling.

Figure 1: Two VMAS multi-robot control tasks used in the experiments.

We analyze the algorithm in a continuous-time framework with temporal discretization during imple-
mentation. To ensure that discrete-time parameter trajectories converge to well-defined continuous-
time limits, learning rate scaling is essential. This is formalized in the following theorem.

Theorem 5. Let (xt, ut) be some exploration trajectory under time discretization. Set the learning
rates to ηθδt = αθδt

β and ηϕδt = αϕδt
β for some β > 0, and learn the parameters θ and ϕ by iterating

(19) along the trajectory (xt, ut). Then, when t > 0:

(i) If β = 1 the discrete parameter trajectories converge to continuous parameter trajectories;

(ii) If β > 1 the parameters stay at their initial values;

(iii) If β < 1, the parameters can reach infinity.

Other hyperparameter scalings (i) Discount factor: By comparing our framework with the
continuous Markov Decision Process (MDP) formulation in Tallec et al. [2019], we derive the
relationship γ = e−β . Then from the parameter update rule in Equation (19), the discrete-time
discount factor e−βδt under variable time step scaling becomes: e−βδt = e−βδt = γδt. (ii) Temperature:
Equation (19) demonstrates linear scaling of the temperature parameter with the discretization interval:
λδt = λ · δt. (iii) Reward: The reward term scales proportionally to the time step via formula (19):
rδt = r · δt.

4 Experiments

Tasks We conducted experiments using multiple tasks in the VMAS simulator (Bettini et al. [2022]).
The visual representations of the Navigation and Sampling tasks are illustrated in Figure 1.

Implementations Following Bettini et al. [2024], we employ their network architectures, default
hyperparameters, and other configurations in our experiments. Descriptions of tasks, random seeds,
network architectures, optimizer settings and other implementation details are all documented in
the Appendix E. 5 For fair comparison, the proposed algorithm in this work utilizes the common
hyperparameters tuned in Bettini et al. [2024], which may not reflect its optimal performance, yet
remains valid for robustness verification.

Results Here, we employ the simulation environments navigation and sampling (validated in
Bou et al. [2024]), along with multi-agent reinforcement learning algorithms including MAPPO,
MASAC, and MADDPG (which demonstrated superior performance in Bettini et al. [2024]), as
well as Q-learning-based approaches QMIX and IQL, to conduct a comparative analysis of these
algorithms.

(i) As shown in Table 4, when δt decreases from 0.1 to 0.01, the performance of popular algorithms
gradually declines. We selected two representative algorithms—MADDPG, which demonstrated the
best performance in experiments from Bettini et al. [2024], and MASAC, a discrete-time method of
the actor-critic class—for further investigation. The results in Table 1 reconfirm our viewpoint in the
sampling environment.

5The repository includes code: https://github.com/hh11813/continuous-soft-actor-critic

8

https://github.com/hh11813/continuous-soft-actor-critic

(a) Navigation. (b) Sampling.

Figure 2: Performance profile for two VMAS tasks.

(ii) In contrast, the performance of CMASAC remains stable. Results are shown in Table 2 and 3.
Figures 2 present the performances of algorithms MAPPO, MASAC, MADDPG and TEST (a time
scaling-free variant of CMASAC, ensuring parameter consistency for cross-algorithm fairness) at
δt = 0.01. The results demonstrate that the martingale approach enhances the algorithm’s robustness
against small δt. 6

(iii) To ensure the comprehensiveness of the experiments and eliminate the impact of extraneous
factors on the conclusions, we increased the number of random seeds to five, normalized the rewards,
and adjusted the hyperparameters accordingly. The results are summarized in Table 5. The experi-
mental results in Table 5 verify that the temporal robustness of the method proposed in this paper
outperforms other methods.

We also conducted a set of experiments in a single-agent environment, which demonstrate the
advantages of the off-policy approach. For detailed results, please refer to Appendix C.

5 Limitations and future work

Given that the problem formulation is based on stochastic differential equations and constrained
by computational resources, we limit our experimental validation to selected benchmarks. The
proposed method targets continuous space-time problems and thus may not be suitable for discrete-
valued spaces. The theory of multi-agent reinforcement learning requires further exploration. This
work serves as an exploratory investigation into continuous-time multi-agent reinforcement learning
problems.

6 Conclusion

We propose Continuous Soft Actor-Critic, a novel off-policy reinforcement learning algorithm
designed for stochastic continuous-time environments, and further generalize it to multi-agent settings.
By bridging principles between stochastic optimal control theory and reinforcement learning, we
address critical limitations of existing algorithms in continuous-time environments and preliminarily
validate our claims. Central to our approach is the enforcement of the martingale property for
value functions, coupled with gradient and hyperparameter scaling laws. This results in a δt-robust
parameter update rule. The off-policy nature of the algorithm ensures high sample efficiency, as it
enables reuse of historical trajectories. The experimental results on benchmark tasks demonstrate the
proposed algorithm’s robustness to time discretization.

Acknowledgments and Disclosure of Funding

This work was supported by the National Key R&D Program of China (NO. 2023YFA1008701) and
the Key Project of the National Natural Science Foundation of China (No. 12431017).

6Further experimental details, scenario-specific analyses, and extended results in different tasks are provided
in the Appendix D.

9

Table 1: Aggregate scores under sampling with different δt

δt MASAC(0.1) MADDPG(0.1) MASAC(0.01) MADDPG(0.01)

Median 0.66 [0.62, 0.7] 0.94 [0.86, 1.0] 0.43 [0.37, 0.46] 0.91 [0.79, 1.0]
IQM 0.66 [0.62, 0.7] 0.94 [0.86, 1.0] 0.43 [0.37, 0.46] 0.91 [0.79, 1.0]
Mean 0.66 [0.62, 0.7] 0.94 [0.86, 1.0] 0.43 [0.37, 0.46] 0.91 [0.79, 1.0]
Optimality Gap 0.34 [0.3, 0.38] 0.06 [0.0, 0.14] 0.57 [0.54, 0.63] 0.09 [0.0, 0.21]

Table 2: Aggregate scores of CMASAC under navigation

δt 0.1 0.01

IQM 0.96 [0.92, 1.0] 0.93 [0.86, 1.0]
Mean 0.96 [0.92, 1.0] 0.93 [0.86, 1.0]
Median 0.96 [0.92, 1.0] 0.93 [0.86, 1.0]
Optimality Gap 0.04 [0.0, 0.08] 0.07 [0.0, 0.14]

Table 3: Aggregate scores of CMASAC under sampling

δt 0.1 0.01

IQM 0.84 [0.64, 1.0] 0.92 [0.83, 1.0]
Mean 0.84 [0.64, 1.0] 0.92 [0.83, 1.0]
Median 0.84 [0.64, 1.0] 0.92 [0.83, 1.0]
Optimality Gap 0.16 [0.0, 0.36] 0.08 [0.0, 0.17]

Table 4: Aggregate scores under navigation with different δt

δt=0.1 QMIX IQL MAPPO MASAC

Median 0.92 [0.9, 0.93] 0.99 [0.98, 1.0] 0.97 [0.96, 0.98] 0.89 [0.89, 0.89]
IQM 0.92 [0.9, 0.93] 0.99 [0.98, 1.0] 0.97 [0.96, 0.98] 0.89 [0.89, 0.89]
Mean 0.92 [0.9, 0.93] 0.99 [0.98, 1.0] 0.97 [0.96, 0.98] 0.89 [0.89, 0.89]
Optimality Gap 0.08 [0.07, 0.1] 0.01 [0.0, 0.02] 0.03 [0.02, 0.04] 0.11 [0.11, 0.11]

δt=0.01 QMIX IQL MAPPO MASAC

Median 0.86 [0.63, 1.0] 0.88 [0.83, 0.95] 0.8 [0.73, 0.84] 0.51 [0.5, 0.52]
IQM 0.86 [0.63, 1.0] 0.88 [0.83, 0.95] 0.8 [0.73, 0.84] 0.51 [0.5, 0.52]
Mean 0.86 [0.63, 1.0] 0.88 [0.83, 0.95] 0.8 [0.73, 0.84] 0.51 [0.5, 0.52]
Optimality Gap 0.14 [0.0, 0.37] 0.12 [0.05, 0.17] 0.2 [0.16, 0.27] 0.49 [0.48, 0.5]

δt MADDPG(0.1) MADDPG(0.01)

Median 0.8 [0.76, 0.84] 0.78 [0.62, 0.91]
IQM 0.8 [0.76, 0.84] 0.78 [0.62, 0.91]
Mean 0.8 [0.76, 0.84] 0.78 [0.62, 0.91]
Optimality Gap 0.2 [0.16, 0.24] 0.22 [0.09, 0.38]

Table 5: Aggregate scores under navigation with δt = 0.01

QMIX IQL MAPPO MASAC

Median 0.75 [0.69, 0.81] 0.92 [0.89, 0.94] 0.87 [0.87, 0.89] 0.49 [0.48, 0.5]
IQM 0.74 [0.67, 0.83] 0.92 [0.88, 0.95] 0.87 [0.86, 0.89] 0.49 [0.47, 0.5]
Mean 0.75 [0.69, 0.81] 0.92 [0.89, 0.94] 0.87 [0.87, 0.89] 0.49 [0.48, 0.5]
Optimality Gap 0.25 [0.19, 0.31] 0.08 [0.06, 0.11] 0.13 [0.11, 0.13] 0.51 [0.5, 0.52]

MADDPG

Median 0.88 [0.79, 0.96]
IQM 0.9 [0.76, 0.98]
Mean 0.88 [0.79, 0.96]
Optimality Gap 0.12 [0.04, 0.21]

10

References
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G. Bellemare.

Deep reinforcement learning at the edge of the statistical precipice. In Advances in Neural
Information Processing Systems, volume 34, pages 29304–29320, 2021.

Leemon C. Baird. Reinforcement learning in continuous time: Advantage updating. In Proceedings of
1994 IEEE International Conference on Neural Networks (ICNN’94), volume 4, pages 2448–2453.
IEEE, 1994.

Matteo Bettini, Ryan Kortvelesy, Jan Blumenkamp, and Amanda Prorok. VMAS: A vectorized
multi-agent simulator for collective robot learning. In International Symposium on Distributed
Autonomous Robotic Systems, pages 42–56. Springer, 2022.

Matteo Bettini, Amanda Prorok, and Vincent Moens. BenchMARL: Benchmarking multi-agent
reinforcement learning. Journal of Machine Learning Research, 25(217):1–10, 2024.

Albert Bou, Matteo Bettini, Sebastian Dittert, Vikash Kumar, Shagun Sodhani, Xiaomeng Yang,
Gianni De Fabritiis, and Vincent Moens. TorchRL: A data-driven decision-making library for
pytorch. In International Conference on Learning Representations, 2024.

Kenji Doya. Reinforcement learning in continuous time and space. Neural Computation, 12(1):
219–245, 2000.

Rihab Gorsane, Omayma Mahjoub, Ruan John de Kock, Roland Dubb, Siddarth Singh, and Arnu
Pretorius. Towards a standardised performance evaluation protocol for cooperative marl. In
Advances in Neural Information Processing Systems, volume 35, pages 5510–5521, 2022.

Xin Guo, Renyuan Xu, and Thaleia Zariphopoulou. Entropy regularization for mean field games with
learning. Mathematics of Operations Research, 47(4):3239–3260, 2022.

Xin Guo, Anran Hu, and Junzi Zhang. Mf-omo: An optimization formulation of mean-field games.
SIAM Journal on Control and Optimization, 62(1):243–270, 2024.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning, pages 1861–1870. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018b.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI conference on Artificial
Intelligence, volume 32. Association for the Advancement of Artificial Intelligence (AAAI), 2018.

Yanwei Jia and Xun Yu Zhou. Policy evaluation and temporal-difference learning in continuous time
and space: a martingale approach. Journal of Machine Learning Research, 23(154):1–55, 2022a.

Yanwei Jia and Xun Yu Zhou. Policy gradient and actor-critic learning in continuous time and space:
theory and algorithms. Journal of Machine Learning Research, 23(275):1–50, 2022b.

Yanwei Jia and Xun Yu Zhou. q-learning in continuous time. Journal of Machine Learning Research,
24(161):1–61, 2023.

Yanwei Jia and Xun Yu Zhou. Erratum to “q-learning in continuous time”. 2025.

Ioannis Karatzas and Steven Shreve. Brownian motion and stochastic calculus, volume 113. Springer
Science & Business Media, 2014.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
International Conference on Learning Representations, 2016.

11

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-critic
for mixed cooperative-competitive environments. In Advances in Neural Information Processing
Systems, volume 30, 2017.

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andy Ballard, Andrea Banino, Misha
Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, Dharshan Kumaran, and Raia Had-
sell. Learning to navigate in complex environments. In International Conference on Learning
Representations, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1–51, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint http://arxiv.org/abs/1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018.

Corentin Tallec, Léonard Blier, and Yann Ollivier. Making deep q-learning methods robust to time
discretization. In International Conference on Machine Learning, volume 97, pages 6096–6104.
PMLR, 2019.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In International
Conference on Machine Learning, pages 330–337, 1993.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Haoran Wang and Xun Yu Zhou. Continuous-time mean–variance portfolio selection: A reinforce-
ment learning framework. Mathematical Finance, 30(4):1273–1308, 2020.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu.
The surprising effectiveness of ppo in cooperative multi-agent games. In Advances in Neural
Information Processing Systems, volume 35, pages 24611–24624, 2022.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes. Our main contributions are also detailed in Sec. 1. Also see Sec. 4 and
Appendix for more theoretical and experimental evidence.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, please see Sec. 5 for limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

13

Justification: We detail the assumptions and proofs of theoretical results in Sec. 3 and
Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We release the codes at https://github.com/hh11813/
continuous-soft-actor-critic to reproduce the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

14

https://github.com/hh11813/continuous-soft-actor-critic
https://github.com/hh11813/continuous-soft-actor-critic

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We release the codes at https://github.com/hh11813/
continuous-soft-actor-critic
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Please see Sec. 4 and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our experimental results incorporate confidence intervals and other statistical
measures. Please see Sec. 4 and Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15

https://github.com/hh11813/continuous-soft-actor-critic
https://github.com/hh11813/continuous-soft-actor-critic
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: This work focuses on a academic, publicly-available continuous algorithm.
This work is not related to any private or personal data, and there’s no explicit negative
social impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

16

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we credited them in appropriate ways.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

17

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces assets with comprehensive documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

18

A Algorithm

Algorithm 2 illustrates the workflow of the Continuous Multi-Agent Soft Actor-Critic.

B Proofs

Throughout the proofs, by convention we denote by A ◦B the inner product between A and B, by
∥x∥2 the Euclidean norm of x, ∥A∥F the Frobenius norm of A, and A′ is transpose of A. We denote
by a ∨ b the larger of a and b, and by a ∧ b the smaller of the two numbers. We denote by I the
indicator function, IA(x) = 1 when x ∈ A and IA(x) = 0 when x /∈ A. For a measurable set U , we
denote by P(U) the set of probability distributions over U . We assume the following conditions hold
to maintain the well-posedness of our problem.
Assumption 2. (i) b, σ̄, ri, hi, i = 1, 2 are all continuous functions in their respective arguments;

(ii) b, σ̄ are uniformly Lipschitz continuous in x, i.e., for φ ∈ {b, σ̄}, there exists a constant C > 0
such that

|φ(t, x, u, v)− φ (t, x′, u, v)| ≤ C |x− x′| , ∀(t, u, v) ∈ [0, T]× U × V, ∀x, x′ ∈ Rn;

(iii) b, σ̄ have linear growth in x, i.e., for φ ∈ {b, σ̄}, there exists a constant C > 0 such that

|φ(t, x, u, v)| ≤ C(1 + |x|), ∀(t, x, u, v) ∈ [0, T]× Rn × U × V ;

(iv) ri and hi have polynomial growth in (x, u, v) and x respectively, i.e., there exists a constant
C > 0 and µ ≥ 1 such that

|ri(t, x, u, v)| ≤ C (1 + |x|µ + |u|µ + |v|µ) , i = 1, 2,

|hi(x)| ≤ C (1 + |x|µ) , ∀(t, x, u, v) ∈ [0, T]× Rn × U × V.

The following gives the precise definition of admissible policies.
Definition 1. A policy π = π(· | ·, ·) is called admissible if

(i) π(· | t, x) ∈ P(U), suppπ(· | t, x) = U for every (t, x) ∈ [0, T] × Rn, and π(u | t, x) :
(t, x, u) ∈ [0, T]× Rn × U → R is measurable;

(ii) π(u | t, x) is continuous in (t, x) and uniformly Lipschitz continuous in x in the total variation
distance, i.e.,

∫
U
|π(u | t, x)− π (u | r, x′)| du → 0 as (r, x′) → (t, x), and there is a constant

C > 0 independent of (t, u) such that∫
U

|π(u | t, x)− π (u | t, x′)| du ≤ C |x− x′| , ∀x, x′ ∈ Rn;

(iii) For any given α > 0, the entropy of π and its α-moment have polynomial growth in x, i.e., there
are constants C = C(α) > 0 and µ′ = µ′(α) ≥ 1 such that

∣∣∫
U
− log π(u | t, x)π(u | t, x)du

∣∣ ≤
C
(
1 + |x|µ′

)
, and

∫
U
|u|απ(u | t, x)du ≤ C

(
1 + |x|µ′

)
, ∀(t, x) ∈ [0, T]× Rn.

Under Assumption 2 along with Definition 1, the well-poseness of problems (1)-(2) and (3)-(4) can
be guaranteed.

Obviously problem (1)-(2) and (3)-(4) related to stochastic optimal control problem and stochastic
game respectively, but the probability space is no longer (Ω,FW ,PW) but (Ω,F ,P). 7 We recall
the existing results for stochastic control in (Ω,FW ,PW). Value function J can be characterized by
a PDE based on the celebrated Feynman–Kac formula:

∂J

∂t
(t, x) + b(t, x) ◦ ∂J

∂x
(t, x) +

1

2
σ̄2(t, x) ◦ ∂

2J

∂x2
(t, x) + r(t, x) = 0,

J(T, x) = h(x),

where ∂J
∂x ∈ Rn is the gradient, and ∂2J

∂x2 ∈ Rn×n is the Hessian.

7Readers may refer to Jia and Zhou [2025] for further discussion on extended probability spaces, which does
not affect the methodology of this paper and thus is not elaborated here.

19

Algorithm 2 Continuous Multi-Agent Soft Actor-Critic Algorithm

Inputs: time step δt, number of epochs N , number of mesh grids K, number of gradient step L,
batch size I , initial learning rates αθ, αϕ, initial θ1, θ2, ϕ1, ϕ2, θ

target
1 , θtarget

2 , discount factor β, and
temperature parameter λ1, λ2. Jθ11 (·, ·), Jθ22 (·, ·) defining functional form of the value function,
πuϕ1

(· | ·), πvϕ2
(· | ·) defining functional form of the policy, D defining buffer of transitions,

optJ ,optπ defining optimizer.
Interactive program: an environment simulator (x′, r1, r2) = Environment δt(t, x, u, v) that
takes current time-state pair (t, x) and action u, v as inputs and generates state x′ at time t+ δt
and the instantaneous reward r1, r2 at time t.
Learning procedure:
for j = 1 to N do

Initialize k = 0. Observe the initial state x0 and store xtk ← x0.
while k < K do

Generate action vtk ∼ πvϕ1
(· | tk, xtk) , utk ∼ πuϕ2

(· | tk, xtk).
Apply vtk , utk to the environment simulator (x, r1, r2) = Environmentδt(tk, xtk , utk , vtk),

and observe the output new state x and reward r1, r2.
Store xtk+1

← x and rtk1 ← r1, r
tk
2 ← r2 in D, D=D ∪ (xtk , utk , vtk , rtk , xtk+1

, dtk+1
).

Update k ← k + 1.
end while
for l = 1 to L do

Sampled a batch of I transitions (xti , uti , vti , xti+1
, rti1) from D and a batch of vϕ1

ti from
πvϕ1

. Compute

δM1 =J
θtarget
1

1

(
ti+1, xti+1

)
− Jθ11 (ti, xti) + rti1 δt− λ1 ln (πϕ1

(vti | ti, xti)) δt
− βJθ11 (ti, xti) δt,

∆θ1 =

I−1∑
i=0

1

I

∂θ1J
θ1
1 (ti, xti) δM1

δt
,

∆ϕ1 =

I−1∑
i=0

1

I

[
∂ϕ1 lnπ

v
ϕ1

(
vϕ1

ti | ti, xti
)]
δM1 − λ1∂ϕ1 ln

(
πvϕ1

(
vϕ1

ti | ti, xti
))

δt

δt
.

Update θ1 (policy evaluation) with optJ , learning rate αθδt, and ∆θ1.
Update ϕ1 (policy gradient) with optπ , learning rate αϕδt and ∆ϕ1.
Adjust temperature λ1. Update θtarget

1 ← τθ1 + (1− τ)θtarget
1 .

Sampled a batch of I transitions (xti , uti , vti , xti+1
, rti2) from D and a batch of uϕ2

ti from
πuϕ2

. Compute

δM2 =J
θtarget
2

2

(
ti+1, xti+1

)
− Jθ22 (ti, xti) + rti2 δt− λ2 ln (πϕ2

(uti | ti, xti)) δt
− βJθ22 (ti, xti) δt,

∆θ2 =

I−1∑
i=0

1

I

∂θ2J
θ2
2 (ti, xti)δM2

δt
,

∆ϕ2 =

I−1∑
i=0

1

I

[
∂ϕ2 lnπ

u
ϕ2

(
uϕ2

ti | ti, xti
)]
δM2 − λ2∂ϕ2 ln

(
πuϕ2

(
uϕ2

ti | ti, xti
))

δt

δt
.

Update θ2 with optJ , learning rate αθδt, and ∆θ2.
Update ϕ2 with optπ , learning rate αϕδt and ∆ϕ2.
Adjust temperature λ2. Update θtarget

2 ← τθ2 + (1− τ)θtarget
2 .

end for
end for

20

B.1 Proof of Theorem 1

Proof. Let J be the value function with policy π ∈ P(U), applying Itô’s lemma to the process
e−βsJ

(
s,X π̃

s

)
, we obtain for 0 ≤ t < s ≤ T ,

e−βsJ
(
s,X π̃

s ;π
)
− e−βtJ(t, x;π) +

∫ s

t

e−βs
′ [
r
(
s′, X π̃

s′ , u
π̃
s′
)
− λ lnπ(uπ̃s′ |s′, X π̃

s′)
]
ds′

=

∫ s

t

e−βs
′
[
∂J

∂t

(
s′, X π̃

s′ ;π
)
+H

(
s′, X π̃

s′ , u
π̃
s′ ,
∂J

∂x

(
s′, X π̃

s′ ;π
)
,
∂2J

∂x2
(
s′, X π̃

s′ ;π
))

−λ lnπ(uπ̃s′ |s′, X π̃
s′)− βJ

(
s′, X π̃

s′ ;π
)]
ds′ +

∫ s

t

e−βs
′ ∂

∂x
J
(
s′, X π̃

s′ ;π
)
◦ σ̄

(
s′, X π̃

s′ , u
π̃
s′
)
dWs′

(20)
where for any (t, x, u) ∈ [0, T]× Rn × U,

H

(
t, x, u,

∂J

∂x
(t, x;π) ,

∂2J

∂x2
(t, x;π)

)
=b(t, x, u) ◦ ∂J

∂x
(t, x;π) +

1

2
σ̄2(t, x, u) ◦ ∂

2J

∂x2
(t, x;π) + r(t, x, u).

Since process (11) with J keeps martingalety, and the term
∫
· · · dWs′ of the right hand side of (20)

is local martingale, we derive that the first term of the right hand side of (20) is also a local martingale.
For continuous local martingale with finite variation, by Chapter 1, Exercise 5.21, on Karatzas and
Shreve [2014],∫ s

t

e−βs
′
[
∂J

∂t

(
s′, X π̃

s′ ;π
)
+H

(
s′, X π̃

s′ , u
π̃
s′ ,
∂J

∂x

(
s′, X π̃

s′ ;π
)
,
∂2J

∂x2
(
s′, X π̃

s′ ;π
))

−λ lnπ(uπ̃s′ |s′, X π̃
s′)− βJ

(
s′, X π̃

s′ ;π
)]
ds′ = 0, ∀s ∈ [t, T],

(21)

P-almost surely holds.

Denote

f(t, x, u) =
∂J

∂t
(t, x) +H

(
t, x, u,

∂J

∂x
(t, x) ,

∂2J

∂x2
(t, x)

)
− λ lnπ(u|t, x)− βJ (t, x) .

We shall demonstrate that

f(t, x, u) = 0, ∀(t, x, u) ∈ [0, T]× Rn × U. (22)

Since f is a continuous function, if (22) is not true, there exists (t∗, x∗, u∗) and ϵ > 0 such that
|f (t∗, x∗, u∗) | > ϵ. Without loss of generality, we assume f (t∗, x∗, u∗) > ϵ. Then exists δ > 0
such that f (r, x′, u′) > ϵ/2 for all (r, x′, u′) with |r − t∗| ∨ |x′ − x∗| ∨ |u′ − u∗| < δ. Consider the
state process X π̃ , starting from (t∗, x∗, u∗), namely,

{
X π̃
s , t

∗ ≤ s ≤ T
}

follows (1) with X π̃
t∗ = x∗

and uπ̃t∗ = u∗. Define

τ = inf
{
r ≥ t∗ : |r − t∗| > δ or

∣∣X π̃
r − x∗

∣∣ > δ
}
= inf

{
r ≥ t∗ :

∣∣X π̃
r − x∗

∣∣ > δ
}
∧ (t∗ + δ) .

The continuity of X π̃ implies that τ > t∗,P-almost surely.

(21) means that there exists Ω0 ∈ F with P (Ω0) = 0 such that for all ω ∈ Ω\Ω0 and s ∈ [t∗, T],∫ s
t∗
e−βs

′
f
(
s′, X π̃

s′(ω), u
π̃
s′(ω)

)
ds′ = 0. It follows from Lebesgue’s differentiation theorem that for

any ω ∈ Ω\Ω0,
f
(
s,X π̃

s (ω), u
π̃
s (ω)

)
= 0, a.e. s ∈ [t∗, τ(ω)] .

Consider the set Z(ω) =
{
s ∈ [t∗, τ(ω)] : uπ̃s (ω) ∈ Bδ (u∗)

}
⊂ [t∗, τ(ω)], where Bδ (u∗) =

{u′ ∈ U : |u′ − u∗| < δ} is the neighborhood of u∗. Because f
(
s,X π̃

s (ω), u
π̃
s (ω)

)
> ϵ

2 when
s ∈ Z(ω), we conclude that Z(ω) has Lebesgue measure zero for any ω ∈ Ω\Ω0. That is,∫

[t∗,T]

I{s≤τ(ω)}I{uπ̃
s (ω)∈Bδ(u∗)}ds = 0.

21

Integrating ω with respect to P and applying Fubini’s theorem, we obtain

0 =

∫
Ω

∫
[t∗,T]

I{s≤τ(ω)}I{uπ̃
s (ω)∈Bδ(u∗)}dsP(dω) =

∫
[t∗,T]

E
[
I{s≤τ}I{uπ̃

s∈Bδ(u∗)}
]
ds

=

∫ T

t∗
E
[
I{s≤τ}P

(
uπ̃s ∈ Bδ (u∗) | Fs

)]
ds =

∫ T

t∗
E

[
I{s≤τ}

∫
Bδ(u∗)

π̃
(
u | s,X π̃

s

)
du

]
ds

≥ min
|x′−x∗|<δ,|r−t∗|<δ

{∫
Bδ(u∗)

π̃ (u | r, x′) du

}∫ T

t∗
E
[
I{s≤τ}

]
ds

= min
|x′−x∗|<δ,|r−t∗|<δ

{∫
Bδ(u∗)

π̃ (u | r, x′) du

}
E [(τ ∧ T)− t∗] ≥ 0.

Since τ > t∗, P-almost surely, the above implies

min
|x′−x∗|<δ,|r−t∗|<δ

{∫
Bδ(u∗)

π̃ (u | r, x′) du

}
= 0.

However, this contradicts Definition 1 about an admissible policy π̃. Indeed, Definition 1-(i) stipulates
supp π̃(· | t, x) = U for any (t, x), hence

∫
Bδ(u∗)

π̃(u | t, x)du > 0. Then the continuity in
Definition 1-(ii) yields

min
|x′−x∗|<δ,|r−t∗|<δ

{∫
Bδ(u∗)

π̃ (u | r, x′) du

}
> 0,

it is a contradiction. Hence we conclude f(t, x, u) = 0 for every (t, x, u) ∈ [0, T]× Rn × U. Then
we have ∫

U

[
∂J

∂t
(t, x) + b(t, x, u) ◦ ∂J

∂x
(t, x) +

1

2
σ̄2(t, x, u) ◦ ∂

2J

∂x2
(t, x)

+r(t, x, u)− λ lnπ(u | t, x)− βJ (t, x)]π(u | t, x)du = 0.

Assume that the function Jθ satisfies the assumptions of Theorem 1. Combining the above results
with the hypotheses of Theorem 1, we conclude that Jθ satisfies:

∂Jθ

∂t
(t, x) +

∫
U

[
b(t, x, u) ◦ ∂J

θ

∂x
(t, x) +

1

2
σ̄2(t, x, u) ◦ ∂

2Jθ

∂x2
(t, x)

+r(t, x, u)− λ lnπ(u | t, x)]π(u | t, x)du− βJθ (t, x) = 0,

Jθ(T, x) = h(x).

(23)

Then Jθ is the unique viscosity solution among polynomially growing functions of (23). Jθ is the
value function associated with policy π.

B.2 Proof of Theorem 2

Consider system:dX̃
π(t) =b̃

(
t, X̃π(t), π̄t, vt

)
dt+ σ̃

(
t, X̃π(t), π̄t, vt

)
dW (t),

X̃π(0) =x0 ∈ Rn, t ≥ 0
(24)

where

b̃(s, x, π(·), v) =
∫
U

b(s, x, u, v)π(u)du, σ̃(s, x, π(·), v) =

√∫
U

σ̄2(s, x, u, v)π(u)du.

Value function with policies (π̄u, πv) admits the following representation:

J(t, x;π) = EP

[∫ T

t

e−β(s−t)
{∫

U

[
r(t, X̃π

t , u, v)π̄
u(u|t, X̃π

t)− λ lnπv(v|t, X̃π
t)

]
πv(v|t, X̃π

t)du
}
ds+ e−β(T−t)h(X̃π

T)|X̃t = x
]
,

(25)

22

The problem (24)-(25) is equavilent to (3)-(4) and the solution of the SDE (3) Xπ with policies
(π̄u, πv) shares the same distribution as X̃π of (24).

Proof. Considering the equivalent formulation (24)-(25), by applying the same method for process
e−βsJ1

(
s, X̃ π̃

s

)
with policy π = (π̄u, πv) as used in the proof of Theorem 1, we can get for

0 ≤ t < s ≤ T :

e−βsJ1

(
s, X̃ π̃

s ;π
)
− e−βtJ1(t, x;π)

+

∫ s

t

e−βs
′
(∫

U

r1(s
′, X̃ π̃

s′ , u
π̄
s′ , v

π̃
s′)π̄

u(uπ̄|s′, X̃ π̃
s′)du− λ1 lnπv(vπ̃s′ |s′, X̃ π̃

s′)

)
ds′

=

∫ s

t

e−βs
′
[
∂J1
∂t

(
s′, X̃ π̃

s′ ;π
)
+

∫
U

H1

(
s′, X̃ π̃

s′ , u
π̄
s′ , v

π̃
s′ ,
∂J1
∂x

(
s′, X̃ π̃

s′ ;π
)
,
∂2J1
∂x2

(
s′, X̃ π̃

s′ ;π
))

π̄u(uπ̄|s′, X̃ π̃
s′)du− λ1 lnπv(vπ̃s′ |s′, X̃ π̃

s′)− βJ1
(
s′, X̃ π̃

s′ ;π
)]
ds′

+

∫ s

t

e−βs
′ ∂

∂x
J1

(
s′, X̃ π̃

s′ ;π
)
◦ σ̄

(
s′, X̃ π̃

s′ , u
π̄
s′ , v

π̃
s′

)
dWs′

(26)
where

H1

(
s′, X̃ π̃

s′ , u
π̄, vπ̃,

∂J1
∂x

(
s′, X̃ π̃

s′ ;π
)
,
∂2J1
∂x2

(
s′, X̃ π̃

s′ ;π
))

=b(s′, X̃ π̃
s′ , u

π̄, vπ̃) ◦ ∂J1
∂x

(
s′, X̃ π̃

s′ ;π
)
+

1

2
σ̄2(s′, X̃ π̃

s′ , u
π̄, vπ̃) ◦ ∂

2J1
∂x2

(
s′, X̃ π̃

s′ ;π
)

+ r1(s
′, X̃ π̃

s′ , u
π̄, vπ̃).

Following the methodology of proving Theorem 1, we extend the argument to the multi-agent case.
Since process (14) with J1 keeps martingalety, and the term

∫
· · · dWs′ of the right hand side of (26)

is local martingale, we derive that the first term of the right hand side of (26) is also a local martingale.
Then∫ s

t

e−βs
′
[
∂J1
∂t

(
s′, X̃ π̃

s′ ;π
)
+

∫
U

H1

(
s′, X̃ π̃

s′ , u
π̄
s′ , v

π̃
s′ ,
∂J1
∂x

(
s′, X̃ π̃

s′ ;π
)
,
∂2J1
∂x2

(
s′, X̃ π̃

s′ ;π
))

π̄u(uπ̄|s′, X̃ π̃
s′)du− λ1 lnπv(vπ̃s′ |s′, X̃ π̃

s′)− βJ1
(
s′, X̃ π̃

s′ ;π
)]
ds′ = 0, ∀s ∈ [t, T],

(27)
P-almost surely holds.

Denote

f(t, x, v) =
∂J1
∂t

(t, x) +

∫
U

H1

(
t, x, u, v,

∂J1
∂x

(t, x) ,
∂2J1
∂x2

(t, x)

)
π̄u(u | t, x)du

− λ1 lnπv(v|t, x)− βJ1 (t, x) .
We shall demonstrate that

f(t, x, v) = 0, ∀(t, x, v) ∈ [0, T]× Rn × V. (28)

Since f is a continuous function, if (28) is not true, there exists (t∗, x∗, v∗) and ϵ > 0 such that
|f (t∗, x∗, v∗) | > ϵ. Without loss of generality, we assume f (t∗, x∗, v∗) > ϵ. Then exists δ > 0
such that f (r, x′, v′) > ϵ/2 for all (r, x′, v′) with |r − t∗| ∨ |x′ − x∗| ∨ |v′ − v∗| < δ. Consider the
state process X π̃ , starting from (t∗, x∗, v∗), namely,

{
X π̃
s , t

∗ ≤ s ≤ T
}

follows (24) with X π̃
t∗ = x∗

and vπ̃t∗ = v∗. Define

τ = inf
{
r ≥ t∗ : |r − t∗| > δ or

∣∣X π̃
r − x∗

∣∣ > δ
}
= inf

{
r ≥ t∗ :

∣∣X π̃
r − x∗

∣∣ > δ
}
∧ (t∗ + δ) .

The continuity of X π̃ implies that τ > t∗,P-almost surely.

(27) means that there exists Ω0 ∈ F with P (Ω0) = 0 such that for all ω ∈ Ω\Ω0, for all s ∈ [t∗, T],∫ s
t∗
e−βs

′
f
(
s′, X π̃

s′(ω), v
π̃
s′(ω)

)
ds′ = 0. It follows from Lebesgue’s differentiation theorem that for

any ω ∈ Ω\Ω0,
f
(
s,X π̃

s (ω), v
π̃
s (ω)

)
= 0, a.e. s ∈ [t∗, τ(ω)] .

23

Consider the set Z(ω) =
{
s ∈ [t∗, τ(ω)] : vπ̃s (ω) ∈ Bδ (v∗)

}
⊂ [t∗, τ(ω)], where Bδ (v∗) =

{v′ ∈ V : |v′ − v∗| < δ} is the neighborhood of v∗. Because f
(
s,X π̃

s (ω), v
π̃
s (ω)

)
> ϵ

2 when
s ∈ Z(ω), we conclude that Z(ω) has Lebesgue measure zero for any ω ∈ Ω\Ω0. That is,∫

[t∗,T]

I{s≤τ(ω)}I{vπ̃s (ω)∈Bδ(v∗)}ds = 0.

Integrating ω with respect to P and applying Fubini’s theorem, we obtain

0 =

∫
Ω

∫
[t∗,T]

I{s≤τ(ω)}I{vπ̃s (ω)∈Bδ(v∗)}dsP(dω) =
∫
[t∗,T]

E
[
I{s≤τ}I{vπ̃s ∈Bδ(v∗)}

]
ds

=

∫ T

t∗
E
[
I{s≤τ}P

(
vπ̃s ∈ Bδ (v∗) | Fs

)]
ds =

∫ T

t∗
E

[
I{s≤τ}

∫
Bδ(v∗)

π̃
(
v | s,X π̃

s

)
dv

]
ds

≥ min
|x′−x∗|<δ,|r−t∗|<δ

{∫
Bδ(v∗)

π̃ (v | r, x′) dv

}∫ T

t∗
E
[
I{s≤τ}

]
ds

= min
|x′−x∗|<δ,|r−t∗|<δ

{∫
Bδ(v∗)

π̃ (v | r, x′) dv

}
E [(τ ∧ T)− t∗] ≥ 0.

Since τ > t∗, P-almost surely, the above implies

min
|x′−x∗|<δ,|r−t∗|<δ

{∫
Bδ(v∗)

π̃ (v | r, x′) dv

}
= 0.

However, this contradicts Definition 1 about an admissible policy π̃. Indeed, Definition 1-(i) stipulates
supp π̃(· | t, x) = V for any (t, x), hence

∫
Bδ(v∗)

π̃(v | t, x)dv > 0. Then the continuity in Definition
1-(ii) yields

min
|x′−x∗|<δ,|r−t∗|<δ

{∫
Bδ(v∗)

π̃ (v | r, x′) dv

}
> 0,

it is a contradiction. Hence we conclude f(t, x, v) = 0 for every (t, x, v) ∈ [0, T]× Rn × V. Then
we have∫

V

{
∂J1
∂t

(t, x) +

∫
U

[
b(t, x, u, v) ◦ ∂J1

∂x
(t, x) +

1

2
σ̄2(t, x, u, v) ◦ ∂

2J1
∂x2

(t, x)

+r(t, x, u, v)] π̄u(u | t, x)du− λ1 lnπv(v | t, x)− βJ1 (t, x)}πv(v | t, x)dv = 0.

Assume that the function Jθ1 satisfies the assumptions of Theorem 2. Combining the above results
with the hypotheses of Theorem 2, we conclude that Jθ1 satisfies:

∂Jθ1
∂t

(t, x) +

∫
V

[∫
U

H1

(
t, x, u, v,

∂Jθ1
∂x

(t, x) ,
∂2Jθ1
∂x2

(t, x)

)
π̄u(u | t, x)du

−λ1 lnπv(v|t, x)]πv(v | t, x)dv − βJθ1 (t, x) = 0,

Jθ1 (T, x) = h1(x).

(29)

Then Jθ1 is the unique viscosity solution among polynomially growing functions of (29). Jθ1 is the
value function associated with policy π. The proof for J2 follows a procedure analogous to that of
J1.

B.3 Proof of Theorem 3

Proof. For value function J with policy π, we have∫
U

(LuJ(t, x) + r(t, x, u)− λ lnπ(u)− βJ(t, x))π(u)du = 0 (30)

where

LuJ(t, x) := ∂J(t, x)

∂t
+ b(t, x, u) ◦ ∂J(t, x)

∂x
+

1

2
σ̄2(t, x, u) ◦ ∂

2J(t, x)

∂x2
.

24

Let πϕ be the parametric family of policies with the parameter ϕ ∈ Φ. We aim to compute the policy
gradient g(t, x;ϕ) := ∂J(t,x;πϕ)

∂ϕ ∈ RLϕ at the current time–state pair (t, x).

We take the derivative in ϕ on both sides of (30) and we have
∫
U

{[
Lug(t, x;ϕ)− λ ∂

∂ϕ lnπϕ(u | t, x))− βg(t, x;ϕ)
]
πϕ(u)

+
(
LuJ (t, x;ϕ) + r(t, x, u)− λ lnπϕ(u)− βJ(t, x;ϕ)

)
∂πϕ

∂ϕ (u)
}
du = 0,

g(T, x;ϕ) = 0.

(31)

Define

ř(t, x, u;ϕ)

=
[
LuJ (t, x;ϕ) + r(t, x, u)− λ lnπϕ(u)− βJ(t, x;ϕ)

] ∂πϕ(u)
∂ϕ

πϕ(u)
− λ ∂

∂ϕ
lnπϕ(u | t, x)

=
[
LuJ (t, x;ϕ) + r(t, x, u)− λ lnπϕ(u)− βJ(t, x;ϕ)

] ∂

∂ϕ
lnπϕ(u)− λ ∂

∂ϕ
lnπϕ(u | t, x).

Then (31) can be written as{ ∫
U
[Lug(t, x;ϕ) + ř(t, x, u;ϕ)− βg(t, x;ϕ)]πϕ(u)du = 0,

g(T, x;ϕ) = 0.
(32)

The Feynman-Kac formula represents g(t, x;ϕ) as

g(t, x;ϕ) = EP

[∫ T

t

e−βsř (s,Xs, us;ϕ) ds | Xπ
t = x

]
. (33)

Apply Itô lemma to J(s,Xπ
s ;ϕ), we obtain

J
(
t+ δt,Xπ

t+δt;ϕ
)
−J (t,Xπ

t ;ϕ) =

∫ t+δt

t

LuJ (s,Xπ
s ;ϕ) ds+

∂J

∂x
(s,Xπ

s ;ϕ)
′◦σ̄(s,Xπ

s , u
π)dWs.

Therefore,

ř (s,Xπ
s , us;ϕ) ds

=
[
LuJ (s,Xπ

s ;ϕ) + r (s,Xπ
s , us)− λ lnπϕ(us | s,Xπ

s)− βJ (s,Xπ
s ;ϕ)

]
× ∂

∂ϕ
lnπϕ (us | s,Xπ

s) ds

− λ ∂

∂ϕ
lnπϕ(us | s,Xπ

s)ds

≈ ∂

∂ϕ
lnπϕ (us | s,Xπ

s)
{
dJ (s,Xπ

s ;ϕ) +
[
r (s,Xπ

s , us)− λ lnπϕ(us | s,Xπ
s)− βJ (s,Xπ

s ;ϕ)
]
ds

−∂J
∂x

(s,Xπ
s ;ϕ)

′ ◦ σ̄(s,Xπ
s , u

π)dWs

}
− λ ∂

∂ϕ
lnπϕ(us | s,Xπ

s)ds.

(34)
By substituting equation (34) into equation (33), the theorem is proven.

B.4 Proof of Theorem 4

Proof. From the Feymann-Kac formula, we have J1(t, x; π̄u, πv) with policy π = (π̄u, πv) satisfies∫
V

[∫
U

(Lu,vJ1(t, x; π̄u, πv) + r1(t, x, u, v)) π̄
u(u)du− λ1 lnπv(v)

−βJ1(t, x; π̄u, πv)]πv(v)dv = 0

(35)

where

Lu,vJ1(t, x) :=
∂J1(t, x)

∂t
+ b(t, x, u, v) ◦ ∂J1(t, x)

∂x
+

1

2
σ̄2(t, x, u, v) ◦ ∂

2J1(t, x)

∂x2
.

25

Let (πuϕ2
, πvϕ1

) be the parametric family of policies with the parameter ϕ1 ∈ Φ1 ⊂ RLϕ1 , ϕ2 ∈ Φ2 ⊂
RLϕ2 . We aim to compute the policy gradient g1(t, x; ϕ̄2, ϕ1) :=

∂J1(t,x;π̄
u
ϕ2
,πv

ϕ1
)

∂ϕ1
, g2(t, x;ϕ2, ϕ̄1) :=

∂J2(t,x;π
u
ϕ2
,π̄v

ϕ1
)

∂ϕ2
.

Taking the derivative in ϕ1 on both sides of the HJB equation (35), we obtain:

∫
V

{[∫
U
Lu,vg1(t, x; ϕ̄2, ϕ1)π̄uϕ2

(u)du− λ1
∂ lnπv

ϕ1
(v)

∂ϕ1
− βg1(t, x; ϕ̄2, ϕ1)

]
πvϕ1

(v)

+
[∫
U

(
Lu,vJ1

(
t, x; ϕ̄2, ϕ1

)
+ r1(t, x, u, v)

)
π̄uϕ2

(u)du− λ1 lnπvϕ1
(v)

−βJ1(t, x; ϕ̄2, ϕ1)
] ∂πv

ϕ1
(v)

∂ϕ1

}
dv = 0,

g1(T, x; ϕ̄2, ϕ1) = 0.

(36)

Define

ř(t, x, u, v; ϕ̄2, ϕ1)

=
[
Lu,vJ1

(
t, x; ϕ̄2, ϕ1

)
+ r1(t, x, u, v)− λ1 lnπvϕ1

(v)− βJ1(t, x; ϕ̄2, ϕ1)
] ∂πv

ϕ1
(v)

∂ϕ1

πvϕ1
(v)

− λ1
∂

∂ϕ1
lnπvϕ1

(v)

=
[
Lu,vJ1

(
t, x; ϕ̄2, ϕ1

)
+ r1(t, x, u, v)− λ1 lnπvϕ1

(v)− βJ1(t, x; ϕ̄2, ϕ1)
] ∂

∂ϕ1
lnπvϕ1

(v)

− λ1
∂

∂ϕ1
lnπvϕ1

(v).

Then we have{ ∫
V

∫
U

[
Lu,vg1(t, x; ϕ̄2, ϕ1) + ř(t, x, u, v; ϕ̄2, ϕ1)− βg1(t, x; ϕ̄2, ϕ1)

]
π̄uϕ2

(u)duπvϕ1
(v)dv = 0,

g1(T, x; ϕ̄2, ϕ1) = 0.

Then g1 is represented by

g1(t, x; ϕ̄2, ϕ1) = EP

[∫ T

t

e−βsř
(
s,Xs, us, vs; ϕ̄2, ϕ1

)
ds | Xπ

t = x

]
. (37)

Apply Itô lemma to J1(t,Xπ
s ; ϕ̄2, ϕ1) on [t, t+ δt],

J1
(
t+ δt,Xπ

t+δt; ϕ̄2, ϕ1
)
− J1

(
t,Xπ

t ; ϕ̄2, ϕ1
)
=

∫ t+δt

t

Lu,vJ1
(
s,Xπ

s ; ϕ̄2, ϕ1
)
ds

+
∂J1
∂x

(
s,Xπ

s ; ϕ̄2, ϕ1
)′ ◦ σ̄(t,Xπ

s , u
π, vπ)dWs.

(38)
Therefore,

ř(s,Xπ
s , us, vs; ϕ̄2, ϕ1)ds

=
[
Lu,vJ1

(
s,Xπ

s ; ϕ̄2, ϕ1
)
+ r1(s,X

π
s , us, vs)− λ1 lnπvϕ1

(v)− βJ1(s,Xπ
s ; ϕ̄2, ϕ1)

]
·

∂

∂ϕ1
lnπvϕ1

(v)ds− λ1
∂

∂ϕ1
lnπvϕ1

(v)ds

≈ ∂

∂ϕ1
lnπvϕ1

(v)
{
dJ1

(
s,Xπ

s ; ϕ̄2, ϕ1
)
+

[
r(s,Xπ

s , us, vs)− λ1 lnπvϕ1
(v)− βJ1(s,Xπ

s ; ϕ̄2, ϕ1)
]
ds

−∂J
∂x

(
s,Xπ

s ; ϕ̄2, ϕ1
)′ ◦ σ̄(s,Xπ

s , u
π, vπ)dWs

}
− λ1

∂

∂ϕ1
lnπvϕ1

(v)ds.

(39)
By substituting equation (39) into equation (37), the theorem is proven. The proof for g2(t, x;ϕ2, ϕ̄1)
follows a procedure analogous to that of g1(t, x; ϕ̄2, ϕ1).

26

B.5 Proof of Theorem 5

Proof. By algorithm 1, for time discretization δt, we have

θk+1 − θk = αθδt
β · 1

I

I−1∑
i=0

1

δt
·[

∂Jθ(tk, xk)

∂θ

(
Jθ (tk+1, xk+1)− Jθ (tk, xk) + rkδt− λ lnπ (uk | tk, xk) δt− βJθ (tk, xk) δt

)]
.

(40)
According to Assumption 1, using Itô’s fomula for Jθ, we have

Jθ (tk+1, xk+1)− Jθ (tk, xk)
≈Jθt (tk, xk) · δt+ Jθx (tk, xk) · b(tk, xk, uk) · δt+ Jθx (tk, xk) · σ̄(tk, xk, uk) ·Wδt

+
1

2
Jθxx (tk, xk) · σ̄2(tk, xk, uk) · δt+ o(δt)

where Wδt denotes the Brownian motion over transitions Hereafter, we denote by C̃ a constant which
is independent of δt. Then (40) becomes

θk+1 − θk = αθδt
β · 1

δt
·
[
C̃1 · δt+ o(δt)

]
. (41)

(i) When β = 1, let δt −→ 0, we have

dθt
dt

= C̃(θt, xt, ut).

Parameters in discrete-time convergence to continuous trajectory charactirized by well-posed ordinary
differential equation.

(ii) When β > 1, let δt −→ 0, we have

dθt
dt

= C̃(θt, xt, ut) · (dt)β−1.

Parameters in discrete-time convergence to initial state θ0.

(iii) When β < 1, let δt −→ 0, we have

dθt
dt

=
C̃(θt, xt, ut)

(dt)1−β
.

Parameters in discrete-time can reach infinity.

C Off-policy approach

Compared to the q-framework proposed in Jia and Zhou [2023], two limitations arise. First, constraints
(27) or (21) are not easily verifiable in general environments. In particular, when the normalizing
constant in the Gibbs measure is unavailable, it renders methods relying solely on a q-network
without a policy network infeasible (Algorithms 1–3). Second, the policy-network-maintaining
method introduced in Jia and Zhou [2023] remains an on-policy approach. And the proposed learning
method in Jia and Zhou [2023]:

ϕ← ϕ− γαϕdt
[
logπϕ

(
aπ

ϕ

t | t,Xt

)
− 1

γ
q
(
t,Xt, a

πϕ

t ;πϕ
)] ∂

∂ϕ
logπϕ

(
aπ

ϕ

t | t,Xt

)
(42)

introduces bias in off-policy settings. This leads to the accumulation of biases at each update step
throughout the training.

The method proposed in this paper is a practical continuous-time off-policy algorithm. The approach
ensures unbiased gradient estimation by policy network and reparameterized sampling during the
policy gradient steps. From the update formula (19), it can be observed that in policy gradient
update step, the only component related to the interaction trajectory is the martingale difference term.

27

As stated in Theorem 1, when the martingale property is ensured, the policy gradient update step
becomes consistent with the on-policy estimation in Theorem 3. We emphasize that the martingale
merely serves as a bridge in our approach to reinforcement learning and we approximately ensure
the martingale property of the process Ms via (19) instead of enforcing it. As mentioned in Section
3, we can choose whether to adopt importance sampling based on the specific problem, as it is not
mandatory. The update method (19) effectively balances computational efficiency with mitigating the
effects of distribution shift. And

Eπϕ

[
λ∂ϕ ln

(
πϕ

(
uϕti | ti, xti

))
δt
]
= 0, (43)

we can taking the martingale difference term δM as the advantage function, the update rule of policy
πϕ aligns with discrete-time formulations.

C.1 Comparative experiment

To facilitate a comparative analysis of the methods, we adopt the linear quadratic problem presented
in Jia and Zhou [2023] as a benchmark. 8 The system dynamics are governed by matrix

dXπ
t = (AXπ

t +Baπt) dt+ (CXπ
t +Daπt) dWt, Xπ

0 = x0,

and the objective is to maximize the payoff

lim inf
T→∞

1

T
E

[∫ T

0

−
(
M

2
(Xπ

t)
2 +RXπ

t a
π
t +

N

2
(aπt)

2 + PXπ
t +Qaπt

)
−λ log π (aπt | Xπ

t) dt | Xπ
0 = x0] .

In our simulation, the system parameters are set as A = −1, B = C = 0, D = 1, and the
initial state x0 = 0. The cost function parameters are M = N = Q = 2, R = P = 1, with
temperature λ = 0.1. The target policy, associated with parameterized q-function, is defined as
π(· | x) = N(ψ1x + ψ2, λe

ψ3) in Jia and Zhou [2023] and we approximate this target using a
parameterized policy π(· | x) = N(ϕ1x+ ϕ2, e

ϕ3). The experiments use a time discretization step
of δt = 0.1. Each of the learning algorithms is run for a sufficiently long duration of T = 106 steps.

The behavior policy is set to a normal distribution N(−x− 1, 1):

(a) continuous soft actor-critic (b) q learning

Figure 3: Comparison of learning curves Using behavior policy N(−x− 1, 1).

The behavior policy is set to a normal distribution N(x+ 1, 1):

8The repository includes code accompanied by implementation notes: https://github.com/hh11813/
continuous-soft-actor-critic

28

https://github.com/hh11813/continuous-soft-actor-critic
https://github.com/hh11813/continuous-soft-actor-critic

(a) continuous soft actor-critic (b) q learning

Figure 4: Comparison of learning curves using behavior policy N(x+ 1, 1).

We can observe that the other method collapse, while our approach remains stable. This reflects the
bias in learning results caused by on-policy method when there is a difference between the behavior
policy and the target policy. The presence of the upper and lower bounds on the parameter curve in
Figure 3 and Figure 4 is a result of the parameter clipping step incorporated into learning process in
Jia and Zhou [2023].

D Plots and tables

D.1 Gradients

Gradient explosion can be effectively addressed through gradient clipping. We focus on the vanishing
gradient problem in this discussion. Tables 6 and 7 illustrate the gradient changes during the update
process with seed {0}.

D.2 Results

Navigation (i) We compare the performance of multiple algorithms under varying time discretiza-
tion parameters δt, with the baseline hyperparameter discount factor set to γ = 0.9. Results presented
in Tables 4 and 8 consistently highlight the sensitivity to δt, indicating a lack of robustness. The
experiments reported in Tables 2, 3 and 1 employ 3× 105 frames, while Table 4 use 1.2× 105 frames,
all with random seeds {0, 1, 2}.

Table 8: Aggregate scores under navigation

δt=0.1 QMIX IQL MAPPO MASAC

Median 0.97 [0.97, 0.97] 1.0 [1.0, 1.0] 0.98 [0.98, 0.98] 0.97 [0.97, 0.97]
IQM 0.97 [0.97, 0.97] 1.0 [1.0, 1.0] 0.98 [0.98, 0.98] 0.97 [0.97, 0.97]
Mean 0.97 [0.97, 0.97] 1.0 [1.0, 1.0] 0.98 [0.98, 0.98] 0.97 [0.97, 0.97]
Optimality Gap 0.03 [0.03, 0.03] 0.0 [0.0, 0.0] 0.02 [0.02, 0.02] 0.03 [0.03, 0.03]

δt=0.01 QMIX IQL MAPPO MASAC

Median 0.63 [0.57, 0.67] 0.61 [0.6, 0.62] 0.55 [0.54, 0.57] 0.55 [0.54, 0.56]
IQM 0.63 [0.57, 0.67] 0.61 [0.6, 0.62] 0.55 [0.54, 0.57] 0.55 [0.54, 0.56]
Mean 0.63 [0.57, 0.67] 0.61 [0.6, 0.62] 0.55 [0.54, 0.57] 0.55 [0.54, 0.56]
Optimality Gap 0.37 [0.33, 0.43] 0.39 [0.38, 0.4] 0.45 [0.43, 0.46] 0.45 [0.44, 0.46]

δt MADDPG (0.1) MADDPG (0.01)

Median 0.91 [0.88, 0.93] 0.7 [0.52, 0.89]
IQM 0.91 [0.88, 0.93] 0.7 [0.52, 0.89]
Mean 0.91 [0.88, 0.93] 0.7 [0.52, 0.89]
Optimality Gap 0.09 [0.07, 0.12] 0.3 [0.11, 0.48]

29

Table 6: Gradients of MADDPG (critic network) under sampling

δt=0.1 δt=0.01

mlp.params.4.bias: 0.0382 mlp.params.4.bias: 0.0007
mlp.params.4.weight: 0.1038 mlp.params.4.weight: 0.0047
mlp.params.2.bias: 0.0237 mlp.params.2.bias: 0.0004
mlp.params.2.weight: 0.0594 mlp.params.2.weight: 0.0043
mlp.params.0.bias: 0.0353 mlp.params.0.bias: 0.0003
mlp.params.0.weight: 0.0793 mlp.params.0.weight: 0.0032

mlp.params.4.bias: 0.0260 mlp.params.4.bias: 0.0108
mlp.params.4.weight: 0.0797 mlp.params.4.weight: 0.0172
mlp.params.2.bias: 0.0161 mlp.params.2.bias: 0.0058
mlp.params.2.weight: 0.0444 mlp.params.2.weight: 0.0156
mlp.params.0.bias: 0.0241 mlp.params.0.bias: 0.0042
mlp.params.0.weight: 0.0571 mlp.params.0.weight: 0.0128

mlp.params.4.bias: 0.0190 mlp.params.4.bias: 0.0133
mlp.params.4.weight: 0.0502 mlp.params.4.weight: 0.0193
mlp.params.2.bias: 0.0123 mlp.params.2.bias: 0.0071
mlp.params.2.weight: 0.0522 mlp.params.2.weight: 0.0170
mlp.params.0.bias: 0.0191 mlp.params.0.bias: 0.0051
mlp.params.0.weight: 0.0910 mlp.params.0.weight: 0.0141

mlp.params.4.bias: 0.0188 mlp.params.4.bias: 0.0076
mlp.params.4.weight: 0.0383 mlp.params.4.weight: 0.0165
mlp.params.2.bias: 0.0120 mlp.params.2.bias: 0.0041
mlp.params.2.weight: 0.0453 mlp.params.2.weight: 0.0153
mlp.params.0.bias: 0.0184 mlp.params.0.bias: 0.0029
mlp.params.0.weight: 0.0828 mlp.params.0.weight: 0.0110

Table 7: Gradients of CMASAC (critic network) under navigation (δt=0.01)

CMASAC TEST

mlp.params.4.bias: 0.1544 mlp.params.4.bias: 0.2554
mlp.params.4.weight: 2.7737 mlp.params.4.weight: 4.0866
mlp.params.2.bias: 0.0648 mlp.params.2.bias: 0.0002
mlp.params.2.weight: 0.1422 mlp.params.2.weight: 0.0033
mlp.params.0.bias: 0.7261 mlp.params.0.bias: 0.0040
mlp.params.0.weight: 0.9115 mlp.params.0.weight: 0.0447

mlp.params.4.bias: 0.5774 mlp.params.4.bias: 0.5774
mlp.params.4.weight: 9.1671 mlp.params.4.weight: 9.2355
mlp.params.2.bias: 0.0168 mlp.params.2.bias: 0.0012
mlp.params.2.weight: 0.0744 mlp.params.2.weight: 0.0059
mlp.params.0.bias: 0.1725 mlp.params.0.bias: 0.0181
mlp.params.0.weight: 0.4351 mlp.params.0.weight: 0.0448

mlp.params.4.bias: 0.2314 mlp.params.4.bias: 0.2569
mlp.params.4.weight: 3.9341 mlp.params.4.weight: 4.1117
mlp.params.2.bias: 0.0493 mlp.params.2.bias: 0.0006
mlp.params.2.weight: 0.1036 mlp.params.2.weight: 0.0043
mlp.params.0.bias: 0.5558 mlp.params.0.bias: 0.0106
mlp.params.0.weight: 0.6696 mlp.params.0.weight: 0.0666

30

Table 9: Aggregate scores under navigation

CMASAC

Median 0.96 [0.93, 0.99]
IQM 0.96 [0.92, 1.0]
Mean 0.96 [0.93, 0.99]
Optimality Gap 0.04 [0.01, 0.07]

(ii) By increasing the number of random seeds to four and using more frames (6× 105), we explore
the performance of the proposed algorithm under δt = 0.01. Comparison with the baseline results
in Table 2 demonstrates that variations in extraneous factors such as random seeds did not have a
decisive impact on the method’s performance.

(iii) To separately examine the effects of the martingale orthogonality condition and parameter
scaling, we compare the performance of the non-scaling CMASAC algorithm (TEST) and the
MASAC algorithm in a navigation task using 6 × 105 frames, with random seeds {0, 1, 2} and
δt = 0.01. Table 10 and Figure 5, 6 present the experimental results. Table 10 indicates that the
martingale orthogonality condition enhances the performance of the algorithm when δt is small.

Table 10: Aggregate scores under navigation

TEST

Median 0.96 [0.93, 1.0]
IQM 0.96 [0.93, 1.0]
Mean 0.96 [0.93, 1.0]
Optimality Gap 0.04 [0.0, 0.07]

Figure 5: Performance profile for navigation task

Figure 6: Aggregate score performance for navigation task

31

The TEST algorithm updates parameters according to modified version of Equation (19) in Algorithm
1:

∆θ =

I−1∑
i=0

1

I
∂θJ

θ (ti, xti) δM,

∆ϕ =

I−1∑
i=0

1

I

[
∂ϕ lnπ

v
ϕ1

(
vϕti | ti, xti

)]
δM − λ∂ϕ ln

(
πvϕ

(
vϕti | ti, xti

))
δt,

with learning rates αθ and αϕ.

Sampling (i) In Section 4 of the paper, we evaluate the performance of the MASAC and MADDPG
algorithms in the sampling task. Here, we present results form additional algorithms.

Table 11: Aggregate scores under sampling

δt=0.1 QMIX IQL MAPPO

Median 0.87 [0.75, 1.0] 0.93 [0.89, 0.96] 0.53 [0.45, 0.62]
IQM 0.87 [0.75, 1.0] 0.93 [0.89, 0.96] 0.53 [0.45, 0.62]
Mean 0.87 [0.75, 1.0] 0.93 [0.89, 0.96] 0.53 [0.45, 0.62]
Optimality Gap 0.13 [0.0, 0.25] 0.07 [0.04, 0.11] 0.47 [0.38, 0.55]

δt=0.01 QMIX IQL MAPPO

Median 0.53 [0.46, 0.57] 0.67 [0.46, 1.0] 0.45 [0.29, 0.76]
IQM 0.53 [0.46, 0.57] 0.67 [0.46, 1.0] 0.45 [0.29, 0.76]
Mean 0.53 [0.46, 0.57] 0.67 [0.46, 1.0] 0.45 [0.29, 0.76]
Optimality Gap 0.47 [0.43, 0.54] 0.33 [0.0, 0.54] 0.55 [0.24, 0.71]

Similar to Table 8, when the discount factor is set to γ = 0.9, the results in Table 12 demonstrate that
the algorithms exhibit unstable performance with respect to time discretization δt.

Table 12: Aggregate scores under sampling

δt=0.1 QMIX IQL MAPPO

Median 0.93 [0.89, 0.98] 0.93 [0.88, 1.0] 0.54 [0.44, 0.59]
IQM 0.93 [0.89, 0.98] 0.93 [0.88, 1.0] 0.54 [0.44, 0.59]
Mean 0.93 [0.89, 0.98] 0.93 [0.88, 1.0] 0.54 [0.44, 0.59]
Optimality Gap 0.07 [0.02, 0.11] 0.07 [0.0, 0.12] 0.46 [0.41, 0.56]

δt=0.01 QMIX IQL MAPPO

Median 0.62 [0.52, 0.72] 0.62 [0.52, 0.71] 0.51 [0.33, 0.86]
IQM 0.62 [0.52, 0.72] 0.62 [0.52, 0.71] 0.51 [0.33, 0.86]
Mean 0.62 [0.52, 0.72] 0.62 [0.52, 0.71] 0.51 [0.33, 0.86]
Optimality Gap 0.38 [0.28, 0.48] 0.38 [0.29, 0.48] 0.49 [0.14, 0.67]

For the sampling task with the discount factor γ = 0.99, CMASAC maintains superior performance
under the time discretization δt = 0.01. As demonstrated by the consistent results in Table 13,
adjustments to the discount factor do not compromise the robustness of CMASAC, highlighting its
stability across varying hyperparameter configurations. Experiments in Tables 11, 12 and 13 were
conducted using different numbers of frames (6× 104, 2.4× 105).

(ii) For the extended evaluation, we test CMASAC with 3 × 106 frames and δt = 0.01 on sam-
pling, the corresponding results are shown in Table 14 and 15. The unscaled continuous algorithm
(TEST) demonstrated superior results compared to other methods (Table 15, Figures 7 and 8).
Cross-referencing Tables 14 and 15 further validates that martingale orthogonality condition and
hyperparameter scaling jointly contribute to performance improvements.

32

Table 13: Aggregate scores of CMASAC under sampling

CMASAC

IQM 0.95 [0.92, 1.0]
Mean 0.95 [0.92, 1.0]
Median 0.95 [0.92, 1.0]
Optimality Gap 0.05 [0.0, 0.08]

Table 14: Aggregate scores under sampling

CMASAC

Median 0.97 [0.94, 1.0]
IQM 0.97 [0.94, 1.0]
Mean 0.97 [0.94, 1.0]
Optimality Gap 0.03 [0.0, 0.06]

Table 15: Aggregate scores under sampling

TEST MASAC MAPPO MADDPG

Median 0.92 [0.84, 1.0] 0.81 [0.8, 0.81] 0.76 [0.72, 0.81] 0.8 [0.77, 0.84]
IQM 0.92 [0.84, 1.0] 0.81 [0.8, 0.81] 0.76 [0.72, 0.81] 0.8 [0.77, 0.84]
Mean 0.92 [0.84, 1.0] 0.81 [0.8, 0.81] 0.76 [0.72, 0.81] 0.8 [0.77, 0.84]
Optimality Gap 0.08 [0.0, 0.16] 0.19 [0.19, 0.2] 0.24 [0.19, 0.28] 0.2 [0.16, 0.23]

Figure 7: Performance profile for sampling task

Figure 8: Aggregate score performance for sampling task

Balance We evaluate the proposed algorithm in balance environment. The result in Table 16
demonstrates the potential of CMASAC in near-continuous-time settings. A comparison of the
results in Tables 16 and 17 under δt = 0.01 reveals that both the martingale orthogonality condition
and hyperparameter scaling contribute to improved performance and increased robustness of the

33

algorithms in near-continuous environments. Test results of the method in more scenarios remain to
be explored.

Table 16: Aggregate scores of CMASAC under balance

δt 0.01

IQM 0.94 [0.88, 1.0]
Mean 0.94 [0.88, 1.0]
Median 0.94 [0.88, 1.0]
Optimality Gap 0.06 [0.0, 0.12]

Table 17: Aggregate scores of TEST under balance

δt 0.01

IQM 0.93 [0.89, 1.0]
Mean 0.93 [0.89, 1.0]
Median 0.93 [0.89, 1.0]
Optimality Gap 0.07 [0.0, 0.11]

D.3 Significance

The experimental evaluation in this study was conducted using tool (based on Agarwal et al. [2021]
and Gorsane et al. [2022]): https://github.com/instadeepai/marl-eval.

Considering the setting in which a reinforcement learning algorithm is evaluated on M tasks and N
independent runs executed for each task. Then we derive normalized score xm,n,m = 1, · · · ,M and
n = 1, · · · , N . Here, we briefly describe the meaning of the experimental results tables and figures.

• IQM: Inter-quantile Mean

• Optimality Gap: Optimality Gap can be thought of as the how far an algorithm is from
optimal performance at a given task.

• Confidence interval (CI): These provides an estimated possible range for an unknown value.
We choose a 95 confidence interval in our experiments.

• Aggregate score performance: The confidence intervals shown alongside the point estimates
(black bars) are the 95 stratified bootstrap confidence intervals.

• Performance profiles: The algorithm’s normalized score on the mth task as a real-valued
random variable Xm. Then, the score xm,n is a realization of the random variable Xm,n,
which is identically distributed as Xm. For τ ∈ R, we define the tail distribution function
of Xm as Fm(τ) = P (Xm > τ). For any collection of scores y1:K , the empirical tail
distribution function is given by F̂ (τ ; y1:K) = 1

K

∑K
k=1 1[yk > τ]. In particular, we write

F̂m(τ) = F̂ (τ ;xm,1:N). This explains the meaning of Figure 7 and the significance of the
axes.

E Implementation details

E.1 Environments

Figures 1 and 9 illustrate several VMAS task scenarios.

• Navigation : Randomly spawned agents (circles with surrounding dots) need to navigate to
randomly spawned goals (smaller circles). Agents need to use LIDARs (dots around them)
to avoid running into each other. For each agent, we compute the difference in the relative
distance to its goal over two consecutive timesteps. The mean of these values over all agents
composes the shared reward, incentivizing agents to move towards their goals. Each agent
observes its position, velocity, lidar readings, and relative position to its goal.

34

https://github.com/instadeepai/marl-eval

(a) Balance.

Figure 9: VMAS multi-robot control task–Balance–used in the experiments.

• Sampling : Agents are spawned randomly in a workspace with an underlying Gaussian
density function composed of three Gaussian modes. Agents need to collect samples by
moving in this field. The field is discretized to a grid (with agent-sized cells) and once an
agent visits a cell its sample is collected without replacement and given as a reward to the
whole team. Agents can use a lidar to sense each other in order to coordinate exploration.
Apart from lidar, position, and velocity observations, each agent observes the values of
samples in the 3x3 grid around it.

• Balance : Agents (blue circles) are spawned uniformly spaced out under a line upon which
lies a spherical package (red circle). The team and the line are spawned at a random x
position at the bottom of the environment. The environment has vertical gravity. The relative
x position of the package on the line is random. In the top half of the environment, a goal
(green circle) is spawned. The agents have to carry the package to the goal. Each agent
receives the same reward which is proportional to the distance variation between the package
and the goal over two consecutive timesteps. The team receives a negative reward of −10
for making the package or the line fall to the floor. The observations for each agent are:
its position, velocity, relative position to the package, relative position to the line, relative
position between package and goal, package velocity, line velocity, line angular velocity,
and line rotation modπ. The environment is done either when the package or the line falls
or when the package touches the goal.

E.2 Hyperparameters

Random seeds We select random seeds {0, 1, 2}.

Network architecture The policy and critic models are constructed with MLP layers, and the MLP
architecture is defined as follows:

• num_cells: [256, 256]

• layer_class: torch.nn.Linear

• activation_class: torch.nn.Tanh

Hyperparameters details Tables 18, 19 and 20 show configurations of different algorithms. These
algorithm-specific hyperparameters take precedence over the common hyperparameters.

Table 20: Config details of selected algorithms

QMIX

delay_value: True
loss_function: "l2"
mixing_embed_dim: 32

And the shared parameters across all experimental algorithms are listed below:

35

Table 18: Config details of selected algorithms

IQL MASAC MADDPG

share_param_critic: True share_param_critic: True
num_qvalue_nets: 2

loss_function: "l2" loss_function: "l2" loss_function: "l2"
delay_value: True delay_qvalue: True delay_value: True

target_entropy: "auto"
discrete_target_entropy_weight: 0.2
alpha_init: 1.0
min_alpha: null
max_alpha: null
fixed_alpha: False
scale_mapping: "biased_softplus_1.0"
use_tanh_normal: True use_tanh_mapping: True

Table 19: Config details of selected algorithms

MAPPO CMASAC

share_param_critic: True share_param_critic: True
clip_epsilon: 0.2 num_value_nets: 1
entropy_coef: 0.0 loss_function: "l2"
critic_coef: 1.0 target_entropy: "auto"
loss_critic_type: "l2" alpha_init: 1.0
minibatch_advantage: False min_alpha: null

max_alpha: null
fixed_alpha: False

scale_mapping: "biased_softplus_1.0" scale_mapping: "biased_softplus_1.0"
use_tanh_normal: True use_tanh_normal: True
lmbda: 0.9 gamma: 0.9

• share_policy_params: True
• (discount factor) gamma: 0.99
• (learning rate) lr: 0.00005
• (adam optimizer) adam_eps: 0.000001
• (soft target update) polyak_tau: 0.005
• (initial epsilon for annealing) exploration_eps_init: 0.8
• (final epsilon after annealing) exploration_eps_end: 0.01
• max_n_frames: 3_000_000
• on_policy_collected_frames_per_batch: 6000
• on_policy_n_envs_per_worker: 10
• on_policy_n_minibatch_iters: 45
• on_policy_minibatch_size: 400
• off_policy_collected_frames_per_batch: 6000
• off_policy_n_envs_per_worker: 10
• off_policy_n_optimizer_steps: 1000
• off_policy_train_batch_size: 128
• off_policy_memory_size: 1_000_000
• off_policy_init_random_frames: 0
• off_policy_use_prioritized_replay_buffer: False

36

• evaluation_interval: 120_000
• evaluation_episodes: 10
• evaluation_deterministic_actions: False

Evaluation details

• Evaluation intervals: It refers to the fixed number of time steps, after which training is
suspended, to be able to evaluate an algorithm for a fixed number of runs/epsiodes. The
evaluation frequency must ideally be associated with a duration which we record as the
evaluation duration.

• Number of independent evaluations per interval: This is the amount of evaluations that are
performed at each evaluation interval.

Computer resources The experiments are conducted on a system equipped with Intel Xeon Silver
4314 CPU (2.40GHz, 16 physical cores) and an NVIDIA RTX 4090 GPU (24GB VRAM). Each
independent algorithm experiment run consumes about 1.5GB of CPU RAM and 2.2GB of GPU
VRAM on average.

37

	Introduction
	Original contributions
	Related work

	Preliminaries
	Framework
	Multi-agent framework

	Main results
	Policy evaluation
	Policy gradient
	Continuous Soft Actor-Critic
	Hyperparameter scaling

	Experiments
	Limitations and future work
	Conclusion
	Algorithm
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	Off-policy approach
	Comparative experiment

	Plots and tables
	Gradients
	Results
	Significance

	Implementation details
	Environments
	Hyperparameters

